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Abstract

We specialize the Eichler-Selberg trace formula to obtain an asymptotic in

n for the number of (weighted) SL2(Z)-conjugation orbits of 2×2 matrices

of determinant n whose reductions modulo N lie in a given conjugacy class

in GL2(Z/NZ), for arbitrary level N ≥ 1 which is relatively prime to n.

This generalizes an 1885 result of Hurwitz.

1 Introduction

In [8], Hurwitz writes down formulas for sums of Hurwitz class numbers H(−∆)
as ∆ runs through quadratic progressions to a prime modulus N . He also
mentions that these formulas may be generalized to the case where the modulus
is not prime. This paper generalizes Hurwitz’s result to an arbitrary modulus
N , and gives an alternate proof, based on the Eichler-Selberg trace formula.
First, we describe all of this more precisely.

For any negative discriminant ∆, recall the Hurwitz class number

H(−∆) :=
�

f(x,y)∈Q+
Z (∆) // SL2(Z)

2
|SL2(Z)f(x,y)|

.

Here we are denoting by

Q+
Z (∆) := {f(x, y) = αx2 + βxy + γy2 : (α, β, γ) ∈ Z>0 × Z

2, β2 − 4αγ = ∆}

the set of positive definite (not necessarily primitive) integral binary quadratic
forms of discriminant ∆, by Q+

Z (∆) // SL2(Z) its orbit space with respect to
the classical SL2(Z)-action

f ·
�

a b
c d

�
(x, y) := f(ax + by, cx + dy),

and by
SL2(Z)f(x,y) := {A ∈ SL2(Z) : f ·A = f}
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the stabilizer in SL2(Z) of the form f(x, y). In addition, H(0) is defined to be
−1/12 and H(m) = 0 when m < 0.

Hurwitz shows, for example, that if N is prime, n > 1 is coprime to N ,
and a is any integer modulo N with the property that a2 − 4n is a quadratic
nonresidue modulo N , then

(N +1)
�

t≡a mod N

H(4n−t2) = 2σ(n)+h(a)
1 ψ1(n)+h(a)

2 ψ2(n)+ · · ·+h(a)
µ ψµ(n),

where σ(n) is the sum of the divisors of n. The h(a)
i ’s are coefficients which do

not depend on n and the ψi(n)’s are the Fourier coefficients of the q-expansions
of certain weight 2 cusp forms for the modular curve X(N). Thus, if we apply
the Ramanujan bound |ψi(p)| ≤ 2p1/2 [3], we obtain

�

t≡a mod N

H(4n− t2) =
2

N + 1
σ(n) + ON,ε(n1/2+ε). (1)

Let us re-interpret this asymptotic. Note that, by pairing the positive defi-
nite form f(x, y) with the negative definite form −f(x, y) we have

H(−∆) =
�

f(x,y)∈QZ(∆) // SL2(Z)

1
|SL2(Z)f(x,y)|

,

where the sum is now taken over the orbit space of the set of all integral binary
quadratic forms of discriminant ∆. Let M2×2(Z) denote the set of all integral
2 by 2 matrices, and for a fixed pair integers t and n, define

T (t, n) := {A ∈M2×2(Z) : trA = t, det A = n}.

If t and n satisfy t2 − 4n = ∆, then there is a bijection

QZ(∆)←→ T (t, n) (2)

in which

αx2 + βxy + γy2 ↔
� t+β

2 −γ
α t−β

2

�
.

This bijection is a map of SL2(Z)-sets, where SL2(Z) operates by conjugation
on T (t, n). Thus we may re-write the Hurwitz class number as

H
�
−(t2 − 4n)

�
=

�

A∈T (t,n) // SL2(Z)

1
|SL2(Z)A|

where T (t, n) // SL2(Z) denotes the set of SL2(Z)-conjugation orbits in T (t, n)
and

SL2(Z)A := {B ∈ SL2(Z) : B−1AB = A}.

In this paper we prove
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Theorem 1. Let N ≥ 1 be any integer level, n ≥ 1 a non-square integer coprime
to N and A ⊂ GL2(Z/NZ) any SL2(Z/NZ)-conjugation orbit with

detA ≡ n mod N.

Then,

�

A∈T e
A(n) // SL2(Z)

1
|SL2(Z)A|

=
2|A|

|SL2(Z/NZ)|σ(n) + Oε(|A|n1/2+ε),

where

T e
A(n) := {A ∈M2×2(Z) : A mod N ∈ A, det A = n and (trA)2 < 4n}.

Note that this theorem specializes to (1) in the case where N is prime and
A is the SL2(Z/NZ)-conjugation orbit of trace a and determinant n.

The case where n = p is prime is of particular interst. The work of Deuring
[4] (see also [2, Theorem 14.18]) interprets the left-hand side of (1) as essentially
counting the number of isomorphism classes of elliptic curves over Z/pZ whose
Frobenius endomorphism has trace congruent to a modulo N . Duke [5] uses this
observation to unconditionally bound the mean-square error in the Chebotarev
density theorem for the N -th division fields of elliptic curves over Q, for N
prime. In a forthcoming paper we will use Theorem 1 to strengthen Theorem 2
of [5].
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3 General framework

Let
A =: SL2(Z/NZ)aSL2(Z/NZ)−1, a ∈ GL2(Z/NZ)

be as in Theorem 1, and define the subgroup D ⊂ GL2(Z/NZ) to be the sub-
group generated by a and the negative of the identity:

D = Da :=
�

a,−
�

1 0
0 1

��
⊂ GL2(Z/NZ)

In order to obtain the theorem using trace formulas, we will make use of the
following properties of D:

1. The group D intersects A nontrivially:

D ∩A �= ∅.
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2. The group D is abelian, so that its space of class functions is spanned by
its multiplicative characters χ.

3. The negative of the identity matrix belongs to D:

−
�

1 0
0 1

�
∈ D

We will employ a trace formula for the action of TD(n), the associated degree
n Hecke operator, on the space S2(ΓD, χ) of weight 2 cusps forms with character
χ relative to the associated congruence group Γ = ΓD (for definitions, see Section
4).

We remark that any other group D satisfying properties 1, 2 and 3 could be
used in our proof in place of Da. In fact, one need not assume D to be abelian,
although it is conveniently simplifies the proof. All that is really necessary is
that the multiplicative characters on D distinguish the SL2(Z/NZ) conjugation
orbits in D. For example, if

A ∩
��
∗ ∗
0 ∗

�
mod N

�
�= ∅,

then one could use the trace formula for Γ0(N) with character as developed
in [10] or [7] to prove Theorem 1. Otherwise, we must use other congruence
groups. Chen [1] has also used trace formulas for groups other than Γ0(N) (in
the case of prime level and trivial character) to deduce the existence of isogenies
between the jacobians of certain modular curves.

4 Notation and Background

Throughout this paper we use the standard notation:

Γ(N) := {γ ∈ SL2(Z) : γ ≡
�

1 0
0 1

�
mod N}.

In particular, Γ(1) denotes the full modular group SL2(Z). For any subset
S ⊆M2×2(Z/NZ) we put

TS := {A ∈M2×2(Z) : A mod N ∈ S},

Further we define, for any integers t and n,

TS(n) = {A ∈ TS : det A = n} and TS(t, n) = {A ∈ TS(n) : trA = t}.

We abbreviate T := TM2×2(Z/NZ), so that our previous notation T (t, n) is con-
sistent.

If X is any set of matrices stable by left (resp. right) multiplication by a
group Γ of matrices, we use the usual notation

Γ \X ( resp. X /Γ)
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to denote the left (resp. right) coset space, whereas X //Γ denotes the space of
conjugation orbits, if Γ acts on X by conjugation. We denote by

Γx := {γ ∈ Γ : γxγ−1 = x}

the centralizer in Γ of x ∈ X. Finally, Z(Γ) denotes the center of the group Γ,
and I denotes the 2× 2 identity matrix.

4.1 Preliminaries

We now briefly set up the background, following [9], where full details (of the
weight k > 2 case) may be found. For an even positive integer weight k ≥ 2
and a function f on the upper half-plane we denote

�
f |k

�
a b
c d

��
(z) := (ad− bc)k/2(cz + d)−kf

�
az + b

cz + d

�
.

Suppose Γ is any Fuchsian group of the first kind and that

χ : Γ −→ C
∗

is a multiplicative character whose kernel has finite index in Γ. We consider the
space of holomorphic weight k modular forms with character χ for Γ

Mk(Γ, χ) = {f : H → C, f holomorphic (at cusps too), ∀γ ∈ Γ, f |kγ = χ(γ)f}.

Note that, if −I ∈ Γ we have

χ(−I) �= (−1)k =⇒ Mk(Γ, χ) = {0}. (3)

The subspace of cusp forms is defined by

Sk(Γ, χ) = {f ∈Mk(Γ, χ) : f ≡ 0 at the cusps of Γ}.

We recall the action of Hecke operators on these spaces. Define the semigroup

Γ̃ := {g ∈ GL+
2 (R) : [Γ : gΓg−1 ∩ Γ] <∞ and [gΓg−1 : gΓg−1 ∩ Γ] <∞}.

Let Υ be any subsemigroup satisfying

Γ ⊆ Υ ⊆ Γ̃

and assume that χ extends to a multiplicative character of Υ so that for α ∈ Υ
and γ ∈ Γ we have

αγα−1 ∈ Γ =⇒ χ(αγα−1) = χ(γ). (4)

Given any finite union of double cosets

T =
�

α∈Υ�

ΓαΓ (Υ� ⊂ Υ) ,
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denote by T (or by Tχ, when we wish to emphasize the character χ) the Hecke
operator

T : Sk(Γ, χ)→ Sk(Γ, χ),

defined by the finite sum

T (f) =
�

α∈Υ�

det(α)k/2−1
�

α1∈Γ\ΓαΓ

χ(α1)f |kα1.

We refer to this situation by saying that the double coset space T defines the
Hecke operator T .

4.2 The Eichler-Selberg Trace formula

We use the following trace formula due originally to Eichler [6] (see also [11],
which works out the χ|Γ = non-trivial case). The set-up is as follows. Let
T = Tχ be any Hecke operator (defined by the double-coset space T ) acting on
the space Sk(Γ, χ) of cusp forms for Γ with character χ. Let

T h := {α ∈ T : tr (α)2 > 4 det(α) and α’s fixed points are cusps of Γ}

and
T e := {α ∈ T : tr (α)2 < 4 det(α)}.

denote the subsets of hyperbolic and elliptic matrices, respectively. If the matrix
α is hyperbolic, then let ηα and ζα be its real eigenvalues, taken in either order,
and define

sgn(α) := the sign of either eigenvalue.

If α is elliptic, then choose σ ∈ SL2(R) so that

σασ−1 = r

�
cos θ sin θ
− sin θ cos θ

�
(r > 0)

and define
ηα := reiθ, ζα := re−iθ.

Theorem 2. Suppose that the double-coset space T ⊂ GL+
2 (R) defining T

contains no scalar or parabolic elements. If −I ∈ Γ, then assume also that
χ(−I) = (−1)k. Then the trace tr (T ) of the Hecke operator T is given by

tr (T ) = −te − th + δ(χ, k)
�

α∈Γ\T

χ(α), (5)

where

δ(χ, k) :=

�
1 if k = 2 and χ|Γ ≡ 1
0 otherwise,

(6)

te :=
�

α∈T e // Γ

χ(α)
|Γα|

ηk−1
α

ηα − ζα
.
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and

th :=
1

|Z(Γ)|
�

α∈T h // Γ

χ(α)sgn(α)k min{|ηα|, |ζα|}k−1

|ηα − ζα|

Theorem 1 is obtained by using a particular case of Theorem 2. We now
specify the Fuchsian group Γ and Hecke operator T we will use. Given the dis-
cussion in Section 4.1, it remains to define Γ and Υ and describe the characters
χ of Γ and how they extend to Υ, as well as the double coset spaces T defining
our Hecke operators.

Given any subgroup
D ⊂ GL2(Z/NZ)

which satisfies properties 1, 2 and 3 from Section 3, we take

Γ = ΓD := TD(1) = {γ ∈ Γ(1) : γ mod N ∈ D}

and Υ to be the semigroup TD. We fix a group homomorphism

χ : D ∩ SL2(Z/NZ) −→ C
∗.

Since D is abelian, it is not hard to show that any such character may be
extended (in |D/(D ∩ SL2(Z/NZ))| different ways) to a character

χ : D −→ C
∗. (7)

Pre-composition with reduction modulo N then defines a character

χ : ΓD −→ D −→ C
∗

satisfying Γ(N) ⊆ ker χ. By (7), χ extends to a semigroup homomorphism

χ : TD −→ D −→ C
∗,

and one verifies (4) immediately. We take our Hecke operators T = TD(n) to
be those defined by the double coset space TD(n).

Note that, by property 3, we have

−TD(n) = TD(n).

If in addition χ(−I) �= (−1)k, then by (3) we see that the left-hand side of (5)
must be zero. Pairing α with −α in the various sums and using the identities

η−α = −ηα and ζ−α = −ζα,

we see that in this case the right hand side of (5) is also zero. This shows

Remark 3. The formula (5), applied with Γ = ΓD and T = TD(n), is still valid
if χ(−I) �= (−1)k.
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We will also use (5) with D replaced by its “twin” D�, defined by

D� := gDg−1, g :=
�

0 1
1 0

�
∈ GL2(Z/NZ),

together with χ’s twin

χ� : D� −→ C
∗, χ�(A) := χ(g−1Ag)

The group Γ� := ΓD� , the double-coset space TD�(n) and Hecke operator TD�(n)
are defined just as for D.

5 Proof of Theorem 1

Having set up all the specifics, we are now ready to prove Theorem 1.

5.1 Eliminating the weights from the elliptic term

We begin by using the twin group D� to obtain (in the weight k = 2 case) an
expression involving the simpler elliptic term

�

α∈T e
D(n) // Γ

χ(α)
|Γα|

in place of
�

α∈T e
D(n) // Γ

χ(α)
|Γα|

ηα

ηα − ζα
.

To do this, we express the sum of the traces

tr (Tχ
D(n)) + tr (Tχ�

D�(n)),

using Theorem 2. (Note, since we assume n is not a square, the double coset
space TD(n) (resp. TD�(n)) doesn’t have any scalar or parabolic elements). First,
note that the map

TD(n) −→ TD�(n), α �→ gαg−1, g =
�

0 1
1 0

�
∈ GL2(Z)

allows us to write the elliptic term of tr (T χ�

D� (n)) as

�

α∈T e
D� (n) // Γ�

χ�(α)
|Γα|

ηk−1
α

ηα − ζα
=

�

α∈T e
D(n) // Γ

χ�(gαg−1)
|Γgαg−1 |

ηk−1
gαg−1

ηgαg−1 − ζgαg−1

= −
�

α∈T e
D(n) // Γ

χ(α)
|Γα|

ζk−1
α

ηα − ζα
,

where the second equality follows from the identities

ηgαg−1 = ζα and ζgαg−1 = ηα.
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Thus, if k = 2, we see that tr (Tχ
D(n)) + tr (Tχ�

D�(n)) is equal to

−
�

α∈T e
D(n)//Γ

χ(α)
|Γα|

−
�

α∈T h
D (n)//Γ

χ(α)
min{|ηα|, |ζα|}
|ηα − ζα|

+ 2 · δ(χ, 2)
�

α∈Γ\TD(n)

χ(α).

(8)

5.2 Using orthogonality to pick out residue classes

We will now use the orthogonality relations of the characters χ in such a way
that our sums will be over matrices α which are congruent modulo N to a
prescribed matrix. Using property 1 of Section 3, we may choose a ∈ D ∩ A.
We compute

1
|D∗|

�

χ∈D∗
χ(a)

�
tr (Tχ

D(n)) + tr (Tχ�

D�(n))
�

.

Using the orthogonality relations

1
|D∗|

�

χ∈D∗
χ(a)χ(α) =

�
1 if α ≡ a mod N

0 otherwise,

together with (8), we find that the sum

1
|D∗|

�

χ∈D∗
χ(a)

�
te(Tχ

D(n)) + te(Tχ�

D�(n)) + th(Tχ
D(n)) + th(Tχ�

D�(n))
�

of the elliptic and hyperbolic terms is equal to
�

α∈T e
{a}(n)//Γ

1
|Γα|

+
�

α∈T h
{a}(n)//Γ

min{|ηα|, |ζα|}
|ηα − ζα|

.

Using the classical set bijections

Γ\TD(n)←→ Γ(1)\T (n)←→
��

d b
0 n/d

�
: d | n, b mod (n/d)

�
,

as well as
{χ ∈ D∗ : χ|D∩SL2(Z/NZ) ≡ 1} ←→ (det(D))∗

and the exact sequence

1 −→ D ∩ SL2(Z/NZ) −→ D −→ det(D) −→ 1,

we find that the remaining term

1
|D∗|

�

χ∈D∗
χ(a) · 2 · δ(χ, 2)

�

α∈Γ\TD(n)

χ(α)

is equal to
2

|D ∩ SL2(Z/NZ)| |Γ\TD(n)| = 2
[Γ : Γ(N)]

σ(n)
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5.3 Passing from Γ to Γ(1)

We have now expressed the trace tr (Tχ
D(n))+tr (Tχ�

D�(n)) in terms of a sum over
Γ-conjugation orbits. We will now convert this into a sum over Γ(1)-conjugation
orbits.

Lemma 4. We have
�

α∈T e
{a}(n)//Γ

1
|Γα|

= [Γ(1)a,N : Γ]
�

β∈T e
A(n)//Γ(1)

1
|Γ(1)β |

(9)

and �

α∈T h
{a}(n)//Γ

min{|ηα|, |ζα|}
|ηα − ζα|

= Oε([Γ(1)a,N : Γ]n1/2+ε), (10)

where
Γ(1)a,N := {γ ∈ Γ(1) : (γ mod N)a = a(γ mod N)}.

Proof. First note that, if β ∈ TA(n), then Γ(1)βΓ(1)−1∩T{a}(n) �= ∅, and so we
may take such a β to belong to T{a}(n). Thus, we may write the elliptic term
as

�

α∈T e
{a}(n)//Γ

1
|Γα|

=
�

β∈T e
A(n)//Γ(1)




�

α∈(Γ(1)βΓ(1)−1∩T e
{a}(n))//Γ

1
|Γα|





=
�

β∈T e
A(n)//Γ(1)




�

α∈Γ(1)a,N βΓ(1)−1
a,N //Γ

1
|Γα|





and likewise with the hyperbolic term:
�

α∈T h
{a}(n)//Γ

min{|ηα|,|ζα|}
|ηα−ζα| is equal to

�

0<d<
√

n
d|n

d

n/d− d

�

β∈T h
A(±(n/d+d),n)//Γ(1)




�

α∈(Γ(1)βΓ(1)−1∩T h
{a}(n))//Γ

1





≤
�

0<d<
√

n
d|n

d

n/d− d

�

β∈T (±(n/d+d),n)//Γ(1)




�

α∈Γ(1)a,N βΓ(1)−1
a,N //Γ

1



 .

Into how many Γ-conjugation orbits does Γ(1)a,NβΓ(1)−1
a,N decompose? Writing

a right coset decomposition

Γ(1)a,N =
�

b∈B

Γb,

we have
Γ(1)a,NβΓ(1)−1

a,N =
�

b∈B

Γbβb−1Γ−1. (11)
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If β is hyperbolic, then the centralizer Γ(1)β = {±I}, and so, by property 3 of
the group D, the union (11) is disjoint. Thus, there are exactly [Γ(1)a,N : Γ]
Γ-conjugation orbits in Γ(1)a,NβΓ(1)−1

a,N , and so
�

α∈T h
{a}(n)//Γ

min{|ηα|,|ζα|}
|ηα−ζα| is

less than or equal to

2 · [Γ(1)a,N : Γ]
�

0<d<
√

n
d|n

d

n/d− d
|T (n/d + d, n)//Γ(1)| .

One can show that there is a bijection

T (n/d + d, n) // Γ(1)←→
��

d x
0 n/d

�
: x mod (n/d− d)

�
,

upon which (10) follows from
�

0<d<
√

n
d|n

d ≤
√

n
�

d|n

1 = Oε(n1/2+ε).

If β is elliptic and Γ(1)β = {±I}, then again (11) is disjoint and (9) follows.
Otherwise, Γ(1)β is a group of order 4 or 6, and in that case we decompose the
set B of coset representatives into two subsets

B = B1 �B2,

where
B1 = {b ∈ B : Γ(1)bβb−1 ⊆ Γ}

and
B2 = {b ∈ B : Γ(1)bβb−1 � Γ}

and note that, for b ∈ B2, Γ(1)bβb−1 ∩Γ = {±I}. We then observe that, for any
b, b� ∈ Γ(1)a,N we have

Γbβb−1Γ−1 = Γb�βb�−1Γ−1

if and only if the equivalent conditions

b�b−1 ∈ Γ(1)b�β(b�)−1Γ⇐⇒ b� ∈ ΓΓ(1)bβb−1b

hold. The first condition shows that unless b, b� ∈ B2 we must have

Γbβb−1Γ−1 ∩ Γb�βb�−1Γ−1 = ∅,

and when b, b� ∈ B2 the second condition shows that the number of conjugation
orbits in �

b∈B2

Γbβb−1Γ−1
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collapses by a factor of 2
|Γ(1)β | . In this case we have

�

α∈Γ(1)a,N βΓ(1)−1
a,N //Γ

1
|Γα|

=
�

b∈B1

1
|Γ(1)β |

+
2

|Γ(1)β |
�

b�∈B2

1
2

=
[Γ(1)a,N : Γ]
|Γ(1)β |

,

upon which (9) follows, concluding the proof of Lemma 4.

5.4 Finishing the proof

We have now shown that when k = 2, the trace 1
|D|

�
χ∈D∗

�
tr (Tχ

D(n)) + tr (Tχ�

D�(n))
�

is equal to

−[Γ(1)a,N : Γ]
�

β∈T e
A(n)//Γ(1)

1
|Γ(1)β |

+
2

[Γ : Γ(N)]
σ(n) + Oε([Γ(1)a,N : Γ]n1/2+ε).

On the other hand, writing the trace of each Tχ
D(n) with respect to a basis

{f1, f2, . . . , fg} ⊂ S2(Γ) of Hecke eigenforms, together with

S2(Γ(N)) =
�

χ∈(Γ/Γ(N))∗

S2(Γ, χ)

and the Ramanujan bound

|λi(n)| = Oε(n1/2+ε) (Tχ
D(n)fi = λi(n)fi)

for the Hecke eigenvalues, we see also that

1
|D|

�

χ∈D∗

�
tr (Tχ

D(n)) + tr (Tχ�

D�(n))
�

= Oε

�
genus of X(N)

[Γ : Γ(N)]
n1/2+ε

�
.

Thus,

�

β∈T e
A(n)//Γ(1)

1
|Γ(1)β |

=
2

[Γ(1)a,N : Γ(N)]
σ(n) + Oε

�
genus of X(N)

[Γ(1)a,N : Γ(N)]
n1/2+ε

�

=
2|A|

|SL2(Z/NZ)|σ(n) + Oε

�
|SL2(Z/NZ)||A|
|SL2(Z/NZ)| n1/2+ε

�
,

finishing the proof of Theorem 1. For the genus of X(N), see [9, Theorem
4.2.11], for example. Note that in case n = p is prime we obtain the sharper
error term O(|A|p1/2), with an absolute constant.

Corollary 5. Suppose B is any subset of GL2(Z/NZ) which is stable by SL2(Z/NZ)-
conjugation and which has constant determinant, i.e.

∀b, b� ∈ B, det b = det b�.
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Then, the result of Theorem 1 holds when one replaces A by B, namely

�

A∈T e
B (n) // SL2(Z)

1
|SL2(Z)A|

=
2|B|

|SL2(Z/NZ)|σ(n) + Oε(|B|n1/2+ε),

with the sharper error term O(|B|p1/2) (with an absolute implied constant) if
n = p is prime.

Proof. Write
B =

�

i

Ai,

where Ai are SL2(Z/NZ)-conjugation orbits, and apply Theorem 1.
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