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Abstract
We present a sweeping preconditioner for quasi-optimal domain decomposition methods
(DD) applied to Helmholtz transmission problems in periodic layered media. Quasi-optimal
DD (QODD) for Helmholtz equations rely on transmission operators that are approximations
ofDirichlet-to-Neumann (DtN) operators. Employing shape perturbation series, we construct
approximations of DtN operators corresponding to periodic domains, which we then use as
transmission operators in a non-overlappingDD framework. TheRobin-to-Robin (RtR) oper-
ators that are the building blocks of DD are expressed via robust boundary integral equation
formulations. We use Nyström discretizations of quasiperiodic boundary integral operators
to construct high-order approximations of RtR. Based on the premise that the quasi-optimal
transmission operators should act like perfect transparent boundary conditions, we construct
an approximate LU factorization of the tridiagonal QO Schwarz iteration matrix associated
with periodic layeredmedia, which is then used as a double sweep preconditioner.We present
a variety of numerical results that showcase the effectiveness of the sweeping preconditioners
applied to QO DD for the iterative solution of Helmholtz transmission problems in periodic
layered media.
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1 Introduction

The numerical simulation of interactions between electromagnetic, acoustic, and elastic
waves with periodic layered media has numerous applications in the fields of optics, photon-
ics, and geophysics [6]. Given the important technological applications of periodic layered
media, the simulation of wave propagation in such environments has attracted significant
attention [7,18,24,26,27]. Regardless of the type of discretization (finite elements, finite
differences, boundary integral operators), iterative solvers are the preferred method of solu-
tion especially for high-frequency layered configurations that involve large numbers of
layers which may contain inclusions. The iterative solution of high-frequency Helmholtz
and Maxwell equations in complex media is a challenging computational problem [13], and
one successful strategy to tackle this problem relies on sweeping preconditioners [11]. We
present in this paper several preconditioners for a DD formulation of such problems in two
dimensional periodic layered media.

DD are natural candidates for the solution of Helmholtz transmission problems in peri-
odic layered media [24,26,27]. Local subdomain solutions (the subdomains may or may not
coincide with the periodic layers) are linked iteratively via Robin type transmission con-
ditions defined on inter-domain interfaces. Ideally, the transmission operators should act
as transparent boundary conditions that allow information to flow out of each subdomain
with very little information being reflected back. As such, for a given subdomain, optimal
transmission operators on the subdomain interface consist of Dirichlet-to-Neumann (DtN)
operators associated with the adjacent subdomain that shares the same interface. In practice,
the transmission operators are constructed via various approximations of DtN operators that
rely either on Fourier calculus [2,12] or perfectly matched layers [29,31]; the ensuing DD
are referred to as quasi-optimal DD (QO DD) or optimized Schwarz methods [13].

The main goal of this paper is the design of QO DD for the solution of Helmholtz trans-
mission problems in periodic layered media separated by grating profiles (i.e. graphs of
periodic functions). We present two strategies of subdomain partitions: (1) the subdomains
coincide with the layer subdomains and the subdomain interfaces coincide with the grating
profiles of material discontinuity of the layered medium; and (2) the subdomains consist of
horizontal slabs whose flat boundaries do not intersect any of the grating profiles of material
discontinuity. We note that the DD partition strategy (2) is only applicable to layered media
configurations where the height of the layers is larger than the roughness of their interfaces.
In each subdomain a local quasiperiodic Helmholtz equation with generalized Robin condi-
tions must be solved (the wavenumber may be discontinuous in case (2)), and generalized
Robin data on the subdomain boundaries are linked with those corresponding to the adjacent
subdomain. The generalized Robin data corresponding to a given subdomain is defined in
terms of transmission operators that are approximations of DtN operators corresponding to
the adjacent subdomain. Such approximations of periodic DtN operators can be obtained via
high-order shape perturbation series in case (1) [25]. Specifically, using as a small parameter
the roughness/elevation height of the grating, the periodic DtN operators are expressed as
a perturbation series whose terms can be computed recursively. The zeroth order terms of
the perturbation series coincide with DtN of layered domains with flat interfaces, which can
be written explicitly in terms of Fourier multipliers. In the case of the subdomain partition
(2), since the subdomain interfaces are flat, the transmission operators are chosen to be the
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aforementioned Fourier multipliers. We establish that the ensuing QO DD corresponding
to both subdomain partitions are equivalent to the original transmission problem, with the
caveat that the roughness of the grating profiles must be small enough for the subdomain
partition in case (2).

The exchange of Robin data amongst the subdomains in DD is realized via quasiperi-
odic Robin-to-Robin (RtR) operators that map incoming to outgoing subdomain Robin data.
Following the methodology introduced in [26], we express quasiperiodic RtR operators in
terms of robust boundary integral equation formulations. The discretization of the RtR maps
is realized by extending the high-order Nyström method, based on trigonometric interpo-
lation and windowing quasiperiodic Green functions [26], to the case of DtN transmission
operators. Since the terms in the shape deformation series expansions of DtN operators are
expressed in terms of Fourier multipliers [25], the discretization of the QO transmission oper-
ators is straightforward within the framework of trigonometric interpolation. Using Nyström
discretization RtR matrices, we discretize the QO DD formulation for layered transmission
problems in the form of a block tridiagonal matrix which we invert using Krylov subspace
iterative methods. However, the numbers of iterations required for the solution of QO DD
linear systems grows with the number of layers, especially for high frequency/high-contrast
configurations. In order to alleviate this situation, we construct a double sweep preconditioner
based on an approximate LU factorization of the block tridiagonal QODD/Schwarz iteration
matrix that uses similar ideas to those introduced in [29]. The key insight in our construction
of the LU factorization is related to the observation that if the transmission operators were to
behave as perfect transparent boundary conditions, certain blocks in the QO DD matrix can
be approximated by zero [29]. This approximation renders the LU factorization particularly
simple as it bypasses altogether the need for inversions of block matrices. We mention that
it is possible to formulate the Optimized Schwartz method using different, quite efficient,
methods such as source transfers or polarized traces [28,31] that lead to superior iterative
behavior. Their implementation in the present context is the subject of ongoing investigation.

We present a variety of numerical results that highlight the benefits of QO DD formu-
lations for the solution of transmission problems in periodic layered media, as well as the
effectiveness of the sweeping preconditioners in the presence of large numbers of layers at
high frequencies. With regards to the latter regime, we find that the sweeping preconditioners
used in conjunction with QODD and slab subdomain partitions are particularly effective.We
mention that the quasi-optimal transmission operators based on Fourier square-root princi-
pal symbol approximations of DtN operators have been already used in several contributions
[2,16,29]; we simply extend the square root Fourier calculus to the periodic setting and incor-
porate it within the high-order shape deformation expansions technology introduced in [25].
Furthermore, the construction of the sweeping preconditioners that we employ in this paper
was originally introduced in [29] and further elaborated upon in [13]. The main contributions
of this paper are (a) the integration of these two important ideas within a high-order Nys-
tröm discretization of robust quasiperiodic boundary integral equation formulations of RtR
maps, as well as (b) the analysis of the quasiperiodic QO DD. The generalization of the DD
with slab subdomain partitioning is currently under investigation; this would entail careful
treatment of cross points (i.e. points on the subdomain boundaries where the wavenumbers
are discontinuous), which we plan to pursue along the lines of the contribution [16].

The paper is organized as follows: in Sect. 2 we present the formulation of Helmholtz
transmission problems in periodic layered media. In Sect. 3 we present QO DD formulations
of the periodic Helmholtz transmission problem.We continue in Sect. 4 with the construction
of quasi-optimal transmission operators based on high-order shape perturbation series. We
show in Sect. 5 a means to express the QODDRtR operators in terms of robust quasiperiodic
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boundary integral equation formulations, which, in turn, enable us to analyze the equivalence
between the QODD formulations and the original Helmholtz transmission problems. Finally,
we conclude in Sect. 6with the construction of the sweeping preconditioner and a presentation
of a variety of numerical results that illustrate the effectiveness of these preconditioners in
the context considered in this paper.

2 Scalar Transmission Problems

We consider the problem of two dimensional quasiperiodic scattering by penetrable homo-
geneous periodic layers. We assume that the layers are given by � j = {(x1, x2) ∈ R

2 :
Fj + Fj (x1) ≤ x2 ≤ Fj−1 + Fj−1(x1)} for 1 ≤ j ≤ N and �0 = {(x1, x2) ∈ R

2 :
F0 + F0(x1) ≤ x2} and �N+1 = {(x1, x2) ∈ R

2 : x2 ≤ FN + FN (x1)}. All the functions Fj

are periodic with principal period d , that is Fj (x1 + d) = Fj (x1) for all 0 ≤ j ≤ N , and
Fj ∈ R, 0 ≤ j ≤ N . We assume that the medium occupying the layer � j is homogeneous
and its permittivity is ε j ; the wavenumber k j in the layer � j is given by k j = ω

√
ε j . We

assume that a plane wave uinc(x) = exp(i(αx1 − βx2)), where α2 + β2 = k20 , impinges
on the layered structure, and we are interested in looking for α quasiperiodic fields u j that
satisfy the following system of equations:

�u j + k2j u j = 0, in �
per
j := {(x1, x2) ∈ � j : 0 ≤ x1 ≤ d},

u j + δ
j
0u

inc = u j+1, on 	 j = {(x1, x2) : 0 ≤ x1
≤ d, x2 = Fj + Fj (x1)},

γ j (∂ν j u j + δ
j
0∂ν j u

inc) = −γ j+1∂ν j+1u j+1, on 	 j .

(2.1)

where δ
j
0 is the Kronecker delta symbol. Here ν j denote the unit normals to the boundary

∂� j pointing to the exterior of the subdomain� j (i.e. for the domain�0 we define n0(x1) =
(F ′

0(x1),−1)� and ν0 = n0/|n0| on 	0, for the domains � j , 1 ≤ j ≤ N we define
n j (x1) = (−F ′

j−1(x1), 1)
� and ν j = n j/|n j | on 	 j−1 as well as n j (x1) = (F ′

j (x1),−1)�

and ν j = n j/|n j | on 	 j , and finally, for the domain �N+1, nN+1(x1) = (−F ′
N (x1), 1)�

and νN+1 = nN+1/|nN+1| on 	N ). We note that with this convention on unit normals we
have that ν j = −ν j+1 as well as n j = −n j+1 on 	 j . We also assume that u0 and uN+1 in
Eq. (2.1) are radiative in �0 and �N+1 respectively (Fig. 1). The latter requirement amounts
to expressing the solutions u0 and uN+1 in terms of Rayleigh series

u0(x1, x2) =
∑

r∈Z
B+
r eiαr x1+iβ0,r x2 , x2 > F0 + max F0, (2.2)

and

uN+1(x1, x2) =
∑

r∈Z
B−
r eiαr x1−iβN+1,r x2 , x2 < FN + min FN , (2.3)

where αr = α + 2π
d r , β0,r = (k20 − α2

r )
1/2, and βN+1,r = (k2N+1 − α2

r )
1/2. The branches of

the square roots in the definition of β0,r and βN+1,r are chosen in such away that
√
1 = 1, and

the branch cut coincides with the negative imaginary axis. We assume that the wavenumbers
k j and the quantities γ j in the subdomains � j are positive real numbers. In electromagnetic
applications, γ j = 1 or γ j = ε−1

j depending whether the incident radiation is transverse
electric (TE) or transverse magnetic (TM). For the sake of simplicity, we consider in this
contribution the case γ j = 1; extensions to general positive γ j are straightforward.
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Fig. 1 Typical periodic layer structure with N = 2

3 Domain Decomposition Approach

The transmission problem (2.1) can be formulated via boundary integral equations (BIEs)
[1,7] or via non-overlapping DD [24,26]. Upon discretization, both the BIE and DD amount
to solving block tridiagonal linear systems. In the case of large numbers of layers, the ensuing
(large) linear systems are solved via direct methods [7,26] that rely on Schur complements.
As such, the applicability of direct solvers for the numerical solution of the transmission prob-
lem (2.1) is limited by the size of the Schur complements. Iterative solvers, on the other hand,
do not suffer from the aforementioned size limitations, yet are challenged by the presence of
significant multiple scattering, especially in high-contrast multi-layer configurations at high
frequencies. In the high-frequency regime, relevant to technological applications, efficient
preconditioners are needed in order to alleviate multiple scattering. The main scope of this
contribution is to present such a preconditioner (referred to as the sweeping preconditioner
[11,29,31]) in the context of DD formulation of quasiperiodic transmission problems.

The main idea of DD is to divide the computational domain into subdomains, and to
match quasiperiodic subdomain solutions of Helmholtz equations via Robin type transmis-
sion conditions on the subdomain interfaces. We consider in what follows two strategies of
partitioning the computational domain into non-overlapping subdomains: the most natural
one in which the DD subdomains coincide with the layer domains �

per
j , and an alternative

one in which the subdomains are horizontal strips. We present in what follows the details of
the first subdomain partitioning strategy mentioned above.

3.1 DDwith SubdomainsÄper
j

A natural non-overlapping domain decomposition approach to the solution of Eq. (2.1) con-
sists of solving subdomain problems in �

per
j , j = 0, . . . , N + 1 with matching Robin

transmission boundary conditions on the common subdomain interfaces	 j for j = 0, . . . , N .
Indeed, this procedure amounts to computing α-quasiperiodic subdomain solutions:

�u j + k2j u j = 0 in �
per
j ,

(∂n0u0 + ∂n0u
inc) + Z1,0(u0 + uinc) = −∂n1u1 + Z1,0u1 on �0,1 := 	0

∂n1u1 + Z0,1u1 = −(∂n0u0 + ∂n0u
inc) + Z0,1(u0 + uinc) on �1,0 := 	0
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∂n j u j + Z j+1, j u j = −∂n j+1u j+1 + Z j+1, j u j+1 on � j, j+1 := 	 j , 1 ≤ j ≤ N

∂n j+1u j+1 + Z j , j+1u j+1 = −∂n j u j + Z j , j+1u j on � j+1, j := 	 j , 1 ≤ j ≤ N .

(3.1)

where Z j+1, j : H1/2(� j, j+1) → H−1/2(� j, j+1), Z j, j+1 : H1/2(� j+1, j ) →
H−1/2(� j+1, j ) are certain transmission operators for 0 ≤ j ≤ N , and ∂n j = n j · ∇. In
addition, we require that u0 and uN+1 are radiative. We have chosen to double index the
interfaces between layer subdomains: the first index j refers to the index of the layer � j ,
whereas the second index � denotes the index of the layer �� adjacent to the layer � j so that
� j,� is the interface between � j and ��. Here and in what follows Hs(	) denote Sobolev
spaces of α-quasiperiodic functions/distributions defined on the periodic interface 	; the
definition of these spaces is given in terms of Fourier series [26].

Heuristically, in order to give rise to rapidly convergent iterative DD, the transmission
operators Z j+1, j ought to be good approximations of the restriction to � j+1, j = � j, j+1

of the DtN operator associated with the α-quasiperiodic Helmholtz equation in the domain
� j+1 with wavenumber k j+1. This requirement explains why the indices are reversed in the
definition of the transmission operators. In addition, the transmission operators Z j+1, j and
Z j, j+1 ought to be selected to meet the following two criteria: (1) the subdomain boundary
value problems that incorporate these transmission operators in the form of generalized
Robin boundary conditions are well-posed for all frequencies, and (2) the DD matching of
the generalized Robin data on the interfaces of material discontinuity (which coincide with
the layer boundaries) is equivalent to the original transmission conditions (2.1) on the same
interfaces.

Specifically, with regards to the issue (1) above, we require that for a given layer domain
� j with 1 ≤ j ≤ N , the following α-quasiperiodic boundary value problem is well-posed:

�w j + k2jw j = 0 in �
per
j

∂n j w j + Z j−1, jw j = g j, j−1 on � j, j−1

∂n j w j + Z j+1, jw j = g j, j+1 on � j, j+1 (3.2)

where g j, j−1 and g j, j+1 are generic α-quasiperiodic functions defined on� j, j−1 and� j, j+1

respectively. The following coercivity properties

	〈Z j−1, jϕ j, j−1, ϕ j, j−1〉 < 0 and 	〈Z j+1, jϕ j, j+1, ϕ j, j+1〉 < 0, (3.3)

for all ϕ j, j−1 ∈ H1/2(� j, j−1), ϕ j, j+1 ∈ H1/2(� j, j+1) in terms of the H1/2 and H−1/2

duality pairings 〈·, ·〉 are sufficient conditions for guaranteeing the well posedness of the
boundary value problems (3.2). Indeed, this can be established easily by an application of
the Green’s identities in the domain �

per
j . In the case of the semi-infinite domain �0, we

require that the following α-quasiperiodic boundary value problem is well-posed:

�w0 + k20w0 = 0 in �
per
0

∂n0w0 + Z1,0 w0 = g0,1 on �0,1 (3.4)

where g0,1 is a α-quasiperiodic function defined on �0,1. The coercivity property

	〈Z1,0ϕ0,1, ϕ0,1〉 < 0, for all ϕ0,1 ∈ H1/2(�0,1), (3.5)

suffices to establish the well posedness of the boundary value (3.4). The latter fact can be
established via the same arguments as those in Theorem 3.1 in [26]. A similar coercivity
condition imposed on the operator ZN ,N+1 ensures the well posedness of the analogous
α-quasiperiodic boundary value problem on the semi-infinite domain �N+1.
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Returning to the requirement (2) above, we ask that the DD matching of the generalized
Robin data

∂n j u j + Z j+1, j u j = −∂n j+1u j+1 + Z j+1, j u j+1 on � j, j+1, 1 ≤ j ≤ N

∂n j+1u j+1 + Z j, j+1u j+1 = −∂n j u j + Z j, j+1u j on � j+1, j , 1 ≤ j ≤ N

is equivalent to the continuity conditions

u j = u j+1 and ∂n j u j = −∂n j+1u j+1 on 	 j = � j, j+1 = � j+1, j , 1 ≤ j ≤ N .

It can be immediately seen that the equivalence in part (2) is guaranteed provided that Z j, j+1+
Z j+1, j : H1/2(	 j ) → H−1/2(	 j ) is an injective operator. Under the assumption that the
coercivity properties (3.3) hold, it follows that

	〈(Z j, j+1 + Z j+1, j )ϕ, ϕ〉 < 0, for all ϕ ∈ H1/2(	 j ),

and thus the operators Z j, j+1 + Z j+1, j are injective for all 1 ≤ j ≤ N . Thus, the coercivity
properties (3.3) ensure that both requirements (1) and (2) above are met. We postpone the
discussion on the selection of the transmission operators Z j, j+1 and Z j+1, j andwe formulate
the DD system (3.1) in matrix operator form. To that end, we define certain RtR operators
associated with the boundary value problems (3.2). Specifically, we define the RtR map S j

in the following manner:

S j
[
g j, j−1

g j, j+1

]
=

[
S j
j−1, j−1 S j

j−1, j+1

S j
j+1, j−1 S j

j+1, j+1

][
g j, j−1

g j, j+1

]
:=

[
(∂n j w j − Z j, j−1w j )|� j, j−1

(∂n j w j − Z j, j+1w j )|� j, j+1

]
.

(3.6)

Also, associated with the boundary value problem (3.4) posed in the semi-infinite domain
�0 we define the RtR map S0 in the form

S0
1,1g0,1 := (∂n0w0 − Z0,1w0)|�0,1 . (3.7)

The RtR map SN+1
N ,N corresponding to the domain �N+1 is defined in a similar manner to

S0
1,1 but for a boundary data gN+1,N defined on �N+1,N .
With these notations in place, the DD formulation (3.1) seeks to find the generalized Robin

data associated with each interface 	 j = � j, j+1 = � j+1, j

f j =
[
f j, j+1

f j+1, j

]
:=

[
(∂n j u j + Z j+1, j u j )|� j, j+1

(∂n j+1u j+1 + Z j, j+1u j+1)|� j+1, j

]
, 0 ≤ j ≤ N

as the solution of the following (2N + 2) × (2N + 2) operator linear system

A f = b (3.8)

where f = [ f0 f1 . . . fN ]� and the right-hand-side vector b = [b0 b1 . . . bN ]� has zero
components b� = [0 0]�, 1 ≤ � ≤ N with the exception of the first component

b0 =
[−(∂n0u

inc + Z1,0 uinc)|�0,1

−(∂n0u
inc − Z0,1uinc)|�1,0

]
.

123



44 Page 8 of 45 Journal of Scientific Computing (2020) 82 :44

and the DD Schwarz iteration matrixA is a tridiagonal block operator matrix whose explicit
form is

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

D0 U0 0 . . . 0
L0 D1 U1 . . . 0
. . . . . . . . . . . . . . .

. . . L j−1 Dj U j . . .

. . . . . . . . . . . . . . .

. . . . . . LN−2 DN−1 UN−1

. . . . . . . . . LN−1 DN

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.9)

where

Dj :=
[

I S j+1
j, j

S j
j+1, j+1 I

]
, Uj =

[
S j+1
j, j+2 0
0 0

]
, L j =

[
0 0
0 S j+1

j+2, j

]
. (3.10)

We present in what follows a different strategy of domain decomposition whereby the sub-
domains are horizontal slabs.

3.2 DDwith Slab Subdomains

An alternative DD possibility is to partition the computational domain using horizontal slabs.
We restrict ourselves to cases where the layer domains �

per
j , 1 ≤ j ≤ N are tall enough

so that each periodic interface 	 j , 0 ≤ j ≤ N can be contained in a horizontal strip that
does not intersect any other interface 	�, � �= j . Under this assumption, these horizontal
slabs constitute the DD subdomains—see Fig. 2 for a depiction of the partitioning in the case
of four layers (i.e. N = 2). In general, however, a domain decomposition into horizontal
slabs might require that an interface 	 j intersect a (flat) boundary of a slab; we leave this
challenging scenario for future considerations.

Assuming that there exist real numbers c0 > c1 > · · · > cN+1 such that for all 0 ≤ j ≤ N
we have that c j > F j +max Fj (x1) and c j+1 < F j +min Fj (x1), then we can partition R

2

into a union of nonoverlapping horizontal strips R
2 = ∪N+2

j=0 �
�
j , where the slab domains are

defined as �
�
0 := {(x1, x2) : x2 ≥ c0}, ��

j := {(x1, x2) : c j ≤ x2 ≤ c j−1}, 1 ≤ j ≤ N + 1,

and �
�
N+2 := {(x1, x2) : x2 ≤ cN+1}. Using the domain decomposition into layered slabs

we seek α-quasiperiodic solutions v j of the following system

�v j + k j (x)
2v j = 0 in �

�,per
j , 1 ≤ j ≤ N + 1

[
v j

] = 0,
[
∂n j v j

]
= 0 on 	 j−1, 1 ≤ j ≤ N + 1

−(∂x2v0 + ∂x2u
inc) + Z�

1,0(v0 + uinc) = −∂x2v1 + Z�
1,0v1 on �

�
0,1,

∂x2v1 + Z�
0,1v1 = (∂x2v0 + ∂x2u

inc) + Z�
0,1(v0 + uinc) on �

�
1,0

−∂x2v j + Z�
j+1, j v j = −∂x2v j+1 + Z�

j+1, j v j+1 on �
�
j, j+1, 1 ≤ j ≤ N + 1

∂x2v j+1 + Z�
j , j+1v j+1 = ∂x2v j + Z�

j , j+1v j on �
�
j+1, j , 1 ≤ j ≤ N + 1, (3.11)

where k0(x) := k0, kN+2(x) := kN+1, and

k j (x) :=
{
k j−1, x2 > F j−1 + Fj−1(x1),

k j , x2 < F j−1 + Fj−1(x1),
1 ≤ j ≤ N + 1.
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Fig. 2 Slab domain decomposition

In Eq. (3.11) we have�
�
j, j+1 = �

�
j+1, j := {(x1, c j ), 0 ≤ x1 ≤ d}, 0 ≤ j ≤ N +1 and

[
v j

]

denotes the jump of the function v j across the interface	 j−1.We require that the transmission

operators have the following mapping properties Z �
j+1, j : H1/2(�

�
j, j+1) → H−1/2(�

�
j, j+1)

and Z �
j+1, j : H1/2(�

�
j+1, j ) → H−1/2(�

�
j, j+1) and satisfy coercivity properties similar to

those in Eq. (3.3).
The coercivity properties of the transmission operators Z �

j−1, j and Z �
j+1, j are needed to

ensure the well-posedness of the following subdomain equations

�v j + k j (x)
2v j = 0 in �

�,per
j ,

[
v j

] = 0,
[
∂n j v j

] = 0 on 	 j−1

∂x2v j + Z �
j−1, jv j = g�

j, j−1 on �
�
j, j−1,

−∂x2v j + Z �
j+1, jv j = g�

j, j+1 on �
�
j+1, j , (3.12)

for all 1 ≤ j ≤ N + 1 as well as those posed in the semi-infinite domains �
�,per
0 and �

�,per
N+1

respectively. Associated to the Helmholtz transmission problem (3.12) is the RtR operator
defined below

S�, j

[
g�
j, j−1

g�
j, j+1

]
=

[
S�, j
j−1, j−1 S�, j

j−1, j+1

S�, j
j+1, j−1 S�, j

j+1, j+1

][
g�
j, j−1

g�
j, j+1

]
:=

⎡

⎣
(∂x2v j − Z �

j, j−1v j )|��
j, j−1

(−∂x2v j − Z �
j, j+1v j )|��

j, j+1

⎤

⎦ .

(3.13)
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The DD formulation (3.11) then seeks to find the generalized Robin data associated with
each interface �

�
j, j+1 = �

�
j+1, j

f �
j =

[
f �
j, j+1

f �
j+1, j

]
:=

[
(−∂x2v j + Z �

j+1, jv j )|� j, j+1

(∂x2v j+1 + Z �
j, j+1v j+1)|� j+1, j

]
, 0 ≤ j ≤ N + 1,

as the solution of the following (2N + 4) × (2N + 4) operator linear system

A� f � = b� (3.14)

where the DD Schwarz iteration matrix A� is similar to that defined in Eq. (3.9), f � =
[ f �

0 f �
1 . . . f �

N+1]� and the right-hand-side vector b� = [b�
0 b

�
1 . . . b�

N+1]� has zero compo-

nents b�
� = [0 0]�, 1 ≤ � ≤ N + 1 with the exception of the first component

b�
0 =

[
(∂x2u

inc − Z �
1,0 u

inc)|�0,1

(∂x2u
inc + Z �

0,1u
inc)|�1,0

]
.

Having described two possible DD strategies for the solution of quasiperiodic Helmholtz
transmission problems (2.1), we now present a methodology based on Fourier calculus to
construct quasi-optimal transmission operators.

4 Construction of Quasi-Optimal Transmission Operators Based on
Shape Perturbation Series

We present in what follows a perturbative method to construct quasi-optimal transmission
operators Z j, j+1 and Z j+1, j for 0 ≤ j ≤ N corresponding to the DD formulation (3.1). To
this end, given a generic d-periodic profile function F(x1) we define the periodic interface
	 := {(x1, F(x1)), 0 ≤ x1 ≤ d} and the semi-infinite domains �+,per := {(x1, x2), 0 ≤
x1 ≤ d, F(x1) ≤ x2} and respectively �−,per := {(x1, x2), 0 ≤ x1 ≤ d, F(x1) ≥ x2}.
We assume that the profile function F(x1) can be expressed in the form F(x1) = ε F̃(x1),
where the d-periodic function F̃(x1) is smooth (it actually suffices that the profile function
is Lipschitz [8,15]). We employ a perturbative approach [25] to construct approximations
of the DtN operator Y±(k, F)g := ±∂nv|	 corresponding to the following boundary value
problem in the domains �±,per :

�v± + k2v± = 0, in �±,per ,

v± = g, on 	, (4.1)

where v± are radiative in the domains �±,per , g is a α-quasiperiodic function defined on
	, and n(x) = (F ′(x),−1) is the normal to 	 pointing into the domain �−,per . Under
the assumptions above, the DtN operators Y±(k, F) are analytic in the shape perturbation
variable ε [25], and thus we seek the operator Y±(k, F) in the form of the perturbation series

Y±(k, F) =
∞∑

n=0

Y±
n (k, F̃)εn, (4.2)

where the operators Y±
n (k, F̃) : H1/2(	) → H−1/2(	) can be computed via explicit recur-

sive formulas [25] with the method of operator expansions (OE) (see also [21,22]). Let us
denote by ρ(k, F) the radius of convergence of the perturbation series (4.2). Following [25],
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we present next the recursive formulas that lead to closed form expressions of the operators
Y±
n (k, F̃). First, given an α-quasiperiodic function ϕ ∈ H1/2(	) which can be represented

as

ϕ(x1) =
∑

p∈Z
ϕpe

iαpx1 ,

we define the Fourier multiplier operator

βD(k)[ϕ](x1) :=
∑

p∈Z
βk,pϕpe

iαpx1 , βk,p := (k2 − α2
p)

1/2. (4.3)

Then, it can be shown that the operators Y±
n (k, F̃) in the perturbation series (4.2) can be

computed via the OE recursion

Y±
0 (k, F̃)[ϕ] = (−iβD(k))[ϕ],

Y±
n (k, F̃)[ϕ] = ±k2 F̃n(x1)(±iβD(k))n−1ϕ ± ∂x1

[
F̃n(x1)∂x1(±iβD(k))n−1ϕ

]

−
n−1∑

m=0

Y±
m (k, F̃)

[
F̃n−m(±iβD(k))n−mϕ

]
, (4.4)

where F̃�(x1) := F̃(x1)�

�! . We note that given that all the operators Y±
n (k, F̃) have the same

mapping properties, that is Y±
n (k, F̃) : H1/2(	) → H−1/2(	) for all 0 ≤ n, the recur-

sions (4.4) possess significant subtractive cancellations. More stable expressions of the
operators Y±

n (k, F̃), 1 ≤ n ≤ 2, were proposed in [25]. Specifically, using the commu-
tator

[
βD(k), F̃

] [ϕ] := βD(k)[F̃ϕ] − F̃βD(k)[ϕ]
it can be shown that the low-order term corrections Y±

n (k, F̃), n = 1, 2, can be expressed in
the equivalent form

Y±
1 (k, F̃)[ϕ] = (DF̃) (Dϕ) − [

βD(k), F̃
] [βD(k)ϕ], (4.5)

and

Y±
2 (k, F̃)[ϕ] = iβD(k)

(− [
βD(k), F̃2/2

] [βD(k)ϕ] + F̃
[
βD(k), F̃

] [βD(k)ϕ]) , (4.6)

where D = ∂x1 . The stability of the recursions (4.5) and (4.6) can be attributed to the
fact that the commutators featured in those formulas are actually bounded operators in the
space H1/2(	). However, the calculation of high-order correction terms Y+

n (k, F̃), n ≥ 3
via the stable recursions above becomes quite cumbersome. As such, a different strategy
based on changes of variables (that straighten out the boundary 	) and DtN corresponding
to variable coefficient Helmholtz equations in half-planes is advocated in [25] for stable
computations of DtN maps. Given that our motivation is to construct readily computable DD
transmission operators that are approximations of DtN operators, wewill restrict to low-order
terms Y+

n (k, F) in the perturbation series (4.2), which, as discussed above, can be computed
by explicit and stable recursions.

In order to meet the coercivity requirements (3.3), we complexify the wavenumber k in
the form κ = k + iσ, σ > 0 and we define

Y L,±(κ, F) :=
L∑

�=0

Y±
� (κ, F̃)ε�, L ≤ 2, (4.7)
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using formulas (4.5) and (4.6) for the definition of the operators in Eq. (4.7). Indeed, we
establish the following result.

Lemma 4.1 Provided that ε < ρ(k, F) is small enough, the following coercivity property
holds

	〈Y L,±(κ, F)ϕ, ϕ〉 < 0

for all ϕ ∈ H1/2(	).

Proof By the construction of the Fourier multiplier operator −iβD(κ) we have that

	〈Y±
0 (κ, F̃)ϕ, ϕ〉 = −

∑

p∈Z
�(κ2 − α2

p)
1/2|ϕp|2 < 0,

for all ϕ ∈ H1/2(	0), given that �(κ2 − α2
p)

1/2 > 0 for all p ∈ Z. Using the fact that∣∣〈Y±
� (κ, F̃)ϕ, ϕ〉∣∣ � ‖ϕ‖2

H1/2(	)
we obtain

	〈Y L,±(κ, F)ϕ, ϕ〉 ≤ 	〈Y±
0 (κ, F̃)ϕ, ϕ〉 + Cε‖ϕ‖2H1/2(	)

< 0

for ε small enough. ��
We are now in the position to construct quasi-optimal transmission operators Z j−1, j

and Z j+1, j . We assume without loss of generality that each grating profile Fj (x1) =
ε F̃j (x1), 0 ≤ j ≤ N , and we select transmission operators in the form

Zs,L
j−1, j := Y L,+(κ j−1, F̃j−1), 1≤ j≤N + 1, Zs,L

j+1, j := Y L,−(κ j+1, F̃j ), 0≤ j≤N ,

(4.8)

where κ j = k j + iσ j , σ j > 0 and k j is the wavenumber corresponding to the layer domain
� j . We note that the transmission operators given in Eq. (4.8) correspond to semi-infinite,
and not bounded layers. As such, the width of the layers is not incorporated in the definition
of the transmission operators defined in Eq. (4.8).

It is also possible to employ the high-order shape deformation technique to construct
transmission operators that are approximations of DtN operators corresponding to bounded
periodic layers [23]. Indeed, in the case of a bounded interior layer domain � j we consider
the boundary value problem

�v j + k2jv j = 0, in �
per
j ,

v j = g j, j−1, on � j, j−1,

v j = g j, j+1, on � j, j+1, (4.9)

for which we define the DtN operator Y j (k j )

[
g j, j−1

g j, j+1

]
:=

[
∂n j v j |� j, j−1

∂n j v j |� j, j+1

]
. We mention that

(a) theDtNoperatorsY j (k j ) are 2×2matrix operatorsY j (k j ) =
[
Y j−1, j−1(k j ) Y j−1, j+1(k j )
Y j+1, j−1(k j ) Y j+1, j+1(k j )

]
,

and (b) the same DtN operators are not properly defined for all wavenumbers k j . Assuming

that Fj−1(x1) = ε F̃j−1(x1) and respectively Fj (x1) = ε F̃j (x1) where F̃j−1(x1) and F̃j (x1)
are smooth, the DtN operator Y j (k j ) can be expressed in terms of the perturbation series

Y j (k j ) =
∞∑

�=0

Y j,�(k j )ε
�. (4.10)
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The OE method gives the terms in the series as [23]

Y j,0(k j ) = iβD(k j )

[
coth(ih jβD(k j )) − csch(ih jβD(k j ))

− csch(ih jβD(k j )) coth(ih jβD(k j ))

]
,

Y j,n(k j ) = −(Cn(F̃j−1) + Cn(F̃j ))
k2j

iβD(k j )
− D(Cn(F̃j−1) + Cn(F̃j ))

1

iβD(k j )
D

−
n−1∑

m=0

Y j,m(k j )
[
Sn−m(F̃j−1) + Sn−m(F̃j )

]
, (4.11)

where h j = F j−1 − F j and

Cn(F̃j−1) := F̃j−1,n

[
shchn+1(ih jβD(k j )) (−1)n+1 shchn+1(0)

0 0

]
(iβD(k j ))n

sinh(ih jβD(k j ))
,

Cn(F̃j ) := F̃j,n

[
0 0

− shchn+1(0) (−1)n shchn+1(ih jβD(k j ))

]
(iβD(k j ))n

sinh(ih jβD(k j ))
,

as well as

Sn(F̃j−1) := F̃j−1,n

[
shchn(ih jβD(k j )) (−1)n shchn(0)

0 0

]
(iβD(k j ))n

sinh(ih jβD(k j ))
,

Sn(F̃j ) := F̃j,n

[
0 0

shchn(0) (−1)n shchn(ih jβD(k j ))

]
(iβD(k j ))n

sinh(ih jβD(k j ))
,

where

shchn(z) = ez − (−1)ne−z

2
=

{
cosh(z), n even

sinh(z), n odd.

Remark 4.2 We note that the operators (4.11) can be evaluated in a straightforward manner
in Fourier space. However, unlike formulas (4.5) and (4.6), the recursions (4.11) do not avoid
subtractive cancellations, and, as such, are prone to instabilities for rougher profiles F̃j−1 and
F̃j . In order to bypass these instabilities, an alternative strategy based on changes of variables
that straighten out the boundaries is proposed in [14] for robust perturbative evaluations of
layer DtN. Nevertheless, the latter strategy requires numerical solutions for the evaluation
of the terms in the perturbation series of the DtN operators Y j (k j ). As such, the evaluation
of the DtN operators Y j (k j ) via the straightening of boundaries strategy in [14] becomes
more involved than the straightforward one given by the recursions (4.11). Consequently,
we advocate for the use of the simple recursions (4.11) to construct approximations of DtN
operators, and we point out their limitations in the case of rough profiles.

Again, the complexification of the wavenumber κ j = k j + iσ j , σ j > 0 leads to cor-
responding Fourier multipliers Y j,n(κ j ), n ≥ 0 that are well defined for all values h j .
Therefore, we define the 2 × 2 matrix operators

YL
j (κ j ) =

L∑

�=0

Y j,�(κ j )ε
� =

[
Y L
j−1, j−1(κ j ) Y L

j−1, j+1(κ j )

Y L
j+1, j−1(κ j ) Y L

j+1, j+1(κ j )

]
, κ j = k j + iσ j , σ j > 0.

As an alternative to (4.8) we can select the transmission operators corresponding to the layer
� j , 1 ≤ j ≤ N in the form
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ZL
j, j−1 := Y L

j−1, j−1(κ j ), 1 ≤ j ≤ N , Z L
j, j+1 := Y L

j+1, j+1(κ j ), 1 ≤ j ≤ N ,

(4.12)

as well as

Z L
0,1 := Y+

L (κ0, F̃0), ZL
N+1,N := Y−

L (κN+1, F̃N ). (4.13)

Again, under the assumption that the shape perturbation parameter ε is small enough (and
in particular smaller than the radius of convergence of the perturbation series (4.10)), the
arguments in the proof of Lemma 4.1 can be easily adapted to derive coercivity properties of
the type (3.3) for the transmission operators Z L

j, j−1 and ZL
j, j+1 defined in Eq. (4.12).

Finally, the transmission operators Z �
j, j+1 corresponding to the DD with slab subdo-

mains (3.11) are simply selected to be complexified versions of half-space DtN operators,
that is

Z �
j, j+1 = Z �

j+1, j := −iβD(κ j ), 0 ≤ j ≤ N . (4.14)

We refer to the DD formulations (3.1) and respectively (3.11) corresponding to the choice
of transmission operators presented in this section as quasi-optimal DD (QO DD) in what
follows.We refer to the operator QODDSchwartz iteration matrix (3.9) corresponding to the
choice of transmission operators given in equation (4.8) by As , and the one corresponding
to transmission operators (4.12) by A. In the next section we derive explicit formulas for
calculations of RtR operators associated with the DD formulations (3.1) and respectively
(3.11) based on robust quasi-periodic boundary integral equations.

5 Boundary Integral Operator Formulations

5.1 Robin-to-Robin Operators

At the heart of a DD implementation is the computation of the RtR maps. We present in this
section explicit representations of RtR maps in terms of boundary integral operators associ-
ated with quasiperiodic Green functions that will serve as the basis of the implementation of
the DD formulations considered in this paper. For a given wavenumber k, we define the α

quasiperiodic Green function

Gq
k (x1, x2) =

∑

n∈Z
e−iαndGk(x1 + nd, x2) (5.1)

where Gk(x1, x2) = i
4H

(1)
0 (k|x|), x = (x1, x2). We also define αr := α + 2π

d r and βr =
(k2 − α2

r )
1/2, with the same convention on the square root used throughout this paper. The

series (5.1) converges for wavenumbers k for which none of the coefficients βr is equal to
zero—that is wavenumbers which are not Wood frequencies. In the case of wavenumber k
that is a Wood frequency, shifted quasiperiodic Green functions can be used instead [4,26].

We assume that the interface 	 is defined as 	 := {(x1, F(x1)) : 0 ≤ x1 ≤ d} where
F is a C2 periodic function of principal period equal to d . Given a density ϕ defined on 	

(which can be extended by α-quasiperiodicity to arguments (x1, F(x1)), x1 ∈ R) we define
the single and double layer potentials corresponding to a wavenumber k
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[SLkϕ](x) :=
∫

	

Gq
k (x − y)ϕ(y)ds(y), [DLkϕ](x) :=

∫

	

∂Gq
k (x − y)

∂n(y)
ϕ(y)ds(y),

(5.2)

for x /∈ 	 and x = (x1, x2) such that 0 ≤ x1 ≤ d . It is immediate to see that the quantities
[SLkϕ](x) and [DLkϕ](x) are α-quasiperiodic outgoing solutions of the Helmholtz equation
corresponding to wavenumber k in the domains {x : x2 > F(x1)} and {x : x2 < F(x1)}
respectively. The Dirichlet and Neumann boundary values of the single and double layer
potentials give rise to the four boundary integral operators associated with quasiperiodic
Helmholtz problems. Denoting by n(x) = (−F ′(x1), 1), x = (x1, F(x1)), 0 ≤ x1 ≤ d the
(non-unit) normal to 	 pointing into the domain {x : x2 > F(x1)} we define the single layer
boundary integral operator

[Sk(ϕ)](x)
:= lim

ε→0
[SLkϕ](x ± εn(x))=

∫ d

0
Gq

k (x−y, F(x)−F(y))ϕ((y, F(y))) (1+(F ′(y))2)1/2dy,

(5.3)

with x = (x, F(x)). Similarly, we also define the weighted single layer operator in the form

[Sw
k (ϕ)](x) :=

∫ d

0
Gq

k (x − y, F(x) − F(y))ϕ((y, F(y)))dy, x = (x, F(x)). (5.4)

We also have

lim
ε→0

∇[SLkϕ](x±εn(x)) · n(x)=∓1

2
ϕ(x) (1+(F ′(x))2)1/2 + [K�

k (ϕ)](x), x=(x, F(x)),

(5.5)

where the adjoint double layer operator in Eq. (5.5) can be expressed explicitly as

[K�
k (ϕ)](x) =

∫

	

∂Gq
k (x − y)

∂n(x)
ϕ(y)ds(y), x ∈ 	. (5.6)

We also define a weighted version of the adjoint double layer operators in the form

[(Kw
k )�(ϕ)](x) =

∫ d

0

∂Gq
k (x − y)

∂n(x)
ϕ((y, F(y)))dy, x ∈ 	. (5.7)

In addition, applying the same machinery to the double layer potentials we can define the
double layer operator

lim
ε→0

[DLkϕ](x ± εn(x)) = ±1

2
ϕ(x) + [Kk(ϕ)](x), x = (x, F(x)) (5.8)

as well as the hypersingular operators

lim
ε→0

∇[DLkϕ](x ± εn(x)) · n(x) = [Nk(ϕ)](x), x = (x, F(x)). (5.9)

Weighted versions of the double layer and hypersingular operators are defined accordingly
[10]. In what follows we express RtR operators associated with quasiperiodic Helmholtz
problems using the boundary integral operators introduced above.

We start with the analysis of the case of one interface 	0 (that is N = 0) separat-
ing two semi-infinite domains under the assumption that 	0 is the graph of a smooth and
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periodic function. The motivation for this is that the particularly simple case of one inter-
face already contains the main difficulties related to the analysis of the well-posedness
of QO DD. Our analysis relies on the boundary integral operator of the RtR operators.
Using the α-quasiperiodic boundary integral operators above, we are now in the position
to compute the RtR operators S j , ( j = 0, 1) corresponding to the semi-infinite domains
� j , ( j = 0, 1). We note that in this case we have Zs,L

0,1 = ZL
0,1 = Y L,+(κ0, F̃0), and

Zs,L
1,0 = ZL

1,0 = Y L,−(κ1, F̃0). We start with the calculation of the RtR operator S0 corre-
sponding to problem (3.4) by seeking its solution w0 in the form

w0(x) := [SLkϕ0](x), x /∈ 	0,

for a density function ϕ0 defined on 	0. We have then that

∂n0w0 = 1

2
ϕ0 |x′| + K�

	0,k0ϕ0, w0 = S	0,k0ϕ0, x′ = (1, F ′
0(x))

where the operators K�
	0,k0

are defined just as in Eq. (5.6) but with normal n0 pointing into

�−
0 (the exterior of �0). Here and in what follows we introduce an additional subscript to

make explicit the curve that is the domain of integration of the boundary integral operators.
Accordingly, the function w0 satisfy the generalized Robin boundary condition on 	0 is
equivalent to the density function ϕ0 solving the following BIE

1

2
ϕ0 |x′| + K�

	0,k0ϕ0 + ZL
1,0S	0,k0ϕ0 = g0,1 on 	0.

Defining the weighted density ϕw
0 := ϕ0 |x′| on 	0, we see that ϕw

0 is in turn a solution of
the following weighted BIE:

(
1

2
I + (Kw

	0,k0)
� + ZL

1,0S
w
	0,k0

)
ϕw
0 = g0,1 on 	0. (5.10)

Given that w0 = Sw
	0,k0

ϕw
0 on 	0, we immediately obtain from Eq. (5.10) that the RtR

operator S0
1,1 defined in Eq. (3.7) can be expressed through the following explicit formula

S0
1,1 = I − (ZL

0,1 + ZL
1,0)S

w
	0,k0

(
1

2
I + (Kw

	0,k0)
� + ZL

1,0S
w
	0,k0

)−1

. (5.11)

Our next goal is to establish the robustness of the formulation (5.11). We assume in what
follows that the parameter ε in the shape 	0 given by F0(x1) = ε F̃0(x1) is smaller than the
minimum of the radii ρ j of convergence of the boundary perturbation expansion series of
the DtN operators Y±(k j , F0), cf. (4.2). We establish the following theorem

Theorem 5.1 Assuming that the profile function F̃0(x1) is periodic and C2, and the shape
parameter ε is small enough, the operator

A1,0 := 1

2
I + (Kw

	0,k0)
� + ZL

1,0S
w
	0,k0 : H−1/2(	0) → H−1/2(	0)

is invertible with continuous inverse.

Proof Assuming that ε < ρ1, where ρ1 is the radius of convergence of the shape perturbation
series of the DtN operator Y−(k1, F0), we have [25]

‖Y−(k1, F0) −
L∑

�=0

Y−
� (k1, F̃0)ε

�‖H1/2(	0)→H−1/2(	0)
� εL+1. (5.12)
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Given that

|(k21 − α2
p)

1/2 − ((k1 + iσ1)
2 − α2

p)
1/2| = O(p−1), p → ∞

it follows that

Y−
0 (k1, F̃0) − Y−

0 (κ1, F̃0) = −i(βD(k1) − βD(κ1)) : H1/2(	0) → H3/2(	0).

Using the stable commutator representations (4.5) and (4.6), together with the mapping
properties of the commutators established in [25], we obtain

Y−
1 (k1, F̃0) − Y−

1 (κ1, F̃0) : H1/2(	0) → H3/2(	0)

and respectively

Y−
2 (k1, F̃0) − Y−

2 (κ1, F̃0) : H1/2(	0) → H3/2(	0).

In conclusion, we can express

L∑

�=0

Y−
� (k1, F̃0)ε

� − ZL
1,0 = ZL,0

1,0 + ZL,1
1,0

where

ZL,0
1,0 :=

min(L,2)∑

�=0

[
Y−

� (k1, F̃0) − Y−
� (κ1, F̃0)

]
ε�

and respectively

ZL,1
1,0 :=

{∑L
�=3

[
Y−

� (k1, F̃0) − Y−
� (κ1, F̃0)

]
ε�, L ≥ 3

0, L < 3
.

Clearly, we have that Z L,0
1,0 : H1/2(	0) → H3/2(	0) and ‖Z L,1

1,0 ‖H1/2(	0)→H1/2(	0)
� ε3. In

conclusion, we can express the difference between the DtN operator Y−(k1, F0) and the QO
DD transmission operator Z L

1,0 in the form

Y−(k1, F0) − ZL
1,0 = ZL,0

1,0 + ZL,1
1,0 + ZL,2

1,0 (5.13)

where

ZL,2
1,0 := Y−(k1, F0) −

L∑

�=0

Y−
� (k1, F̃0)ε

�.

Taking into account estimate (5.12), we have established that the operators on the right-hand
side of Eq. (5.13) have the following properties

Z L,0
1,0 : H1/2(	0) → H3/2(	0), ‖ZL,1

1,0 + ZL,2
1,0 ‖H1/2(	0)→H1/2(	0)

� εmin(L,2)+1.(5.14)

Now, we can express the operator A1,0 in the form

A1,0 =
[
1

2
I + Y−(k1, F0)S

w
	0,k1

]

+
[
(Kw

	0,k0)
� + (ZL

1,0 − Y−(k1, F0))S
w
	0,k0 + Y−(k1, F0)(S

w
	0,k0 − Sw

	0,k1)
]
.
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Given that

Y−(k1, F0)S
w
	0,k1 = 1

2
I + (Kw

	0,k1)
�

where the operator (Kw
	0,k1

)� is defined with respect to −n0, we express the operator A1,0

in the form

A1,0 = I + A0
1,0 + K1,0,

where

K1,0 := (Kw
	0,k0)

� + (Kw
	0,k1)

� − ZL,0
1,0 S

w
	0,k0 + Y−(k1, F0)(S

w
	0,k0 − Sw

	0,k1)

and

A0
1,0 := −(ZL,1

1,0 + ZL,2
1,0 )Sw

	0,k0 .

Under the assumption that 	0 is C2 periodic, the following classical properties

(Kw
	0,k j )

� : H−1/2(	0) → H1/2(	0), Sw
	0,k0 − Sw

	0,k1 : H−1/2(	0) → H5/2(	0)

together with those established in (5.14) imply that

K1,0 : H−1/2(	0) → H1/2(	0).

On the other hand, the estimates established in (5.14) imply that

‖A0
1,0‖H−1/2(	0)→H−1/2(	0)

� εmin(L,2)+1.

In conclusion, the operator A1,0 : H−1/2(	0) → H−1/2(	0) is a compact perturbation of
the operator I +A0

1,0, and the latter can be shown to be invertible in the space H
−1/2(	0) via

Neumann series arguments provided that ε is small enough. The invertibility of the operator
A1,0 can be established then via the Fredholm theory provided that the same operator is
injective. The latter, in turn, follows from the well-posedness of the Helmholtz boundary
value problem (3.4). Indeed, if ϕ0 ∈ Ker(A1,0), then the function w0 defined as the single
layer potential applied to the function ϕ0 is a solution of the boundary value problem (3.4) in
�0 with zero generalized Robin boundary conditions on 	0. This implies that w0 = 0 in �0,
and hence w0 = 0 on 	0. Now, w0 is also a radiative solution of the Helmholtz equation in
�1 with zero Dirichlet boundary values on 	0. Consequently, w0 = 0 in �1 as well. Finally,
given that ϕ0 = [∂n0w0] on 	0, we obtain that ϕ0 = 0 on 	0, which completes the proof of
the theorem. ��

Using the same techniques as in the proof of Theorem 5.1, we represent the RtR operator
S0
1,1 in the form

S0
1,1 =

(
1

2
I − Y−(k1, F0)S

w
	0,k1

)
A−1

1,0 +
(
1

2
I − Y+(k0, F0)S

w
	0,k0

)
A−1

1,0

−
(
ZL
0,1 − Y+(k0, F0)

)
Sw
	0,k0A

−1
1,0 −

(
ZL
1,0 − Y−(k1, F0)

)
Sw
	0,k1A

−1
1,0

+A0
1,0A

−1
1,0 + K1,0A−1

1,0 + ZL
1,0

(
Sw
	0,k1 − Sw

	0,k0

)
A−1

1,0.

Again, using results established in the proof of Theorem 5.1, we use the representation just
derived above to express the operator S0

1,1 in the form

S0
1,1 = S0,0

1,1 + K0
0 (5.15)
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where K0
0 : H−1/2(	0) → H1/2(	0) and thus K0

0 is a compact operator in H−1/2(	0), and

S0,0
1,1 : H−1/2(	0) → H−1/2(	0) has small norm

‖S0,0
1,1‖H−1/2(	0)→H−1/2(	0)

� εmin(L,2)+1. (5.16)

A similar result can be established for the representation of the RtR operator S1
0,0 in the form

S1
0,0 = S1,0

0,0 + K1
0, where the operators in the latter decomposition have the same mapping

properties as those of the operators S0,0
1,1 and K0

0.

5.2 Invertibility of the QO DD Formulation (3.1) in the Case of One Interface

We are now in a position to establish the well-posedness of the DD formulation in the case
of one interface:

Theorem 5.2 Assuming that the profile function F̃0(x1) is periodic and C2, the QO DD
operator matrix

A =
[

I S1
0,0

S0
1,1 I

]

is invertible with continuous inverse in the space H−1/2(	0) × H−1/2(	0) provided that the
shape parameter ε is small enough.

Proof First, using the decompositionsS j
j+1, j+1 = S j,0

j+1, j+1+K j
0, j = 0, 1 (herewe assume

that the value of j + 1 is actually that of j + 1(mod 2)), where

‖S j,0
j+1, j+1‖H−1/2(	0)→H−1/2(	0)

� εmin(L,2)+1, j = 0, 1

and K j
0 : H−1/2(	0) → H−1/2(	0), j = 0, 1 are compact, it follows that

A =
[

I S1,0
0,0

S0,0
1,1 I

]
+

[
0 K0

0
K1
0 0

]
.

Neumann series arguments yield the fact that the matrix operator

[
I S1,0

0,0

S0,0
1,1 I

]
is invertible in

the space H−1/2(	0)×H−1/2(	0), while thematrix operator

[
0 K0

0
K1
0 0

]
is compact in the same

functional space H−1/2(	0)×H−1/2(	0). Consequently, theQODDoperatorA is Fredholm
of index zero in the space H−1/2(	0) × H−1/2(	0), and thus the result of the theorem is
established once we prove the injectivity of the operatorA. Now let (ϕ0, ϕ1) ∈ Ker(A) and
define u0 and u1 be α-quasiperiodic radiative solutions of the following Helmholtz boundary
value problems

�u0 + k20u0 = 0 in �0

∂n0u0 + ZL
1,0u0 = ϕ0 on 	0,

and

�u1 + k21u1 = 0 in �1

∂n1u1 + ZL
0,1u1 = ϕ1 on 	0.
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The requirement (ϕ0, ϕ1) ∈ Ker(A) translates into the following system of equations on 	0

∂n0u0 + ZL
1,0u0 = −∂n1u1 + ZL

1,0u1

∂n1u1 + ZL
0,1u1 = −∂n0u0 + ZL

0,1u0.

Using the injectivity of the operator Z L
1,0 + ZL

0,1, we obtain immediately that u0 = u1 and
∂n0u0 = −∂n1u1 on 	0. Hence, u j = 0 in � j for j = 0, 1, and in conclusion ϕ j = 0 on 	0

for j = 0, 1. ��
Remark 5.3 We note that in the case when 	0 is flat, the RtR operators S j

j+1, j+1, j = 0, 1

are actually compact in the space H−1/2(	0).

We turn our attention to the analysis of the QO DD (3.1) in the case of multiple interfaces
separating several layers.

5.3 Invertibility of the QO DD Formulation (3.1) in the Case of Multiple Interfaces

We begin by expressing the RtR operators S j defined in Eq. (3.6) via boundary integral
operators.We present our derivations in the case of transmission operators Zs,L

j−1, j and Z
s,L
j+1, j

defined in Eq. (4.8); analogous results can be established in the case of transmission operators
ZL
j−1, j and ZL

j+1, j defined in Eq. (4.12). We note that the Helmholtz problems (3.2) can be
all expressed in the generic form

�w + k2w = 0, in �per ,

∂nw + Zt w = gt , on 	t ,

∂nw + Zb w = gb, on 	b, (5.17)

where gt , gb are α-quasiperiodic functions; for instance, Zt := Zs,L
j−1, j and Zb = Zs,L

j+1, j in

the case when �per = �
per
j . Thus, the RtR operators S j , 1 ≤ j < N , defined in Eq. (3.6)

are all related to the following RtR operator associated with the Helmholtz boundary value
problems (5.17):

S
[
gt
gb

]
=

[
St,t St,b
Sb,t Sb,b

] [
gt
gb

]
:=

[
(∂nw − Z ′

t w)|	t

(∂nw − Z ′
b w)|	b

]
, (5.18)

where Z ′
t = Zs,L

j, j−1 and Z ′
b = Zs,L

j, j+1 in the case when �per = �
per
j . Seeking a solution w

of Eq. (5.17) in the form

w = SLk,tϕt + SLk,bϕb,

where SLk,t and SLk,b denote the quasiperiodic single layer potentials whose domains of
integration are 	t and 	b, we arrive at the following expression for the RtR operator S:

S =
[
I 0
0 I

]
−

[
Zt + Z ′

t 0
0 Zb + Z ′

b

] [
Sw
k,t,t Sw

k,b,t
Sw
k,t,b Sw

k,b,b

]

×
[
1/2I + (Kw

k,t,t )
� + Zt Sw

k,t,t (Kw
k,b,t )

� + Zt Sw
k,b,t

(Kw
k,t,b)

� + ZbSw
k,t,b 1/2I + (Kw

k,b,b)
� + ZbSw

k,b,b

]−1

.(5.19)

We note that in Eq. (5.19), the subscripts in the notation Sw
k,b,t signify that, in Eq. (5.3),

the target point is x ∈ 	t and the integration point is y ∈ 	b. The invertibility of the
operators featured in Eq. (5.19) can be established using similar reasoning to that in the
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proof of Theorem 5.1 under similar assumptions on the regularity of the profiles gt and
gb, and the smallness of the shape perturbation parameter ε. Using similar arguments to
those that led to establishing property (5.15), and the fact that the off-diagonal operators in
Eq. (5.19) feature boundary integral operators whose kernels are smooth, it can be shown
after somewhat tedious calculations that (i) the off-diagonal operators St,b and Sb,t have the
following mapping properties:

St,b : H−1/2(	b) → H1/2(	t ), Sb,t : H−1/2(	t ) → H1/2(	b),

and (ii) the diagonal operators St,t and St,b can be decomposed in the form

St,t = S0
t,t + S1

t,t , ‖S0
t,t‖H−1/2(	t )→H−1/2(	t )

� εmin(L,2)+1, S1
t,t : H−1/2(	t ) → H1/2(	t ),

as well as

Sb,b=S0
b,b + S1

b,b, ‖S0
b,b‖H−1/2(	b)→H−1/2(	b)

� εmin(L,2)+1, S1
b,b : H−1/2(	b)→H1/2(	b).

We are now in the position to prove the following theorem

Theorem 5.4 Assuming that the transmission problem (2.1) is well-posed, the profiles F̃j (x)
are all periodic and C2 for 0 ≤ j ≤ N, and that the shape parameter ε corresponding to the
grating profiles Fj (x) = ε F̃j (x), 0 ≤ j ≤ N is small enough, the QODD Schwarz iteration
operator As defined in Eq. (3.9) is invertible in the space H−1/2(	0) × H−1/2(	0) × . . . ×
H−1/2(	N ) × H−1/2(	N ).

Proof Assuming that ε is smaller than all the radii of convergence of the shape perturbation
series of the DtN operators Y+(k j+1, 	 j−1), 1 ≤ j ≤ N + 1 and Y−(k j , 	 j ), 0 ≤ j ≤ N ,
we use the results established above to express the diagonal blocks of the RtR operators
S j , 1 ≤ j ≤ N in the form

S j
�,� = S j,0

�,� + S j,1
�,� , � ∈ { j − 1, j + 1}

where

‖S j,0
�,� ‖H−1/2(	�)→H−1/2(	�)

� εmin 2,L+1, S j,1
�,� : H−1/2(	�) → H1/2(	�).

Similar decomposition can be performed on the RtR operators S0 and SN+1. In addition, the
off diagonal blocks of the RtR operators S j , 1 ≤ j ≤ N can be shown to have the following
mapping property

S j
�,�′ : H−1/2(	�′) → H1/2(	�), {�, �′} ∈ { j − 1, j + 1}.

Then, we can express the QO DD operator As in the form

As = As,0 + As,1
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where

As,0 :=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I S1,0
0,0 0 0 . . . 0 0 0 0 . . . 0 0

S0,0
1,1 I 0 0 . . . 0 0 0 0 . . . 0 0

0 0 I S2,0
1,1 . . . 0 0 0 0 . . . 0 0

0 0 S1,0
2,2 I . . . 0 0 0 0 . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . 0 I S j+1,0
j, j 0 . . . 0 0

0 0 0 0 . . . 0 S j,0
j+1, j+1 I 0 . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I SN+1,0
N ,N

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SN ,0
N+1,N+1 I

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and the matrix operator As,1 is compact in the space H−1/2(	0) × H−1/2(	0) × . . . ×
H−1/2(	N ) × H−1/2(	N ). Given the bounds established above on the operators that are
non-diagonal entries in the matrix operator As,0, we conclude that the operator As,0 is
invertible in the space H−1/2(	0) × H−1/2(	0) × . . . × H−1/2(	N ) × H−1/2(	N ). Thus,
the invertibility of the operator As is equivalent to its injectivity. The latter, in turn, follows
from thewell-posedness of the transmission problem (2.1) just as in the proof of Theorem 5.1.

��

5.4 Invertibility of the Slab Subdomain QO DD Formulation (3.11)

We now consider a representation of the RtR operators associated with the Helmholtz
transmission boundary value problem (3.12). We assume for simplicity that none of the
wavenumbers areWood frequencies. Then, we look for the solution v j of the boundary value
problem (3.12) in the form

v j (x) =
⎧
⎨

⎩
[SL

k j−1,�
�
j , j−1

ϕ j, j−1](x) + [SLk j−1,	 j−1ϕ](x) + [DLk j−1,	 j−1ψ](x), x2 > F j−1 + Fj−1(x1),

[SL
k j ,�

�
j+1, j

ϕ j+1, j ](x) + [SLk j ,	 j−1ϕ](x) + [DLk j ,	 j−1ψ](x), x2 < F j−1 + Fj−1(x1),

(5.20)

where the double layer potentials on the interface 	 j−1 are defined with respect to the
unit normal pointing towards the domain � j . The enforcement of the boundary conditions
in (3.12) leads to the following system of BIEs
(
1

2
I + K�

k j−1,�
�
j, j−1

+ Z �
j−1, j Sk j−1,�

�
j, j−1

)
ϕ j, j−1

+
(

∂x2 SLk j−1,	 j−1,�
�
j−1, j

+ Z �
j−1, j SLk j−1,	 j−1,�

�
j−1, j

)
ϕ

+
(

∂x2DL
k j−1,	 j−1,�

�
j−1, j

+ Z �
j−1, j DL

k j−1,	 j−1,�
�
j−1, j

)
ψ = g�

j, j−1

(
1

2
I + K�

k j ,�
�
j+1, j

+ Z �
j+1, j Sk j ,��

j+1, j

)
ϕ j+1, j

+
(

−∂x2 SLk j ,	 j−1,�
�
j+1, j

+ Z �
j+1, j SLk j ,	 j−1,�

�
j+1, j

)
ϕ
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+
(

−∂x2DL
k j ,	 j−1,�

�
j+1, j

+ Z �
j+1, j DL

k j ,	 j−1,�
�
j+1, j

)
ψ = g�

j+1, j

(
∂n j SLk j−1,�

�
j, j−1,	 j−1

)
ϕ j, j−1 −

(
∂n j SLk j ,�

�
j+1, j ,	 j−1

)
ϕ j+1, j

+
(
I + K�

k j−1,	 j−1
− K�

k j ,	 j−1

)
ϕ

+ (
Nk j−1,	 j−1 − Nk j ,	 j−1

)
ψ = 0

−
(
SL

k j−1,�
�
j, j−1,	 j−1

)
ϕ j, j−1 +

(
SL

k j ,�
�
j+1, j ,	 j−1

)
ϕ j+1, j + (

Sk j ,	 j−1 − Sk j−1,	 j−1

)
ϕ

+ (
I + Kk j ,	 j−1 − Kk j−1,	 j−1

)
ψ = 0 (5.21)

which can be shown to be equivalent to the Helmholtz transmission problem (3.12). In
addition, it is relatively straightforward to show that the RtR operator S�, j associated with
the Helmholtz boundary value (3.12), and explicitly defined in Eq. (3.13), is a compact
operator in the space H−1/2(�

�
j, j−1) × H−1/2(�

�
j+1, j ) under the assumption that the

periodic function Fj−1 is C2 or better. Thus, the block operators in the representation

S�, j =
[
S�, j
j−1, j−1 S�, j

j−1, j+1

S�, j
j+1, j−1 S�, j

j+1, j+1

]
are themselves compact operators in appropriate function

spaces. In conclusion, the DD operator A� corresponding to the QO DD formulation (3.12)
is a compact perturbation of the identity. Thus, its invertibility can be established analogously
to that of the DD operator in Theorem 5.4 under the assumption that the original Helmholtz
transmission problem (3.12) is well-posed. We note that the well-posedness of the QO DD
formulation (3.11) holds regardless of the roughness of the profiles 	 j , as long as the flat
interfaces do not intersect the interfaces of material discontinuity.

6 Numerical Results

6.1 NyströmDiscretization

Our numerical methods to solve Eqs. (3.8) and (3.14) rely on Nyström discretizations of the
boundary integral operators that feature in the computation of the RtR operators given in
Sect. 5. A key ingredient in the evaluation of quasiperiodic boundary integral operators is the
efficient evaluation of the quasiperiodic Green function Gq

k defined in Eq. (5.1). For frequen-
cies that are away from Wood frequencies, we employ the recently introduced Windowed
Green Function Method [3–5]. Specifically, let χ(r) be a smooth cutoff function equal to 1
for r < 1/2 and equal to 0 for r > 1 and define the windowed Green functions

Gq,A
k (x,x2) =

∑

m∈Z
e−iαmdGk(x1 + md, x2)χ(rm/A), rm = ((x1 + md)2 + x22 )

1/2.

(6.1)

The functions Gq,A
k converge superalgebraically fast to Gq

k as A → ∞when k is not a Wood

frequency [3–5].Consequently,wemake use of the functionsGq,A
k for large A in the definition

of the quasiperiodic boundary integral operators. In the case ofwavenumber kwhich is aWood
frequency, we use shifted Green functions and their associated boundary integral operators
[3]. Given that the functions Gq,A

k exhibit the same singularities as the free-space Green’s
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functions Gk , the four quasiperiodic boundary integral operators (5.4), (5.7), (5.8), (5.9)
are discretized using trigonometric collocation and the singular quadratures of Martensen-
Kussmaul (MK) that rely on logarithmic splitting of the kernels [17,20]. The full description
of these discretizations is provided in [3]. Since the transmission operators considered in
this paper are Fourier multipliers, their discretization is straightforward in the context of this
trigonometric interpolation framework.

In summary, using Nyström discretizations of the boundary integral operators based on
trigonometric interpolation with n equispaced points, we produce C

n×n Nyström discretiza-
tion matrices of the four quasiperiodic boundary integral operators (5.4), (5.7), (5.8), (5.9).
Using these Nyström discretization matrices of the quasiperiodic boundary integral operators
within the integral representations of the RtR operators presented in Sects. 5.2 and 5.3 (cf.
formulas (5.11) and (5.19)), we obtain Nyström discretization matrices S j,n of the corre-
sponding RtR operators S j for various choices of transmission operators. For instance, in the
case when the transmission operators Z L

j, j−1 and ZL
j, j+1 defined as in Eq. (4.12), the RtR

Nyström discretization matrices S j,n of the continuous RtR operators S j are expressed in
C
2n×2n block form

S j,n =
[
S j,n
j−1, j−1 S j,n

j−1, j

S j,n
j, j−1 S j,n

j, j

]
.

We note that the RtR representation formulas (5.11) and (5.19) require inverting boundary
integral operators. Inverting their Nyström discretization matrices can be performed in prac-
tice via direct solvers (when warranted by the size of the problem) or more generally by
iterative solvers such as GMRES. Either procedure leads to the formal construction of a
2(N + 1)n × 2(N + 1)n Nyström discretization matrix of the continuous Schwarz iteration
matrix A defined in Eq. (3.9) which, in the case of layered transmission operators (4.12)
and (4.13), is expressed in the block form

An =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

Dn
0 Un

0 0n . . . 0n
Ln
0 Dn

1 Un
1 . . . 0n

. . . . . . . . . . . . . . .

. . . Ln
j−1 Dn

j Un
j . . .

. . . . . . . . . . . . . . .

0n . . . Ln
N−2 Dn

N−1 Un
N−1

0n 0n . . . Ln
N−1 Dn

N

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.2)

where

Dn
j :=

[
In S j+1,n

j, j

S j,n
j+1, j+1 In

]
Un

j =
[
S j+1,n
j, j+2 0n
0n 0n

]
Ln
j =

[
0n 0n
0n S j+1,n

j+2, j

]
. (6.3)

We denote the case of semi-infinite transmission operators (4.8) by As
n , and the case of slab

layers byA�
n (which has dimensions 2(N +2)n×2(N +2)n). None of the matricesAn ,As

n ,

or A�
n are stored in practice; instead, the solution of the discrete DD systems featuring these

matrices is performed via Krylov subspace iterative solvers such as GMRES. Thus, it is the
application of the matrices An and As

n on 2(N + 1)n vectors (which are discretizations of
the generalized Robin data f j , 0 ≤ j ≤ N ) that is effected in practice via N + 2 subdomain

solutions. Similarly, the application of the matricesA�
n on 2(N + 2)n vectors requires N + 3

subdomain solutions. The main scope of the numerical results presented in this paper is to
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study the performance of GMRES solvers involving the DD discretization matricesAn ,As
n ,

and A�
n .

As it is well documented, the choice of the transmission operators in DD formulations of
Helmholtz transmission problems is motivated by optimizing the exchange of information
between adjacent layers/subdomains. However, for high-frequency/high-contrast periodic
layered media, there is significant global exchange of information amongst all layers, which
cannot be captured by local transmission operators alone. One widely used remedy to deal
with the global inter-layer communication is based on sweeping preconditioners. Sweeping
preconditioners achieve an approximate block LU factorization of the DD matrixAn (orAs

n

and A�
n). In the case of DD for layered media, the sweeping preconditioners can be easily

constructed on the basis of a very elegant matrix interpretation [29] which we describe briefly
next. The exact LU factorization of the block tridiagonal matrix An takes on the form

An =

⎡

⎢⎢⎢⎢⎣

T0 . . . . . . . . .

Ln
0 T1 . . . . . .

. . . . . . . . . . . .

. . . Ln
N−2 TN−1 0n

. . . . . . Ln
N−1 TN

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

In T−1
0 Un

0 . . . . . .

0n In T−1
1 Un

1 . . .

. . . . . . . . . . . .

. . . . . . In T−1
N−1U

n
N−1

. . . . . . . . . In

⎤

⎥⎥⎥⎥⎦

where

T0 = Dn
0

Tj = Dn
j − Ln

j−1T
−1
j−1U

n
j−1, j ≥ 1.

An approximate LU factorization of the matrixAn can be derived on the premise that optimal
transmission operators ought to act like perfectly transparent boundary conditions. This
would entail that the block operators S j,n

j+1, j+1 and S j,n
j−1, j−1 be identically zero, which

means that all the diagonal blocks Dj are approximated by the identity matrix In . Given that
Ln
j−1U

n
j−1 = 0n , a very simple approximate LU factorization of the matrix An is provided

by

An ≈ Bn :=

⎡

⎢⎢⎢⎢⎣

In . . . . . . . . .

Ln
0 In . . . . . .

. . . . . . . . . . . .

. . . Ln
N−2 In 0n

. . . . . . Ln
N−1 In

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

In Un
0 . . . . . .

0n In Un
1 . . .

. . . . . . . . . . . .

. . . . . . In Un
N−1

. . . . . . . . . In

⎤

⎥⎥⎥⎥⎦
. (6.4)

Clearly, solvingBnxn = fn is straightforward as it does not involve any inversions of (smaller)
block matrices. Indeed, this is done through the forward sweep

yn0 = f n0 ,

ynj = f nj − Ln
j−1y

n
j−1, 1 ≤ j ≤ N ,

followed by the backward sweep

xnN = ynN ,

xnN− j = ynN− j −Un
N− j x

n
N− j+1, 1 ≤ j ≤ N .

Accordingly, the application of the double sweep preconditioner B−1
n on a 2(N + 1)n vector

requires 2N additional subdomain solutions. In conclusion, a matrix-vector product associ-
ated with the matrix B−1

n An requires 3N + 2 subdomain solutions, the same as (Bs
n)

−1As
n ,

while (B�
n)

−1A�
n requires 3N + 5 subdomain solutions.
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Remark 6.1 The exact LU factorization can also be employed for the solution ofQODD linear
systems involving the matrix An provided that the RtR discretization matrices S j,n, 0 ≤
j ≤ N are assembled—see [26] for details of such a direct DD approach. The sweeping
preconditioner methodology presented in this paper is more flexible, as the RtR matrices
S j,n, 0 ≤ j ≤ N need not be assembled, and subdomain solutions themselves can be
obtained via iterative solvers. Because of this, the sweeping preconditioner above can be
viewed as a matrix-free preconditioner.

As presented above, the double sweep preconditioner is a sequential algorithm. It is pos-
sible to resort to other matrix-free preconditioning strategies that exhibit more parallelism.
For instance, symmetric Gauss–Seidel (SGS) preconditioners can be applied to great effect
[30]. These preconditioners take on the form

Pn := L−1
n +U−1

n − I (6.5)

where Ln is a matrix whose lower triangular entries (that is those corresponding to indices
(�, j) such that j ≤ �) coincide with those ofAn , and the rest of its entries are equal to zero.
Un is a matrix whose upper triangular entries (that is those corresponding to indices (�, j)
such that � ≤ j) coincide with those ofAn , and the rest of its entries are equal to zero, and I
denotes the identity matrix of the same size asAn . Denoting gn := L−1

n fn and hn := U−1
n fn ,

the components of gn and hn are computed via the relations

gnj,t = f nj,t hnj,b = f nj,b 0 ≤ j ≤ N
gn0,b = f n0,b − S0,ngn0,t hnN ,t = f nN ,t − SN+1,nhnN ,b

gnj,b = f nj,b − S j,n
j+1, j+1 f

n
j,t h

n
N− j,t = f nN− j,t − SN− j+1,n

N− j,N− j f
n
N− j,b

−S j,n
j+1, j−1g

n
j−1,b −SN− j+1,n

N− j,N− j+1h
n
N− j+1,t 1 ≤ j ≤ N

where f nj = [ f nj,t f nj,b]�, gnj = [gnj,t gnj,b]�, and hnj = [hnj,t hnj,b]�. Again here, the
application of a RtR block matrix requires a subdomain solution.

6.2 QO DD Solvers and Sweeping Preconditioners

We present in this section various numerical examples that illustrate the iterative behavior of
the QO DD solvers using sweeping preconditioners. We consider both smooth and Lipschitz
grating profiles that exhibit various degrees of roughness—as measured by the ratio of the
height to the period, aswell as by the oscillatory nature of the profile. Specifically, we consider
the smooth profile F̃ s(x1) := 2.5 cos x1, the rough profile F̃r (x1) = 2.5 π(0.4 cos(x1) −
0.2 cos(2x1)+0.4 cos(3x1)), and structures with interfaces x2 = −�H + ε F̃m(x1), 0 ≤ � ≤
N , 0 < H , m ∈ {s, r}. We consider Lipschitz grating profiles F̃ L depicted in Fig. 3 of
period 2π and height ε (note that the second profile in Fig. 3 is not the graph of a 2π periodic
function).

In the numerical results in this section we report the numbers of iterations required by
the QO DD solvers to reach relative GMRES residuals of 10−4 and 10−6. Specifically, we
used GMRES to solve the linear systems corresponding to discretization matrices An and
As

n corresponding to the QO DD formulation (3.9) with transmission operators defined in

Eqs. (4.8) and (4.12) respectively, andA�
n corresponding to the QODD formulation with slab

subdomains (3.11). We also specify in the table headers the various approximation orders L
in the definition of the transmission operators (4.8) and (4.12) that enter the QODD formula-
tions (3.9). As previously discussed, higher values of the approximation parameter L lead to
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Fig. 3 Lipschitz grating profiles of period 2π and height ε

ill-conditioning in the calculations of transmission operators. We also investigate the effec-
tiveness of the sweeping preconditioner applied to the QO DD discretization matrices. For
this we present the numbers of GMRES iterations needed with the sweeping preconditioner
under the table header B−1

n An (and its analogues (Bs
n)

−1As
n and (B�

n)
−1A�

n).
In the numerical experiments presented here we chose discretization sizes n and window-

ing parameters A for the quasiperiodic Green function Gq,A
k in Eq. (6.1) so that the solutions

produced by DD based on Nyström discretizations of the RtR operators exhibit accuracies
of the order 10−4 (or better) as measured by conservation of energy metrics. Specifically, we
selected the windowing parameter A = 120 and the discretization size n = 256 in all the
results presented in this section, with the exception of the experiments involving perfectly
conducting inclusions, wherewe chose a largerwindowing parameter A = 300. TheNyström
discretization matrices of the RtR maps were produced following the calculations presented
in Sect. 5 using direct linear algebra solvers to invert the discretization matrices correspond-
ing to boundary integral operators. In all the numerical results presented in this section we
considered normal incidence, that is the quasiperiodic parameter α = 0. Qualitatively sim-
ilar results are obtained for other values of α. Finally, unless specified, the wavenumbers
considered in the numerical experiments are not Wood frequencies.

In our previous contribution [26] similar quasiperiodic transmission problemswere treated
via a direct solver based on aDDapproachwith classical Robin data exchange. That approach
relied on theLU factorization of thematricesAn , and, as such, it required that theRtRmatrices
S j,n be assembled. In contrast, the QO DD approach presented in this paper bypasses that
need, and hence it is more flexible for high frequency applications.

6.2.1 Two Layers

We start the presentation of our numerical results with the case of two semi-infinite layers sep-
arated by a periodic interface. We present in Table 1 numbers of GMRES iterations required
by the QO DD Nyström discretization matrices An to reach GMRES relative residuals of
10−6 in the case of a deep, smooth and rough grating interface separating two high-contrast
media. Commensurate energy errors were produced by the Nyström discretizations of the
QO DD linear system. The wavenumbers considered in these results correspond to periodic
transmission problems of periods that consist of 5, 10, 20, and 80 wavelengths espectively.
We remark that using transmission operators Z2

0,1 and Z2
1,0 in the QODD algorithm gives rise

to numbers of GMRES iterations that scale verymildlywith respect to the increasing frequen-
cies. We continue in Table 2 with numerical examples concerning a deep Lipschitz grating
separating two high-contrast media. In the case of Lipschitz interfaces, we used transmission
operators Z0

0,1 and Z0
1,0 respectively; we observed that the use of higher-order transmission

operators ZL
0,1 and Z L

1,0 with 1 ≤ L ≤ 2 does not lead to improved iterative convergence of
the QO DD solvers. According to the results presented in Fig. 4, the numbers of GMRES

123



44 Page 28 of 45 Journal of Scientific Computing (2020) 82 :44

Ta
bl
e
1

N
um

be
rs
of

G
M
R
E
S
ite

ra
tio

ns
re
qu

ir
ed

by
Q
O
D
D
fo
rm

ul
at
io
ns

to
re
ac
h
re
la
tiv

e
re
si
du

al
s
of

10
−6

fo
r
co
nfi

gu
ra
tio

ns
co
ns
is
tin

g
of

2
la
ye
rs
,w

he
re

th
e
in
te
rf
ac
e

	
0
is

gi
ve
n
by

de
ep

gr
at
in
g
pr
ofi

le
s
F
�
(x

1
)
=

2.
5
co
s
x 1

(t
op

)a
nd

F
�
(x

1
)
=

2.
5π

(0
.4
co
s(
x 1

)
−0

.2
co
s(
2x

1
)
+0

.4
co
s(
3x

1
))
(b
ot
to
m
),
an
d
va
ri
ou

s
va
lu
es

of
w
av
en
um

be
rs
k �

,
�

=
0,

1

In
te
rf
ac
e

k 0
=

1.
3,
k 1

=
4.
3

k 0
=

2.
3,
k 1

=
8.
3

k 0
=

4.
3,
k 1

=
16

.3
k 0

=
16

.3
,
k 1

=
64

.3

A
n
,
L

=
0

A
n
,
L

=
2

A
n
,
L

=
0

A
n
,
L

=
2

A
n
,
L

=
0

A
n
,
L

=
2

A
n
,
L

=
0

A
n
,
L

=
2

Sm
oo

th
14

12
16

12
19

14
21

14

R
ou

gh
19

17
22

15
24

17
28

18

123



Journal of Scientific Computing (2020) 82 :44 Page 29 of 45 44

Ta
bl
e
2

N
um

be
rs
of

G
M
R
E
S
ite

ra
tio

ns
re
qu

ir
ed

by
Q
O
D
D
fo
rm

ul
at
io
ns

to
re
ac
h
re
la
tiv

e
re
si
du

al
s
of

10
−6

fo
r
co
nfi

gu
ra
tio

ns
co
ns
is
tin

g
of

2
la
ye
rs
,w

he
re

th
e
in
te
rf
ac
e

	
0
is

gi
ve
n
by

th
e
L
ip
sc
hi
tz
gr
at
in
g
pr
ofi

le
s
de
pi
ct
ed

in
Fi
g.
3
w
ith

he
ig
ht

to
pe
ri
od

ra
tio

eq
ua
lt
o
1
(t
op

co
rr
es
po

nd
s
to

th
e
sa
w
to
ot
h
gr
at
in
g
an
d
th
e
bo

tto
m

co
rr
es
po

nd
s
to

th
e
bi
na
ry

gr
at
in
g)
,a
nd

va
ri
ou

s
va
lu
es

of
w
av
en
um

be
rs
k �

,
�

=
0,

1

Pr
ofi

le
k 0

=
1.
3,
k 1

=
4.
3

k 0
=

2.
3,
k 1

=
8.
3

k 0
=

4.
3,
k 1

=
16

.3
k 0

=
16

.3
,
k 1

=
64

.3

A
n
,
L

=
0

A
n
,
L

=
0

A
n
,
L

=
0

A
n
,
L

=
0

Sa
w
to
ot
h

15
16

18
20

B
in
ar
y

17
19

21
25

123



44 Page 30 of 45 Journal of Scientific Computing (2020) 82 :44

100 101 102 103

wavenumber

15

20

25

30

35

40

45

50
ite

ra
tio

ns

binary
sawtooth

Fig. 4 Numbers of GMRES iterations required by QO DD formulations to reach relative residuals of 10−6

for configurations consisting of 2 layers, where the interface 	0 is given by the Lipschitz grating profiles
depicted in Fig. 3 with height to period ratio equal to 1 for wavenumbers k0 = 2� + 0.3, 0 ≤ � ≤ 7 and
k1 = 22+� + 0.3, 0 ≤ � ≤ 7. The rate of growth of GMRES iterations appears to be logarithmic in these
cases

iterations required by the QO DD formulation appear to be growing logarithmically with
respect to the frequency in the case of deep Lipschitz interfaces.

6.2.2 Three Layers

We devote the next set of results to configurations consisting of three layers separated by two
periodic interfaces. We present in Tables 3 and 4 numbers of GMRES iterations required by
the QO DD discretization matrices An to reach relative residuals of 10−4 for increasingly
rougher (yet smooth) grating profiles separating high-contrast periodic layers.We remark that
for small values of the roughness parameter ε (i.e. ε = 0.1, 0.5), the numbers of iterations
do not appear to depend on the increased contrast. For larger values of the parameter ε (i.e.
ε = 1), the numbers of iterations grow with the frequency, yet the growth rate is modest.
We also point out that the use of transmission operators Z2

j, j+1 (which are higher-order
approximations of the DtN operators) appears to be beneficial to the iterative behavior of the
QO DD algorithm.

6.2.3 Many Layers

We investigate next the iterative behavior of the QO DD solvers and the effectiveness of
the sweeping preconditioners in the case of configurations that involve large numbers of
layers. In the case when the height of the interfaces is small enough (i.e. the height parameter
ε = 0.02), we see in Table 5 that the sweeping preconditioner applied to the QODDmatrices
An appears to be scalable, that is the numbers of GMRES iterations required for convergence
does not depend on the number of layers or on the frequencies in each layer. We note that
the transmission problems considered in Table 5 (as well as in Tables 6, 7, 8) range from 100
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Fig. 5 Three layer configurations with Lipschitz upper layer grating profiles of period 2π and height ε

to 4000 wavelengths—as measured by the number of wavelengths across the period of each
interface; the discretization size ranges from 5000 to 15,000 unknowns. As the roughness
parameter is increased from ε = 0.02 to ε = 0.1, we see in Table 6 that the numbers of
GMRES iterations remain fixed when the sweeping preconditioner is applied to the DD
matricesAs

n , but not in its counterpart case involving the DD matricesAn . Furthermore, QO
DD solvers based on higher-order transmission operators (that is values of the parameter
L ≥ 1 in the definition of the transmission operators Z L

j, j−1,Z
L
j, j+1, and respectively Zs,L

j, j−1

and Zs,L
j, j+1) perform only marginally better than those based on zeroth-order transmission

operators (that is L = 0 in the definition of the aforementioned transmission operators) in the
case of small roughness parameters ε. Based on our numerical experience, we observed that
the iterative behavior of the QO DD solvers and the sweeping preconditioners depicted in
Tables 5 and 6 is not sensitive to the width H of the layers or the shape of the grating profiles.
Furthermore, qualitatively similar behavior was observed in the cases when the interfaces 	�

are Lipschitz.
As the roughness of the gratings 	� increases, the sweeping preconditioner (Bs

n)
−1As

n is
still effective, yet the number of iterations required growsmildly with the number of layers as
well as with increased frequencies/contrasts—see Table 7. Remarkably, there are important
benefits in the reduction of GMRES iterations by incorporating higher-order transmission
operators Zs,2

j, j−1 and Zs,2
j, j+1 over the zeroth-order ones Zs,0

j, j−1 and Zs,0
j, j+1 in the precon-

ditioned QO DD formulations. Also, the sweeping preconditioner is less effective for QO
DD formulations based on transmission operators Z2

j, j−1 and Z2
j, j+1 (i.e. B−1

n An) for rough
interface profiles. The symmetric Gauss–Seidel preconditioners (6.5) applied to the formu-
lation As

n with transmission operators Zs,2
j, j−1 and Zs,2

j, j+1—referred to as SGS in Table 7,
appear to perform better than the sweeping preconditioners. Finally, it can be seen from the
results presented in Table 7 that QO DD solvers based on the formulation (B�

n)
−1A�

n (which,
given that the depth of the layers is larger than the profile roughness, is applicable in the case
presented in Table 7) require small numbers of GMRES iterations for convergence, whose
growth with respect to the number of layers or contrast is very mild. We mention that further
reductions in numbers of iterations (about 25%) can be garnered from application of SGS
preconditioners to A�

n .
In the case of very large gratings 	� (whose height/period ratios are close to 1), the

sweeping preconditioners (Bs
n)

−1As
n (denoted by the acronym SW ) become less effective—

see Table 8. Nevertheless, the use of higher-order transmission operators Zs,2
j, j−1 and Zs,2

j, j+1
is again beneficial. We also remark that the symmetric Gauss–Seidel preconditioners (6.5)
(referred to as SGS) perform better than the sweeping preconditioners. We mention that
due to the ratio between the profile roughness and the width of the layers, the slab DD for-
mulation (3.11) is not possible in this case: a strip domain decomposition would necessarily
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require that the flat subdomain interfaces intersect the gratings	�. Nevertheless, once the lay-
ers width is large enough with respect to profile roughness so that the DD formulation (3.11)
is possible, the sweeping preconditioners (B�

n)
−1A�

n are effective—see Table 9.
According to the results presented in Tables 5, 6, 7, 8 and 9, the sweeping preconditioners

B−1
n and especially (Bs

n)
−1 can effectively reduce the numbers of GMRES iterations required

for the solution of QO DD algorithms for periodic transmission problems involving large
number of layers, even in the case when the roughness of the interfaces of material discon-
tinuity is pronounced. We have observed that these findings are virtually independent of the
layer material properties (for instance, the numbers of GMRES iterations reported in these
tables are about the samewhenwe considered randomwavenumbers in the same range) or the
depth of the layers (as long as the original transmission problem is well posed). In addition,
the sweeping preconditioners (B�

n)
−1, whenever applicable, are extremely efficient, even for

very rough profiles 	�.
As we have presented in Tables 5, 6, 7, 8 and 9, the choice of the transmission operators

plays an important role in the convergence properties of the ensuing DD algorithms. Besides
the square root Fourier multiplier transmission operators presented in this paper, other trans-
mission operators have been used in the DD arena. Notably, we mention the classical Robin
transmission operators Z = i I (the first transmission operators introduced for DD formula-
tions of Helmholtz equations by Déspres [9]), as well as transmission operators of the form
Z = T (related to the ones introduced in [19]), where the operator T is related to the Hilbert
transform

T (ϕ)(t) = i ∂t

∫ 2π

0
K(t − τ)∂τ ϕ(τ)dτ + ϕ(t), K(t) := 1

π
ln |1 − eit |, 0 ≤ t ≤ 2π,

(6.6)

where ϕ is a 2π periodic function. We note that these two choices of transmission oper-
ators give rise to unitary RtR maps, and thus they lead to DD formulations that are
well-posed as long as the initial transmission problem (2.1) is well-defined. We illustrate
in Fig. 6 the numbers of iterations required by DD formulations that rely on the two
above mentioned transmission operators. Specifically, we considered profiles defined by
F�(x1) = −�H + 2.5ε cos x1, H = 3.3, 0 ≤ � ≤ N with ε = 0.1 and we report numbers
of GMRES iterations required by the DD with the transmission operators defined above to
reach relative residuals of 10−4. Comparing the results in Fig. 6 with their counterparts in
Table 6, we see that the use of DD with QO transmission operators Zs,L

j, j−1 and Z L
j, j+1 in

conjunction with sweeping preconditioners can give rise to order of magnitude reductions
in numbers of GMRES iterations. We mention that the sweeping preconditioner is ineffec-
tive in the cases presented in Fig. 6. This finding is not surprising, given that the premise
of sweeping preconditioners is that the transmission operators are good approximations of
subdomain DtN maps. Finally, similar scenarios occur for rougher profiles.

Further insight on the superior performance of the DD algorithms based on QO transmis-
sion operators Z L

j, j+1 can be garnered from the eigenvalue distribution depicted in Fig. 7.
We point out that the eigenvalues corresponding to the DD matricesAn, L = 0 are clustered
around one, and the clustering is even more pronounced for the eigenvalues of the precon-
ditioned matrix B−1

n An, L = 0. In contrast, the distribution of the eigenvalues of the DD
matrix corresponding to classical Robin transmission operators Z = i I is not conducive to
fast convergence of GMRES solvers.
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Fig. 6 Numbers of GMRES iterations required to reach relative residuals of 10−4 by DD algorithms based on
transmission operators Z = i I (top) and Z = T (bottom) in the casewhen the profiles are given by the gratings
F�(x1) = −�H + 2.5ε cos x1, H = 3.3, 0 ≤ � ≤ N with ε = 0.1. In the case of transmission operators
Z = T we plot with dashed lines the numbers of iterations required after the sweeping preconditioner is
applied

6.2.4 Inclusions in Periodic Layers

Finally, we present results concerning perfectly conducting inclusions embedded in lay-
ered media, see Fig. 8. We present numerical experiments related to these configurations
in Tables 10 and 11 . In order to showcase the versatility of our DD algorithm, we chose
wavenumbers that are Wood frequencies in the layers that contain inclusions. We note that
for these configurations the transmission operators that we use are approximations of DtN
operators corresponding to homogeneous layers, and thus the presence of inclusions was
not accounted in the construction of transmission operators. Nevertheless, we found that the
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Fig. 8 Periodic layer configurations with inclusions

sweeping preconditioner is still effective, yet the presence of multiple inclusions deteriorates
somewhat its performance especially in the high-contrastmedia cases. The results in Table 10
correspond to cases where the contrast between the layers that contain inclusions and their
adjacent layers is not significant (i.e., the quotients between the corresponding wavenumbers
is close to unity). By contrast, the results in Table 11 correspond to high–contrast media (e.g.,
waveguides) where the wavenumbers in the layers that contain inclusions are much smaller
than the wavenumbers in adjacent layers.

7 Conclusions

We have presented a sweeping preconditioner for the QO DD formulation of Helmholtz
transmission problems in two dimensional periodic layeredmedia.OurQODDformulation is
built upon transmission operators whose construction relies on low-order shape deformation
expansions of periodic layer DtN operators. We used robust boundary integral equation
formulations to represent the RtR operators, which were discretized via high-order Nyström
discretizations. The sweeping preconditioners are particularly effective in the case when the
subdomain partitions consist of horizontal layers, at least when the boundaries of the layers
do not contain cross points. Extensions to cases when cross points are present, and to three
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dimensional cases are underway. We are also exploring strategies to parallelize the sweeping
preconditioners.

Acknowledgements DPN gratefully acknowledges support from NSF through Contract DMS-1522548 and
DMS-1813033. CT gratefully acknowledges support from NSF through Contract DMS-1614270.

References

1. Arens, T.: Scattering by biperiodic layered media: the integral equation approach. Habilitationsschrift,
Karlsruhe Institute of Technology (2010)

2. Boubendir, Y., Antoine, X., Geuzaine, C.: A quasi-optimal non-overlapping domain decomposition algo-
rithm for the Helmholtz equation. J. Comput. Phys. 231(2), 262–280 (2012)

3. Bruno, O.P., Delourme, B.: Rapidly convergent two-dimensional quasi-periodic Green function through-
out the spectrum including Wood anomalies. J. Comput. Phys. 262(Supplement C), 262–290 (2014)

4. Bruno, O.P., Shipman, S.P., Turc, C., Stephanos, V.: Three-dimensional quasi-periodic shifted Green
function throughout the spectrum, including Wood anomalies. Proc. R. Soc. A Math. Phys. Eng. Sci.
473(2207), 20170242 (2017)

5. Bruno, O.P., Shipman, S.P., Turc, C., Venakides, S.: Superalgebraically convergent smoothly windowed
lattice sums for doubly periodic Green functions in three-dimensional space. In: Proceedings of the Royal
Society A, vol. 472, p. 20160255. The Royal Society (2016)

6. Cadilhac, M., Petit, R.: On the diffraction problem in electromagnetic theory: a discussion based on
concepts of functional analysis including an example of practical application. In: Huygens’ principle
1690–1990: theory and applications (The Hague and Scheveningen, 1990). Studies in Mathematical
Physics, vol. 3, pp. 249–272. North-Holland, Amsterdam (1992)

7. Cho,M.H.,Barnett,A.H.:Robust fast direct integral equation solver for quasi-periodic scattering problems
with a large number of layers. Opt. Express 23(2), 1775–1799 (2015)

8. Coifman, R., Meyer, Y.: Nonlinear harmonic analysis and analytic dependence. In: Pseudodifferential
operators and applications (Notre Dame, Ind., 1984), pp. 71–78. American Mathematical Society (1985)

9. Després, B.: Décomposition de domaine et problème de Helmholtz. C. R. Acad. Sci. Paris Sér. I Math.
311(6), 313–316 (1990)

10. Dominguez, V., Lyon,M., Turc, C.:Well-posed boundary integral equation formulations andNyström dis-
cretizations for the solution of Helmholtz transmission problems in two-dimensional Lipschitz domains.
J. Integral Equ. Appl. 28(3), 395–440 (2016)

11. Engquist, B., Ying, L.: Sweeping preconditioner for the Helmholtz equation: hierarchical matrix repre-
sentation. Commun. Pure Appl. Math. 64(5), 697–735 (2011)

12. Gander, M.J., Magoulès, F., Nataf, F.: Optimized Schwarz methods without overlap for the Helmholtz
equation. SIAM J. Sci. Comput. 24(1), 38–60 (2002)

13. Gander, M.J., Zhang, H.: A class of iterative solvers for the Helmholtz equation: factorizations, sweeping
preconditioners, source transfer, single layer potentials, polarized traces, and optimized Schwarzmethods.
arXiv preprint arXiv:1610.02270 (2016)

14. Hong, Y., Nicholls, D.P.: A stable high-order perturbation of surfaces method for numerical simulation
of diffraction problems in triply layered media. J. Comput. Phys. 330, 1043–1068 (2017)

15. Hu, B., Nicholls, D.P.: Analyticity of Dirichlet–Neumann operators on Hölder and Lipschitz domains.
SIAM J. Math. Anal. 37(1), 302–320 (2005)

16. Jerez-Hanckes, C., Pérez-Arancibia, C., Turc, C.:Multitrace/singletrace formulations and domain decom-
position methods for the solution of Helmholtz transmission problems for bounded composite scatterers.
J. Comput. Phys. 350, 343–360 (2017)

17. Kussmaul, R.: Ein numerisches Verfahren zur Lösung des Neumannschen Aussenraumproblems für die
Helmholtzsche Schwingungsgleichung. Comput. (Arch. Elektron. Rechnen) 4, 246–273 (1969)

18. Lai, J., Kobayashi, M., Barnett, A.H.: A fast and robust solver for the scattering from a layered periodic
structure containing multi-particle inclusions. J. Comput. Phys. 298, 194–208 (2015)

19. Lecouvez, M., Stupfel, B., Joly, P., Collino, F.: Quasi-local transmission conditions for non-overlapping
domain decomposition methods for the Helmholtz equation. C. R. Phys. 15(5), 403–414 (2014)

20. Martensen, E.: Über eine Methode zum räumlichen Neumannschen Problem mit einer Anwendung für
torusartige Berandungen. Acta Math. 109, 75–135 (1963)

21. Milder,M.D.:An improved formalism for rough-surface scattering of acoustic and electromagneticwaves.
In: Proceedings of SPIE—The International Society forOptical Engineering (SanDiego, 1991), vol. 1558,
pp. 213–221. The International Society for Optical Engineering, Bellingham, WA (1991)

123

http://arxiv.org/abs/1610.02270


Journal of Scientific Computing (2020) 82 :44 Page 45 of 45 44

22. Michael Milder, D.: An improved formalism for wave scattering from rough surfaces. J. Acoust. Soc.
Am. 89(2), 529–541 (1991)

23. Nicholls, D.P.: Three-dimensional acoustic scattering by layered media: a novel surface formulation with
operator expansions implementation. Proc. R. Soc. A 468(2139), 731–758 (2012)

24. Nicholls, D.P.: Stable, high-order computation of impedance-impedance operators for three-dimensional
layered medium simulations. Proc. R. Soc. A 474(2212), 20170704 (2018)

25. Nicholls, D.P., Reitich, F.: Shape deformations in rough-surface scattering: cancellations, conditioning,
and convergence. JOSA A 21(4), 590–605 (2004)

26. Pérez-Arancibia, C., Shipman, S., Turc, C., Venakides, S.: Domain decomposition for quasi-periodic
scattering by layered media via robust boundary-integral equations at all frequencies. arXiv preprint
arXiv:1801.09094 (2018)

27. Schädle, A., Zschiedrich, L., Burger, S., Klose, R., Schmidt, F.: Domain decomposition method for
Maxwell’s equations: scattering off periodic structures. J. Comput. Phys. 226(1), 477–493 (2007)

28. Stolk, C.C.: A rapidly converging domain decomposition method for the Helmholtz equation. J. Comput.
Phys. 241, 240–252 (2013)

29. Vion, A., Geuzaine, C.: Double sweep preconditioner for optimized Schwarz methods applied to the
Helmholtz problem. J. Comput. Phys. 266, 171–190 (2014)

30. Vion,A., Geuzaine, C.: Improved sweeping preconditioners for domain decomposition algorithms applied
to time-harmonic Helmholtz and Maxwell problems. ESAIM Proc. Surv. 61, 93–111 (2018)

31. Zepeda-Núnez, L.,Demanet, L.: Themethodof polarized traces for the 2DHelmholtz equation. J.Comput.
Phys. 308, 347–388 (2016)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://arxiv.org/abs/1801.09094

	Sweeping Preconditioners for the Iterative Solution of Quasiperiodic Helmholtz Transmission Problems in Layered Media
	Abstract
	1 Introduction
	2 Scalar Transmission Problems
	3 Domain Decomposition Approach
	3.1 DD with Subdomains Ωjper
	3.2 DD with Slab Subdomains

	4 Construction of Quasi-Optimal Transmission Operators Based on Shape Perturbation Series
	5 Boundary Integral Operator Formulations
	5.1 Robin-to-Robin Operators
	5.2 Invertibility of the QO DD Formulation (3.1) in the Case of One Interface
	5.3 Invertibility of the QO DD Formulation (3.1) in the Case of Multiple Interfaces
	5.4 Invertibility of the Slab Subdomain QO DD Formulation (3.11)

	6 Numerical Results
	6.1 Nyström Discretization
	6.2 QO DD Solvers and Sweeping Preconditioners
	6.2.1 Two Layers
	6.2.2 Three Layers
	6.2.3 Many Layers
	6.2.4 Inclusions in Periodic Layers


	7 Conclusions
	Acknowledgements
	References




