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SUMMARY

In this paper, we combine a fast wave equation solver using boundary
integral methods with a global optimization method, namely Particle
Swarm Optimization (PSO), to estimate an initial velocity model. Un-
like finite difference methods that discretize the model space into pix-
els or voxels, our forward solver achieves significant computational
savings by constraining the model space to a layered model with per-
turbations. The speed and reduced model space of the forward solve
allows us to use global optimization methods that typically require nu-
merous evaluations and few unknown variables. Our technique does
not require an initial guess of a velocity model and is robust to lo-
cal minima, unlike gradient descent frequently used in methods for
both initial velocity model estimation and full waveform inversion.
We apply our inversion algorithm to several synthetic data sets and
demonstrate how prior information can be used to greatly improve the
inversion.

INTRODUCTION
Most seismic processing techniques rely on an accurate velocity model
to obtain meaningful results. Incorrect velocity models can hamper
processing and lead to erroneous interpretation of seismic data. In par-
ticular, inversion techniques such as Full Waveform Inversion (FWI)
are highly sensitive to the initial velocity. Without a good initial veloc-
ity estimate, FWI will converge to local minima with artifacts (Virieux
and Operto, 2009).

Unlike global seismology, exploration and regional scale velocity mod-
els can be poorly constrained. Initial velocity models can be built
using a variety of techniques such as travel time tomography, NMO
semblance analysis, and even full waveform inversion at very low fre-
quencies (Woodward et al., 2008). Most methods of constructing an
initial velocity model rely on expensive travel-time or wave equation
solvers and use gradient based approaches that are susceptible to local
minima. Furthermore, travel time tomography does not use the full
wavefield and requires the picking of arrivals as well as long offsets.
Frequently noise levels are too high for full waveform inversion to be
performed at frequencies where the problem is sufficiently convex and
thus it can be plagued by local minima Pratt (1999); Sirgue (2006).

To combat the problem of local minima in geophysical inverse prob-
lems, researchers have applied global optimization techniques that are
less susceptible to local minima (Sambridge and Mosegaard, 2002;
Sen and Stoffa, 2013). Researchers also make use of different objec-
tive functions and regularization techniques (Burstedde and Ghattas,
2009; van Leeuwen and Herrmann, 2013) to make the inversion more
convex, mitigating the need for global solvers.

In this paper we integrate a fast Helmholtz solver with the global op-
timization method Particle Swarm Optimization (PSO) to invert a ve-
locity model without an initial model. We first give an overview of
the field expansion method we use for quickly solving the Helmholtz
equation and modify it to reduce artifacts and accurately simulate ex-
ploration scale data. We then describe two variations of the PSO algo-
rithm for inverting a velocity model from an observed data set. Finally,
we present the results of our inversion algorithm on synthetic data and
demonstrate how prior information about the velocity model can be
used to improve the inversion.

FIELD EXPANSION
In this section we briefly describe the field expansion method to solve
the Helmholtz equation for a perturbed layer medium. Similar to some
reflectivity codes, such as that by Bouchon (2003), this solver operates
in the spatial Fourier domain and as a result describes the response of
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Figure 1: An illustration of the repeating domain structure implicit in
the forward solver. The domain is periodic and there is a point source
at the same location in each of the repeating domains.

an infinitely repeating domain subject to a periodic point source, as
shown in Figure 1. A detailed description and derivation of the solver
can be found in Malcolm and Nicholls (2011).

The forward solver describes a velocity model consisting of M layers
with velocities cm. Each layer is divided by an interface at depth am;
this interface is perturbed from flat by the function gm(x), which has a
zero mean. This is illustrated in Figure 1. The scattered field in each
layer vm(x,y) satisfies the acoustic Helmholtz equation

—2vm + kmvm = 0 km =
2p f
cm

, (1)

at some frequency f . We begin by describing the case for a set of M
flat layers and then expand the forward solver to handle perturbations
of the interface shape.
Flat Layers
In the flat layer case we set the perturbation gm(x) = 0 and apply the
outgoing wave condition (OWC) to the velocity model. This requires
that in the uppermost layer, energy must be propagating upwards away
from the model and in the bottom layer, energy must be propagat-
ing away from the model downwards. Subject to the OWC and the
Helmholtz equation the scattered field, vm in the spatial frequency do-
main indexed by modes p has the form,

vm(x,y) =
•X

p=�•
dpm ei(ap�bpm (y�ām)) +upm ei(ap+bpm (y�ām)) (2)

where

ap = a +(2p/d)p
b j,p =
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(3)

and a is a constant determined by the angle of the incident source,
ām is the midpoint of each of the flat layers and d is the domain spac-
ing (Petit, 1980). For the shallowest and deepest layers, the midpoint
is equal to the closest interface, ā0 = a1 and āM = aM . Note that in
Equation 2 the up-going upm and down-going dpm spatial Fourier co-
efficients completely describe the field as all of the other variables are
determined directly from the layered model. To determine these un-
known coefficients, we impose the Dirichlet and Neumann boundary
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conditions

vm�1� vm = xm at y = am
∂Nm vm�1�∂Nm vm = ym at y = am

(4)

at each layer at depth am. In Equation 4, x and y are the incident field
and the normal derivative of the incident field respectively. Combining
the expression for the scattered field, Equation 2, and the boundary
conditions, we can express the equalities given by the Equation 4 as
a system of linear equations for each spatial mode p. We write this
system as

Ap~zp = ~rp, (5)

where Ap is a penta-diagonal matrix with entries completely deter-
mined by the velocity model,

~zp = (u0,d1,u1, ...dM�1,uM�1,dM)T (6)

is the unknown vector of up-going and down-going coefficients, and

~rp = (x ,y...,0,0)T (7)

is the source vector. Because the spatial modes are orthogonal, the
field coefficients up and dp can be calculated independently from each
other mode by mode. Once calculated, the field can be determined by
summing across all calculated modes using Equation 2. The entries of
Ap are given in Malcolm and Nicholls (2011) and follow from the in-
sertion of Equation 2 into Equation 4. To insert a point source into this
formulation, we specify the incident field for a periodic point source
in the uppermost layer at some location (x0,y0). This periodic point
source infinity repeats in the x direction at an interval of d. For this
field, the boundary conditions at a single spatial mode p are

xp(x,y) =
1

2id
ei(ap(x�x0)+bp |y�y0 |)

bp
yp = ∂Nm xp. (8)

Note that because the matrix Ap is penta-diagonal with size on the
order of the number of layers M, we can calculate the field very rapidly
in O(M) time. In addition, its LU decomposition is tridiagonal and
extremely efficient to store for multiple right hand solves. Like other
Helmholtz solvers, the field calculation for different source locations
only requires only the application of the already computed A �1

p to a
new right hand side.
Perturbed Layers
To extend the forward solver to handle a non-trivial interface, we make
the approximation that the zero-mean layer perturbation gm(x)= e fm(x)
and take the Taylor series of the field about e . Taking the Taylor ex-
pansion up to some order N, the field is

vm(x,y) =
•X

p=�•

NX

n=0

(d(pm ,n)e
i(ap�bpm (y�ām)) +u(pm ,n)e

i(ap+bpm (y�ām)))en.

(9)

Like the expression for the flat layer field, d(pm ,n) and u(pm ,n) com-
pletely determine the field. In addition, the Dirichlet and Neumann
boundary conditions are applied to the perturbed interface, changing
the boundary conditions to

vm�1� vm = xm at y = am +gm(x)
∂Nm vm�1�∂Nm vm = ym at y = am +gm(x).

(10)

This expansion about e can be applied to the system of equations
in Equation 10 as done in Malcolm and Nicholls (2011). When ex-
panded, a recursion relationship becomes apparent such that field co-
efficients of order n are determined by the lower order terms 0...(n�1)
and each higher order coefficient can be determined by solving

Ap~z(p,n) = ~R(p,n) (11)

for a different right hand side ~R(p,n) in Equation 11. For the zeroth
order term, ~R(p,0) is equal to the right hand side of the flat layer case

given by Equation 5. For higher order terms, the entries are found by
equating terms with the same n. The resulting coefficients are given in
Malcolm and Nicholls (2011).

We summarize the steps needed to calculate the field for a perturbed
velocity model in Algorithm 1.

Algorithm 1 Perturbed Helmholtz Solver
Determine number of spatial modes P
Determine order of Taylor series N
for p = 1 to P do

Construct source vector ~Rp
Construct velocity model matrix Ap
Solve Ap~z(p,0) =~r(p,0) to get [upm,0 dpm,0 ]
for n = 1 to N do

from dn�1 and un�1 Construct ~Rp,n

Solve Ap~z(p,n) = ~R(p,n) to get [upm,n dpm,n ]
end for

end for
Use [upmn dpmn ] to calculate field vm with Equation 9

Practical Considerations
The forward solver described in the previous section works both in the
spatial and temporal frequency domain, making it difficult to directly
compare to real or synthetic seismic data. If the domain spacing d is
small, energy from other domains can cross into each other, generating
edge effects. Setting the domain spacing very large relative to region
of interest greatly mitigates this effect because the energy of a point
source decreases due to geometric spreading. This comes at a small
computational cost of increasing the number of spatial frequencies p
needed to determine the solution.

In addition to the leakage effects, the source’s periodic nature gener-
ates a problematic standing wave known as the Rayleigh or Wood’s
anomalies. The mathematical origin of this problem can be seen in
Equation 8. In this series expansion, it is obvious that the expres-
sion for xp(x,y) will become very large if one of the low order bp is
very near zero. From the expression for bp in Equation 3, this gen-
erates large amounts of energy at certain combinations of top layer
velocity, domain spacing, and temporal frequency as shown in Figure
2 (left). Because the point source is periodic, the forward model is
analogous to a diffraction grating in which the slits are replaced by an
infinite number of point sources. Applying a source with a particu-
lar frequency excites a resonance in the diffraction grating that causes
energy to be trapped in the upper layer of the model that does not de-
cay with distance and cannot be mitigated by increasing the domain
spacing (Maystre, 2012).

To prevent the energy of far away sources from entering other domains,
a dissipation term must be added to the top layer. To implement this
dissipation we multiplied the top layer velocity by 1� 0.025i. This
effectively causes the energy of the wave to die out before it can reach
the next domain. Figure 2 (right) shows the scattered field in the time
and Fourier domains for a forward solve with a dissipative top layer
and a lossless medium. This appears as large amplitude non-causal
waves when viewed in the time domain. Without the addition of the
dissipation term, the forward solve would not be comparable to real
results or synthetic data generated from finite difference or finite ele-
ment. In addition to complicating comparison to real data, the Wood’s
anomalies introduces many erroneous local minimia. Figure 3 shows
the difference in cost functions as a function of top layer velocity and
depth for a simple three-layered medium with the location of the true
reflector located at 500 m with a velocity of 1100 m/s at frequency of
3 Hz. With the addition of absorption the minima is well behaved and
smooth.

For large perturbations, the Taylor series expansion of the field given
by Equation 9 is unstable and it is impossible to simulate the field using
the field expansion method. To mitigate this anomaly and allow the
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Figure 2: Left: A common shot record in the frequency and time do-
main for a loseless medium. Right: The same shot record with a small
absorption term added to the top layer. We see that the addition of
absorption has greatly attenuated the straight line Rayleigh anomalies
apparent in the figures on the left.
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Figure 3: The cost functions as a function of top layer velocity and
interface depth. Left shows a loseless medium. Right shows a medium
with small absorption term in the top layer. Note the improvement in
the behaviors of the cost function when absorption is included.

method to handle large perturbations, a Padé approximant (Baker and
Graves-Morris, 1996) is used to enhance both the rate of convergence
and permissible perturbation size as detailed in Malcolm and Nicholls
(2011). With the addition of the Padé approximant, absorptive top
layer, and large spacing between domain size, data generated using the
field expansion method is comparable to finite difference simulations,
as shown in Figure 4.

OPTIMIZATION METHOD
In this section we describe the global optimization method, PSO, used
to solve the inverse problem of estimating a velocity model given a
set of measured seismic traces. PSO is modeled on the behavior of
flocks in which a collection (swarm) of potential solutions (agents)
move through model space and communicate their own successes and
failures with the other agents to find a global minima (Eberhart and
Kennedy, 1995).

In the PSO algorithm, a collection of agents are randomly initialized
across the entire range of model space with a random velocity at which
they move through model space. At each iteration, all agents evaluate
a cost function based on their current position; in our implementation
this cost function is the mean square error between the measured and
observed fields. All agents keeps track of the personal best, lowest
scoring, location in model space it has visited and its corresponding
score. The agents then move through model space according to their
velocity. Each agent’s velocity is then updated to accelerate the agent
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Figure 4: Right: Velocity model with perturbed interface. Middle:
Gather generated using the field expansion method. Left: Gather gen-
erated using the Seismic Unix 2nd order finite difference solver. Good
agreement is achieved between the two solvers.

towards its personal best location, the lowest scoring location it has
visited in model space, and the neighborhood best location, the lowest
scoring location across a subset of agents.

We implemented two forms of PSO: traditional PSO and local best
PSO. The two variants of PSO only differ in how the neighborhood
best is defined for each agent. In traditional PSO, each agent’s velocity
is influenced by the best known solution across the entire swarm. In
local best PSO, each agent instead only sees the best known solution
among its adjacent index neighbors (Bratton and Kennedy, 2007). For
example in a swarm of 10 agents, the 5th agent’s best neighborhood
location is calculated among the personal best of agents with indices
[4,5,6] and for the 10th agent the best is determined among indices
[9,10,1]. This variation of the algorithm slows the speed of which
information is transmitted across the swarm and prevents the algorithm
from converging too early to a local minima (Kennedy and Mendes,
2006).

The steps can be summarized through the following pseudo code de-
scribing the swarm, consisting of Ns agents each with position vector
x and velocity vector v. For each agent in the swarm,

1. Initiate personal best score to infinity: ps
i = •

2. Initiate swarm position from a uniform distribution across all
of model space: xi = U[�1,1]

3. Initiate swarm velocity from a uniform distribution in some
range: vi = U[�velmax,velmax]

4. Evaluate forward solve and calculate agent’s score: G(Xi)
5. Record personal best score and location if better than current

best: if ps
i < G(Xi) then ps

i < G(Xi) and pi = xi
6. Determine neighborhood best location, gi. If local best PSO:

gi min(ps
i�1, ps

i , ps
i+1). If normal PSO: gi min(ps

i ..., ps
Ns
).

7. Calculate new position: xi = xi +vi
8. Calculate stochastic difference vectors, difference between best

locations multiplied by uniform distribution: dg = U[0,1] ⇤
(gi�xi), dp = U[0,1]⇤ (pi�xi)

9. Calculate new velocity: vi = gvi +apdp +agdg
10. Clamp velocities: If any entries of vi exceed velmax or �velmax

then set the entries to velmax or �velmax
11. Go to step 4 until maximum number of iterations is reached.

In the expression for the velocity update above, g is the inertia term
controlling how much the previous velocity is maintained from the
prior iteration and ag and ap are the acceleration terms that determine
how much the personal best and neighborhood best alter each agent’s
velocity at each iteration. For all of the simulations performed in this
paper the following parameters were used: Ns = 40, g = .9, ag = 1.49,
and ap = 1.49. The maximum velocity velmax was clamped to ±.05 of
the total search space. Note that in the above algorithm, the evaluation
of each agent’s cost function is independent from one another and the
forward solves can be parallelized across all agents.

To apply PSO to the field expansion framework, the velocity model
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Variable Truth Normal Local Prior
Interface 1 (m) 500 585±101 520±57 501±1
Interface 2 (m) 1200 1227±167 1220±155 1197±5
Velocity 1 (m/s) 1500 1433±83 1486±48 1501±1
Velocity 2 (m/s) 2500 2630±288 2539±298 2495±7
Velocity 3 (m/s) 3500 3867±697 3537±385 3494±36

Table 1: Flat model inversion results
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Figure 5: Left: Mean cost function for local and normal PSO as a
function of iteration number. Right: Percentage of agents with cost
function under .25 as a function of iteration number. Note the im-
provement seen with the incorporation of prior information.

must be converted into a vector of real numbers. For an M layered
flat velocity model, the model can easily be converted into a vector
of length 2M�1 containing M velocities and M�1 layer boundaries,
one for each of the boundaries. For the perturbed layer case, each of
the layers are assigned Nperturbed values that described the height of
perturbation at Nperturbed equally spaced locations across the region
of interest of each interface. A cubic interpolation was then applied
along each layer to define the surface for all locations. Under this
parameterization, a perturbed velocity model could be described by
(M� 1) ⇤Nperturbed + 2M� 1 values. The model is then be normal-
ized to the range of [-1, 1] by dividing each value by the permissible
perturbation, velocity, or layer depth limit.

EXPERIMENTS
lBest vs PSO
To compare the convergence characteristics and robustness of local
best PSO vs normal PSO, we generated a synthetic dataset using the
field expansion method consisting of 3 layers with interfaces at a depth
of 500 and 1200 meters and velocities 1500, 2500, 3500 m/s from shal-
lowest to deepest. The domain size or the spacing between periodic
point sources was set to 20 kilometers with the synthetic shot fired in
the center of the domain with 512 receivers spanning ±3000 m from
the source. Both regular PSO and local best PSO were run for 1000
iterations with a velocity range of [1000 6000] m/s, interface depth
range of [100 2000] meters, and perturbation limit of 0 to force the
layers to be flat. The inversion was then run 50 times for each algo-
rithm. Figure 5 (left) shows the mean difference in cost function as a
function of iteration and Figure 5 (right) shows percentage of simula-
tions whose best score was less than .25 as a function of iteration. The
local best PSO is initially slow to converge to a minima, but consis-
tently reaches the minima more frequently. Table 1 shows the mean
and standard deviation for the inversions.
Prior
In the previous simulations, we unrealistically assumed that we had
no prior information of the velocity model other than constraining the
interface and velocity limits to reasonable values. However, in almost
all instances we would have some prior knowledge of the velocity ob-
tained from methods such as NMO. For example, one could draw a
set of velocity model from the NMO semblance image to generate a
collection of prior velocity models. To mimic this, instead of assum-
ing a completely random starting model from the entire velocity and
interface limits, we adopt a semi-global approach in this experiment.
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Figure 6: Inversion results for the anticline model. Dashed lines show
the true interfaces and 5 solid color lines show estimates from 5 sepa-
rate PSO runs. The numbers give mean and standard deviations of the
5 inversions for each layer.

We draw an initial model from a uniform distribution around the true
model with a spread of [-300, 300] m for the interface limit and [-500,
500] m/s for the velocity distribution. As in the simulations above,
the swarm can move through the entire range of velocities and inter-
face limits. Only the initial population was altered to incorporate prior
knowledge of the velocity limits. We then ran the inversion using local
best PSO 50 times with the same parameters as the two simulations
in the previous sub-section, with the maximum number of iterations
decreased from 1000 to 500 as the algorithm converged much more
quickly.

Changing the initial swarm from a purely random model to a more
informed prior model greatly improved the performance of the inver-
sion. As shown in Figure 5, all of the inversions reached a misfit of less
than .25 within 100 iterations and the average data misfit as function
of iteration is significantly lower than the traditional or local best PSO.
The inversions using the prior achieved extremely accurate estimates
of the velocity models at 500 iterations, as shown in Table 1.
Anticline with Prior
In the final experiment, we generate a 3 layer velocity model with a
velocity of [1500, 2500, 3500] m/s from deepest to shallowest. The
top interface is flat while the deeper interface has a anticline shaped
perturbation, as shown by the dashed lines in Figure 6. We then gener-
ate 6 synthetic shot records at 3 Hz at the locations shown in Figure 6.
We next perform local best PSO with an informed prior with a uniform
distribution around the true model with a spread of [-400, 400] m for
the interface location and [-500, 500] m/s for the velocity distribution.
For the experiment, the interface was discretized into 13 interpolation
points and we truncate the Taylor series expansion of the field after 8
terms. We ran the inversion 5 times for 500 iterations. The results are
summarized in Figure 6. All of the runs of the algorithm were suc-
cessful in recovering the anticline interface from a limited number of
shot records.
CONCLUSION
In this paper we altered the domain size and added a small absorptive
term to make the field expansion solver comparable to finite differ-
ence methods. Based on this fast solver, we presented an inversion
algorithm using PSO to estimate a velocity model without an initial
guess. Furthermore, we demonstrated how prior information can be
incorporated into the PSO framework to greatly improve accuracy of
the recovered velocity model. This opens up the possibility of estimat-
ing velocities, with error bounds, without the specification of an initial
velocity model.
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