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A STABLE HIGH-ORDER METHOD FOR TWO-DIMENSIONAL
BOUNDED-OBSTACLE SCATTERING∗
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Abstract. A stable and high-order method for solving the Helmholtz equation on a two-
dimensional domain exterior to a bounded obstacle is developed in this paper. The method is
based on a boundary perturbation technique (“transformed field expansions”) coupled with a well-
conditioned high-order spectral-Galerkin solver. The method is further enhanced with numerical
analytic continuation, implemented via Padé approximation. Ample numerical results are presented
to show the accuracy, stability, and versatility of the proposed method.
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1. Introduction. A wide variety of numerical techniques have been proposed
for the approximation of electromagnetic and acoustic scattering returns from irreg-
ular obstacles (see, e.g., the book of Colton and Kress [9] and the survey papers of
Warnick and Chew [35] and Reitich and Tamma [28]). Among the most compelling
of these methods are those based on boundary perturbations, which can be origi-
nally traced to the work of Rayleigh [27] and Rice [29]. These methods are simple
to implement, extremely fast, and quite robust within their domain of applicability.
These properties have lead to not only low- and high-order implementations of these
boundary perturbation algorithms, but also questions regarding their convergence,
conditioning, and accuracy.

In a series of recent papers, Bruno and Reitich [3], Nicholls and Nigam [20], and
Nicholls and Reitich [24, 25] have rigorously shown that not only are the scattered
(acoustic/electromagnetic) fields analytic functions of the grating height (slope) pa-
rameter, ε, but also they can be analytically continued for any real value of ε. These
analytical results demonstrate the convergence of boundary perturbation expansions,
and would appear to justify the classical algorithms of Rayleigh [27] and Rice [29] (pur-
sued to higher orders by Bruno and Reitich [4, 5, 6, 7, 8]; see also Milder [14, 15, 17, 16]
and others [18, 19, 12]). However, it was shown in [24, 25] that, in fact, these ap-
proaches rely on significant cancellations for their convergence. Consequently these
numerical implementations are highly ill-conditioned when pursued to high order, as
demonstrated in [24] and, to a more limited extent, section 3.4 of the current work.

A new boundary perturbation algorithm, advocated in [25] and specified in sec-
tion 2.3, which overcomes this issue of poor conditioning, follows the perturbation
philosophy of Rayleigh [27] and Rice [29] preceded by a change of variables, which
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“flattens” the shape of the scatterer to a flat configuration. This “transformed field
expansions” (TFE) method proves to be not only accurate and stable, but also robust
at high order, and provides reliable estimates of both near- and far-field information.

The purpose of the current research is to extend the work of Nicholls and Reitich
[24, 25] in several important directions. First, we present the TFE algorithm in
the setting of bounded-obstacle scattering problems, which, while related to grating
scattering problems, present their own difficulties. Such difficulties include, e.g., the
different nature of solutions reflected in the appearance of Hankel functions rather
than complex exponential functions in the fundamental solution, and the algorithmic
challenges presented by the singular nature of the Laplacian in polar coordinates.

Second, and perhaps most importantly, we construct a new, highly efficient and
accurate, well-conditioned spectral-Galerkin solver for the Helmholtz equation in
an annulus (with a boundary condition involving the Dirichlet–Neumann operator
(DNO)), which needs to be solved repeatedly in the TFE algorithm. This solver is
highly efficient and accurate since it takes advantage of the fact that the DNO, al-
though global in physical space, is local in frequency space. Hence, we can reduce the
two-dimensional problem into a sequence of one-dimensional problems with a spec-
trally accurate approximation to the DNO. This solver is also well-conditioned since,
as is done in a series of papers [30, 31, 32, 33], we construct basis functions which
lead to sparse and well-conditioned linear systems. The good conditioning properties
of this new method allow us to investigate the behavior of the TFE algorithm as the
frequency of scattered radiation is varied from low to moderate, which is the final
extension we present. Furthermore, based upon the preliminary investigations of [34]
for radially symmetric scatterers, we can speculate that this new method will be quite
effective in simulating problems with high frequencies (though it is not “specially de-
signed” for this setting; see, e.g., [2] for a high-frequency boundary integral method).
However, such calculations quickly become quite large and time-consuming, and we
focus, in this first phase of this project, on modest calculations that illustrate the
fundamental properties of the TFE algorithm in the bounded-obstacle configuration.

In section 2.1 we review the equations which govern the scattering of electromag-
netic and acoustic radiation from bounded obstacles in two dimensions. In section 2.2
we review the classical “field expansions” (FE) method for numerically computing
scattering returns, and in section 2.3 we generalize the stabilized TFE algorithm to
bounded-obstacle configurations. In section 2.4 we discuss new algorithmic enhance-
ments that improve the conditioning properties of the TFE method, and in section 3
we present numerical results that display the properties of both the classical FE and
stabilized TFE approaches. In particular, in section 3.4 we exhibit the instabilities
present in the FE method due to cancellations which are no longer present in the
new, TFE recursions. In section 4 we examine the behavior of the TFE algorithm for
computing plane-wave scattering problems in a variety of scenarios. After recalling
how Padé approximation can be brought to bear on such problems in section 4.1,
we conclude in section 4.2 with a series of numerical experiments that illuminate the
capabilities of this new TFE algorithm. We present concluding remarks and future
directions in section 5.

2. Boundary perturbation methods. In this study we will focus on the prob-
lem of approximating electromagnetic and acoustic plane-wave scattering returns from
bounded obstacles. For simplicity we restrict our attention to the scalar case in two
dimensions, and leave the more general three-dimensional setting for future work.
In this section we state the governing equations and notations of bounded-obstacle
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scattering and recall a classical boundary perturbation algorithm. To conclude we
derive a new, stabilized method, and then discuss numerical implementation issues.

2.1. Governing equations. We consider a two-dimensional time-harmonic
acoustic or electromagnetic plane wave,

ṽi(r, θ, t) = eiωtvi(r, θ) = eiωteir(α cos(θ)−β sin(θ)),

which is incident upon a bounded obstacle

Σ = {(r, θ) : 0 ≤ r < a + g(θ), 0 ≤ θ < 2π}

and generates a scattered field

ṽs(r, θ, t) = eiωtvs(r, θ).

Here ṽ = ṽi + ṽs denotes the pressure in acoustics or the component of the electric or
magnetic field parallel to the invariant (z) direction in electromagnetics. The reduced
scattered field, vs, obeys the Helmholtz equation

Δvs + k2vs = 0, (r, θ) ∈ Ω,(2.1)

where

Ω = {(r, θ) : r > a + g(θ), 0 ≤ θ < 2π},

and the wavenumber k satisfies

k2 = α2 + β2 = (2π/λ)2,

where λ is the wavelength of the radiation. Of course the scattered field must be
periodic in θ, but there are several physically relevant boundary conditions that can
be specified at the surface of the object. For definiteness we work with a pressure
release (acoustics) or perfectly conducting (TE in electromagnetics) surface where

vs(a + g(θ), θ) = −vi(a + g(θ), θ) = −ei(a+g(θ))(α cos(θ)−β sin(θ)).(2.2)

Finally, the scattered solution must satisfy the Sommerfeld radiation condition (SRC)
to guarantee a physical solution,

lim
r→∞

r1/2(∂rvs − ikvs) = 0.(2.3)

Gathering equations (2.1), (2.2), and (2.3); denoting vs by v; and giving the Dirichlet
data, (2.2), the generic name ξ, we state the fundamental equations of two-dimensional
time-harmonic bounded-obstacle scattering:

Δv + k2v = 0, (r, θ) ∈ Ω,(2.4a)

v(a + g(θ), θ) = ξ(θ),(2.4b)

lim
r→∞

r1/2(∂rv − ikv) = 0.(2.4c)

An equivalent statement of this problem, which not only conveniently expresses
the SRC but also poses the problem on a bounded domain, can be made in terms of
the DNO, also called the Dirichlet-to-Neumann (DtN) map. Let b > a+ |g|L∞ ; then,
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using a classical argument of separation of variables, the general solution of (2.4a)
and (2.4c) for r ≥ b can be expressed as

v(r, θ) =

∞∑
p=−∞

apH
(1)
p (kr)eipθ,

where H
(1)
p is the pth Hankel function of the first kind. Therefore, if v(b, θ) is given,

v(b, θ) = ψ(θ) =
∞∑

p=−∞
ψ̂pe

ipθ,

the coefficients {ap} can be uniquely determined; namely, we have

v(r, θ) =
∞∑

p=−∞
ψ̂p

H
(1)
p (kr)

H
(1)
p (kb)

eipθ.

We define a DNO, T , by

T ψ ≡ ∂rv(b, θ) =

∞∑
p=−∞

k
dzH

(1)
p (kb)

H
(1)
p (kb)

ψ̂pe
ipθ,(2.5)

where

dzH
(1)
p (kb) =

dH
(1)
p (z)

dz

∣∣∣∣∣
z=kb

,

which takes Dirichlet data, ψ, to Neumann data, ∂rv|r=b. Thus, (2.4) can be equiva-
lently restated as

Δv + k2v = 0, (r, θ) ∈ Ωa+g,b,(2.6a)

v(a + g(θ), θ) = ξ(θ),(2.6b)

∂rv(b, θ) − T v(b, θ) = 0,(2.6c)

where

Ωa+g,b = {(r, θ) : a + g(θ) < r < b, 0 ≤ θ < 2π}.

2.2. Field expansions. Considering a sufficiently smooth boundary deforma-
tion of the form g(θ) = εf(θ), it is known [3, 20, 24, 25] that the field, v, depends
analytically on the parameter ε; i.e., we have the strongly convergent expansion

v(r, θ; ε) =
∞∑

n=0

vn(r, θ) εn.

This observation serves as the basis for the method of “field expansions” (FE); see
[7, 8] and the references therein. This algorithm consists of finding {vn} recursively
by solving a sequence of Helmholtz problems in the unperturbed domain

Ωa,b = {(r, θ) : a < r < b, 0 ≤ θ < 2π}.



1402 DAVID P. NICHOLLS AND JIE SHEN

More precisely, it is not hard to derive from (2.6) that the vn must satisfy

Δvn + k2vn = 0, (r, θ) ∈ Ωa,b,(2.7a)

vn(a, θ) = Rn(θ),(2.7b)

∂rvn(b, θ) − T vn(b, θ) = 0,(2.7c)

where

Rn(θ) = δn,0 ξ(θ) −
n−1∑
l=0

fn−l

(n− l)!
∂n−l
r vl(a, θ)(2.7d)

and δn,m is the Kronecker delta. Equations (2.7a) and (2.7c) imply that

vn(r, θ) =

∞∑
p=−∞

dn,p
H

(1)
p (kr)

H
(1)
p (ka)

eipθ,(2.8)

while (2.7b) provides a recursion for the dn,p. At order zero, d0,p = ξ̂p, the pth Fourier
coefficient of ξ(θ), and for n > 0

dn,p = −
n−1∑
l=0

∞∑
q=−∞

Cn−l,p−q
dn−l
z H

(1)
q (ka)

H
(1)
q (ka)

dl,q,(2.9)

where the Cl,q are defined by

(kf)l

l!
=

∞∑
q=−∞

Cl,qe
iqθ.

Provided that we truncate the number of Fourier coefficients in f and retain only
a finite number of terms dl,p (say, 0 ≤ l ≤ N and −Nθ/2 ≤ p ≤ Nθ/2 − 1), we
have completely specified the numerical FE algorithm with (2.9). The only detail
remaining is that the convolution product appearing in (2.9) is performed via FFT
acceleration.

2.3. Transformed field expansions. As we shall see in section 3.4, the FE
method outlined above suffers from severe ill-conditioning due to significant cancel-
lations which occur in the recursion (2.9). However, a simple change of variables
coupled to the FE design philosophy leads to a stable, high-order boundary pertur-
bation scheme we call “transformed field expansions” (TFE) [21, 22, 23, 20, 24, 25].
The change of variables

r′ =
(b− a)r − bg(θ)

(b− a) − g(θ)
=

dr − bg

d− g
, θ′ = θ,

where d = (b− a), maps the perturbed geometry Ωa+g,b to the annulus Ωa,b. We now
seek to restate (2.6) in these transformed coordinates. We note that

(d− g(θ))∂θ = (d− g(θ′))∂θ′ −B(r′, θ′)∂r′ ,(2.10a)

(d− g(θ))∂r = d ∂r′ ,(2.10b)

(d− g(θ))Dr = d Dr′ + A(r′, θ′)∂r′ ,(2.10c)
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where Dr = r∂r,

A(r′, θ′) = g(θ′)(b− r′),

and

B(r′, θ′) = ∂θ′A = (∂θ′g(θ′))(b− r′);

we note for future reference that

d r = d r′ + A(r′, θ′).

To begin the transformation we start with the Helmholtz equation, (2.6a):

0 = Δv + k2v = r2Δv + r2k2v

= D2
rv + ∂2

θv + r2k2v

= (d− g)2D2
rv + (d− g)2∂2

θv + (d− g)2r2k2v

= [(d− g)Dr][(d− g)Dr]v + [(d− g)∂θ][(d− g)∂θ]v

+ (∂θg)[(d− g)∂θ]v + (d− g)2r2k2v.(2.11)

Writing

u(r′, θ′) = v(r′ + A/d, θ′)

and replacing v in (2.11) by u, we obtain

0 = [dDr′ + A∂r′ ][dDr′ + A∂r′ ]u + [(d− g)∂θ′ −B∂r′ ][(d− g)∂θ′ −B∂r′ ]u

+ (∂θg)[(d− g)∂θ′ −B∂r′ ]u + (d− g)2(r′ + A/d)2k2u

= d2D2
r′u + dA∂r′Dr′u + dDr′ [A∂r′u] + A∂r′ [A∂r′u]

+ d2∂2
θ′u− dg∂2

θ′u− d∂θ′ [g∂θ′u] + g∂θ′ [g∂θ′u] − dB∂r′∂θ′u + B∂r′ [g∂θ′u]

− d∂θ′ [B∂r′u] + g∂θ′ [B∂r′u] + B∂r′ [B∂r′u]

+ d(∂θ′g)∂θ′u− g(∂θ′g)∂θ′u− (∂θ′g)B∂r′u

+ d2(r′)2k2u +

4∑
j=1

Cj(g)k
2u,

where

C1(g) = −2d g(r′)2 + 2d Ar′,

C2(g) = g2(r′)2 − 4gAr′ + A2,

C3(g) = (2/d)Ag2r′ − (2/d)gA2,

C4(g) = (1/d2)g2A2.

We rewrite this as

D2
r′u + ∂2

θ′u + (r′)2k2u = F (r′, θ′;u),

where

−d2F = dA∂r′Dr′u + dDr′ [A∂r′u] + A∂r′ [A∂r′u]

− dg∂2
θ′u− d∂θ′ [g∂θ′u] + g∂θ′ [g∂θ′u] − dB∂r′∂θ′u + B∂r′ [g∂θ′u]

− d∂θ′ [B∂r′u] + g∂θ′ [B∂r′u] + B∂r′ [B∂r′u]

+ d(∂θ′g)∂θ′u− g(∂θ′g)∂θ′u− (∂θ′g)B∂r′u +

4∑
j=1

Cj(g)k
2u.



1404 DAVID P. NICHOLLS AND JIE SHEN

The Dirichlet condition, (2.6b), simply transforms to

u(a, θ′) = ξ(θ′),

while (2.6c) can be written as

0 = ∂rv(b, θ) − Tv(b, θ)

= (d− g)∂rv(b, θ) − (d− g)Tv(b, θ)

= d ∂r′u(b, θ′) − d T ′u(b, θ′) + g(θ′)T ′u(b, θ′).

Since T ′ = T , (2.6c) transforms to

∂r′u(b, θ′) − Tu(b, θ′) = J(θ′),

where

d J(θ′) = −g(θ′)Tu(b, θ′).

Collecting these transformations, we find that the transformed field u, upon dropping
primes, satisfies

D2
ru + ∂2

θu + r2k2u = F (r, θ;u), (r, θ) ∈ Ωa,b,(2.12a)

u(a, θ) = ξ(θ),(2.12b)

∂ru(b, θ) − T u(b, θ) = J(θ).(2.12c)

Again, letting g = εf , if f is sufficiently smooth, the analyticity of the transformed
field u (see [20]) implies that

u(r, θ; ε) =
∞∑

n=0

un(r, θ) εn.(2.13)

Inserting the above into (2.12), it is straightforward, albeit tedious, to derive the
following recursions for {un}:

D2
run + ∂2

θun + r2k2un = Fn(r, θ), (r, θ) ∈ Ωa,b,(2.14a)

un(a, θ) = δn,0 ξ(θ),(2.14b)

∂run(b, θ) − T un(b, θ) = Jn(θ),(2.14c)

where

−d2Fn = d A ∂r′Dr′un−1 + d Dr′ [A∂r′un−1] + A∂r′ [A∂r′un−2]

− d f ∂2
θ′un−1 − d ∂θ′ [f∂θ′un−1] + f∂θ′ [f∂θ′un−2]

− d B∂r′∂θ′un−1 + B∂r′ [f∂θ′un−2]

− d ∂θ′ [B∂r′un−1] + f∂θ′ [B∂r′un−2] + B∂r′ [B∂r′un−2]

+ d(∂θ′f)∂θ′un−1 − f(∂θ′f)∂θ′un−2 − (∂θ′f)B∂r′un−2

+

4∑
j=1

Cj(f)k2un−j(2.14d)

and

d Jn = −f Tun−1(b, θ).(2.14e)
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In the derivation of (2.14d) it is important to remember that A and B depend linearly
on g and therefore εf .

Remark 2.1. We note at this point the fundamentally inhomogeneous nature of
(2.14). If we now wish to include effects from distributed sources, resulting in an
inhomogeneous term—say, M(r, θ)—appearing on the right-hand side of (2.1), the
only modification to our TFE algorithm is that M will appear as F0. By contrast, the
FE recursions must be completely rederived, and even a boundary integral/element
method will require a new implementation (though at the same computational cost).

2.4. TFE: Numerical implementation. It is clear from the above that the
efficiency and accuracy of the TFE method depends greatly on how rapidly and ac-
curately we can solve the Helmholtz equation (2.14a)–(2.14c) on an annular domain
with the nonstandard outer boundary condition (expressed using a DNO). We now
describe an efficient and accurate spectral-Galerkin method for the following problem
(which is slightly more general than (2.14a)–(2.14c)):

D2
rU + ∂2

θU + r2k2U = F, (r, θ) ∈ Ω0,(2.15a)

U(a, θ) = ξ(θ),(2.15b)

∂rU(b, θ) − T U(b, θ) = η(θ),(2.15c)

where F (r, θ), ξ(θ), and η(θ) are given functions. Expanding U(r, θ), F (r, θ), ξ(θ),
and η(θ) in Fourier series, e.g.,

(U(r, θ), F (r, θ)) =
∞∑

p=−∞
(ûp(r), f̂p(r))e

ipθ, (ξ(θ), η(θ)) =

∞∑
p=−∞

(ξ̂p, η̂p)e
ipθ,

and recalling the definition of the DNO in (2.5), we can decompose (2.15) into the
following sequence of one-dimensional problems (p = 0,±1,±2, . . .):

D2
r ûp + (r2k2 − p2)ûp = f̂p, r ∈ (a, b),(2.16a)

ûp(a) = ξ̂p,(2.16b)

∂rûp(b) − k
dzH

(1)
p (kb)

H
(1)
p (kb)

ûp(b) = η̂p.(2.16c)

It is known (see Lemma 3.2 in [10], and [11]) that

Im

{
dzH

(1)
p (kb)

H
(1)
p (kb)

}
> 0, Re

{
dzH

(1)
p (kb)

H
(1)
p (kb)

}
< 0,

−dzH
(1)
p (kb)

H
(1)
p (kb)

∼ p + 1

b
as p → ±∞,(2.17)

which enables the well-posedness of the problem (2.16) to be directly established.
We now describe a spectral-Galerkin method for (2.16). To this end, let us first

make a change of variable x = 2(r−a)
b−a − 1, which maps r ∈ (a, b) to x ∈ I ≡ (−1, 1).

If we define

ũp(x) = ûp(r), f̃p(x) = f̂p(r), η̃p =
b− a

2
η̂p, ξ̃p = ξ̂p,

c =
b + a

b− a
, ω =

k(b− a)

2
, Tp = k

dzH
(1)
p (kb)

H
(1)
p (kb)

,
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then (2.16) becomes

(x + c)∂x((x + c)∂xũp),+((x + c)2ω2 − p2)ũp = f̃p, x ∈ I,(2.18a)

ũp(−1) = ξ̃p,(2.18b)

∂xũp(1) − Tpũp(1) = η̃p.(2.18c)

One verifies easily that

hp(x) =
η̃p + Tpξ̃p
1 − 2Tp

x +
η̃p + ξ̃p − Tpξ̃p

1 − 2Tp

satisfies the two boundary conditions in (2.18). Hence, setting

d =
η̃p + Tpξ̃p
1 − 2Tp

, fp = f̃p − ((x + c)2ω2 − p2)hp − d(x + c),

ũp(x) = up(x) + hp(x),

we can rewrite (2.18) into the following problem with homogeneous boundary condi-
tions:

(x + c)∂x((x + c)∂xup) + ((x + c)2ω2 − p2)up = fp, x ∈ I,(2.19a)

up(−1) = 0,(2.19b)

∂xup(1) − Tpup(1) = 0.(2.19c)

Let us denote by PN the space of complex polynomials of degree less than or equal
to N . We set

X
(p)
N = {u ∈ PN : u(−1) = 0, ∂xu(1) − Tpu(1) = 0}.(2.20)

The spectral-Galerkin method for (2.19) is to find u
(p)
N ∈ X

(p)
N such that∫

I

(x + c)∂x((x + c)∂xu
(p)
N )v̄N dx +

∫
I

((x + c)2ω2 − p2)u
(p)
N v̄N dx(2.21)

=

∫
I

fpv̄N dx ∀vN ∈ X
(p)
N ,

where v̄N is the complex conjugate of vN .
The well-posedness of (2.21) follows from (2.16). However, a complete error anal-

ysis is still elusive. In [34], an error analysis was carried out for the case where Tp

is replaced by its zeroth-order approximation, ip. The analysis was based on a new,
uniform a priori estimate for the approximate solution. However, the extension of
that procedure to the current situation appears to be subtle and is the subject of
ongoing research.

We now describe an efficient numerical algorithm for solving (2.21). We recall
that if Tp is a real number and PN consists of real polynomials, it is shown in [30, 31]

that there exist unique real pairs (α
(p)
k , β

(p)
k ) such that

X
(p)
N = span{φ(p)

0 , φ
(p)
1 , . . . , φ

(p)
N−2}

with φ
(p)
k (x) =Lk(x)+α

(p)
k Lk+1(x)+β

(p)
k Lk+2(x); we recall that Lk is the kth Legendre

polynomial. It is easy to see that this is still true if we allow (α
(p)
k , β

(p)
k ) to be complex
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for complex Tp and PN , X
(p)
N as defined above. In fact, one verifies easily that

α
(p)
k =

(2k + 3)

(k + 2)2 − 2Tp
, β

(p)
k = α

(p)
k − 1.

We recall from (2.17) that Re(Tp) < 0; hence, (α
(p)
k , β

(p)
k ) are always well defined.

Therefore, setting

u
(p)
N =

N−2∑
j=0

u
(p)
j φj , u = (u

(p)
0 , u

(p)
1 , . . . , u

(p)
N−2)

T ,

a
(p)
jl =

∫
I

(x + c)∂x((x + c)∂xφ
(p)
l )φ̄

(p)
j dx, A(p) = (a

(p)
jl ),

b
(p)
jl =

∫
I

((x + c)2ω2 − p2)φ
(p)
l φ̄

(p)
j dx, B(p) = (b

(p)
jl ),

f
(p)
j =

∫
I

fpφ̄
(p)
j dx, f (p) = (f

(p)
0 , f

(p)
1 , . . . , f

(p)
N−2)

T ,

the system (2.21) becomes the following complex matrix equation:

(A(p) + B(p))u(p) = f (p).(2.22)

Thanks to the special form of φ
(p)
j , we have that

b
(p)
jl = 0, |j − l| > 4; a

(p)
jl = 0, l < j − 2.

Hence, for each p, the linear system (2.22) can be solved in O(N2) operations by using
a direct Gaussian elimination process. Renaming N as Nr, the Fourier–Legendre

approximation for (2.15) is given (with x = 2(r−a)
b−a − 1) by

UNr,Nθ
(r, θ) =

Nθ/2∑
p=−Nθ/2−1

Nr−2∑
j=0

(u
(p)
j φ

(p)
j (x) + hp(x))eipθ,(2.23)

which is the solution of the following approximate variational problem:

−(r∂rUNr,Nθ
, ∂r(rv)) − (∂θUNr,Nθ

, ∂θv)(2.24a)

+ k2(r2UNr,Nθ
, v) = (F, v) ∀v ∈ VNr,Nθ

,

UNr,Nθ
(a, θ) = ξNθ

(θ),(2.24b)

(∂r − TNθ
)UNr,Nθ

(b, θ) = ηNθ
(θ),(2.24c)

where

VNr,Nθ
= span{φ(p)

j (x(r))eipθ : −Nθ/2 ≤ p ≤ Nθ/2 − 1; 0 ≤ j ≤ Nr − 2},(2.25a)

(ξNθ
(θ), ηNθ

(θ)) =

Nθ/2−1∑
p=−Nθ/2

(ξ̂p, η̂p)e
ipθ,(2.25b)

TNθ
ψ(θ) =

Nθ/2−1∑
p=−Nθ/2

k
dzH

(1)
p (kb)

H
(1)
p (kb)

ψ̂pe
ipθ for ψ(θ) =

∞∑
p=−∞

ψ̂pe
ipθ.(2.25c)
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Fig. 2.1. Relative L2 error versus Nr with Nθ = 20, as compared to an exact solution.

The total cost for obtaining UNr,Nθ
is O(N2

rNθ log(Nθ)).
We now present some numerical results demonstrating the accuracy of the above

scheme. As a test example, we consider the canonical problem (2.15) with a = 1,
b = 2 and take

F (r, θ) = 0, ξ(θ) = H(1)
p (ka)eipθ, η(θ) = 0.

In this case the exact solution is U(r, θ) = H
(1)
p (kr)eipθ. It is clear that for given

p, eipθ can be exactly determined with Nθ ≥ 2p. Thus we will concentrate on the
approximation behavior of our scheme with respect to the frequency k. In Figure 2.1,
we present the relative L2 error versus Nr for a wide range of frequencies. We note
that for k relatively small, the errors quickly enter the asymptotic range and converge
at an exponential rate. For moderate to large k, the errors exhibit an initial sharp
drop at Nr ∼ k/2, then decay slowly until Nr ∼ k, and finally enter the asymptotic
range, converging at an exponential rate. These results indicate that (i) the approxi-
mate solution UNr,Nθ

will converge to the exact solution U(r, θ) exponentially fast as
Nr, Nθ → +∞, provided that all F (r, θ), ξ(θ), and η(θ) are analytic in Ω; and (ii) our
numerical scheme is stable for large Nr and capable of providing accurate results for
large frequencies.

3. Numerical results: Comparison with an exact solution. In this section
we present the results of a numerical experiment conducted with the two algorithms
outlined above: the FE method of section 2.2 and the TFE method of section 2.3.
We begin by outlining the diagnostic test (based upon an exact solution), which we
have found useful in measuring the performance of these methods. We then describe
how the FE algorithm suffers from severe numerical ill-conditioning, while the TFE
approach is largely immune from such issues.

3.1. A diagnostic test. For the testing of numerical algorithms it is extremely
useful to compare approximations with exact solutions whenever possible. In the case
of scattering from a bounded obstacle, we consider again solutions of the form

vp(r, θ) = apH
(1)
p (kr)eipθ,(3.1)
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which satisfy (2.6a) and (2.6c). Given a profile g(θ) = εf(θ), we have a solution to
(2.6), provided that we set

ξ(θ) = ξp(θ) = vp(a + εf(θ), θ).

So, provided with (ε, f, ξp), both the FE and TFE algorithms deliver approximations
to the field which can be compared with the exact field, vp. Of course one need not
compare the entire field and may choose, instead, to simply compare the field in the
“near field” (at r = a + εf) or the “far field” (at r = b). Additionally, derivatives of
the field have physical interpretations and may be measured as well. In particular, the
normal derivative of the field on a surface has the interpretation in electromagnetics
as the current, and it is useful to measure this in both the near and far fields.

In this paper we focus on the most challenging computation mentioned above, the
current at the surface of the obstacle; here the effects of the geometric perturbation
are felt most strongly. We define this surface current as

ν(θ) = ∇v|r=a+g ·Ng,

where Ng = ((a + g),−∂θg)
T is chosen unnormalized to match the definition of the

DNO studied in Nicholls and Nigam [20] and Nicholls and Reitich [24, 25]. With this
choice of normal it is easy to see that

ν(θ) = (a + g) ∂rv|r=a+g −
(∂θg)

(a + g)
∂θv|r=a+g(3.2)

so that, given (ε, f, ξp), an exact current νp can be specified using (3.2) and compared
with FE and TFE approximations.

3.2. Computation of the surface current: Field expansions. The FE
approximation to the surface current can be generated by noting that (3.2), upon
multiplication by (a + g), can be rewritten as

ν = a ∂rv|r=a+g + 2g ∂rv|r=a+g +
1

a
g2 ∂rv|r=a+g

− 1

a
(∂θg) ∂θv|r=a+g −

1

a
g ν.

Setting g = εf , recalling our FE expansion, (2.8),

v(r, θ, ε) =

∞∑
n=0

εn
∞∑

p=−∞
dn,p

H
(1)
p (kr)

H
(1)
p (ka)

eipθ,

and using the fact that ν(θ, ε) is analytic in ε (see [20, 24, 25]),

ν(θ, ε) =

∞∑
n=0

νn(θ) εn,

it is not difficult to see that
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νn = (ak)

n∑
l=0

(kf)l

l!

∞∑
p=−∞

dl+1
z H

(1)
p (ka)

H
(1)
p (ka)

dn−l,pe
ipθ

+ 2f

n−1∑
l=0

(kf)l

l!

∞∑
p=−∞

dl+1
z H

(1)
p (ka)

H
(1)
p (ka)

dn−1−l,pe
ipθ

+
1

a
f2

n−2∑
l=0

(kf)l

l!

∞∑
p=−∞

dl+1
z H

(1)
p (ka)

H
(1)
p (ka)

dn−2−l,pe
ipθ

− 1

a
(∂θf)

n−1∑
l=0

(kf)l

l!

∞∑
p=−∞

dlzH
(1)
p (ka)

H
(1)
p (ka)

(ip)dn−1−l,pe
ipθ

− 1

a
f νn−1.(3.3)

3.3. Computation of the surface current: Transformed field expan-
sions. To use the TFE algorithm in a simulation of the current ν, (3.2), we perform
the following manipulations:

(a + g)(d− g)ν = (a + g)2(d− g) ∂rv|r=a+g − (∂θg)(d− g) ∂θv|r=a+g

= (a + g)2d ∂r′u|r′=a − (∂θ′g)(d− g) ∂θ′v|r′=a

+ (∂θ′g)2d ∂r′v|r′=a ,

where we have used (2.10) to change coordinates. Solving for ν(θ′), we find

ν = a ∂r′u + 2g ∂r′u +
1

a
g2∂r′u− 1

a
(∂θ′g)∂θ′u +

1

ad
g(∂θ′g)∂θ′u

+
1

a
(∂θ′g)2∂r′u +

a− d

ad
gν +

1

ad
g2ν,(3.4)

where all u quantities are evaluated at r′ = a. Setting g = εf , this normal current in
the new coordinates can also be shown to be analytic in ε [20, 24, 25] so that

ν(θ′, ε) =

∞∑
n=0

νn(θ′) εn,

and (3.4) can be used to show that

νn = a ∂r′un + 2f∂r′un−1 +
1

a
f2∂r′un−2 −

1

a
(∂θ′f)∂θ′un−1

+
1

ad
f(∂θ′f)∂θ′un−2 +

1

a
(∂θ′f)2∂r′un−2 +

a− d

ad
fνn−1 +

1

ad
f2νn−2,(3.5)

where terms with negative index are set to zero.

3.4. Cancellations. It is a well-established phenomenon [21, 22, 23, 24, 25]
that boundary perturbation algorithms such as the FE approach of section 2.2 are
numerically ill-conditioned, due to subtle but significant cancellations present in the
recursions whereby finite quantities are computed as differences of nearly equal, but
arbitrarily large, numbers. For a brief demonstration of this property in the present
context we consider the diagnostic calculation outlined in section 3.1 for a specified
profile to high perturbation order.
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Fig. 3.1. Geometry of a scattering configuration with smooth perturbation, f(θ) = cos(θ),
ε = 0.7. The scattering profile is given by the solid line, and the artificial boundary at r = 2 is
depicted with the dotted line. The dashed line portrays the unperturbed scatterer at r = 1.

For an FE approximation we compute the dn,p of (2.8) using the recursion (2.9)
for −Nθ/2 ≤ p ≤ Nθ/2 − 1 and 0 ≤ n ≤ N . With these coefficients we approximate
ν by

νN (θ, ε) =

N∑
n=0

νn(θ)εn,(3.6)

where we use (3.3) to compute νn. For a TFE simulation we generate the u
(p)
j (cf.

(2.23)) from the algorithm outlined in section 2.4 for −Nθ/2 ≤ p ≤ Nθ/2−1, 0 ≤ j ≤
Nr − 2, and 0 ≤ n ≤ N . Again, with these coefficients we approximate ν by (3.6);
however, we now use (3.5) to compute the νn.

In Figure 3.1 we display the geometry of a numerical experiment where we con-
sider a large (ε= 0.7, a= 1) but smooth deformation, f(θ) = cos(θ), of a circle with
artificial boundary at r= b= 2. The results of this experiment are summarized in Fig-
ure 3.2 with measurements of L∞ error versus perturbation order N . The numerical
parameters are Nθ = 48, Nr = 48, and N = 23, and the frequency is k= 1, while the
parameter p in (3.1) is set to one. We point out the abrupt and explosive divergence
of the FE approximation from the exact solution beyond N = 7. In contrast, the TFE
simulation gives progressively more accurate answers throughout all orders N . In
particular, we note that the best answer that the FE method can ever deliver has L∞

accuracy of 10−1 (when N = 7), while the TFE method gives answers reliable to 10−4

(at N = 23). As demonstrated in [22, 24], while the qualitative features of Figure 3.2
are quite generic as a function of profile size (ε) and shape (f), the quantitative details
of the plot (e.g., divergence order of FE, slope of convergence for TFE, etc.) can be
manipulated by an astute choice of ε and f .

Of course there are many questions one can ask regarding the cancellations present
in the FE recursions. For instance, one can ask whether an “extended precision” imple-
mentation of the FE recursions could prevent the divergence witnessed in Figure 3.2,
resulting in a reliable high-order method. In fact, this precise implementation was
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Fig. 3.2. L∞-norm of difference between exact current at the surface of a scatterer and the
numerical approximation, versus perturbation order N . Both the FE (stars) and TFE (circles)
approximations are plotted for the smooth perturbation f(θ) = cos(θ), ε = 0.7, with parameters
Nθ = 48, Nr = 48, N = 23, a = 1, b = 2, k = 1, p = 1. Notice the abrupt divergence of the
FE approximation beyond N = 7 and the predictable, progressive convergence of the TFE approach
throughout all orders.

made for the FE recursions in the related context of traveling water waves in [26].
For this problem sextuple precision calculations were necessary to display the strong
cancellations present in this problem. From these experiments we learned that ex-
tended precision can delay the onset of divergent behavior but will never eliminate
it. Furthermore, with the computational cost of current software implementations of
extended precision it was never computationally advantageous to use the FE recur-
sions. We direct the interested reader to [21, 22, 23, 24, 25, 26] (particularly [24]) for
a complete discussion of these issues and their resolution.

4. Numerical results: Plane-wave scattering. In this section we present
the results of numerical experiments conducted with the TFE method of section 2.3
in a variety of physical configurations. At this point we abandon the convenient “di-
agnostic test” calculations described in section 3.1 and return to our original problem
of plane-wave scattering. Of course in this scenario there are no exact solutions for
nontrivial geometries, so we appeal to a high-order integral equation (IE) method
(Maue’s method; see [13, 9]) to provide an “exact solution.” We first investigate the
performance of the TFE method as the frequency of radiation is increased from low
to moderate values, and then study its behavior as the size and smoothness of the
obstacle perturbation are changed from small to large and from smooth to rough.

4.1. Padé approximation. Before we describe our plane-wave numerical ex-
periments we comment on one final enhancement to our algorithm: analytic contin-
uation via Padé approximation. Recall that the TFE method computes a spectral
approximation to the current, ν, of the form (cf. (3.6))

νNNθ
(θ, ε) =

N∑
n=0

Nθ/2−1∑
p=−Nθ/2

an,pe
ipθεn =

Nθ/2−1∑
p=−Nθ/2

SN
p (ε)eipθ
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Table 4.1

Summary of numerical experiments.

Experiment number Profile type k ε q NIE

1 Sinusoidal 1 0.1 4 128
2 Sinusoidal 10 0.1 4 256
3 Sinusoidal 50 0.1 4 1024
4 Sinusoidal 1 0.3 4 256
5 Sinusoidal 1 0.1 16 1024
6 Star-like 1 N.A. N.A. N.A.
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Fig. 4.1. Shape of smooth (cf. (4.2) with ε = 0.1 and q = 4) and star-like scatterers.

for ε small, where SN
p (ε) is the truncated Taylor series of the pth Fourier coefficient

Sp(ε). The analytic continuation results of [23, 20] indicate that the functions Sp(ε)
can be extended beyond the disk of convergence of their power series about ε = 0; a
numerical technique for this analytic continuation is the Padé approximation method
[1]. We recall that the [P,Q] Padé approximant to a series

S(ε) =

∞∑
n=0

anε
n(4.1)

is the unique rational function of order P over Q, which coincides with S(ε) to order
P +Q+1. In the experiments below we use diagonal or paradiagonal Padé sequences.
It is well known that Padé approximants have some remarkable properties of approx-
imation of (a large subclass of) analytic functions from their Taylor series (4.1) for
points far outside their radii of convergence; see, e.g., [1]. They can be calculated by
first solving a set of linear equations for the denominator coefficients, and then using
simple formulas to compute the numerator coefficients.

4.2. Numerical experiments. We now report upon six numerical experiments
of plane-wave scattering, which are summarized in Table 4.1. In the first five the
obstacle shape is quite smooth, in fact a sinusoidal perturbation of a circle, described
by the equation

r = a + εfq(θ), fq(θ) = cos(qθ);(4.2)

see Figure 4.1(a) (q = 4, ε = 0.1, and a = 1). The final experiment features a very
rough, Lipschitz, scatterer of “star-like” shape; see Figure 4.1(b).
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Fig. 4.2. Shape of large (cf. (4.2) with ε = 0.3 and q = 4), oscillatory ((4.2) with ε = 0.1 and
q = 16), and star-like scatterers.

In the first three experiments we study the performance of the TFE method
as the plane-wave frequency is increased from low to moderate. For this we use a
small/smooth obstacle (ε = 0.1 and q = 4 in (4.2); see Figure 4.1(a) with k = 1, 10,
and 50. In the final three experiments we gauge the capabilities of the TFE algorithm
as the regularity of the obstacle is changed. We consider large/smooth (ε = 0.3 and
q = 4), small/oscillatory (ε = 0.1 and q = 16), and Lipschitz (star-like) profiles for
these experiments; see Figure 4.2.

In the final column of Table 4.1 we report the minimum number of discretization
points necessary to guarantee a “well-resolved” IE approximation for each experiment.
To measure the accuracy of the IE solution we compute the relative error in a “factor
of two” refinement of an IE computation:

EN
rel =

∣∣∣νIEN − νIEN/2

∣∣∣∣∣νIEN ∣∣ ,
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Fig. 4.3. L∞-norm of difference between highly resolved IE approximation of current at the
surface of a scatterer and TFE approximation, versus perturbation order N . The shape of the
scatterer is specified by (4.2) (ε = 0.1 and q = 4), and the wavenumbers of the incident radiation
are (α, β) = (1, 0), (10, 0), and (50, 0), in subfigures (a), (b), and (c), respectively.

where νIEN represents an IE approximation to the surface current with N discretization
points. The NIE listed in the final column of Table 4.1 is the smallest N such that

EN
rel < 10−10.

4.2.1. Variation of frequency. The results of our first set of experiments (as
the frequency is varied from low to moderate) are summarized in Figure 4.3. The
physical and numerical parameters for each experiment are collected in Table 4.2;
note that, for uniformity, in the first experiment we actually use more discretization
points than necessary in the IE solver. In each of these experiments we note that the
TFE algorithm makes steady improvement (as compared to the IE exact solution) as
the perturbation order is refined. In the cases k = 1, 10, and 50, accuracies of 10−10,
10−9, and 10−4, respectively, are realized by N = 16; furthermore it is necessary to
utilize these higher perturbation orders in order to realize this accuracy. In addition,
a quite modest number of degrees of freedom are all that is required to properly
resolve each configuration. Based upon the findings of [34] and the numerical results
of section 2.4, we anticipate no problems simulating situations with k very large, as
our new algorithm is numerically well-conditioned as all discretization parameters
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Table 4.2

Summary of physical and numerical parameters: variation of frequency experiments (q = 4 and
ε = 0.1).

Experiment number k a b Nθ Nr N N(IE)
1 1 1 2 96 24 16 256
2 10 1 2 128 32 16 256
3 50 1 1.2 320 50 16 1024
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Fig. 4.4. (a) and (b) L∞-norm of difference between highly resolved IE approximation of
current at the surface of a scatterer and TFE approximation, versus perturbation order N . The
wavenumber of the incident radiation is (α, β) = (1, 0). The shapes of the scatterers are specified
by (4.2) ((a): ε = 0.3 and q = 4; (b): ε = 0.1 and q = 16). (c) Cauchy convergence of TFE
approximation measured in the L∞-norm as a function of perturbation order N . The wavenumber
of the incident radiation is (α, β) = (1, 0). The shape of the scatterer is depicted in Figure 4.1(b).

(Nθ, Nr, and N) are refined. We note, however, that our method is not “specially
designed” for the high-frequency regime in the manner of, e.g., [2].

4.2.2. Variation of shape. In the second set of experiments we recall that the
frequency is fixed to be quite small (k = 1) while the profile shape is varied. For depic-
tions of the scatterers for Experiments 4 (large/smooth profile), 5 (small/oscillatory
profile), and 6 (Lipschitz profile) please see Figures 4.2(a), 4.2(b), and 4.2(c), respec-
tively.

The results of these experiments are summarized in Figure 4.4. We note that for



A STABLE HIGH-ORDER METHOD FOR 2D SCATTERING 1417

Table 4.3

Summary of physical and numerical parameters: variation of shape experiments (k = 1).

Experiment number ε q a b Nθ Nr N N(IE)

4 0.3 4 1 2 256 48 16 256
5 0.1 16 1 2 256 48 16 1024
6 N.A. N.A. 1 2 256 48 16 N.A.

the final simulation a different, “Cauchy,” measure of convergence was utilized due
to the Lipschitz character of the star-like profile. In this case the IE solver cannot be
used without nontrivial modification, so in order to avoid this issue (essentially that
of quickly and accurately resolving quadratures involving singular kernels), we focus
upon the TFE algorithm and measure, again in L∞, the difference between the TFE
approximation at orders 0 ≤ n < N and the “best resolution” TFE approximation at
order N . The physical and numerical parameters for these experiments are collected
in Table 4.3.

Once again we point out the consistent improvement which the TFE algorithm
makes for all profiles at every perturbation order. For each profile we realize errors
at least on the order of 10−2 by N = 16. This convergence is quite independent
of the obstacle shape, although, of course, the rate of convergence does deteriorate
with increasing roughness of the profile. Notice that this remains true even in the
case of the Lipschitz profile, which we simply approximate by a truncated Fourier
series. Again, each of these simulations could be further refined in a numerically
stable fashion by increasing any of the algorithm parameters, Nθ, Nr, or N .

5. Conclusion and future directions. We have developed and implemented
a stable, high-order method for numerical simulation of two-dimensional bounded-
obstacle scattering. The method consists of five steps: (a) The problem (naturally
posed on an unbounded domain) is reduced to one stated on a bounded domain via
the Dirichlet–Neumann operator; (b) as suggested by previous theoretical work, this
bounded domain is then mapped to an annulus; (c) a boundary perturbation ex-
pansion is then performed on the transformed equations, leading to a sequence of
nonhomogeneous, constant-coefficient Helmholtz equations on the annulus; (d) an ef-
ficient and stable spectral-Galerkin method is developed for solving this sequence of
Helmholtz problems; (e) Padé approximation is used to enhance and extend the sum-
mation of the power series representations we have formed. The resulting algorithm
is shown to be very efficient and capable of handling small to moderate frequencies
and scatterers with quite complex shapes.

The preliminary success of this TFE algorithm, of course, raises several natural
questions which we consider as future directions for our research. It is clear that the ba-
sic ingredients of our numerical method can be extended to not only three-dimensional,
bounded-obstacle configurations but also high-frequency problems in two and three
dimensions. However, what is unclear is how this algorithm will compare with the
popular finite element and integral equation methodologies already present in the lit-
erature. The highly accurate and efficient TFE algorithm together with its essentially
exact treatment of far-field boundary conditions should make it a competitive choice
compared with finite element approaches, particularly at moderate to high frequen-
cies. On the other hand, its ability to seamlessly address problems with distributed
sources will make this algorithm a compelling alternative to integral equation schemes.
It is our intention to conduct an exhaustive study along these lines in future work.
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