Math 586
Computational Finance
University of Illinois at Chicago
Spring 2013


Professor David Nicholls

1219 Science and Engineering Offices (SEO)
(312) 413-1641
nicholls@math.uic.edu
http://www.math.uic.edu/~nicholls/math586_spring13/index.html

Lecture (Lincoln Hall 104): MWF 9:00 am - 9:50 am

Office Hours (1219 SEO):

Textbook:

Other References:
Grading:
Tentative Schedule (WHD = "Wilmott, Howison, & Dewynne", H = "Higham", BR = "Baxter & Rennie", NW = "Nocedal & Wright", J = "Johnson", W = "Wang"):

Week
Day
Date
Topics
Lecture
1
Mon
Wed
Fri
1/14
1/16
1/18
H (1): What is an Option?
H (2, 3):  Option Valuation Preliminaries and Random Variables
H (4, 5, 6): Computer Simulation, Asset Price Movement and Model
Lecture 1
Lecture 2
Lecture 3
2
Mon
Wed
Fri
1/21
1/23
1/25
M.L.K. Day [no class]
H (5, 6, 7, 8): Asset Price Model and Black-Scholes PDE
H (8, 10): Black-Scholes PDE, The Greeks

Lecture 4
Lecture 5
3
Mon
Wed
Fri
1/28
1/29
1/31
H (13, 14): Solving Nonlinear Equations, Implied Volatility
WHD (2, 3): Asset Price Random Walks, Black-Scholes PDE
WHD (3, 4): American Options, First-Order PDE
Lecture 6
Lecture 7
Lecture 8
4
Mon
Wed
Fri
2/4
2/6
2/8
WHD (4): Heat Equation
WHD (4): Fundamental Solutions, Delta Functions
WHD (5): Black-Scholes solution derived
Lecture 9
Lecture 10
Lecture 11
5
Mon
Wed
Fri
2/11
2/13
2/15
WHD (8): Finite Difference Methods (TFSC, TBSC)
WHD (8): Solving tridiagonal systems, Crank-Nicolson
Consistency, Stability, and Convergence of FD Schemes
Lecture 12
Lecture 13
Lecture 14
6
Mon
Wed
Fri
2/18
2/20
2/22
Von Neumann Stability Analysis, Crank-Nicolson
WHD (7): American Options
WHD (7): Obstacle Problem as an LCP
Lecture 15
Lecture 16
Lecture 17
7
Mon
Wed
Fri
2/25
2/27
3/1
NW (12, 16): Constrained Optimization
J (1): Introduction to the Finite Element Method
no class
Lecture 18
Lecture 19
8
Mon
Wed
Fri
3/4
3/6
3/8
J (1): FEM Error Estimate
J (1): FEM for Poisson
J (1, 8): FEM with Neumann BCs; FEM for Heat Equation
Lecture 20
Lecture 21
Lecture 22
9
Mon
Wed
Fri
3/11
3/13
3/15
FEM for Variational Inequalities
VIs and LCPs
BR (0, 1): Parable of the Bookmaker, Arbitrage Pricing of Forwards
Lecture 23
Lecture 24
Lecture 25
10
Mon
Wed
Fri
3/18
3/20
3/22
BR (2): Binomial Tree: One time-tick
BR (2): Binomial Tree: Many time-ticks and a Worked Example
BR (2): Definitions for the Binomial Representation Theorem
Lecture 26
Lecture 27
Lecture 28
11
Mon-Fri
3/25-3/29
SPRING BREAK

12
Mon
Wed
Fri
4/1
4/3
4/5
BR (2): Binomial Representation Theorem and Self-Financing Portfolios
H (16): The Binomial Method
Binomial Method as a Finite Difference Method
Lecture 29
Lecture 30
Lecture 31
13
Mon
Wed
Fri
4/8
4/10
4/12
Nine Ways to Program the Binomial Method
H (12, 15): Introduction to the Monte Carlo Method
H (21): Monte Carlo: Antithetic Variates
Lecture 31 (above)
Lecture 32
Lecture 33
14
Mon
Wed
Fri
4/15
4/17
4/19
H (22): Monte Carlo: Control Variates
H (20): Historical Volatility
no class
Lecture 34
Lecture 35

15
Mon
Wed
Fri
4/22
4/24
4/26
no class
W (6.3): Stratified Sampling
W (7.1): Importance Sampling

Lecture 36
Lecture 37
16
Mon-Fri
4/29-5/3
FINAL PRESENTATIONS


MATLAB Primer:
primer35.pdf
Information Page: PDF
MATLAB Codes for Heat Equation: heat.m