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Abstract
Two-dimensional materials such as graphene have
become crucial components of most state-of-the-art
plasmonic devices. The possibility of not only generat-
ing plasmons in the terahertz regime, but also tuning
them in real time via chemical doping or electrical gat-
ing make them compelling materials for engineers seek-
ing to build accurate sensors. Thus, the faithful model-
ing of the propagation of linear waves in a layered, peri-
odic structure with such materials at the interfaces is of
paramount importance in many branches of the applied
sciences. In this paper, we present a novel formulation of
the problem featuring surface currents tomodel the two-
dimensionalmaterialswhich not only is free of the artifi-
cial singularities present in related approaches, but also
can be used to deliver a proof of existence, uniqueness,
and analytic dependence of solutions. We advocate for a
surface integral formulation which is phrased in terms
of well-chosen Impedance–Impedance Operators that
are immune to the Dirichlet eigenvalues which plague
the Dirichlet–Neumann Operators that appear in clas-
sical formulations. With a High-Order Perturbation of
Surfaces approach we are able to give a straightforward
demonstration of this new well-posedness result which
only requires the verification that a finite collection of
explicitly stated transcendental expressions be nonzero.
We further illustrate the utility of this formulation by
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displaying results of a High-Order Spectral numerical
implementation which is flexible, rapid, and robust.

KEYWORDS
graphene, Helmholtz equation, High-Order perturbation of sur-
faces methods, Impedance–Impedance Operators, layered media,
two-dimensional materials

1 INTRODUCTION

Graphene is a single layer of carbon atoms first isolated experimentally in 20041,2 which resulted
in the awarding of the 2010 Nobel Prize in Physics to Geim3 and Novoselov.4 One of the notewor-
thy properties of graphene is that its plasmons are excited in the terahertz regime5 which is of
extraordinary interest to engineers. For a complete introduction to graphene including applica-
tions, modeling, and device design, we direct the interested reader to the survey article of Bludov
et al6 and the text of Goncalves and Peres.7
For this reason, the capability of simulating linear waves interacting with a periodic, layered

structure with graphene present at the interfaces is supremely important in many branches of
science and engineering. Examples, with or without graphene, are easy to find from acous-
tics (e.g., remote sensing,8 nondestructive testing,9 and underwater acoustics10), to electromag-
netics (e.g., extraordinary optical transmission,11 surface enhanced spectroscopy,12 and surface
plasmon resonance [SPR] biosensing13,14), to elastodynamics (e.g., full waveform inversion15,16
and hazard assessment17,18). In regards to the SPR phenomena which arises in many areas of
nanophotonics,19–21 due to the strength of the plasmonic effect (the field enhancement can be sev-
eral orders of magnitude) and its quite sensitive nature (the enhancement is typically only seen
over a range of tens of nanometers), such simulations must be very robust and of high accuracy
for applications of interest. For this reason, we have a particular interest in High-Order Spectral
(HOS) algorithms22–24 which deliver high fidelity solutions with great efficiency.

1.1 Overview of numerical approaches

Engineers and scientists have used all of the classical numerical algorithms for the simulation
of this problem (e.g., Finite Difference Methods,25,26 Finite Element Methods,27,28 Discontinu-
ous Galerkin Methods,29 Spectral Element Methods,30 and Spectral Methods22–24,31,32). However,
such volumetric approaches are greatly disadvantaged with an unnecessarily large number of
unknowns for the piecewise homogeneous problems we consider here.
Surface methods can be orders of magnitude faster when compared to the volumetric algo-

rithms discussed above primarily due to the greatly reduced number of degrees of freedom
required to resolve a computation, in addition to the exact enforcement of far-field boundary con-
ditions. Consequently, these approaches are an extremely important alternative and are becoming
more widely used by practitioners. Paramount among these interfacial methods are those based
upon Integral Equations (IEs),33–42 however, these face difficulties. Most have been addressed in
recent years through (i) the use of sophisticated quadrature rules to deliver HOS accuracy, (ii) the
design of preconditioned iterative solvers with suitable acceleration,43 and (iii) new strategies to
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NICHOLLS 529

avoid periodizing the Green function.33,36,39 Consequently, they are a compelling alternative (see,
e.g., the survey article of Ref. 42 for more details), however, two properties render them noncom-
petitive for the parameterized problems we consider as compared with the methods we advocate
here:

1. For geometries specified by the real value 𝜀 (here the deviation of the interface shapes from
flat), an IE solver will return the scattering returns only for a particular value of 𝜀. If this value
is changed then the solver must be run again.

2. The dense, nonsymmetric positive definite systems of linear equations whichmust be inverted
with each simulation.

As we advocated in Refs. 44, 45 a “High-Order Perturbation of Surfaces” (HOPS) approach can
effectively address these concerns. More specifically, we argued for the method of Field Expan-
sions (FE) which traces its roots to the low-order calculations of Rayleigh46 and Rice.47 The High-
Order version was first investigated by Bruno and Reitich48–51 and later enhanced and stabilized
by the author and Reitich52,53 with the method of Transformed Field Expansions (TFE). These
formulations maintain the advantageous properties of classical IE formulations (e.g., surface for-
mulation and exact enforcement of far-field conditions) while avoiding the shortcomings listed
above:

1. As HOPS methods are built upon expansions in the deformation parameter, 𝜀, once the Taylor
coefficients are known for the scattering quantities, it is simply a matter of summing these
(rather than beginning a new simulation) for any given choice of 𝜀 to recover the returns.

2. Due to the perturbative nature of the scheme, at every Taylor order one need only invert a sin-
gle, sparse operator corresponding to the flat-interface, order-zero approximation of the prob-
lem.

Regardless of the strategy employed, the precise formulation of the problem can strongly influ-
ence the performance of any of these numerical methods. Of particular note, when there are
internal layers present in the structure, a wise formulation will avoid the “Dirichlet eigenvalues”
present for such domains. In short, if Dirichlet traces are used as data at these interfaces, “arti-
ficial” singularities can be introduced which are not exhibited by the full, coupled system. More
specifically, many formulations utilize Dirichlet–Neumann Operators (DNOs) (e.g., Refs. 54–56)
where one can explicitly compute layer thicknesses where the underlying Dirichlet problem deliv-
ers a nonunique solution. One approach to eliminating this artificial source of singularity is to uti-
lize “Impedance–ImpedanceOperators” (IIOs) as advocated byGillman et al.54 On interior layers,
these IIOs can be constructed to be unitary so that not only are their eigenvalues nonzero, they
are restricted to the unit circle in the complex plane giving a very well-conditioned algorithm.57,58

1.2 New contributions

In this publication, we demonstrate how a formulation of this layered media problem as a linear
system of equations,𝐀𝐕 = 𝐑, cf. (15), in terms of well-chosen IIOs can deliver a rigorous demon-
stration of the existence, uniqueness, and analyticity of solutions with respect to the interface
deformation parameter 𝜀,𝐕 =

∑∞

𝑛=0
𝐕𝑛𝜀

𝑛. More specifically, our problem statement includes sur-
face currents at the layer interfaces which are often used tomodel the effects of graphene (or other
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530 NICHOLLS

two-dimensionalmaterials).59,60 By fortuitous combinations of the boundary conditions and iden-
tification of new unknowns (impedances), the problem is rewritten in terms of generic IIOs. This
contrasts with the most natural strategy of using Dirichlet and Neumann traces as unknowns in
the unmodified boundary conditions which, in turn, leads to the introduction of DNOs that may
cease to exist due toDirichlet eigenvalues of the governing equations.With a careful choice of par-
ticular IIOs, an existence, uniqueness, and analyticity theorem can be proven using the method
of TFE53,61: Unique solutions𝐕𝑛 exist and satisfy the estimate ‖𝐕𝑛‖𝑋𝑠 ≤ 𝐶𝐵𝑛, cf. Theorem 2. This
result is novel in the presence of surface currents and should not only be of interest to the com-
munity, but also points to a stable and highly accurate numerical algorithm. While the result can
be definitively stated for the case of two layers and one interface in the absence of a surface cur-
rent, for three or more layers, or in the presence of surface currents, a sequence of explicitly stated
transcendental equations must all be nonzero to deduce the theorem. While this state of affairs is
not ideal, the conditions are readily verified given a particular configuration.
Regarding the algorithm, we report on a numerical realization of our novel formulation com-

plete with implementation details and a validation by the Method of Manufactured Solutions
(MMS).62–64 With this code we not only revisited a well-known simulation from the literature,6
but also investigated a natural generalization which demonstrates compelling behavior which
should be of interest to engineers designing sensing devices.
The rest of the paper is organized as follows: In Section 2, we recall the governing equations

for scattering of linear waves by a laterally invariant periodic layered medium featuring surface
currents in either Transverse Electric (TE) or Transverse Magnetic (TM) polarization, with a par-
ticular discussion of transparent boundary conditions in Section 2.1. In Section 3, we describe a
nonoverlapping Domain Decomposition Method in terms of IIOs. The main existence, unique-
ness, and analyticity theorem is stated and proven in Section 4. The key to this proof is the analysis
of the linearized operator which is given in Section 5.We close with numerical results in Section 6.
We give implementation details in Section 6.1, describe validation by the MMS in Section 6.2, and
investigate graphene surface plasmons (GSPs) on single and double sheets of graphene in Sec-
tion 6.3.We also describe details of our formulation in an extensive set of appendices.We compute
the IIOs relevant to our considerations explicitly in the case of infinitesimal interface deforma-
tions in Appendix A (with particular reference to the upper, lower, and inner layers in Appendix
Sections A.1, A.2, and A.3, respectively). The analyticity of the IIOs with respect to boundary per-
turbations is stated in Appendix B, while the analogous results for the magnitude of the normal
vector and components of our linearized operator are given in Appendices C and D, respectively.
We close with consideration of the particular cases of 𝑀 = 1 interface (two layers) and 𝑀 = 2

interfaces (three layers) in Appendices E and F, respectively.

2 GOVERNING EQUATIONS

We now generalize the two-layer formulation of our problem found in Ref. 56 by considering a
multiply layered, 𝑦-invariant, medium with𝑀 interfaces at

𝑧 = 𝑎(𝑚) + 𝑔(𝑚)(𝑥), 1 ≤ 𝑚 ≤ 𝑀,

which are 𝑑-periodic

𝑔(𝑚)(𝑥 + 𝑑) = 𝑔(𝑚)(𝑥), 1 ≤ 𝑚 ≤ 𝑀,
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NICHOLLS 531

F IGURE 1 Five-layer problem
configuration with layer interfaces
𝑧 = 𝑎(𝑚) + 𝑔(𝑚)(𝑥), and artificial boundaries
𝑧 = 𝑎 and 𝑧 = 𝑎

separating (𝑀 + 1)-many layers which define the domains

𝑆(0) ∶= {(𝑥, 𝑧)|𝑧>𝑎(1) + 𝑔(1)(𝑥)},

𝑆(𝑚) ∶= {(𝑥, 𝑧)|𝑎(𝑚+1) + 𝑔(𝑚+1)(𝑥) < 𝑧 < 𝑎(𝑚) + 𝑔(𝑚)(𝑥)}, 1 ≤ 𝑚 ≤ 𝑀 − 1,

𝑆(𝑀) ∶= {(𝑥, 𝑧)|𝑧<𝑎(𝑀) + 𝑔(𝑀)(𝑥)},

with (upward pointing) normals

𝑁(𝑚) ∶= (−𝜕𝑥𝑔
(𝑚)(𝑥), 1)𝑇, 1 ≤ 𝑚 ≤ 𝑀;

see Figure 1.
The (𝑀 + 1) domains are filled with homogeneous materials of permittivities 𝜖(𝑚) (0 ≤ 𝑚 ≤

𝑀) where the uppermost layer must be a dielectric so that 𝜖(0) ∈ 𝐑+. We assume that polarized
monochromatic plane-wave radiation of incidence angle 𝜃, frequency 𝜔, and wavenumber 𝑘(0) =√

𝜖(0)𝑘0, 𝑘0 ∶= 𝜔∕𝑐0 (𝑐0 is the speed of light), illuminates the structure from above

𝑣inc = e𝑖(−𝜔𝑡+𝛼𝑥−𝛾(0)𝑧), 𝛼 = 𝑘(0) sin(𝜃), 𝛾(0) = 𝑘(0) cos(𝜃).

It is straightforward to generalize the governing equations derived in Ref. 56 to (𝑀 + 1) many
layers by choosing as unknowns, 𝑣(𝑚)(𝑥, 𝑧), the laterally quasiperiodic

𝑣(𝑚)(𝑥 + 𝑑, 𝑧) = e𝑖𝛼𝑑𝑣(𝑚)(𝑥, 𝑧), 0 ≤ 𝑚 ≤ 𝑀, (1)

transverse components of either the electric or magnetic fields. These reduced fields satisfy the
Helmholtz equations

Δ𝑣(𝑚) + 𝜖(𝑚)𝑘2
0𝑣

(𝑚) = 0, in 𝑆(𝑚), 0 ≤ 𝑚 ≤ 𝑀, (2)
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532 NICHOLLS

where 𝑘(𝑚) =
√

𝜖(𝑚)𝑘0, which are coupled through the Dirichlet and Neumann boundary condi-
tions at 𝑧 = 𝑎(𝑚) + 𝑔(𝑚)(𝑥), 1 ≤ 𝑚 ≤ 𝑀,

𝑣(𝑚−1) − 𝑣(𝑚) +
|||𝑁(𝑚)|||−1

𝑝(𝑚)𝜏(𝑚)𝜕𝑁(𝑚)𝑣(𝑚) = 𝜉(𝑚), (3a)

𝜏(𝑚−1)𝜕𝑁(𝑚)𝑣(𝑚−1) − 𝜏(𝑚)𝜕𝑁(𝑚)𝑣(𝑚) +
|||𝑁(𝑚)|||𝑠(𝑚)𝑣(𝑚) = 𝜏(𝑚−1)𝜈(𝑚), (3b)

where for TE or 𝑠 and TM or 𝑝 polarizations,

𝜏(𝑚) =

{
1, TE,
1∕𝜖𝑚, TM,

𝑠(𝑚) =

{
𝑖𝑘0𝜎̂

(𝑚), TE,
0, TM,

𝑝(𝑚) =

{
0, TE,
𝜎̂(𝑚)∕(𝑖𝑘0), TM,

and
𝜉(1)(𝑥) ∶= −𝑣inc(𝑥, 𝑎(1) + 𝑔(1)(𝑥))

= −e𝑖(𝛼𝑥−𝛾(0)(𝑎(1)+𝑔(1)(𝑥))), (3c)

𝜈(1)(𝑥) ∶= −
[
𝜕𝑁(1)𝑣inc(𝑥, 𝑧)

]
𝑧=𝑎(1)+𝑔(1)(𝑥)

=
(
𝑖𝛾(0) + (𝑖𝛼)𝜕𝑥𝑔

(1)
)
e𝑖(𝛼𝑥−𝛾(0)(𝑎(1)+𝑔(1)(𝑥))). (3d)

In our model, we will enforce that 𝜉(𝑚) ≡ 𝜈(𝑚) ≡ 0 (2 ≤ 𝑚 ≤ 𝑀), however, as we see, it is no
impediment to the method if we set these to any nonzero function. We point out the nondi-
mensional surface currents 𝜎̂(𝑚) which will be used to model the presence of a two-dimensional
material.59,60

Remark 1. The correct modeling of the electromagnetic properties of graphene is still an open
question . Many choices can reasonably be made for the surface current to accurately emulate the
presence of a graphene sheet, and for this we choose a Drude model6,7 of the form

𝜎̂𝐷 =
𝜎𝐷

𝜖0𝑐0
, 𝜎𝐷 = 𝜎0

(
4𝐸𝐹

𝜋

)
1

ℏ𝛾 − 𝑖ℏ𝜔
, 𝜎0 =

𝜋𝑒2

2ℎ
, (4)

where 𝑒 < 0 is the electron charge, 𝛾 is the relaxation rate, and 𝐸𝐹 > 0 is the (local) Fermi level
position. For instance, in Ref. 6 the authors chose values 𝐸𝐹 = 0.45 eV and Γ ∶= ℏ𝛾 = 2.6meV.

2.1 Transparent boundary conditions

Regarding far-field boundary conditions, we choose the upward/downward propagating wave
conditions (UPC/DPC).65 For this, we introduce the planes

𝑧 = 𝑎 > 𝑎(1) +
|||𝑔(1)|||𝐿∞

, 𝑧 = 𝑎 < 𝑎(𝑀) −
|||𝑔(𝑀)|||𝐿∞

,
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NICHOLLS 533

define the domains

𝑆 ∶= {𝑧 > 𝑎}, 𝑆 ∶= {𝑧 < 𝑎},

and note that we can find unique quasiperiodic solutions of the relevant Helmholtz problems
on each of these domains given generic Dirichlet data, say 𝜙(𝑥) and 𝜇(𝑥). For this, we use the
Rayleigh expansions46 which state that

𝑣(0)(𝑥, 𝑧) =

∞∑
𝑝=−∞

𝜙̂𝑝e𝑖𝛼𝑝𝑥+𝑖𝛾
(0)
𝑝 (𝑧−𝑎), in 𝑆,

𝑣(𝑀)(𝑥, 𝑧) =

∞∑
𝑝=−∞

𝜇̂𝑝e𝑖𝛼𝑝𝑥−𝑖𝛾
(𝑀)
𝑝 (𝑧−𝑎), in 𝑆,

where

𝜙̂𝑝 =
1

𝑑 ∫
𝑑

0

𝜙(𝑥)e−𝑖𝛼𝑝𝑥 𝑑𝑥

for 𝑝 ∈ 𝐙,𝑚 ∈ {0,… ,𝑀},

𝛼𝑝 ∶= 𝛼 +

(
2𝜋

𝑑

)
𝑝, 𝛾

(𝑚)
𝑝 ∶=

√
𝜖(𝑚)𝑘2

0 − 𝛼2
𝑝, Im

{
𝛾
(𝑚)
𝑝

} ≥ 0.

We note that if 𝜖(𝑚) ∈ 𝐑+ then

𝛾
(𝑚)
𝑝 ∶=

⎧⎪⎨⎪⎩
√

𝜖(𝑚)𝑘2
0 − 𝛼2

𝑝, 𝑝 ∈  (𝑚),

𝑖
√

𝛼2
𝑝 − 𝜖(𝑚)𝑘2

0, 𝑝 ∉  (𝑚),

and the set of propagating modes is

 (𝑚) ∶=
{
𝑝 ∈ 𝐙 | 𝛼2

𝑝 ≤ 𝜖(𝑚)𝑘2
0

}
.

We point out that

𝑣(0)(𝑥, 𝑎) =

∞∑
𝑝=−∞

𝜙̂𝑝e𝑖𝛼𝑝𝑥 = 𝜙(𝑥),

𝑣(𝑀)(𝑥, 𝑎) =

∞∑
𝑝=−∞

𝜇̂𝑝e𝑖𝛼𝑝𝑥 = 𝜇(𝑥).
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534 NICHOLLS

With these formulas, we can compute the outward-pointingNeumann data at the artificial bound-
aries

−𝜕𝑧𝑣
(0)(𝑥, 𝑎) =

∞∑
𝑝=−∞

−(𝑖𝛾
(0)
𝑝 )𝜙̂𝑝e𝑖𝛼𝑝𝑥 =∶ 𝑇(0)[𝜙(𝑥)],

𝜕𝑧𝑣
(𝑀)(𝑥, 𝑎) =

∞∑
𝑝=−∞

(−𝑖𝛾
(𝑀)
𝑝 )𝜇̂𝑝e𝑖𝛼𝑝𝑥 =∶ 𝑇(𝑀)[𝜇(𝑥)],

which define the order-one Fourier multipliers, {𝑇(0), 𝑇(𝑀)}.
With these operators, it is not difficult to see that quasiperiodic, upward propagating solutions

to the Helmholtz equation

Δ𝑣(0) + 𝜖(0)𝑘2
0𝑣

(0) = 0, 𝑧 > 𝑎(1) + 𝑔(1)(𝑥),

equivalently solve

Δ𝑣(0) + 𝜖(0)𝑘2
0𝑣

(0) = 0, 𝑎(1) + 𝑔(1)(𝑥) < 𝑧 < 𝑎, (5a)

𝜕𝑧𝑣
(0) + 𝑇(0)[𝑣(0)] = 0, 𝑧 = 𝑎. (5b)

Similarly, one can show that quasiperiodic, downward propagating solutions to the Helmholtz
equation

Δ𝑣(𝑀) + 𝜖(𝑀)𝑘2
0𝑣

(𝑀) = 0, 𝑧 < 𝑎(𝑀) + 𝑔(𝑀)(𝑥),

equivalently solve

Δ𝑣(𝑀) + 𝜖(𝑀)𝑘2
0𝑣

(𝑀) = 0, 𝑎 < 𝑧 < 𝑎(𝑀) + 𝑔(𝑀)(𝑥), (6a)

𝜕𝑧𝑣
(𝑀) − 𝑇(𝑀)[𝑣(𝑀)] = 0, 𝑧 = 𝑎. (6b)

Remark 2. We point out that the conditions (5b) and (6b) specify solutions which satisfy the UPC
and DPC of definition 2.6 in Arens.65 It is these two conditions which guarantee the uniqueness
of solutions on the unbounded domains {𝑧 > 𝑎} and {𝑧 < 𝑎}.

3 A NONOVERLAPPING DOMAIN DECOMPOSITIONMETHOD

There are many equivalent formulations of our governing equations, (1), (2), (3), (5b), and (6b),
but several classical approaches contain unnecessary flaws which we would prefer to avoid. In
particular, when utilizing a nonoverlapping Domain Decomposition Method, as we choose to do
here, onemust be careful to select interface unknownswhich do not induce needless singularities.
Principally what we have in mind are the “Dirichlet eigenvalues” which arise when Dirichlet
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NICHOLLS 535

data are selected as a boundary unknown on an interior layer. To fix this, we follow the lead of
Després58,66–68 by pursuing IIOs which can be constructed to exist at all values of 𝑘(𝑚).
To begin, we consider the order-𝑟 Fourier multiplier operators, {𝑌(𝑚), 𝑍(𝑚)},

𝑌(𝑚)[𝜙] ∶=

∞∑
𝑝=−∞

𝑌
(𝑚)
𝑝 𝜙̂𝑝e𝑖𝛼𝑝𝑥, 𝑍(𝑚)[𝜙] ∶=

∞∑
𝑝=−∞

𝑍
(𝑚)
𝑝 𝜙̂𝑝e𝑖𝛼𝑝𝑥,

|||𝑌(𝑚)
𝑝

|||, |||𝑍(𝑚)
𝑝

||| ∼ (
1 + |𝑝|2)𝑟∕2

, 𝑟 ∈ {0, 1},

acting on the generic function 𝜙(𝑥) with (generalized) Fourier coefficients 𝜙̂𝑝 defined in Sec-
tion 2.1, and rearrange the boundary conditions (3) by the matrices

𝑃(𝑚) ∶=

(
−𝑌(𝑚) −𝐼

𝑍(𝑚) −𝐼

)
.

These we require to be invertible (so that all steps can be reversed) which can be accomplished by
insisting that (𝑌(𝑚) + 𝑍(𝑚)) be invertible.
Applying the operators 𝑃(𝑚) to (3) and changing to the new set of (impedance) unknowns

𝑈(𝑚),𝓁(𝑥) ∶= −𝜏(𝑚)𝜕𝑁(𝑚+1)𝑣(𝑚) − 𝑌(𝑚+1)[𝑣(𝑚)], 0 ≤ 𝑚 ≤ 𝑀 − 1,

𝑈(𝑚),𝑢(𝑥) ∶= 𝜏(𝑚)𝜕𝑁(𝑚)𝑣(𝑚) − 𝑍(𝑚)[𝑣(𝑚)], 1 ≤ 𝑚 ≤ 𝑀,

𝑈̃(𝑚),𝓁(𝑥) ∶= −𝜏(𝑚)𝜕𝑁(𝑚+1)𝑣(𝑚) + 𝑍(𝑚+1)[𝑣(𝑚)], 0 ≤ 𝑚 ≤ 𝑀 − 1,

𝑈̃(𝑚),𝑢(𝑥) ∶= 𝜏(𝑚)𝜕𝑁(𝑚)𝑣(𝑚) + 𝑌(𝑚)[𝑣(𝑚)], 1 ≤ 𝑚 ≤ 𝑀,

the equations, (3), become

𝑈(𝑚−1),𝓁 + 𝑈̃(𝑚),𝑢 + 𝐹(𝑚)𝑈(𝑚),𝑢 + 𝐹̃(𝑚)𝑈̃(𝑚),𝑢 = 𝜁(𝑚), 1 ≤ 𝑚 ≤ 𝑀, (7a)

𝑈̃(𝑚−1),𝓁 + 𝑈(𝑚),𝑢 + 𝐺(𝑚)𝑈(𝑚),𝑢 + 𝐺̃(𝑚)𝑈̃(𝑚),𝑢 = 𝜓(𝑚), 1 ≤ 𝑚 ≤ 𝑀. (7b)

In these

𝜁(𝑚)(𝑥) ∶= −𝜏(𝑚−1)𝜈(𝑚) − 𝑌(𝑚)[𝜉(𝑚)], 1 ≤ 𝑚 ≤ 𝑀,

𝜓(𝑚)(𝑥) ∶= −𝜏(𝑚−1)𝜈(𝑚) + 𝑍(𝑚)[𝜉(𝑚)], 1 ≤ 𝑚 ≤ 𝑀,

and

𝐹(𝑚) ∶= −𝑌(𝑚)

[
𝑝(𝑚)|||𝑁(𝑚)|||−1

𝑌(𝑚) + 𝑠(𝑚)|||𝑁(𝑚)|||𝐼
]
(𝑌(𝑚) + 𝑍(𝑚))−1, (8a)

𝐹̃(𝑚) ∶= −𝑌(𝑚)

[
𝑝(𝑚)|||𝑁(𝑚)|||−1

𝑍(𝑚) − 𝑠(𝑚)|||𝑁(𝑚)|||𝐼
]
(𝑌(𝑚) + 𝑍(𝑚))−1, (8b)
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536 NICHOLLS

𝐺(𝑚) ∶= 𝑍(𝑚)

[
𝑝(𝑚)|||𝑁(𝑚)|||−1

𝑌(𝑚) + 𝑠(𝑚)|||𝑁(𝑚)|||𝐼
]
(𝑌(𝑚) + 𝑍(𝑚))−1, (8c)

𝐺̃(𝑚) ∶= 𝑍(𝑚)

[
𝑝(𝑚)|||𝑁(𝑚)|||−1

𝑍(𝑚) − 𝑠(𝑚)|||𝑁(𝑚)|||𝐼
]
(𝑌(𝑚) + 𝑍(𝑚))−1. (8d)

We can simplify these equations with the introduction of suitable surface integral operators, in
this case IIOs.

Definition 1. Given an integer 𝑠 ≥ 0 and any 𝛿 > 0, if 𝑔(1) ∈ 𝐶𝑠+3∕2+𝛿 then, for order-𝑟 (𝑟 = 0, 1)
Fourier multipliers {𝑌(1), 𝑍(1)}, if a unique quasiperiodic solution exists of

Δ𝑣(0) + 𝜖(0)𝑘2
0𝑣

(0) = 0, 𝑎(1) + 𝑔(1) < 𝑧 < 𝑎, (9a)

𝜕𝑧𝑣
(0) + 𝑇(0)[𝑣(0)] = 0, 𝑧 = 𝑎, (9b)

− 𝜏(0)𝜕𝑁(1)𝑣(0) − 𝑌(1)𝑣(0) = 𝑈(0),𝓁, 𝑧 = 𝑎(1) + 𝑔(1), (9c)

we define the Upper IIO

𝑄[𝑈(0),𝓁] = 𝑄(𝑎, 𝑎(1), 𝑔(1))[𝑈(0),𝓁] ∶= 𝑈̃(0),𝓁 = −𝜏(0)𝜕𝑁(1)𝑣(0) + 𝑍(1)𝑣(0). (10)

Definition 2. Given an integer 𝑠 ≥ 0 and any 𝛿 > 0, if 𝑔(𝑀) ∈ 𝐶𝑠+3∕2+𝛿 then, for order-𝑟 (𝑟 = 0, 1)
Fourier multipliers {𝑌(𝑀), 𝑍(𝑀)}, if a unique quasiperiodic solution exists of

Δ𝑣(𝑀) + 𝜖(𝑀)𝑘2
0𝑣

(𝑀) = 0, 𝑎 < 𝑧 < 𝑎(𝑀) + 𝑔(𝑀), (11a)

𝜏(𝑀)𝜕𝑁(𝑀)𝑣(𝑀) − 𝑍(𝑀)𝑣(𝑀) = 𝑈(𝑀),𝑢, 𝑧 = 𝑎(𝑀) + 𝑔(𝑀), (11b)

𝜕𝑧𝑣
(𝑀) − 𝑇(𝑀)[𝑣(𝑀)] = 0, 𝑧 = 𝑎, (11c)

we define the Lower IIO

𝑆[𝑈(𝑀),𝑢] = 𝑆(𝑎, 𝑎(𝑀), 𝑔(𝑀))[𝑈(𝑀),𝑢] ∶= 𝑈̃(𝑀),𝑢 = 𝜏(𝑀)𝜕𝑁(𝑀)𝑣(𝑀) + 𝑌(𝑀)𝑣(𝑀). (12)

Definition 3. Given an integer 𝑠 ≥ 0 and any 𝛿 > 0, if 𝑔(𝑚), 𝑔(𝑚+1) ∈ 𝐶𝑠+3∕2+𝛿 then, for order-𝑟
(𝑟 = 0, 1) Fourier multipliers {𝑌(𝑚), 𝑌(𝑚+1), 𝑍(𝑚), 𝑍(𝑚+1)}, if a unique quasiperiodic solution exists
of

Δ𝑣(𝑚) + 𝜖(𝑚)𝑘2
0𝑣

(𝑚) = 0, 𝑎(𝑚+1) + 𝑔(𝑚+1) < 𝑧 < 𝑎(𝑚) + 𝑔(𝑚), (13a)
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NICHOLLS 537

𝜏(𝑚)𝜕𝑁(𝑚)𝑣(𝑚) − 𝑍(𝑚)𝑣(𝑚) = 𝑈(𝑚),𝑢, 𝑧 = 𝑎(𝑚) + 𝑔(𝑚), (13b)

− 𝜏(𝑚)𝜕𝑁(𝑚+1)𝑣(𝑚) − 𝑌(𝑚+1)𝑣(𝑚) = 𝑈(𝑚),𝓁, 𝑧 = 𝑎(𝑚+1) + 𝑔(𝑚+1), (13c)

we define an Inner IIO

𝑅(𝑚)

[(
𝑈(𝑚),𝑢

𝑈(𝑚),𝓁

)]
= 𝑅(𝑚)(𝑎(𝑚), 𝑔(𝑚), 𝑎(𝑚+1), 𝑔(𝑚+1))

[(
𝑈(𝑚),𝑢

𝑈(𝑚),𝓁

)]
=

(
𝑅(𝑚),𝑢𝑢 𝑅(𝑚),𝑢𝓁

𝑅(𝑚),𝓁𝑢 𝑅(𝑚),𝓁𝓁

)[(
𝑈(𝑚),𝑢

𝑈(𝑚),𝓁

)]
∶=

(
𝑈̃(𝑚),𝑢

𝑈̃(𝑚),𝓁

)
=

(
𝜏(𝑚)𝜕𝑁(𝑚)𝑣(𝑚) + 𝑌(𝑚)𝑣(𝑚)

−𝜏(𝑚)𝜕𝑁(𝑚+1)𝑣(𝑚) + 𝑍(𝑚+1)𝑣(𝑚)

)
. (14)

Remark 3. For use in Section 5 we describe, in Appendix A, formulas for these IIOs when the
grating interfaces are infinitesimalwhichwemodel by quasiperiodic solutions in the case 𝑔(𝑚) ≡ 0.
Furthermore, for use in Section 4 we state analyticity properties of these IIOs in Appendix B.

Remark 4. As far as we are aware, it is still an open problem to determinewhich particular choices
of operators {𝑌(𝑚), 𝑍(𝑚)} deliver unique solutions. However, it is known that if

Im

{
∫

𝑑

0

(
𝑌(𝑚)𝜑

)
𝜑 𝑑𝑥

}
> 0, Im

{
∫

𝑑

0

(
𝑍(𝑚)𝜑

)
𝜑 𝑑𝑥

}
> 0,

then (9), (11), and (13) are well-posed (see, e.g.,58). However, we will provide more precise and
readily verified, though more complicated, characterizations in (A1), (A3), and (A7).

In terms of this notation the boundary conditions, (7), become

𝑈(𝑚−1),𝓁 + 𝐹(𝑚)𝑈(𝑚),𝑢 + (𝐼 + 𝐹̃(𝑚)){𝑅(𝑚),𝑢𝑢[𝑈(𝑚),𝑢] + 𝑅(𝑚),𝑢𝓁[𝑈(𝑚),𝓁]}

= 𝜁(𝑚), 1 ≤ 𝑚 ≤ 𝑀 − 1,

𝑈(𝑀−1),𝓁 + 𝐹(𝑀)𝑈(𝑀),𝑢 + (𝐼 + 𝐹̃(𝑀))𝑆[𝑈(𝑀),𝑢] = 𝜁(𝑀),

and

𝑄[𝑈(0),𝓁] + (𝐼 + 𝐺(1))𝑈(1),𝑢 + 𝐺̃(1)(𝑅(1),𝑢𝑢[𝑈(1),𝑢] + 𝑅(1),𝑢𝓁[𝑈(1),𝓁]) = 𝜓(1),

𝑅(𝑚−1),𝓁𝑢[𝑈(𝑚−1),𝑢] + 𝑅(𝑚−1),𝓁𝓁[𝑈(𝑚−1),𝓁] + (𝐼 + 𝐺(𝑚))𝑈(𝑚),𝑢

+ 𝐺̃(𝑚)(𝑅(𝑚),𝑢𝑢[𝑈(𝑚),𝑢] + 𝑅(𝑚),𝑢𝓁[𝑈(𝑚),𝓁]) = 𝜓(𝑚), 2 ≤ 𝑚 ≤ 𝑀 − 1,

𝑅(𝑀−1),𝓁𝑢[𝑈(𝑀−1),𝑢] + 𝑅(𝑀−1),𝓁𝓁[𝑈(𝑀−1),𝓁] + (𝐼 + 𝐺(𝑀))𝑈(𝑀),𝑢

+ 𝐺̃(𝑀)𝑆[𝑈(𝑀),𝑢] = 𝜓(𝑀).
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538 NICHOLLS

We write this more compactly as

𝐀𝐕 = 𝐑, (15)

where

𝐕 ∶=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑈(0),𝓁

𝑈(1),𝑢

𝑈(1),𝓁

⋮

𝑈(𝑀−1),𝑢

𝑈(𝑀−1),𝓁

𝑈(𝑀),𝑢

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, 𝐑 ∶=

⎛⎜⎜⎜⎜⎜⎝

𝜁(1)

𝜓(1)

⋮

𝜁(𝑀)

𝜓(𝑀)

⎞⎟⎟⎟⎟⎟⎠
.

Also

𝐀 =

⎛⎜⎜⎜⎜⎜⎜⎝

𝐃(1) 𝐔(1) 0 0 ⋯ 0

𝐋(2) 𝐃(2) 𝐔(2) 0 ⋯ 0

0 ⋱ ⋱ ⋱ 0 0

0 0 ⋱ ⋱ ⋱ 0

0 ⋯ 0 𝐋(𝑀−1) 𝐃(𝑀−1) 𝐔(𝑀−1)

0 ⋯ 0 0 𝐋(𝑀) 𝐃(𝑀)

⎞⎟⎟⎟⎟⎟⎟⎠
, (16a)

where

𝐔(𝑚) =

(
(𝐼 + 𝐹̃(𝑚))𝑅(𝑚),𝑢𝓁 0

𝐺̃(𝑚)𝑅(𝑚),𝑢𝓁 0

)
, 1 ≤ 𝑚 ≤ 𝑀 − 1, (16b)

and

𝐋(𝑚) =

(
0 0

0 𝑅(𝑚−1),𝓁𝑢

)
, 2 ≤ 𝑚 ≤ 𝑀, (16c)

and

𝐃(1) =

(
𝐼 𝐹(1) + (𝐼 + 𝐹̃(1))𝑅(1),𝑢𝑢

𝑄 (𝐼 + 𝐺(1)) + 𝐺̃(1)𝑅(1),𝑢𝑢

)
, (16d)

𝐃(𝑚) =

(
𝐼 𝐹(𝑚) + (𝐼 + 𝐹̃(𝑚))𝑅(𝑚),𝑢𝑢

𝑅(𝑚−1),𝓁𝓁 (𝐼 + 𝐺(𝑚)) + 𝐺̃(𝑚)𝑅(𝑚),𝑢𝑢

)
, 2 ≤ 𝑚 ≤ 𝑀 − 1, (16e)

𝐃(𝑀) =

(
𝐼 𝐹(𝑀) + (𝐼 + 𝐹̃(𝑀))𝑆

𝑅(𝑀−1),𝓁𝓁 (𝐼 + 𝐺(𝑀)) + 𝐺̃(𝑀)𝑆

)
. (16f)
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NICHOLLS 539

4 ANALYTICITY OF SOLUTIONS

We pursue the existence, uniqueness, and analyticity of solutions of our governing equations,
(15), by a perturbative approach. For this, we will demonstrate that the operator, 𝐀, and data, 𝐑,
are analytic with respect to interface deformations, 𝑔(𝑚), and use the regular perturbation theory
outlined in Ref. 55 to establish the analyticity of 𝐕. More precisely, if we assume that

𝑔(𝑚)(𝑥) = 𝜀𝑓(𝑚)(𝑥), 1 ≤ 𝑚 ≤ 𝑀,

for 𝜀 sufficiently small and 𝑓(𝑚) smooth enough (at least 𝐶3∕2+𝛿 for any 𝛿 > 0; see Theorem 2),
view (15) as

𝐀(𝜀)𝐕(𝜀) = 𝐑(𝜀) (17)

show that 𝐀 and 𝐑 are analytic with respect to 𝜀 so that

𝐀(𝜀) =

∞∑
𝑛=0

𝐀𝑛𝜀
𝑛, 𝐑(𝜀) =

∞∑
𝑛=0

𝐑𝑛𝜀
𝑛,

then we can seek a solution

𝐕 = 𝐕(𝜀) =

∞∑
𝑛=0

𝐕𝑛𝜀
𝑛, (18)

which will be shown to converge strongly in an appropriate function space. Upon insertion of (18)
into (17) we find, at order (𝜀𝑛),

𝐀0𝐕𝑛 = 𝐑𝑛 −

𝑛−1∑
𝓁=0

𝐀𝑛−𝓁𝐕𝓁,

or

𝐕𝑛 = 𝐀−1
0

[
𝐑𝑛 −

𝑛−1∑
𝓁=0

𝐀𝑛−𝓁𝐕𝓁

]
. (19)

For this, we take advantage of the fact that the IIOs introduced above depend analytically upon
𝜀 provided that the 𝑓(𝑚) are smooth enough. These assertions are made more concrete in the
theorems presented in Appendix B.
In regard to Equation (15) it is not difficult to show that

𝐑𝑛 =

⎛⎜⎜⎜⎜⎜⎜⎝

𝜁
(1)
𝑛

𝜓
(1)
𝑛

⋮

𝜁
(𝑀)
𝑛

𝜓
(𝑀)
𝑛

⎞⎟⎟⎟⎟⎟⎟⎠
, (20)
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540 NICHOLLS

where

𝜁
(1)
𝑛 (𝑥) = −𝜏(0)𝜈

(1)
𝑛 − 𝑌(1)

[
𝜉
(1)
𝑛

]
,

𝜓
(1)
𝑛 (𝑥) = −𝜏(0)𝜈

(1)
𝑛 + 𝑍(1)

[
𝜉
(1)
𝑛

]
,

and 𝜁(𝑚) ≡ 𝜓(𝑚) ≡ 0, 2 ≤ 𝑚 ≤ 𝑀. In these

𝜉
(1)
𝑛 (𝑥) = −𝑒𝑖(𝛼𝑥−𝛾(0)𝑎(1))(−𝑖𝛾(0))𝑛

(
𝑓(1)(𝑥)

)𝑛
𝑛!

,

𝜈
(1)
𝑛 (𝑥) = (𝑖𝛾(0))𝜉

(1)
𝑛 (𝑥) + (𝑖𝛼)(𝜕𝑥𝑓)𝜉

(1)
𝑛−1,

and 𝜉
(1)
−1 ≡ 0. In addition

𝐀𝑛 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝐃
(1)
𝑛 𝐔

(1)
𝑛 0 0 ⋯ 0

𝐋
(2)
𝑛 𝐃

(2)
𝑛 𝐔

(2)
𝑛 0 ⋯ 0

0 ⋱ ⋱ ⋱ 0 0

0 0 ⋱ ⋱ ⋱ 0

0 ⋯ 0 𝐋
(𝑀−1)
𝑛 𝐃

(𝑀−1)
𝑛 𝐔

(𝑀−1)
𝑛

0 ⋯ 0 0 𝐋
(𝑀)
𝑛 𝐃

(𝑀)
𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (21)

where, for 𝑛 = 0,

𝐔
(𝑚)
0 =

((
𝐼 + 𝐹̃

(𝑚)
0

)
𝑅

(𝑚),𝑢𝓁
0 0

𝐺̃
(𝑚)
0 𝑅

(𝑚),𝑢𝓁
0 0

)
, 1 ≤ 𝑚 ≤ 𝑀 − 1, (22a)

𝐋
(𝑚)
0 =

(
0 0

0 𝑅
(𝑚−1),𝓁𝑢
0

)
, 2 ≤ 𝑚 ≤ 𝑀, (22b)

𝐃
(1)
0 =

⎛⎜⎜⎝
𝐼 𝐹

(1)
0 +

(
𝐼 + 𝐹̃

(1)
0

)
𝑅

(1),𝑢𝑢
0

𝑄0

(
𝐼 + 𝐺

(1)
0

)
+ 𝐺̃

(1)
0 𝑅

(1),𝑢𝑢
0

⎞⎟⎟⎠ , (22c)

𝐃
(𝑚)
0 =

⎛⎜⎜⎝
𝐼 𝐹

(𝑚)
0 +

(
𝐼 + 𝐹̃

(𝑚)
0

)
𝑅

(𝑚),𝑢𝑢
0

𝑅
(𝑚−1),𝓁𝓁
0

(
𝐼 + 𝐺

(𝑚)
0

)
+ 𝐺̃

(𝑚)
0 𝑅

(𝑚),𝑢𝑢
0

⎞⎟⎟⎠ , 2 ≤ 𝑚 ≤ 𝑀 − 1, (22d)

𝐃
(𝑀)
0 =

⎛⎜⎜⎝
𝐼 𝐹

(𝑀)
0 +

(
𝐼 + 𝐹̃

(𝑀)
0

)
𝑆0

𝑅
(𝑀−1),𝓁𝓁
0

(
𝐼 + 𝐺

(𝑀)
0

)
+ 𝐺̃

(𝑀)
0 𝑆0

⎞⎟⎟⎠ , (22e)
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NICHOLLS 541

and

𝐹
(𝑚)
0 ∶= −𝑌(𝑚)[𝑝(𝑚)𝑌(𝑚) + 𝑠(𝑚)](𝑌(𝑚) + 𝑍(𝑚))−1, (23a)

𝐹̃
(𝑚)
0 ∶= −𝑌(𝑚)[𝑝(𝑚)𝑍(𝑚) − 𝑠(𝑚)](𝑌(𝑚) + 𝑍(𝑚))−1, (23b)

𝐺
(𝑚)
0 ∶= 𝑍(𝑚)[𝑝(𝑚)𝑌(𝑚) + 𝑠(𝑚)](𝑌(𝑚) + 𝑍(𝑚))−1, (23c)

𝐺̃
(𝑚)
0 ∶= 𝑍(𝑚)[𝑝(𝑚)𝑍(𝑚) − 𝑠(𝑚)](𝑌(𝑚) + 𝑍(𝑚))−1. (23d)

Meanwhile, for 𝑛 > 0,

𝐔
(𝑚)
𝑛 =

(
𝑅

(𝑚),𝑢𝓁
𝑛 0

0 0

)
+

𝑛∑
𝑞=0

(
𝐹̃

(𝑚)
𝑛−𝑞𝑅

(𝑚),𝑢𝓁
𝑞 0

𝐺̃
(𝑚)
𝑛−𝑞𝑅

(𝑚),𝑢𝓁
𝑞 0

)
, 1 ≤ 𝑚 ≤ 𝑀 − 1, (24a)

𝐋
(𝑚)
𝑛 =

(
0 0

0 𝑅
(𝑚−1),𝓁𝑢
𝑛

)
, 2 ≤ 𝑚 ≤ 𝑀, (24b)

𝐃
(1)
𝑛 =

(
0 𝐹

(1)
𝑛 + 𝑅

(1),𝑢𝑢
𝑛

𝑄𝑛 𝐺
(1)
𝑛

)
+

𝑛∑
𝑞=0

(
0 𝐹̃

(1)
𝑛−𝑞𝑅

(1),𝑢𝑢
𝑞

0 𝐺̃
(1)
𝑛−𝑞𝑅

(1),𝑢𝑢
𝑞

)
, (24c)

𝐃
(𝑚)
𝑛 =

(
0 𝐹

(𝑚)
𝑛 + 𝑅

(𝑚),𝑢𝑢
𝑛

𝑅
(𝑚−1),𝓁𝓁
𝑛 𝐺

(𝑚)
𝑛

)
+

𝑛∑
𝑞=0

(
0 𝐹̃

(𝑚)
𝑛−𝑞𝑅

(𝑚),𝑢𝑢
𝑞

0 𝐺̃
(𝑚)
𝑛−𝑞𝑅

(𝑚),𝑢𝑢
𝑞

)
, 2 ≤ 𝑚 ≤ 𝑀 − 1, (24d)

𝐃
(𝑀)
𝑛 =

(
0 𝐹

(𝑀)
𝑛 + 𝑆𝑛

𝑅
(𝑀−1),𝓁𝓁
𝑛 𝐺

(𝑀)
𝑛

)
+

𝑛∑
𝑞=0

(
0 𝐹̃

(𝑀)
𝑛−𝑞𝑆𝑞

0 𝐺̃
(𝑀)
𝑛−𝑞𝑆𝑞

)
, (24e)

where, from (8),

𝐹
(𝑚)
𝑛 ∶= −𝑌(𝑚)

[
𝑝(𝑚)|||𝑁(𝑚)|||−1

𝑛
𝑌(𝑚) + 𝑠(𝑚)|||𝑁(𝑚)|||𝑛

]
(𝑌(𝑚) + 𝑍(𝑚))−1, (25a)

𝐹̃
(𝑚)
𝑛 ∶= −𝑌(𝑚)

[
𝑝(𝑚)|||𝑁(𝑚)|||−1

𝑛
𝑍(𝑚) − 𝑠(𝑚)|||𝑁(𝑚)|||𝑛

]
(𝑌(𝑚) + 𝑍(𝑚))−1, (25b)

𝐺
(𝑚)
𝑛 ∶= 𝑍(𝑚)

[
𝑝(𝑚)|||𝑁(𝑚)|||−1

𝑛
𝑌(𝑚) + 𝑠(𝑚)|||𝑁(𝑚)|||𝑛

]
(𝑌(𝑚) + 𝑍(𝑚))−1, (25c)

𝐺̃
(𝑚)
𝑛 ∶= 𝑍(𝑚)

[
𝑝(𝑚)|||𝑁(𝑚)|||−1

𝑛
𝑍(𝑚) − 𝑠(𝑚)|||𝑁(𝑚)|||𝑛

]
(𝑌(𝑚) + 𝑍(𝑚))−1, (25d)
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542 NICHOLLS

and the forms for |𝑁(𝑚)|𝑛 and |𝑁(𝑚)|−1
𝑛 are given in (C1) and (C2), respectively.

The relevant result from Ref. 55 states the following.

Theorem 1. Given two Banach spaces 𝑋 and 𝑌, suppose that:

1. 𝐑𝑛 ∈ 𝑌 for all 𝑛 ≥ 0, and there exist constants 𝐶𝑅 > 0, 𝐵𝑅 > 0 such that

‖𝐑𝑛‖𝑌 ≤ 𝐶𝑅𝐵
𝑛
𝑅.

2. 𝐀𝑛 ∶ 𝑋 → 𝑌 for all 𝑛 ≥ 0, and there exist constants 𝐶𝐴 > 0, 𝐵𝐴 > 0 such that

‖𝐀𝑛‖𝑋→𝑌 ≤ 𝐶𝐴𝐵𝑛
𝐴
,

where ‖ ⋅ ‖𝑋→𝑌 is the operator norm.
3. 𝐀−1

0 ∶ 𝑌 → 𝑋, and there exists a constant 𝐶𝑒 > 0 such that

‖‖‖𝐀−1
0

‖‖‖𝑌→𝑋
≤ 𝐶𝑒.

Then, Equation (17) has a unique solution, (18), and there exist constants 𝐶𝑉 > 0 and 𝐵𝑉 > 0 such
that

‖𝐕𝑛‖𝑋 ≤ 𝐶𝑉𝐵𝑛
𝑉 (26)

for all 𝑛 ≥ 0 and any

𝐶𝑉 ≥ 2𝐶𝑒𝐶𝑅, 𝐵𝑉 ≥ max {𝐵𝑅, 2𝐵𝐴, 4𝐶𝑒𝐶𝐴𝐵𝐴}.

This implies that, for any 0 ≤ 𝜌 < 1, (18), converges for all 𝜀 such that 𝐵𝜀 < 𝜌, that is, 𝜀 < 𝜌∕𝐵.

To begin, we recall the classical 𝐿2-based Sobolev classes of 𝑑-periodic surface functions with
𝑠-many weak derivatives (𝑠 ≥ 0)69,70

𝐻𝑠(𝑑) ∶=
{
𝜉(𝑥) ∈ 𝐿2(𝑑) | ‖‖𝜉‖‖𝐻𝑠 < ∞

}
,

where

‖‖𝜉‖‖2

𝐻𝑠 =

∞∑
𝑝=−∞

|||𝜉̂𝑝|||2⟨𝑝⟩2𝑠, ⟨𝑝⟩2 ∶= 1 + |𝑝|2.
These spaces can be defined for 𝑠 < 0 by specifying that 𝐻−𝑠 be the dual of 𝐻𝑠.69,70 In addition,
we remember, for integer 𝑠 ≥ 0, the space 𝐶𝑠(𝑑) of continuous functions with 𝑠-many continuous
derivatives. If 𝑠 is not an integer then these refer to the classical Hölder spaces.69,71 We will also
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NICHOLLS 543

require the vector-valued version of these spaces,

𝑋𝑠(𝑑) ∶=

⎧⎪⎪⎨⎪⎪⎩
𝐕 ∶=

⎛⎜⎜⎜⎜⎜⎝

𝑈(0),𝓁

𝑈(1),𝑢

⋮

𝑈(𝑀−1),𝓁

𝑈(𝑀),𝑢

⎞⎟⎟⎟⎟⎟⎠

|||||||||||
𝑈(𝑚−1),𝓁 ∈ 𝐻𝑠(𝑑);𝑈(𝑚),𝑢 ∈ 𝐻𝑠+𝑡(𝑑); 1 ≤ 𝑚 ≤ 𝑀

⎫⎪⎪⎬⎪⎪⎭
,

where we define the extra smoothness sometimes mandated in TM polarization,

𝑡 ∶=

{
0, TE or TM (𝑟 = 0),
1, TM (𝑟 = 1),

(27)

and

𝑌𝑠(𝑑) ∶=

⎧⎪⎪⎨⎪⎪⎩
𝐕 ∶=

⎛⎜⎜⎜⎜⎜⎝

𝑈(0),𝓁

𝑈(1),𝑢

⋮

𝑈(𝑀−1),𝓁

𝑈(𝑀),𝑢

⎞⎟⎟⎟⎟⎟⎠

|||||||||||
𝑈(𝑚−1),𝓁, 𝑈(𝑚),𝑢 ∈ 𝐻𝑠(𝑑); 1 ≤ 𝑚 ≤ 𝑀

⎫⎪⎪⎬⎪⎪⎭
.

These spaces have the norms

‖𝐕‖2
𝑋𝑠 ∶=

𝑀∑
𝑚=1

{‖‖‖𝑈(𝑚−1),𝓁‖‖‖2

𝐻𝑠
+

‖‖‖𝑈(𝑚),𝑢‖‖‖2

𝐻𝑠+𝑡

}
,

and

‖𝐕‖2
𝑌𝑠 ∶=

𝑀∑
𝑚=1

{‖‖‖𝑈(𝑚−1),𝓁‖‖‖2

𝐻𝑠
+

‖‖‖𝑈(𝑚),𝑢‖‖‖2

𝐻𝑠

}
.

We will need the following result on analyticity of the norm of the vector |𝑁(𝑚)|, its reciprocal|𝑁(𝑚)|−1, and the functions {𝐹(𝑚), 𝐹̃(𝑚), 𝐺(𝑚), 𝐺̃(𝑚)}. The proof is presented in Appendix C.

Lemma 1. Given an integer 𝑠 ≥ 0, an integer 𝑟 ∈ {0, 1}, and any 𝛿 > 0, if 𝑡 is defined by (27), 𝑓(𝑚) ∈

𝐶𝑠+𝑟+3∕2+𝛿 and𝑊 ∈ 𝐻𝑠+𝑡(𝑑), then the expansions

|||𝑁(𝑚)|||(𝜀) =

∞∑
𝑛=0

|||𝑁(𝑚)|||𝑛𝜀𝑛, |||𝑁(𝑚)|||−1
(𝜀) =

∞∑
𝑛=0

|||𝑁(𝑚)|||−1

𝑛
𝜀𝑛,

𝐹(𝑚)(𝜀) =

∞∑
𝑛=0

𝐹
(𝑚)
𝑛 𝜀𝑛, 𝐹̃(𝑚)(𝜀) =

∞∑
𝑛=0

𝐹̃
(𝑚)
𝑛 𝜀𝑛,

𝐺(𝑚)(𝜀) =

∞∑
𝑛=0

𝐺
(𝑚)
𝑛 𝜀𝑛, 𝐺̃(𝑚)(𝜀) =

∞∑
𝑛=0

𝐺̃
(𝑚)
𝑛 𝜀𝑛,
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544 NICHOLLS

converge strongly satisfying the estimates

|||||||𝑁(𝑚)|||𝑛||||𝐶𝑠+𝑟+3∕2+𝛿
< 𝐾𝑁

𝐷𝑛−1
𝑁

(𝑛 + 1)2
,

|||||||𝑁(𝑚)|||−1

𝑛

||||𝐶𝑠+𝑟+3∕2+𝛿
< 𝐾̃𝑁

𝐷̃𝑛−1
𝑁

(𝑛 + 1)2
,

‖‖‖𝐹(𝑚)
𝑛 [𝑊]

‖‖‖𝐻𝑠
< 𝐾𝐹

𝐷𝑛−1
𝐹

(𝑛 + 1)2
‖𝑊‖𝐻𝑠+𝑡 ,

‖‖‖𝐹̃(𝑚)
𝑛 [𝑊]

‖‖‖𝐻𝑠
< 𝐾̃𝐹

𝐷̃𝑛−1
𝐹

(𝑛 + 1)2
‖𝑊‖𝐻𝑠+𝑡 ,

‖‖‖𝐺(𝑚)
𝑛 [𝑊]

‖‖‖𝐻𝑠
< 𝐾𝐺

𝐷𝑛−1
𝐺

(𝑛 + 1)2
‖𝑊‖𝐻𝑠+𝑡 ,

‖‖‖𝐺̃(𝑚)
𝑛 [𝑊]

‖‖‖𝐻𝑠
< 𝐾̃𝐺

𝐷̃𝑛−1
𝐺

(𝑛 + 1)2
‖𝑊‖𝐻𝑠+𝑡

for universal constants 𝐾𝑁, 𝐾̃𝑁, 𝐾𝐹, 𝐾̃𝐹, 𝐾𝐺, 𝐾̃𝐺 > 0 and 𝐷𝑁, 𝐷̃𝑁, 𝐷𝐹, 𝐷̃𝐹, 𝐷𝐺, 𝐷̃𝐺 > 0.

Beyond this, we require the analyticity of the constituent parts of the operator 𝐀 = 𝐀(𝜀); the
proof is presented in Appendix D.

Lemma 2. Given an integer 𝑠 ≥ 0, an integer 𝑟 ∈ {0, 1}, and any 𝛿 > 0, if 𝑡 is defined by (27), 𝑓(𝑚) ∈

𝐶𝑠+𝑟+3∕2+𝛿 and𝐖 ∈ 𝐻𝑠 × 𝐻𝑠+𝑡 , then the expansions

𝐃(𝑚)(𝜀) =

∞∑
𝑛=0

𝐃
(𝑚)
𝑛 𝜀𝑛, 𝐋(𝑚)(𝜀) =

∞∑
𝑛=0

𝐋
(𝑚)
𝑛 𝜀𝑛, 𝐔(𝑚)(𝜀) =

∞∑
𝑛=0

𝐔
(𝑚)
𝑛 𝜀𝑛,

converge strongly satisfying the estimates

‖‖‖𝐃(𝑚)
𝑛 [𝐖]

‖‖‖𝐻𝑠×𝐻𝑠
< 𝐶𝐷

𝐵𝑛−1
𝐷

(𝑛 + 1)2
‖𝐖‖𝐻𝑠×𝐻𝑠+𝑡 , ∀ 𝑛 > 0,

‖‖‖𝐋(𝑚)
𝑛 [𝐖]

‖‖‖𝐻𝑠×𝐻𝑠
< 𝐶𝐿

𝐵𝑛−1
𝐿

(𝑛 + 1)2
‖𝐖‖𝐻𝑠×𝐻𝑠+𝑡 , ∀ 𝑛 > 0,

‖‖‖𝐔(𝑚)
𝑛 [𝐖]

‖‖‖𝐻𝑠×𝐻𝑠
< 𝐶𝑈

𝐵𝑛−1
𝑈

(𝑛 + 1)2
‖𝐖‖𝐻𝑠×𝐻𝑠+𝑡 , ∀ 𝑛 > 0

for universal constants 𝐶𝐷, 𝐶𝐿, 𝐶𝑈, 𝐵𝐷, 𝐵𝐿, 𝐵𝑈 > 0.

With these, we can prove our primary result.

Theorem 2. Given an integer 𝑠 ≥ 0, an integer 𝑟 ∈ {0, 1}, and any 𝛿 > 0, if 𝑡 is defined by (27),
suppose that

1. 𝑓(𝑚) ∈ 𝐶𝑠+𝑟+3∕2+𝛿(𝑑) for all 1 ≤ 𝑚 ≤ 𝑀;
2. (𝑌(𝑚) + 𝑍(𝑚)) is invertible for all 1 ≤ 𝑚 ≤ 𝑀;
3. Δ

(𝑚)
𝑝 ≠ 0 for all 𝑝 ∈ 𝐙, 0 ≤ 𝑚 ≤ 𝑀, (see (A1), (A3), (A7));

4. For the recursion (A10) we have, for all 𝑝 ∈ 𝐙,

𝑌
(𝑚+1)
𝑝 𝑆(2ℎ) ≠ 𝜏(𝑚)𝐶(2ℎ), 1 ≤ 𝑚 ≤ 𝑀 − 1,

𝑍
(𝑚)
𝑝 𝑆(2ℎ) ≠ 𝜏(𝑚)𝐶(2ℎ), 1 ≤ 𝑚 ≤ 𝑀 − 1,
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NICHOLLS 545

(see (A11)),
5. (𝐼 + 𝐺

(𝑚)
0 ) is invertible for all 1 ≤ 𝑚 ≤ 𝑀.

Then Equation (17) has a unique solution (18) and there exist constants 𝐶 > 0 and 𝐵 > 0 such that

‖𝐕𝑛‖𝑋𝑠 ≤ 𝐶𝐵𝑛

for all 𝑛 ≥ 0. This implies that, for any 0 ≤ 𝜌 < 1, (18) converges for all 𝜀 such that 𝐵𝜀 < 𝜌, that is,
𝜀 < 𝜌∕𝐵.

Remark 5. The reasons for the assorted hypotheses above are

1. The interfaces 𝑓(𝑚) are smooth enough so that the IIOs, 𝑄, 𝑆, and 𝑅(𝑚), 1 ≤ 𝑚 ≤ (𝑀 − 1) are
all analytic (see Appendix B).

2. The operators𝑃(𝑚) are invertible so that the surface formulations are equivalent (see Section 3).
3. The configuration is such that the flat-interface IIOs are all well-defined (cf. (A1), (A3), and

(A7) in Appendix A).
4. The configuration is such that the choices in the quasi-optimal domain decomposition can be

made uniquely (cf. (A10) and (A11) in Appendix A).
5. The currents satisfy polarization-dependent constraints such that the linear operators (𝐼 +

𝐺
(𝑚)
0 ) are invertible (see Section 5). Notice that in the absence of currents this is trivially satis-

fied.

Proof. We can establish this result by simply invoking Theorem 1 which requires the verification
of its three hypotheses. To begin we choose

𝑋 = 𝑋𝑠(𝑑), 𝑌 = 𝑌𝑠(𝑑).

Showing that the data𝐑𝑛 satisfies Hypothesis 1 of Theorem 1 is straightforward and follows the
calculations of lemma 4.17 of Ref. 55 quite closely.
From (16a), it is clear that 𝐀𝑛 is simply composed of the operators 𝐃

(𝑚)
𝑛 ,𝐔(𝑚)

𝑛 , and 𝐋
(𝑚)
𝑛 which

are effectively estimated in Lemma 2. With this the estimates in Hypothesis 2 of Theorem 1 are
readily satisfied. We recall that this fundamental result (Lemma 2) is built upon Theorems B1,
B2, and B3 regarding the analyticity of the IIOs, 𝑄, 𝑆, and 𝑅(𝑚) (under Hypotheses 1 and 3), and
Lemma 1 concerning analyticity of the functions |𝑁(𝑚)| and |𝑁(𝑚)|−1, and the operators 𝐹

(𝑚)
𝑛 ,

𝐹̃
(𝑚)
𝑛 , 𝐺(𝑚)

𝑛 , and 𝐺̃
(𝑚)
𝑛 .

All that remains is the estimate on the inverse of𝐀0 which is provided in Section 5 and depends
on the quasi-optimal domain decomposition which is ensured by Hypotheses 4 and 5. ■

Remark 6. The smoothness we require of the interfacial profiles is low enough to accommodate
many configurations of applied interest. With a much more involved theoretical investigation the
author believes that 𝑓(𝑚) ∈ 𝐶1,𝛼 and perhaps even 𝑓(𝑚) Lipschitz would likely deliver the same
results; see Ref. 72 for more details on a possible approach.
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546 NICHOLLS

5 INVERTIBILITY OF THE LINEARIZED OPERATOR

Wewill now demonstrate that if the operators {𝑌(𝑚), 𝑍(𝑚)} are chosen via the recursion (A10) then
the operator𝐀0 is invertible andTheorem 1 can be applied to solve (17).Wenote theQuasi-Optimal
Domain Decomposition outlined in Remarks A1, A2, and A3 that defines the recursions

𝑍(1) = 𝜏(0)
(
𝑖𝛾

(0)
𝐷

)
, (28a)

𝑍(𝑚+1) =
−(𝜏(𝑚))2

(
𝛾
(𝑚)
𝑝

)2

𝑆(2ℎ) − 𝜏(𝑚)𝑍(𝑚)𝐶(2ℎ)

−𝜏(𝑚)𝐶(2ℎ) + 𝑍(𝑚)𝑆(2ℎ)
, 𝑚 = 1,…𝑀 − 1, (28b)

and

𝑌(𝑀) = 𝜏(𝑀)
(
𝑖𝛾

(𝑀)
𝐷

)
, (29a)

𝑌(𝑚) =
−(𝜏(𝑚))2

(
𝛾
(𝑚)
𝑝

)2

𝑆(2ℎ) − 𝜏(𝑚)𝑌(𝑚+1)𝐶(2ℎ)

−𝜏(𝑚)𝐶(2ℎ) + 𝑌(𝑚+1)𝑆(2ℎ)
, 𝑚 = 𝑀 − 1,… , 1, (29b)

which render𝑄(0) ≡ 𝑆(0) ≡ 𝑅(𝑚),𝑢𝑢(0) ≡ 𝑅(𝑚),𝓁𝓁(0) ≡ 0.With these choices, we see from (22) that

𝐃(𝑚)(0) =

(
𝐼 𝐹

(𝑚)
0

0 𝐼 + 𝐺
(𝑚)
0

)
, 0 ≤ 𝑚 ≤ 𝑀,

which is the identity matrix in the absence of surface currents, and invertible in their presence by
Hypothesis 5. In fact,

𝐃(𝑚)(0)−1 =

⎛⎜⎜⎜⎝
𝐼 −𝐹

(𝑚)
0

(
𝐼 + 𝐺

(𝑚)
0

)−1

0
(
𝐼 + 𝐺

(𝑚)
0

)−1

⎞⎟⎟⎟⎠ , 0 ≤ 𝑚 ≤ 𝑀. (30)

In this way, the choices are “optimal,” however, these selections do not eliminate either the opera-
tor𝐋(𝑚) or𝐔(𝑚), nor does thiswork for nontrivial configurations 𝜀 > 0. For this reason, the choices
are only “quasi-optimal.”
Based upon these developments, we require only the following result to establish the existence

and mapping properties of the linearized operator 𝐀0.

Lemma 3. Given any integer 𝑠 ≥ 0, if

Δ
(𝑚)
𝑝 ≠ 0, ∀ 𝑝 ∈ 𝐙, ∀ 1 ≤ 𝑚 ≤ 𝑀 − 1,

see (A7), the operators 𝑅(𝑚),𝑢𝓁(0) and 𝑅(𝑚),𝓁𝑢(0) are compact for 1 ≤ 𝑚 ≤ 𝑀 − 1.
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NICHOLLS 547

Proof. We describe the proof for 𝑅(𝑚),𝑢𝓁(0) and note that the corresponding demonstration for
𝑅(𝑚),𝓁𝑢(0) is quite similar. We follow the proof of lemma 4.8 in Ref. 55 which uses the method of
Kress70 by considering the limit of finite dimensional range operators (which are compact, see
theorem 2.23 of Ref. 70). These are shown to be norm convergent to 𝑅(𝑚),𝑢𝓁(0) thereby rendering
it compact. Our scheme for generating these approximations is to consider the 𝑃-truncations in
Fourier space,

𝑅
(𝑚),𝑢𝓁
𝑃 (0)[𝜙(𝑥)] ∶=

∑
|𝑝|≤𝑃

⎛⎜⎜⎝
−𝜏(𝑚)(𝑌

(𝑚)
𝑝 + 𝑍

(𝑚)
𝑝 )

Δ
(𝑚)
𝑝

⎞⎟⎟⎠𝜙̂𝑝e𝑖𝛼𝑝𝑥,

cf. (A8b), where

Δ
(𝑚)
𝑝 =

(
(𝜏(𝑚))2

(
𝛾
(𝑚)
𝑝

)2

− 𝑍
(𝑚)
𝑝 𝑌

(𝑚+1)
𝑝

)
𝑆(2ℎ) + 𝜏(𝑚)

(
𝑍

(𝑚)
𝑝 + 𝑌

(𝑚+1)
𝑝

)
𝐶(2ℎ),

cf. (A7). It is not difficult to show that the recursions (28) and (29), beginning with the order-one
Fourier multipliers

𝑍(1) = 𝜏(0)
(
𝑖𝛾

(0)
𝐷

)
, 𝑌(𝑀) = 𝜏(𝑀)

(
𝑖𝛾

(𝑀)
𝐷

)
,

generate a full sequence of order-one Fourier multipliers, {𝑌(𝑚), 𝑍(𝑚)}. With this, it is not hard to
demonstrate that, for 𝑃 sufficiently large,

||||||
(𝑌

(𝑚)
𝑝 + 𝑍

(𝑚)
𝑝 )

Δ
(𝑚)
𝑝

|||||| ∼ e−𝜅|𝑝|, |𝑝| > 𝑃

for some 𝜅 > 0 since Δ
(𝑚)
𝑝 grows exponentially. Thus,

‖‖‖‖(𝑅(𝑚),𝑢𝓁(0) − 𝑅
(𝑚),𝑢𝓁
𝑃 (0)

)
𝜙
‖‖‖‖
2

𝐻𝑠

=
∑
|𝑝|>𝑃

|||𝜏(𝑚)|||2||||||
𝑌

(𝑚)
𝑝 + 𝑍

(𝑚)
𝑝

Δ
(𝑚)
𝑝

||||||
2|||𝜙̂𝑝

|||2
≤ ∑

|𝑝|>𝑃

|||𝜏(𝑚)|||2𝐶2e−2𝜅|𝑝||||𝜙̂𝑝
|||2

≤ 𝐶̃e−2𝜅⟨𝑃⟩‖𝜙‖2
𝐻𝑠 ,

which must go to zero as 𝑃2 → ∞ showing norm convergence. ■

At last we can state and prove the last result for our existence theorem.

Theorem 3. Given any integer 𝑠 ≥ 0, if

Δ
(𝑚)
𝑝 ≠ 0, ∀ 𝑝 ∈ 𝐙, ∀ 1 ≤ 𝑚 ≤ 𝑀 − 1,
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548 NICHOLLS

see (A7), then the operator 𝐀0 ∶ 𝑋𝑠(𝑑) → 𝑌𝑠(𝑑) is invertible and

𝐀−1
0 ∶ 𝑌𝑠(𝑑) → 𝑋𝑠(𝑑).

Proof. From (16a), we write 𝐀0 = 𝐀(0) = 𝐃(0) + 𝐊(0), where

𝐃(0) =

⎛⎜⎜⎜⎜⎜⎜⎝

𝐃(1)(0) 0 0 0 ⋯ 0

0 𝐃(2)(0) 0 0 ⋯ 0

0 ⋱ ⋱ ⋱ 0 0

0 0 ⋱ ⋱ ⋱ 0

0 ⋯ 0 0 𝐃(𝑀−1)(0) 0

0 ⋯ 0 0 0 𝐃(𝑀)(0)

⎞⎟⎟⎟⎟⎟⎟⎠
,

and

𝐊(0) =

⎛⎜⎜⎜⎜⎜⎜⎝

0 𝐔(1)(0) 0 0 ⋯ 0

𝐋(2)(0) 0 𝐔(2)(0) 0 ⋯ 0

0 ⋱ ⋱ ⋱ 0 0

0 0 ⋱ ⋱ ⋱ 0

0 ⋯ 0 𝐋(𝑀−1)(0) 0 𝐔(𝑀−1)(0)

0 ⋯ 0 0 𝐋(𝑀)(0) 0

⎞⎟⎟⎟⎟⎟⎟⎠
.

It is clear that

𝐃(0)−1 =

⎛⎜⎜⎜⎜⎜⎜⎝

𝐃(1)(0)−1 0 0 0 ⋯ 0

0 𝐃(2)(0)−1 0 0 ⋯ 0

0 ⋱ ⋱ ⋱ 0 0

0 0 ⋱ ⋱ ⋱ 0

0 ⋯ 0 0 𝐃(𝑀−1)(0)−1 0

0 ⋯ 0 0 0 𝐃(𝑀)(0)−1

⎞⎟⎟⎟⎟⎟⎟⎠
,

so that the existence and mapping properties of 𝐃(0)−1 can be demonstrated by an examination
of each of the𝐃(𝑚)(0)−1. In the case of our quasi-optimal choice of IIOs, we have already observed
that

𝐃(𝑚)(0)−1 =

⎛⎜⎜⎜⎝
𝐼 −𝐹

(𝑚)
0

(
𝐼 + 𝐺

(𝑚)
0

)−1

0
(
𝐼 + 𝐺

(𝑚)
0

)−1

⎞⎟⎟⎟⎠ ,
cf. (30). Given𝐖 = (𝑊𝓁,𝑊𝑢) ∈ 𝐻𝑠 × 𝐻𝑠 (note that these operators act on lower/upper traces at
the𝑚th interface rather than upon upper/lower traces on a layer) we can estimate

‖‖‖𝐃(𝑚)(0)−1[𝐖]
‖‖‖𝐻𝑠×𝐻𝑠+𝑡

≤ ‖‖‖‖‖𝑊𝓁 − 𝐹
(𝑚)
0

(
𝐼 + 𝐺

(𝑚)
0

)−1

𝑊𝑢
‖‖‖‖‖𝐻𝑠

+
‖‖‖‖‖
(
𝐼 + 𝐺

(𝑚)
0

)−1

𝑊𝑢
‖‖‖‖‖𝐻𝑠+𝑡

≤ ‖‖‖𝑊𝓁‖‖‖𝐻𝑠
+

‖‖‖‖‖𝐹(𝑚)
0

(
𝐼 + 𝐺

(𝑚)
0

)−1

𝑊𝑢
‖‖‖‖‖𝐻𝑠

+
‖‖‖‖‖
(
𝐼 + 𝐺

(𝑚)
0

)−1

𝑊𝑢
‖‖‖‖‖𝐻𝑠+𝑡
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NICHOLLS 549

≤ ‖‖‖𝑊𝓁‖‖‖𝐻𝑠
+ ‖𝑊𝑢‖𝐻𝑠 + ‖𝑊𝑢‖𝐻𝑠

≤ 𝐶‖𝐖‖𝐻𝑠×𝐻𝑠 ,

which implies that 𝐃(0)−1 ∶ 𝑌𝑠(𝑑) → 𝑋𝑠(𝑑).
Due to the compactness of the operators 𝑅(𝑚),𝑢𝓁(0) and 𝑅(𝑚),𝓁𝑢(0), the block operator 𝐊(0) is

also compact. Appealing to the Fredholm theory, we have that 𝐀(0) is invertible.37 ■

6 NUMERICAL RESULTS

In this section, we put this new formulation into action by presenting some preliminary numerical
results on scattering of linear waves by a triply layered medium (see Appendix F) with sheets of
graphene at one or both of the interfaces. We begin by briefly describing the algorithm, continue
with a short numerical validation, and then finish with simulations of the absorbance of two
test configurations.

6.1 Implementation

Our novel algorithm for solving the layered media problems presented in this section utilizes the
surface formulation of the governing equations in terms of IIOs parameterized by the interface
height/slope 𝜀,

𝐀(𝜀)𝐕(𝜀) = 𝐑(𝜀),

cf. (17). As in Section 4, we seek a solution of the form (18) which is truncated after 𝑁 ≥ 0 orders

𝐕(𝜀) ≈ 𝐕𝑁(𝜀) ∶=

𝑁∑
𝑛=0

𝐕𝑛𝜀
𝑛. (31)

These must solve (19) for 0 ≤ 𝑛 ≤ 𝑁 where the 𝐀𝑛 are given in (21) and the 𝐑𝑛 are specified in
(20). In these, we must specify how one computes the operators {𝐹

(𝑚)
𝑛 , 𝐹̃

(𝑚)
𝑛 , 𝐺

(𝑚)
𝑛 , 𝐺̃

(𝑚)
𝑛 } and the

IIOs {𝑄𝑛, 𝑅
(𝑚)
𝑛 , 𝑆𝑛}. For the former, the considerations are the same as those described in Ref. 57

save that we now consider choices {𝑌(𝑚), 𝑍(𝑚)} which are not necessarily those of Després66–68
(𝑌(𝑚) = 𝑍(𝑚) = 𝑖𝜂, 𝜂 ∈ 𝐑+), and the terms in (25) are more involved. However, once the terms|𝑁(𝑚)|𝑛 and |𝑁(𝑚)|−1

𝑛 are derived, see (C1) and (C2), these forms are straightforward.
For the latter, we simulated the IIOs using the method of TFE53,61,73 where almost all of the

relevant details are specified in Ref. 57. In summary, we used a spectral Fourier–Chebyshev
methodology22–24 where

𝐕𝑛(𝑥, 𝑧) ≈ 𝐕
𝑁𝑥,𝑁𝑧
𝑛 (𝑥, 𝑧) ∶=

𝑁𝑥∕2−1∑
𝑝=−𝑁𝑥∕2

𝑁𝑧∑
𝑞=0

𝐕̂𝑛,𝑝,𝑞𝑇𝑞(𝑧∕ℎ)e𝑖𝛼𝑝𝑥,
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550 NICHOLLS

and 𝑇𝑞 is the 𝑞th Chebyshev polynomial. To find the Fourier–Chebyshev coefficients, {𝐕̂𝑛,𝑝,𝑞}, we
took a collocation approach and demanded that the governing equations be true at the gridpoints

{𝑥𝑗 = 𝑗(𝑑∕𝑁𝑥) | 0 ≤ 𝑗 ≤ 𝑁𝑥 − 1}, {𝑧𝑟 = ℎ cos(𝜋𝑟∕𝑁𝑧) | 0 ≤ 𝑟 ≤ 𝑁𝑧}.

Using fast Fourier andChebyshev transforms,22–24 the resulting equations can be solved efficiently
and stably.
An important question is how the Taylor series, (31), in 𝜀 is summed, for instance, the approxi-

mation

𝐕̂𝑁
𝑝,𝑞(𝜀) ∶=

𝑁∑
𝑛=0

𝐕̂𝑛,𝑝,𝑞𝜀
𝑛

of 𝐕̂𝑝,𝑞(𝜀). For this task, the classical analytic continuation technique of Padé approximation74 has
been used for HOPS methods with great success49,73 and we advocate its use here. Padé approxi-
mation seeks to estimate the truncated Taylor series 𝐕̂𝑁

𝑝,𝑞(𝜀) by the rational function

[𝐿∕𝑀](𝜀) ∶=
𝑎𝐿(𝜀)

𝑏𝑀(𝜀)
=

∑𝐿

𝓁=0
𝑎𝓁𝜀

𝓁

1 +
∑𝑀

𝑚=1
𝑏𝑚𝜀𝑚

, 𝐿 + 𝑀 = 𝑁,

and

[𝐿∕𝑀](𝜀) = 𝐕̂𝑁
𝑝,𝑞(𝜀) + (𝜀𝐿+𝑀+1);

well-known formulas for the coefficients {𝑎𝓁, 𝑏𝑚} can be found in Ref. 74. This approximant has
remarkable properties of enhanced convergence, and we refer the interested reader to section 2.2
of Baker and Graves-Morris74 and the insightful calculations of section 8.3 of Bender and Orszag75
for a thorough discussion of the capabilities and limitations of Padé approximants.

6.2 Validation by the MMS

Regarding the validation of our scheme, we utilized the MMS.62–64 To summarize this scheme,
consider the generic system of partial differential equations subject to general boundary condi-
tions

𝑣 = 0, in Ω,

𝑣 = 0, at 𝜕Ω.

It is usually just as easy to implement a numerical algorithm to solve the nonhomogeneous version
of this set of equations

𝑣 =  , in Ω,

𝑣 =  , at 𝜕Ω.
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NICHOLLS 551

To test a code, one can begin with the “manufactured solution,” 𝑣, and set

𝑣 ∶= 𝑣, 𝑣 ∶=  𝑣.

Thus, given the pair {𝑣,𝑣}we have an exactsolution of the nonhomogeneous problem, namely,
𝑣. While this does not guarantee a correct implementation, if the function 𝑣 is chosen to imitate
the behavior of anticipated solutions (e.g., satisfying the boundary conditions exactly) then this
can give us confidence in our algorithm.
For the current implementation, we focused upon the three-layer problem (𝑀 = 2) with lay-

ers 𝑚 = 0, 1, 2 denoted, for simplicity, by the letters {𝑢, 𝑣, 𝑤}, respectively (cf. Appendix F). We
considered the quasiperiodic, outgoing solutions of the Helmholtz equation (9a)

𝑢𝑟(𝑥, 𝑧) ∶= 𝐴𝑢
𝑟 𝑒

𝑖𝛼𝑟𝑥+𝑖𝛾𝑢
𝑟 𝑧, 𝑟 ∈ 𝐙, 𝐴𝑢

𝑟 ∈ 𝐂,

and their counterparts for (11a)

𝑤𝑟(𝑥, 𝑧) ∶= 𝐴𝑤
𝑟 𝑒𝑖𝛼𝑟𝑥−𝑖𝛾𝑤

𝑟 𝑧, 𝑟 ∈ 𝐙, 𝐴𝑤
𝑟 ∈ 𝐂.

Furthermore, we considered the quasiperiodic solutions of the Helmholtz equation (13a)

𝑣𝑟(𝑥, 𝑧) ∶= 𝐴𝑣
𝑟 𝑒

𝑖𝛼𝑟𝑥+𝑖𝛾𝑣
𝑟 𝑧 + 𝐵𝑣

𝑟 𝑒
𝑖𝛼𝑟𝑥−𝑖𝛾𝑣

𝑟 𝑧, 𝑟 ∈ 𝐙, 𝐴𝑣
𝑟 , 𝐵

𝑣
𝑟 ∈ 𝐂.

We selected two simple sinusoidal profiles

𝑔(𝑢)(𝑥) = 𝜀𝑓(𝑢)(𝑥) = 𝜀 cos(2𝑥), 𝑔(𝓁)(𝑥) = 𝜀𝑓(𝓁)(𝑥) = 𝜀 sin(2𝑥), (32)

and defined, for any choice of the layer half-thickness ℎ̄, the Dirichlet and Neumann traces

𝜉
(𝑢)
𝑟 (𝑥) ∶= 𝑢𝑟(𝑥, ℎ̄ + 𝑔(𝑢)(𝑥)), 𝜈

(𝑢)
𝑟 (𝑥) ∶= (−𝜕𝑁(𝑢)𝑢𝑟)(𝑥, ℎ̄ + 𝑔(𝑢)(𝑥)),

𝜉
(𝑣),ℎ
𝑟 (𝑥) ∶= 𝑣𝑟(𝑥, ℎ̄ + 𝑔(𝑢)(𝑥)), 𝜈

(𝑣),ℎ
𝑟 (𝑥) ∶= (𝜕𝑁(𝑢)𝑣𝑟)(𝑥, ℎ̄ + 𝑔(𝑢)(𝑥)),

𝜉
(𝑣),−ℎ
𝑟 (𝑥) ∶= 𝑣𝑟(𝑥, −ℎ̄ + 𝑔(𝓁)(𝑥)), 𝜈

(𝑣),−ℎ
𝑟 (𝑥) ∶= (−𝜕𝑁(𝓁)𝑣𝑟)(𝑥, −ℎ̄ + 𝑔(𝓁)(𝑥)),

𝜉
(𝑤)
𝑟 (𝑥) ∶= 𝑤𝑟(𝑥, −ℎ̄ + 𝑔(𝓁)(𝑥)), 𝜈

(𝑤)
𝑟 (𝑥) ∶= (𝜕𝑁(𝓁)𝑤𝑟)(𝑥, −ℎ̄ + 𝑔(𝓁)(𝑥)).

From these we defined, for any choices of the operators {𝑌(𝑢), 𝑍(𝑢), 𝑌(𝓁), 𝑍(𝓁)}, the impedances

𝑈𝑟 ∶= 𝜏(𝑢)𝜈(𝑢) − 𝑌(𝑢)[𝜉(𝑢)], 𝑈̃𝑟 ∶= 𝜏(𝑢)𝜈(𝑢) + 𝑍(𝑢)[𝜉(𝑢)], (33a)

𝑉𝑢
𝑟 ∶= 𝜏(𝑣)𝜈(𝑣),ℎ − 𝑍(𝑢)[𝜉(𝑣),ℎ], 𝑉̃𝑢

𝑟 ∶= 𝜏(𝑣)𝜈(𝑣),ℎ + 𝑌(𝑢)[𝜉(𝑣),ℎ], (33b)

𝑉𝓁
𝑟 ∶= 𝜏(𝑣)𝜈(𝑣),−ℎ − 𝑌(𝓁)[𝜉(𝑣),−ℎ], 𝑉̃𝓁

𝑟 ∶= 𝜏(𝑣)𝜈(𝑣),−ℎ + 𝑍(𝓁)[𝜉(𝑣),−ℎ], (33c)
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552 NICHOLLS

𝑊𝑟 ∶= 𝜏(𝑤)𝜈(𝑤) − 𝑍(𝓁)[𝜉(𝑤)], 𝑊̃𝑟 ∶= 𝜏(𝑤)𝜈(𝑤) + 𝑌(𝓁)[𝜉(𝑤)]. (33d)

We chose the following physical parameters:

𝑑 = 2𝜋, 𝛼 = 0.1, 𝜖(𝑢) = 1.1, 𝜖(𝑣) = 𝑒, 𝜖(𝑤) = 𝜋,

𝜎̂(𝑢) = 0.2, 𝜎̂(𝓁) = 0.45,

𝐴𝑢
𝑟 = −3 𝛿𝑟,3, 𝐴𝑤

𝑟 = 4 𝛿𝑟,3, 𝐴𝑣
𝑟 = −𝑒 𝛿𝑟,3, 𝐵𝑣

𝑟 = 𝜋 𝛿𝑟,3, (34)

(where 𝛿𝑟,𝑠 is the Kronecker delta) in TM polarization, and the numerical parameters

𝑁𝑥 = 64, 𝑁𝑧 = 24, 𝑁 = 10, 𝑎 = 1∕10, 𝑏 = 1∕10. (35)

To test the performance and capabilities of our formulation, wemade three choices of the oper-
ators {𝑌(𝑢), 𝑍(𝑢), 𝑌(𝓁), 𝑍(𝓁)}. The first was that of Després66–68

𝑌(𝑢) = 𝑍(𝑢) = 𝑌(𝓁) = 𝑍(𝓁) = 𝑖𝜂, 𝜂 =

(√
𝜖(𝑢) +

√
𝜖(𝑤)

2

)
𝑘0 ∈ 𝐑+, (36)

while the second was a slight generalization of this

𝑌(𝑢) = 𝑖𝜂, 𝑍(𝑢) = 1.1 𝑌(𝑢), 𝑌(𝓁) = 1.23 𝑌(𝑢), 𝑍(𝓁) = 0.98 𝑌(𝑢), (37)

which is also guaranteed to produce well-posed IIOs. Finally, we chose our quasi-optimal selec-
tions from Appendix F

𝑌
(𝓁)
𝑝 = 𝜏(𝑤)(𝑖𝛾

(𝑤)
𝑝 ), 𝑌

(𝑢)
𝑝 =

−(𝜏(𝑣))2(𝛾
(𝑣)
𝑝 )2𝑇(2ℎ) − 𝜏(𝑣)𝜏(𝑤)(𝑖𝛾

(𝑤)
𝑝 )

−𝜏(𝑣) + 𝜏(𝑤)(𝑖𝛾
(𝑤)
𝑝 )𝑇(2ℎ)

, (38a)

and

𝑍
(𝑢)
𝑝 = 𝜏(𝑢)(𝑖𝛾

(𝑢)
𝑝 ), 𝑍

(𝓁)
𝑝 =

−(𝜏(𝑣))2(𝛾
(𝑣)
𝑝 )2𝑇(2ℎ) − 𝜏(𝑣)𝜏(𝑢)(𝑖𝛾

(𝑢)
𝑝 )

−𝜏(𝑣) + 𝜏(𝑢)(𝑖𝛾
(𝑢)
𝑝 )𝑇(2ℎ)

. (38b)

To illuminate the behavior of our scheme, we studied four choices

𝜀 = 0.005, 0.01, 0.05, 0.1

in (32). For this, we supplied the “exact” input data, {𝑈𝑟, 𝑉
𝑢
𝑟 , 𝑉

𝓁
𝑟 ,𝑊𝑟}, from (33) to our HOPS

algorithm to simulate solutions of the IIO formulation of the three-layer scattering problem.
We compared the output of this, {𝑈̃approx

𝑟 , 𝑉̃
𝑢,approx
𝑟 , 𝑉̃

𝓁,approx
𝑟 , 𝑊̃

approx
𝑟 }, with the “exact” output,

{𝑈̃𝑟, 𝑉̃
𝑢
𝑟 , 𝑉̃

𝓁
𝑟 , 𝑊̃𝑟}, by computing the relative error

Errorrel ∶=
|||𝑈̃𝑟 − 𝑈̃

approx
𝑟

|||𝐿∞
∕||𝑈̃𝑟

||𝐿∞.
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NICHOLLS 553

(a) (b)

F IGURE 2 Plot of relative error with six choices of 𝑁 = 0, 2, 4, 6, 8, 10 and four choices of
𝜀 = 0.005, 0.01, 0.05, 0.1 for IIO choice (36) with Taylor summation. Physical parameters (34) and numerical
discretization (35)

(b)(a)

F IGURE 3 Plot of relative error with six choices of 𝑁 = 0, 2, 4, 6, 8, 10 and four choices of
𝜀 = 0.005, 0.01, 0.05, 0.1 for IIO choice (37) with Taylor summation. Physical parameters (34) and numerical
discretization (35)

We note that the choice to measure the defect in the upper-layer quantity, 𝑈̃𝑟, was arbitrary, and
measuring the mismatch in any of the other output quantities produced similar results.
To begin our study, we selected the first choice of IIOs, (36), and we report our results in Fig-

ures 2(A) and (B). More specifically, Figure 2(A) displays both the rapid and stable decay of the
relative error as𝑁 is increased, and how this rate of decay improves as 𝜀 is decreased. Figure 2(B)
shows both how the error shrinks as 𝜀 becomes smaller, and that this rate is enhanced as 𝑁

is increased.
We repeated this experiment for IIO choices (37) and (38). The results are shown in Figures 3(A)

and (B), and Figures 4(A) and (B) for (37) and (38), respectively. As with the first choice, the
error decays rapidly as 𝑁 is increased (with a faster rate for 𝜀 smaller) and 𝜀 is decreased (more
prominently for𝑁 larger). These simulations clearly demonstrate the highly efficient and accurate
results which our new algorithm can deliver, even for a complicated three-layer structure with
different currents at the two interfaces.
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554 NICHOLLS

F IGURE 4 Plot of relative error with six choices of 𝑁 = 0, 2, 4, 6, 8, 10 and four choices of
𝜀 = 0.005, 0.01, 0.05, 0.1 for IIO choice (38) with Taylor summation. Physical parameters (34) and numerical
discretization (35)

F IGURE 5 Depiction of the dielectric-graphene-dielectric configuration together with its absorption
spectrum

Remark 7. We note that typical MMS simulations implemented inMATLAB76 (without particular
regard for computational performance) on the author’s laptop (Apple MacBook Air Dual-Core
Intel Core i7, 2.2 GHz, with 8 GB memory running macOS BigSur 11.1) took less than 1/20 of a
second. Reliable timings of different portions of the algorithm were difficult to obtain.

6.3 GSPs on single and double graphene sheets

We conclude with a demonstration of our algorithm’s ability to investigate both a simulation
already appearing in the literature, and a newone based upon anatural generalization. The former
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NICHOLLS 555

F IGURE 6 Depiction of the dielectric-graphene-dielectric-graphene-dielectric configuration together with
its absorption spectrum

we include to further build confidence in the fidelity of our scheme, while the latter is displayed
to give a brief indication of the wide array of structures that we could simulate.
To begin, we revisited the calculations found in section 7.2 of Ref. 56 which replicated the simu-

lation found in the survey paper of Bludov et al.6 In section 9 of this latter work, the authors took
up the topic of scattering of electromagnetic waves by corrugated sheets of graphene, and spe-
cialized to sinusoidal sheets in section 9.4. More specifically, they investigated one-dimensional,
sinusoidally perturbed graphene sheets in TM polarization with interface profile shaped by

𝑔(𝑥) = 𝜀𝑓(𝑥) = 𝜀 sin(2𝜋𝑥∕𝑑).

They chose physical parameters

𝑑 = 10microns, 𝜖(𝑢) = 1, 𝜖(𝑤) = 11, 𝛼 = 0,

and then used a Drude model, (4), for the graphene.6
The output of the simulation were plots of the (specular) reflectance, transmission, and

absorbance

𝑅0 = |𝑢̂0|2, 𝑇0 = (𝛾(𝑤)∕𝛾(𝑢))|𝑤̂0|2, 𝐴0 = 1 − 𝑅0 − 𝑇0,

cf. (E1), versus energy of the incident radiation, 𝐸 = ℎ𝑐0∕𝜆, for four choices of the interface defor-
mation

𝜀 = 𝑑∕100, 𝑑∕25, 𝑑∕15, 𝑑∕10
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556 NICHOLLS

(See Figure 5A for the geometry for the largest deformation.) We attempted to replicate their
absorbance curve using our new algorithm and display our results in Figure 5(B). We note the
remarkable qualitative agreement with the figure of Ref. 6, in particular the GSPR (Graphene
Surface Plasmon Resonance) excited around 11 meV as predicted.
Beyond this, we explored a natural generalization of this geometry which is readily simulated

with the implementation of our new formulation. More specifically, we inserted a second layer of
free-standing graphene above the structure just considered. Please see Figure 6(A) for a depiction
of the configuration in the case of the largest deformation 𝜀 = 𝑑∕10. In Figure 6(B), we display
results of our simulation which shows not only the original GSP near 11 meV, but also a new,
stronger, GSP near 25 meV. It is the goal of future work to investigate this new GSP, whether it
can be “moved,” whether more can be induced, and so forth. We note here that this investigation
can be readily conducted in a rapid and robust fashion with the formulation and implementation
presented here.
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APPENDIX A: INFINITESIMAL INTERFACE IMPEDANCE–IMPEDANCE
OPERATORS (IIOs)
In this section,we give explicit formulas for the IIOs introduced in Section 3 in the case of infinites-
imal grating interfaces which we model by quasiperiodic solutions in the case 𝑔(𝑚) ≡ 0.

A.1 The upper layer
We begin with the upper layer where it is easy to see that the solution of (9a) and (9b) is

𝑣(0)(𝑥, 𝑧) =

∞∑
𝑝=−∞

𝐴𝑝e𝑖𝛼𝑝𝑥+𝑖𝛾
(0)
𝑝 (𝑧−𝑎(1)).

The boundary condition (9c) demands that

𝑈(0),𝓁
𝑝 = −𝜏(0)(𝑖𝛾

(0)
𝑝 )𝐴𝑝 − 𝑌

(1)
𝑝 𝐴𝑝,

so that

𝑣(0)(𝑥, 𝑧) =

∞∑
𝑝=−∞

𝑈(0),𝓁
𝑝

−𝜏(0)(𝑖𝛾
(0)
𝑝 ) − 𝑌

(1)
𝑝

e𝑖𝛼𝑝𝑥+𝑖𝛾
(0)
𝑝 (𝑧−𝑎(1)).

Thus, from (10),

𝑄(0)[𝑈(0),𝓁] = −𝜏(0)𝜕𝑧𝑣
(0)(𝑥, 𝑎(1)) + 𝑍(1)𝑣(0)(𝑥, 𝑎(1))

=

∞∑
𝑝=−∞

⎛⎜⎜⎝
−𝜏(0)(𝑖𝛾

(0)
𝑝 ) + 𝑍

(1)
𝑝

−𝜏(0)(𝑖𝛾
(0)
𝑝 ) − 𝑌

(1)
𝑝

⎞⎟⎟⎠𝑈(0),𝓁
𝑝e𝑖𝛼𝑝𝑥,
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which gives the order-zero Fourier multiplier

𝑄(0) =

⎛⎜⎜⎜⎝
−𝜏(0)

(
𝑖𝛾

(0)
𝐷

)
+ 𝑍(1)

−𝜏(0)
(
𝑖𝛾

(0)
𝐷

)
− 𝑌(1)

⎞⎟⎟⎟⎠,
provided that, for all 𝑝 ∈ 𝐙,

Δ
(0)
𝑝 ∶= −𝜏(0)

(
𝑖𝛾

(0)
𝐷

)
− 𝑌

(1)
𝑝 (A1)

is not zero.
Remark A1. We note that if we choose

𝑍(1) = 𝜏(0)
(
𝑖𝛾

(0)
𝐷

)
, (A2)

then 𝑄(0) ≡ 0.

A.2 The lower layer
In a similar manner, in the lower layer one can show that the solution of (11a) and (11b) is

𝑣(𝑀)(𝑥, 𝑧) =

∞∑
𝑝=−∞

𝐷𝑝e𝑖𝛼𝑝𝑥−𝑖𝛾
(𝑀)
𝑝 (𝑧−𝑎(𝑀)).

The boundary condition (11b) demands that

𝑈(𝑀),𝑢
𝑝 = 𝜏(𝑀)(−𝑖𝛾

(𝑀)
𝑝 )𝐷𝑝 − 𝑍

(𝑀)
𝑝 𝐷𝑝,

so that

𝑣(𝑀)(𝑥, 𝑧) =

∞∑
𝑝=−∞

𝑈(𝑀),𝑢
𝑝

𝜏(𝑀)(−𝑖𝛾
(𝑀)
𝑝 ) − 𝑍

(𝑀)
𝑝

e𝑖𝛼𝑝𝑥−𝑖𝛾
(𝑀)
𝑝 (𝑧−𝑎(𝑀)).

Thus, from (12),

𝑆(0)[𝑈(𝑀),𝑢] = 𝜏(𝑀)𝜕𝑧𝑣
(𝑀)(𝑥, 𝑎(𝑀)) + 𝑌(𝑀)𝑣(𝑀)(𝑥, 𝑎(𝑀))

=

∞∑
𝑝=−∞

⎛⎜⎜⎝
𝜏(𝑀)(−𝑖𝛾

(𝑀)
𝑝 ) + 𝑌

(𝑀)
𝑝

𝜏(𝑀)(−𝑖𝛾
(𝑀)
𝑝 ) − 𝑍

(𝑀)
𝑝

⎞⎟⎟⎠𝑈(𝑀),𝑢
𝑝e𝑖𝛼𝑝𝑥,

which gives the order-zero Fourier multiplier

𝑆(0) =

(
𝜏(𝑀)(−𝑖𝛾

(𝑀)
𝐷 ) + 𝑌(𝑀)

𝜏(𝑀)(−𝑖𝛾
(𝑀)
𝐷 ) − 𝑍(𝑀)

)
,
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NICHOLLS 561

if we demand that, for all 𝑝 ∈ 𝐙,

Δ
(𝑀)
𝑝 ∶= 𝜏(𝑀)(−𝑖𝛾

(𝑀)
𝑝 ) − 𝑍

(𝑀)
𝑝 (A3)

be nonzero.
Remark A2. We note that if we choose

𝑌(𝑀) = 𝜏(𝑀)
(
𝑖𝛾

(𝑀)
𝐷

)
, (A4)

then 𝑆(0) ≡ 0.

A.3 An inner layer
Finally, in an inner layer it is convenient to define ℎ = (𝑎(𝑚) − 𝑎(𝑚+1))∕2 and map (𝑎(𝑚+1), 𝑎(𝑚))

to (−ℎ, ℎ). In this case, it can be shown that the solution of (13a) is

𝑣(𝑚)(𝑥, 𝑧) =

∞∑
𝑝=−∞

{
𝐴𝑝𝐶(𝑧) + 𝐷𝑝𝑆(𝑧)

}
e𝑖𝛼𝑝𝑥, (A5)

where, if

𝛾
(𝑚)
𝑝 = 𝛾

(𝑚)′
𝑝 + 𝑖𝛾

(𝑚)′′
𝑝 , 𝛾

(𝑚)′
𝑝 , 𝛾

(𝑚)′′
𝑝 ∈ 𝐑,

we define

𝐶(𝑧) ∶=

⎧⎪⎨⎪⎩
cos(𝛾

(𝑚)′
𝑝 𝑧), 𝛾

(𝑚)′′
𝑝 = 0,

1, 𝛾
(𝑚)
𝑝 = 0,

cosh(𝛾
(𝑚)′′
𝑝 𝑧), 𝛾

(𝑚)′
𝑝 = 0,

𝑆(𝑧) ∶=

⎧⎪⎨⎪⎩
sin(𝛾

(𝑚)′
𝑝 𝑧)∕𝛾

(𝑚)′
𝑝 , 𝛾

(𝑚)′′
𝑝 = 0,

𝑧, 𝛾
(𝑚)
𝑝 = 0,

sinh(𝛾
(𝑚)′′
𝑝 𝑧)∕𝛾

(𝑚)′′
𝑝 , 𝛾

(𝑚)′
𝑝 = 0.

These definitions can be used to establish that

𝐶′(𝑧) = −
(
𝛾
(𝑚)
𝑝

)2

𝑆(𝑧), 𝑆′(𝑧) = 𝐶(𝑧), (A6a)

𝐶(−ℎ) = 𝐶(ℎ), 𝑆(−ℎ) = −𝑆(ℎ), (A6b)

𝑆(2𝑧) = 2𝑆(𝑧)𝐶(𝑧), 𝐶(2𝑧) = 𝐶2(𝑧) −
(
𝛾
(𝑚)
𝑝

)2

𝑆2(𝑧). (A6c)

Using these, from (A5) we find

𝜕𝑧𝑣
(𝑚)(𝑥, 𝑧) =

∞∑
𝑝=−∞

{
−
(
𝛾
(𝑚)
𝑝

)2

𝐴𝑝𝑆(𝑧) + 𝐷𝑝𝐶(𝑧)

}
e𝑖𝛼𝑝𝑥,
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so that

𝑈(𝑚),𝑢 =

∞∑
𝑝=−∞

{
𝜏(𝑚)(−

(
𝛾
(𝑚)
𝑝

)2

)𝑆(ℎ)𝐴𝑝 + 𝜏(𝑚)𝐶(ℎ)𝐷𝑝

−𝑍
(𝑚)
𝑝 𝐶(ℎ)𝐴𝑝 − 𝑍

(𝑚)
𝑝 𝑆(ℎ)𝐷𝑝

}
e𝑖𝛼𝑝𝑥

=

∞∑
𝑝=−∞

{(
−𝜏(𝑚)

(
𝛾
(𝑚)
𝑝

)2

𝑆(ℎ) − 𝑍
(𝑚)
𝑝 𝐶(ℎ)

)
𝐴𝑝

+
(
𝜏(𝑚)𝐶(ℎ) − 𝑍

(𝑚)
𝑝 𝑆(ℎ)

)
𝐷𝑝

}
e𝑖𝛼𝑝𝑥,

and

𝑈̃(𝑚),𝑢 =

∞∑
𝑝=−∞

{
𝜏(𝑚)(−

(
𝛾
(𝑚)
𝑝

)2

)𝑆(ℎ)𝐴𝑝 + 𝜏(𝑚)𝐶(ℎ)𝐷𝑝

+𝑌
(𝑚)
𝑝 𝐶(ℎ)𝐴𝑝 + 𝑌

(𝑚)
𝑝 𝑆(ℎ)𝐷𝑝

}
e𝑖𝛼𝑝𝑥

=

∞∑
𝑝=−∞

{(
−𝜏(𝑚)

(
𝛾
(𝑚)
𝑝

)2

𝑆(ℎ) + 𝑌
(𝑚)
𝑝 𝐶(ℎ)

)
𝐴𝑝

+
(
𝜏(𝑚)𝐶(ℎ) + 𝑌

(𝑚)
𝑝 𝑆(ℎ)

)
𝐷𝑝

}
e𝑖𝛼𝑝𝑥,

and

𝑈(𝑚),𝓁 =

∞∑
𝑝=−∞

{
−𝜏(𝑚)(−

(
𝛾
(𝑚)
𝑝

)2

)𝑆(−ℎ)𝐴𝑝 − 𝜏(𝑚)𝐶(−ℎ)𝐷𝑝

−𝑌
(𝑚+1)
𝑝 𝐶(−ℎ)𝐴𝑝 − 𝑌

(𝑚+1)
𝑝 𝑆(−ℎ)𝐷𝑝

}
e𝑖𝛼𝑝𝑥

=

∞∑
𝑝=−∞

{(
−𝜏(𝑚)

(
𝛾
(𝑚)
𝑝

)2

𝑆(ℎ) − 𝑌
(𝑚+1)
𝑝 𝐶(ℎ)

)
𝐴𝑝

+
(
−𝜏(𝑚)𝐶(ℎ) + 𝑌

(𝑚+1)
𝑝 𝑆(ℎ)

)
𝐷𝑝

}
e𝑖𝛼𝑝𝑥,

and

𝑈̃(𝑚),𝓁 =

∞∑
𝑝=−∞

{
−𝜏(𝑚)(−

(
𝛾
(𝑚)
𝑝

)2

)𝑆(−ℎ)𝐴𝑝 − 𝜏(𝑚)𝐶(−ℎ)𝐷𝑝

+𝑍
(𝑚+1)
𝑝 𝐶(−ℎ)𝐴𝑝 + 𝑍

(𝑚+1)
𝑝 𝑆(−ℎ)𝐷𝑝

}
e𝑖𝛼𝑝𝑥

=

∞∑
𝑝=−∞

{(
−𝜏(𝑚)

(
𝛾
(𝑚)
𝑝

)2

𝑆(ℎ) + 𝑍
(𝑚+1)
𝑝 𝐶(ℎ)

)
𝐴𝑝
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NICHOLLS 563

+
(
−𝜏(𝑚)𝐶(ℎ) − 𝑍

(𝑚+1)
𝑝 𝑆(ℎ)

)
𝐷𝑝

}
e𝑖𝛼𝑝𝑥.

From the calculations above, we learn that(
𝑈(𝑚),𝑢

𝑝

𝑈(𝑚),𝓁
𝑝

)
= 𝐽

(𝑚)
𝑝

(
𝐴𝑝

𝐷𝑝

)
,

(
ˆ̃𝑈(𝑚),𝑢

𝑝

ˆ̃𝑈(𝑚),𝓁
𝑝

)
= 𝐽

(𝑚)
𝑝

(
𝐴𝑝

𝐷𝑝

)
,

where

𝐽
(𝑚)
𝑝 =

⎛⎜⎜⎜⎝
−𝜏(𝑚)

(
𝛾
(𝑚)
𝑝

)2

𝑆(ℎ) − 𝑍
(𝑚)
𝑝 𝐶(ℎ)𝜏(𝑚)𝐶(ℎ) − 𝑍

(𝑚)
𝑝 𝑆(ℎ)

−𝜏(𝑚)
(
𝛾
(𝑚)
𝑝

)2

𝑆(ℎ) − 𝑌
(𝑚+1)
𝑝 𝐶(ℎ) − 𝜏(𝑚)𝐶(ℎ) + 𝑌

(𝑚+1)
𝑝 𝑆(ℎ)

⎞⎟⎟⎟⎠ ,

𝐽
(𝑚)
𝑝 =

⎛⎜⎜⎜⎝
−𝜏(𝑚)

(
𝛾
(𝑚)
𝑝

)2

𝑆(ℎ) + 𝑌
(𝑚)
𝑝 𝐶(ℎ)𝜏(𝑚)𝐶(ℎ) + 𝑌

(𝑚)
𝑝 𝑆(ℎ)

−𝜏(𝑚)
(
𝛾
(𝑚)
𝑝

)2

𝑆(ℎ) + 𝑍
(𝑚+1)
𝑝 𝐶(ℎ) − 𝜏(𝑚)𝐶(ℎ) − 𝑍

(𝑚+1)
𝑝 𝑆(ℎ)

⎞⎟⎟⎟⎠ .
Thus, for (14), if we express

(
𝑈̃(𝑚),𝑢

𝑈̃(𝑚),𝓁

)
= 𝑅(0)

[(
𝑈(𝑚),𝑢

𝑈(𝑚),𝓁

)]
=

∞∑
𝑝=−∞

𝑅(0)𝑝

(
𝑈(𝑚),𝑢

𝑝

𝑈(𝑚),𝓁
𝑝

)
e𝑖𝛼𝑝𝑥,

then, at each wavenumber 𝑝 ∈ 𝐙, we have

𝑅(0)𝑝𝐽
(𝑚)
𝑝 = 𝐽

(𝑚)
𝑝 ⇒ 𝑅(0)𝑝 = 𝐽

(𝑚)
𝑝 (𝐽

(𝑚)
𝑝 )−1.

Clearly, a crucial calculation is the determinant of 𝐽(𝑚)
𝑝 which, using the identities above, (A6),

can be shown to be

Δ
(𝑚)
𝑝 ∶= det𝐽(𝑚)

𝑝 =

(
(𝜏(𝑚))2

(
𝛾
(𝑚)
𝑝

)2

− 𝑍
(𝑚)
𝑝 𝑌

(𝑚+1)
𝑝

)
𝑆(2ℎ)

+ 𝜏(𝑚)
(
𝑍

(𝑚)
𝑝 + 𝑌

(𝑚+1)
𝑝

)
𝐶(2ℎ), 1 ≤ 𝑚 ≤ 𝑀 − 1. (A7)

If this can be shown to be nonzero then this IIO will be well-defined. Provided that this is true we
can use (A6) to show that

𝑅(𝑚)(0)

[(
𝑈(𝑚),𝑢

𝑈(𝑚),𝓁

)]
=

(
𝑅𝑢𝑢(0) 𝑅𝑢𝓁(0)

𝑅𝓁𝑢(0) 𝑅𝓁𝓁(0)

)[(
𝑈(𝑚),𝑢

𝑈(𝑚),𝓁

)]

=

∞∑
𝑝=−∞

(
𝑅𝑢𝑢
𝑝 (0) 𝑅𝑢𝓁

𝑝 (0)

𝑅𝓁𝑢
𝑝 (0) 𝑅𝓁𝓁

𝑝 (0)

)[(
𝑈(𝑚),𝑢

𝑝

𝑈(𝑚),𝓁
𝑝

)]
e𝑖𝛼𝑝𝑥,
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564 NICHOLLS

where

𝑅𝑢𝑢
𝑝 (0) =

(
(𝜏(𝑚))2

(
𝛾
(𝑚)
𝑝

)2

+ 𝑌
(𝑚)
𝑝 𝑌

(𝑚+1)
𝑝

)
𝑆(2ℎ) + 𝜏(𝑚)

(
𝑌

(𝑚+1)
𝑝 − 𝑌

(𝑚)
𝑝

)
𝐶(2ℎ)

Δ
(𝑚)
𝑝

, (A8a)

𝑅𝑢𝓁
𝑝 (0) =

−𝜏(𝑚)
(
𝑌

(𝑚)
𝑝 + 𝑍

(𝑚)
𝑝

)
Δ

(𝑚)
𝑝

, (A8b)

𝑅𝓁𝑢
𝑝 (0) =

−𝜏(𝑚)
(
𝑌

(𝑚+1)
𝑝 + 𝑍

(𝑚+1)
𝑝

)
Δ

(𝑚)
𝑝

, (A8c)

𝑅𝓁𝓁
𝑝 (0) =

(
(𝜏(𝑚))2

(
𝛾
(𝑚)
𝑝

)2

+ 𝑍
(𝑚)
𝑝 𝑍

(𝑚+1)
𝑝

)
𝑆(2ℎ) + 𝜏(𝑚)

(
𝑍

(𝑚)
𝑝 − 𝑍

(𝑚+1)
𝑝

)
𝐶(2ℎ)

Δ
(𝑚)
𝑝 .

(A8d)

Remark A3. We note that if we select(
(𝜏(𝑚))2

(
𝛾
(𝑚)
𝑝

)2

+ 𝑌
(𝑚)
𝑝 𝑌

(𝑚+1)
𝑝

)
𝑆(2ℎ) + 𝜏(𝑚)

(
𝑌

(𝑚+1)
𝑝 − 𝑌

(𝑚)
𝑝

)
𝐶(2ℎ) = 0, (A9a)

(
(𝜏(𝑚))2

(
𝛾
(𝑚)
𝑝

)2

+ 𝑍
(𝑚)
𝑝 𝑍

(𝑚+1)
𝑝

)
𝑆(2ℎ) + 𝜏(𝑚)

(
𝑍

(𝑚)
𝑝 − 𝑍

(𝑚+1)
𝑝

)
𝐶(2ℎ) = 0, (A9b)

then 𝑅𝑢𝑢
𝑝 (0) ≡ 𝑅𝓁𝓁

𝑝 (0) ≡ 0. This amounts to two equations for four unknowns, however, we antic-
ipate our subsequent developments by recalling that we have already hinted at the choices

𝑍(1) = 𝜏(0)
(
𝑖𝛾

(0)
𝐷

)
, 𝑌(𝑀) = 𝜏(𝑀)

(
𝑖𝛾

(𝑀)
𝐷

)
, (A10a)

cf. (A2) and (A4), so that 𝑄(0) ≡ 𝑆(0) ≡ 0, and endeavor to select 𝑌(𝑚) from 𝑌(𝑚+1) (a backward
recurrence from 𝑌(𝑀)) and 𝑍(𝑚+1) from 𝑍(𝑚) (a forward recurrence from 𝑍(1)). With this in mind
we write these as

𝑌
(𝑚)
𝑝 =

−(𝜏(𝑚))2
(
𝛾
(𝑚)
𝑝

)2

𝑆(2ℎ) − 𝜏(𝑚)𝑌
(𝑚+1)
𝑝 𝐶(2ℎ)

−𝜏(𝑚)𝐶(2ℎ) + 𝑌
(𝑚+1)
𝑝 𝑆(2ℎ)

, 𝑚 = 𝑀 − 1,… , 1, (A10b)

𝑍
(𝑚+1)
𝑝 =

−(𝜏(𝑚))2
(
𝛾
(𝑚)
𝑝

)2

𝑆(2ℎ) − 𝜏(𝑚)𝑍
(𝑚)
𝑝 𝐶(2ℎ)

−𝜏(𝑚)𝐶(2ℎ) + 𝑍
(𝑚)
𝑝 𝑆(2ℎ)

, 𝑚 = 1,… ,𝑀 − 1. (A10c)
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NICHOLLS 565

In order that these recursions can be carried out we assume that, for all 𝑝 ∈ 𝐙,

𝑌
(𝑚+1)
𝑝 𝑆(2ℎ) ≠ 𝜏(𝑚)𝐶(2ℎ), 1 ≤ 𝑚 ≤ 𝑀 − 1, (A11a)

𝑍
(𝑚)
𝑝 𝑆(2ℎ) ≠ 𝜏(𝑚)𝐶(2ℎ), 1 ≤ 𝑚 ≤ 𝑀 − 1. (A11b)

Remark A4. One final comment on these recursion formulas is that overflow can result from
computing the factors 𝑆(2ℎ) and 𝐶(2ℎ) when ℎ becomes large. This can be avoided by rescaling
(A10), for instance, by either 𝑆(2ℎ) or 𝐶(2ℎ).

APPENDIX B: ANALYTICITY OF IIOS
In this section, we state theorems of analyticity for the three IIOs which play a role in this paper.
We do not give proofs as these results are rather standard given the state-of-the-art in the field.55
Theorem B1. Given an integer 𝑠 ≥ 0 and any 𝛿 > 0, if 𝑓(1) ∈ 𝐶𝑠+3∕2+𝛿(𝑑) and

Δ
(0)
𝑝 ≠ 0, ∀ 𝑝 ∈ 𝐙,

cf. (A1), then, for order-𝑟 (𝑟 = 0, 1) Fourier multipliers {𝑌(1), 𝑍(1)}, the series

𝑄(𝜀𝑓(1)) =

∞∑
𝑛=0

𝑄𝑛(𝑓
(1))𝜀𝑛,

converges strongly as an operator from𝐻𝑠(𝑑) to𝐻𝑠(𝑑). More precisely,

‖𝑄𝑛‖𝐻𝑠→𝐻𝑠 ≤ 𝐶𝑄

𝐵𝑛−1
𝑄

(𝑛 + 1)2
, 𝑛 > 0 (B1)

for universal constants 𝐶𝑄, 𝐵𝑄 > 0.

Theorem B2. Given an integer 𝑠 ≥ 0 and any 𝛿 > 0, if 𝑓(𝑀) ∈ 𝐶𝑠+3∕2+𝛿(𝑑) and

Δ
(𝑀)
𝑝 ≠ 0, ∀ 𝑝 ∈ 𝐙,

cf. (A3), then, for order-𝑟 (𝑟 = 0, 1) Fourier multipliers {𝑌(𝑀), 𝑍(𝑀)}, the series

𝑆(𝜀𝑓(𝑀)) =

∞∑
𝑛=0

𝑆𝑛(𝑓
(𝑀))𝜀𝑛,

converges strongly as an operator from𝐻𝑠(𝑑) to𝐻𝑠(𝑑). More precisely

‖𝑆𝑛‖𝐻𝑠→𝐻𝑠 ≤ 𝐶𝑆

𝐵𝑛−1
𝑆

(𝑛 + 1)2
, 𝑛 > 0 (B2)

for universal constants 𝐶𝑆, 𝐵𝑆 > 0.
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566 NICHOLLS

Theorem B3. Given an integer 𝑠 ≥ 0 and any 𝛿 > 0, if 𝑓(𝑚), 𝑓(𝑚+1) ∈ 𝐶𝑠+3∕2+𝛿(𝑑) and

Δ
(𝑚)
𝑝 ≠ 0, ∀ 𝑝 ∈ 𝐙,

cf. (A7), then, for order-𝑟 (𝑟 = 0, 1) Fourier multipliers {𝑌(𝑚), 𝑌(𝑚+1), 𝑍(𝑚), 𝑍(𝑚+1)}, the series

(
𝑅(𝑚),𝑢𝑢(𝜀𝑓(𝑚), 𝜀𝑓(𝑚+1)) 𝑅(𝑚),𝑢𝓁(𝜀𝑓(𝑚), 𝜀𝑓(𝑚+1))

𝑅(𝑚),𝓁𝑢(𝜀𝑓(𝑚), 𝜀𝑓(𝑚+1)) 𝑅(𝑚),𝓁𝓁(𝜀𝑓(𝑚), 𝜀𝑓(𝑚+1))

)

=

∞∑
𝑛=0

(
𝑅

(𝑚),𝑢𝑢
𝑛 (𝑓(𝑚), 𝑓(𝑚+1)) 𝑅

(𝑚),𝑢𝓁
𝑛 (𝑓(𝑚), 𝑓(𝑚+1))

𝑅(𝑚),𝓁𝑢(𝑓(𝑚), 𝑓(𝑚+1)) 𝑅
(𝑚),𝓁𝓁
𝑛 (𝑓(𝑚), 𝑓(𝑚+1))

)
𝜀𝑛

converges strongly as an operator from𝐻𝑠(𝑑) × 𝐻𝑠(𝑑) to𝐻𝑠(𝑑) × 𝐻𝑠(𝑑). More precisely,

max
{‖‖‖𝑅(𝑚),𝑢𝑢

𝑛
‖‖‖𝐻𝑠→𝐻𝑠

,
‖‖‖𝑅(𝑚),𝑢𝓁

𝑛
‖‖‖𝐻𝑠→𝐻𝑠

,
‖‖‖𝑅(𝑚),𝓁𝑢

𝑛
‖‖‖𝐻𝑠→𝐻𝑠

,
‖‖‖𝑅(𝑚),𝓁𝓁

𝑛
‖‖‖𝐻𝑠→𝐻𝑠

}
≤ 𝐶𝑅

𝐵𝑛−1
𝑅

(𝑛 + 1)2
, 𝑛 > 0 (B3)

for universal constants 𝐶𝑅, 𝐵𝑅 > 0.

Remark B1. In previous work,57,61 73 the theorems stated above have typically been phrased as, for
example,

‖𝑄𝑛‖𝐻𝑠→𝐻𝑠 ≤ 𝐶𝑄𝐵
𝑛
𝑄
, 𝑛 ≥ 0. (B4)

This is essentially equivalent to (B1) as, for instance,

𝐶𝐵𝑛 = 𝐶𝐵(𝑛 + 1)2
(

𝐵

𝐵̃

)𝑛−1
𝐵̃𝑛−1

(𝑛 + 1)2
= (𝐶𝐵)(𝑛)

𝐵̃𝑛−1

(𝑛 + 1)2
,

where

(𝑛) ∶= (𝑛 + 1)2
(

𝐵

𝐵̃

)𝑛−1

,

which has a uniquemaximizer, say 𝑛∗, provided that 𝐵̃ > 𝐵. With this maximizer we have

𝐶𝐵𝑛 ≤ 𝐶̃
𝐵̃𝑛−1

(𝑛 + 1)2
, 𝐶̃ ∶= 𝐶𝐵(𝑛∗).

Thus, if (B4) is true, then (B1) holds provided that we choose the constants slightly differently. In
particular, 𝐵̃ > 𝐵 so that the disk of analyticity may be slightly smaller.
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NICHOLLS 567

APPENDIX C: ANALYTICITY OFMAGNITUDE OF THE NORMALS
We now present a brief demonstration of Lemma 1. Since

|||𝑁(𝑚)|||2 = 1 + 𝜀2(𝜕𝑥𝑓)2,

we have (
∞∑

𝑛=0

|||𝑁(𝑚)|||𝑛𝜀𝑛
)(

∞∑
𝑞=0

|||𝑁(𝑚)|||𝑞𝜀𝑞
)

= 1 + 𝜀2(𝜕𝑥𝑓)2,

or

∞∑
𝑛=0

𝜀𝑛

(
𝑛∑

𝑞=0

|||𝑁(𝑚)|||𝑛−𝑞

|||𝑁(𝑚)|||𝑞
)

= 1 + 𝜀2(𝜕𝑥𝑓)2.

Thus, we can deduce that

|||𝑁(𝑚)|||20 = 1,

2
|||𝑁(𝑚)|||0|||𝑁(𝑚)|||1 = 0,

2
|||𝑁(𝑚)|||0|||𝑁(𝑚)|||2 = (𝜕𝑥𝑓)

2
−

|||𝑁(𝑚)|||21,
2
|||𝑁(𝑚)|||0|||𝑁(𝑚)|||𝑛 = −

𝑛−1∑
𝑞=1

|||𝑁(𝑚)|||𝑛−𝑞

|||𝑁(𝑚)|||𝑞, 𝑛>2,

which gives

|||𝑁(𝑚)|||0 = 1, (C1a)

|||𝑁(𝑚)|||1 = 0, (C1b)

|||𝑁(𝑚)|||2 =
1

2
(𝜕𝑥𝑓)2, (C1c)

|||𝑁(𝑚)|||𝑛 = −
1

2

𝑛−1∑
𝑞=1

|||𝑁(𝑚)|||𝑛−𝑞

|||𝑁(𝑚)|||𝑞, 𝑛 > 2. (C1d)

We now work by induction. At order 𝑛 = 0 we have

𝐾 ∶=
|||||||𝑁(𝑚)|||0||||𝐶𝑠+𝑟+3∕2+𝛿

= 1.
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568 NICHOLLS

The cases 𝑛 = 1, 2 can be estimated by finite quantities and so we assume the estimate for 𝑛 < 𝑛̄

(𝑛̄ ≥ 3). We study

|||||||𝑁(𝑚)|||𝑛̄||||𝐶𝑠+𝑟+3∕2+𝛿
≤ 1

2

𝑛̄−1∑
𝑞=1

|||||||𝑁(𝑚)|||𝑛̄−𝑞

||||𝐶𝑠+𝑟+3∕2+𝛿

|||||||𝑁(𝑚)|||𝑞||||𝐶𝑠+𝑟+3∕2+𝛿

≤ 1

2

𝑛̄−1∑
𝑞=1

𝐾
𝐷𝑛̄−𝑞−1

(𝑛̄ − 𝑞 + 1)2
𝐾

𝐷𝑞−1

(𝑞 + 1)2

≤ 𝐾

(
1

2
𝐾

)
𝐷𝑛̄−2

(𝑛̄ + 1)2

𝑛̄−1∑
𝑞=1

(𝑛̄ + 1)2

(𝑛̄ − 𝑞 + 1)2(𝑞 + 1)2

≤ 𝐾

(
1

2
𝐾Σ

)
𝐷𝑛̄−2

(𝑛̄ + 1)2
,

and we are done if 𝐷 > 𝐾Σ∕2.
Regarding |𝑁(𝑚)|−1 we note that

|||𝑁(𝑚)||||||𝑁(𝑚)|||−1
= 1,

so that (
∞∑

𝑛=0

|||𝑁(𝑚)|||𝑛𝜀𝑛
)(

∞∑
𝑞=0

|||𝑁(𝑚)|||−1

𝑞
𝜀𝑞

)
= 1,

or

∞∑
𝑛=0

𝜀𝑛

(
𝑛∑

𝑞=0

|||𝑁(𝑚)|||𝑛−𝑞

|||𝑁(𝑚)|||−1

𝑞

)
= 1.

Thus, we can deduce that

|||𝑁(𝑚)|||0|||𝑁(𝑚)|||−1

0
= 1,

|||𝑁(𝑚)|||0|||𝑁(𝑚)|||−1

𝑛
= −

𝑛−1∑
𝑞=0

|||𝑁(𝑚)|||𝑛−𝑞

|||𝑁(𝑚)|||−1

𝑞
, 𝑛>0,

which gives

|||𝑁(𝑚)|||−1

0
= 1, (C2a)

|||𝑁(𝑚)|||−1

𝑛
= −

𝑛−1∑
𝑞=0

|||𝑁(𝑚)|||𝑛−𝑞

|||𝑁(𝑚)|||−1

𝑞
, 𝑛 > 0. (C2b)
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NICHOLLS 569

Again we use induction. At order 𝑛 = 0 we have

𝐾̃ ∶=
|||||||𝑁(𝑚)|||−1

0

||||𝐶𝑠+𝑟+3∕2+𝛿
= 1.

Assuming the estimate for 𝑛 < 𝑛̄ we study

|||||||𝑁(𝑚)|||−1

𝑛̄

||||𝐶𝑠+𝑟+3∕2+𝛿
≤

𝑛̄−1∑
𝑞=0

|||||||𝑁(𝑚)|||𝑛̄−𝑞

||||𝐶𝑠+𝑟+3∕2+𝛿

|||||||𝑁(𝑚)|||−1

𝑞

||||𝐶𝑠+𝑟+3∕2+𝛿

≤
𝑛̄−1∑
𝑞=0

𝐾
𝐷𝑛̄−𝑞−1

(𝑛̄ − 𝑞 + 1)2
𝐾̃

𝐷̃𝑞−1

(𝑞 + 1)2

≤ 𝐾̃𝐾𝐷
𝐷̃𝑛̄−2

(𝑛̄ + 1)2

𝑛̄−1∑
𝑞=0

(
𝐷

𝐷̃

)𝑛̄−𝑞−2
(𝑛̄ + 1)2

(𝑛̄ − 𝑞 + 1)2(𝑞 + 1)2.

If we now assume that 𝐷̃ > 𝐷 then

|||||||𝑁(𝑚)|||−1

𝑛̄

||||𝐶𝑠+𝑟+3∕2+𝛿
≤ 𝐾̃𝐾𝐷

𝐷̃𝑛̄−2

(𝑛̄ + 1)2

𝑛̄−1∑
𝑞=0

(𝑛̄ + 1)2

(𝑛̄ − 𝑞 + 1)2(𝑞 + 1)2

≤ 𝐾̃(𝐾Σ)𝐷
𝐷̃𝑛̄−2

(𝑛̄ + 1)2
,

and we are done if 𝐷̃ > 𝐷𝐾Σ.
Regarding the forms𝐹(𝑚)

𝑛 [𝑊], 𝐹̃(𝑚)
𝑛 [𝑊],𝐺(𝑚)

𝑛 [𝑊], and 𝐺̃
(𝑚)
𝑛 [𝑊], we focus upon the first of these

as the others can be handled in a similar fashion. We estimate

‖‖‖𝐹(𝑚)
𝑛 [𝑊]

‖‖‖𝐻𝑠
≤ ‖‖‖‖‖−𝑌(𝑚)

[
𝑝(𝑚)|||𝑁(𝑚)|||−1

𝑛
𝑌(𝑚) + 𝑠(𝑚)|||𝑁(𝑚)|||𝑛𝐼

]
(𝑌(𝑚) + 𝑍(𝑚))−1𝑊

‖‖‖‖‖𝐻𝑠

≤ ‖‖‖‖𝑝(𝑚)|||𝑁(𝑚)|||−1

𝑛
𝑌(𝑚)(𝑌(𝑚) + 𝑍(𝑚))−1𝑊

‖‖‖‖𝐻𝑠+𝑟

+
‖‖‖‖𝑠(𝑚)|||𝑁(𝑚)|||𝑛(𝑌(𝑚) + 𝑍(𝑚))−1𝑊

‖‖‖‖𝐻𝑠

≤ |||𝑝(𝑚)||||||||||𝑁(𝑚)|||−1

𝑛

||||𝐶𝑠+𝑟

‖𝑊‖𝐻𝑠+𝑟 +
|||𝑠(𝑚)||||||||||𝑁(𝑚)|||𝑛||||𝐶𝑠

‖𝑊‖𝐻𝑠

≤
{|||𝑝(𝑚)||||||||||𝑁(𝑚)|||−1

𝑛

||||𝐶𝑠+𝑟

+
|||𝑠(𝑚)||||||||||𝑁(𝑚)|||𝑛||||𝐶𝑠

}‖𝑊‖𝐻𝑠+𝑡.

In this final estimate, we see the need for the quantity 𝑡. If we are in Transverse Magnetic (TM)
polarization and 𝑟 = 1 then extra smoothness is required, otherwise there is no need. Finally,
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570 NICHOLLS

using our estimates on |𝑁(𝑚)|𝑛 and |𝑁(𝑚)|−1
𝑛 we have

‖‖‖𝐹(𝑚)
𝑛 [𝑊]

‖‖‖𝐻𝑠
≤

{|||𝑝(𝑚)|||𝐾̃𝑁

𝐷̃𝑛−1
𝑁

(𝑛 + 1)2
+

|||𝑠(𝑚)|||𝐾𝑁

𝐷𝑛−1
𝑁

(𝑛 + 1)2

}‖𝑊‖𝑠+𝑡,

and we are done if

𝐷𝐹 > max {𝐷̃𝑁, 𝐷𝑁}, 𝐾𝐹 > 2max
{|||𝑝(𝑚)|||𝐾̃𝑁,

|||𝑠(𝑚)|||𝐾𝑁

}
.

APPENDIX D: ANALYTICITY OF THE COMPONENTS OF THE LINEAR OPERATOR
The proof of Lemma 2 is elementary and simply requires an analysis of the forms (24). For brevity,
we focus upon the single term

𝐃
(𝑚)
𝑛 =

(
0 𝐹

(𝑚)
𝑛 + 𝑅

(𝑚),𝑢𝑢
𝑛

𝑅
(𝑚−1),𝓁𝓁
𝑛 𝐺

(𝑚)
𝑛

)
+

𝑛∑
𝑞=0

(
0 𝐹̃

(𝑚)
𝑛−𝑞𝑅

(𝑚),𝑢𝑢
𝑞

0 𝐺̃
(𝑚)
𝑛−𝑞𝑅

(𝑚),𝑢𝑢
𝑞

)
(D1)

for 2 ≤ 𝑚 ≤ 𝑀 − 1, cf. (24d). Regarding the estimate, we consider its action upon a generic func-
tion pair𝐖 = (𝑊𝓁,𝑊𝑢) ∈ 𝐻𝑠 × 𝐻𝑠+𝑡. (We note that these operators act on lower/upper traces at
the 𝑚th interface rather than upon upper/lower traces on a layer.) This results in the following
calculation:

‖‖‖𝐃(𝑚)
𝑛 𝐖

‖‖‖𝐻𝑠×𝐻𝑠
≤

‖‖‖‖‖‖(𝐹(𝑚)
𝑛 + 𝑅

(𝑚),𝑢𝑢
𝑛 )𝑊𝑢 +

𝑛∑
𝑞=0

𝐹̃
(𝑚)
𝑛−𝑞𝑅

(𝑚),𝑢𝑢
𝑞 𝑊𝑢

‖‖‖‖‖‖𝐻𝑠

+

‖‖‖‖‖‖𝑅(𝑚−1),𝓁𝓁
𝑛 𝑊𝓁 + 𝐺

(𝑚)
𝑛 𝑊𝑢 +

𝑛∑
𝑞=0

𝐺̃
(𝑚)
𝑛−𝑞𝑅

(𝑚),𝑢𝑢
𝑞 𝑊𝑢

‖‖‖‖‖‖𝐻𝑠

≤ ‖‖‖𝐹(𝑚)
𝑛 𝑊𝑢‖‖‖𝐻𝑠

+
‖‖‖𝑅(𝑚),𝑢𝑢

𝑛 𝑊𝑢‖‖‖𝐻𝑠
+

𝑛∑
𝑞=0

‖‖‖𝐹̃(𝑚)
𝑛−𝑞𝑅

(𝑚),𝑢𝑢
𝑞 𝑊𝑢‖‖‖𝐻𝑠

+
‖‖‖𝑅(𝑚−1),𝓁𝓁

𝑛 𝑊𝓁‖‖‖𝐻𝑠
+

‖‖‖𝐺(𝑚)
𝑛 𝑊𝑢‖‖‖𝐻𝑠

+

𝑛∑
𝑞=0

‖‖‖𝐺̃(𝑚)
𝑛−𝑞𝑅

(𝑚),𝑢𝑢
𝑞 𝑊𝑢‖‖‖𝐻𝑠.

Using the analyticity result for the IIO 𝑅(𝑚), Theorem B3, and Lemma 1, we have

‖‖‖𝐃(𝑚)
𝑛 𝐖

‖‖‖𝐻𝑠×𝐻𝑠
≤ 𝐾𝐹

𝐷𝑛−1
𝐹

(𝑛 + 1)2
‖𝑊𝑢‖𝐻𝑠+𝑡 + 𝐶𝑅

𝐵𝑛−1
𝑅

(𝑛 + 1)2
‖𝑊𝑢‖𝐻𝑠

+

𝑛∑
𝑞=0

𝐾̃𝐹

𝐷̃
𝑛−𝑞−1
𝐹

(𝑛 − 𝑞 + 1)2
𝐶𝑅

𝐵
𝑞−1
𝑅

(𝑞 + 1)2
‖𝑊𝑢‖𝐻𝑠+𝑡

+ 𝐶𝑅

𝐵𝑛−1
𝑅

(𝑛 + 1)2
‖‖‖𝑊𝓁‖‖‖𝐻𝑠

+ 𝐾𝐺

𝐷𝑛−1
𝐺

(𝑛 + 1)2
‖𝑊𝑢‖𝐻𝑠+𝑡
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NICHOLLS 571

+

𝑛∑
𝑞=0

𝐾̃𝐺

𝐷̃
𝑛−𝑞−1

𝐺

(𝑛 − 𝑞 + 1)2
𝐶𝑅

𝐵
𝑞−1
𝑅

(𝑞 + 1)2
‖𝑊𝑢‖𝐻𝑠+𝑡.

Proceeding

‖‖‖𝐃(𝑚)
𝑛 𝐖

‖‖‖𝐻𝑠×𝐻𝑠
≤ 𝐾𝐹‖𝑊𝑢‖𝐻𝑠+𝑡

𝐷𝑛−1
𝐹

(𝑛 + 1)2
+ 𝐶𝑅‖𝑊𝑢‖𝐻𝑠

𝐵𝑛−1
𝑅

(𝑛 + 1)2

+ 𝐾̃𝐹𝐶𝑅‖𝑊𝑢‖𝐻𝑠+𝑡

𝐵𝑛−2
𝐷

(𝑛 + 1)2

×

𝑛∑
𝑞=0

(
𝐷̃𝐹

𝐵𝐷

)𝑛−𝑞−1(
𝐵𝑅

𝐵𝐷

)𝑞−1
(𝑛 + 1)2

(𝑛 − 𝑞 + 1)2(𝑞 + 1)2

+ 𝐶𝑅
‖‖‖𝑊𝓁‖‖‖𝐻𝑠

𝐵𝑛−1
𝑅

(𝑛 + 1)2
+ 𝐾𝐺‖𝑊𝑢‖𝐻𝑠+𝑡

𝐷𝑛−1
𝐺

(𝑛 + 1)2

+ 𝐾̃𝐺𝐶𝑅‖𝑊𝑢‖𝐻𝑠+𝑡

𝐵𝑛−2
𝐷

(𝑛 + 1)2

×

𝑛∑
𝑞=0

(
𝐷̃𝐺

𝐵𝐷

)𝑛−𝑞−1(
𝐵𝑅

𝐵𝐷

)𝑞−1
(𝑛 + 1)2

(𝑛 − 𝑞 + 1)2(𝑞 + 1)2

≤ 𝐶𝐷‖𝐖‖𝐻𝑠×𝐻𝑠+𝑡

𝐵𝑛−1
𝐷

(𝑛 + 1)2
,

provided that

𝐵𝐷 ≥ max {𝐵𝑅, 𝐷𝐹, 𝐷̃𝐹, 𝐷𝐺, 𝐷̃𝐺},

and

𝐶𝐷 ≥ 6max {𝐾𝐹, 𝐶𝑅, 𝐾̃𝐹𝐶𝑅Σ, 𝐶𝑅, 𝐾𝐺, 𝐾̃𝐺𝐶𝑅Σ}.

APPENDIX E: TWO LAYERS
To illustrate our method, we consider the case of two layers (𝑀 = 1) where the governing equa-
tions, (15), simplify to (

𝐼 𝐹 + (𝐼 + 𝐹̃)𝑆

𝑄 (𝐼 + 𝐺) + 𝐺̃𝑆

)(
𝑈

𝑊

)
=

(
𝜁

𝜓

)
,

where

𝑈 = 𝑈(0),𝓁, 𝑊 = 𝑈(1),𝑢, 𝜁 = 𝜁(1), 𝜓 = 𝜓(1),

𝐹 = 𝐹(1), 𝐹̃ = 𝐹̃(1), 𝐺 = 𝐺(1), 𝐺̃ = 𝐺̃(1),
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572 NICHOLLS

𝑌 = 𝑌(1), 𝑍 = 𝑍(1), 𝜏(𝑢) = 𝜏(0), 𝜏(𝑤) = 𝜏(1).

Following the guidance of Remarks A1 and A2, we choose 𝑍 = 𝜏(𝑢)(𝑖𝛾
(𝑢)
𝐷 ) and 𝑌 = 𝜏(𝑤)(𝑖𝛾

(𝑤)
𝐷 ),

where

𝛾
(𝑢)
𝐷 = 𝛾

(0)
𝐷 , 𝛾

(𝑤)
𝐷 = 𝛾

(1)
𝐷 ,

so that 𝑄(0) ≡ 𝑆(0) ≡ 0. With this choice

𝑌𝑝 + 𝑍𝑝 = 𝜏(𝑤)(𝑖𝛾
(𝑤)
𝑝 ) + 𝜏(𝑢)(𝑖𝛾

(𝑢)
𝑝 ),

and, as this is never zero, Hypothesis 2 is satisfied. We can also see that

Δ
(𝑢)
𝑝 = −𝜏(𝑢)(𝑖𝛾

(𝑢)
𝑝 ) − 𝑌𝑝 = −𝜏(𝑢)(𝑖𝛾

(𝑢)
𝑝 ) − 𝜏(𝑤)(𝑖𝛾

(𝑤)
𝑝 ) = −(𝑍𝑝 + 𝑌𝑝),

and

Δ
(𝑤)
𝑝 = 𝜏(𝑤)(−𝑖𝛾

(𝑤)
𝑝 ) − 𝑍𝑝 = 𝜏(𝑤)(−𝑖𝛾

(𝑤)
𝑝 ) − 𝜏(𝑢)(𝑖𝛾

(𝑢)
𝑝 ) = −(𝑌𝑝 + 𝑍𝑝),

and, since these are also nonzero, Hypothesis 3 is also true. Meanwhile, Hypothesis 4 is vacuous
and thus unnecessary. Finally, Hypothesis 5 requires investigation of the condition that (𝐼 + 𝐺0)

be invertible. In the absence of a current this is always true as 𝐺0 ≡ 0. For a nonzero current, this
can be accomplished by studying the symbol of (𝐼 + 𝐺0) in Fourier space and demanding

(𝑌𝑝 + 𝑍𝑝) + 𝑍𝑝

[
𝑝(1)𝑌𝑝 + 𝑠(1)

] ≠ 0,

since 𝑌𝑝 + 𝑍𝑝 ≠ 0. This formula is quite complicated even with the simple Drude model we have
selected, (4), and we leave this as a constraint to be verified on a case by case basis. Thus, if we
simply choose the interface 𝑓(𝑥) ∈ 𝐶𝑠+𝑟+3∕2+𝛿 wewill satisfy Hypothesis 1 and Theorem 2 assures
us a unique solution which depends analytically upon 𝜀. In the presence of a two-dimensional
material, this is a novel result.
We can pursue these calculations further by noting that in the flat-interface case (𝑔 ≡ 0 and

𝜕𝑁 = 𝜕𝑧), the governing equations become(
𝐼 𝐹

0 𝐼 + 𝐺

)(
𝑈

𝑊

)
=

(
𝜁

𝜓

)
.

In this simplified case, we know that

𝑢(𝑥, 𝑧) = 𝑅e𝑖𝛼𝑥+𝑖𝛾(𝑢)𝑧, 𝑤(𝑥, 𝑧) = 𝑇e𝑖𝛼𝑥−𝑖𝛾(𝑤)𝑧, (E1)

so that, since

𝑌e𝑖𝛼𝑥 = 𝜏(𝑤)(𝑖𝛾(𝑤))e𝑖𝛼𝑥, 𝑍e𝑖𝛼𝑥 = 𝜏(𝑢)(𝑖𝛾(𝑢))e𝑖𝛼𝑥,
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NICHOLLS 573

we have

𝑢(𝑥, 0) = 𝑅e𝑖𝛼𝑥, 𝜕𝑧𝑢(𝑥, 0) = (𝑖𝛾(𝑢))𝑅e𝑖𝛼𝑥,

𝑤(𝑥, 0) = 𝑇e𝑖𝛼𝑥, 𝜕𝑧𝑤(𝑥, 0) = (−𝑖𝛾(𝑤))𝑇e𝑖𝛼𝑥,

𝜉(𝑥) = −e𝑖𝛼𝑥, 𝜈(𝑥) = (𝑖𝛾(𝑢))e𝑖𝛼𝑥,

𝑌𝜉 = 𝜏(𝑤)(𝑖𝛾(𝑤))(−e𝑖𝛼𝑥), 𝑍𝜉 = 𝜏(𝑢)(𝑖𝛾(𝑢))(−e𝑖𝛼𝑥).

From this,

𝑈 = −𝜏(𝑢)(𝜕𝑧𝑢)(𝑥, 0) − 𝑌𝑢(𝑥, 0) =
[
−𝜏(𝑢)(𝑖𝛾(𝑢)) − 𝜏(𝑤)(𝑖𝛾(𝑤))

]
𝑅e𝑖𝛼𝑥,

𝑊 = 𝜏(𝑤)(𝜕𝑧𝑤)(𝑥, 0) − 𝑍𝑤(𝑥, 0) =
[
𝜏(𝑤)(−𝑖𝛾(𝑤)) − 𝜏(𝑢)(𝑖𝛾(𝑢))

]
𝑇e𝑖𝛼𝑥,

𝜁 = −𝜏(𝑢)𝜈 − 𝑌𝜉 =
[
−𝜏(𝑢)(𝑖𝛾(𝑢)) − 𝜏(𝑤)(𝑖𝛾(𝑤))(−1)

]
e𝑖𝛼𝑥,

𝜓 = −𝜏(𝑢)𝜈 + 𝑍𝜉 =
[
−𝜏(𝑢)(𝑖𝛾(𝑢)) + 𝜏(𝑢)(𝑖𝛾(𝑢))(−1)

]
e𝑖𝛼𝑥,

so that(
1 𝐹

0 (1 + 𝐺)

)([
−𝜏(𝑢)(𝑖𝛾(𝑢)) − 𝜏(𝑤)(𝑖𝛾(𝑤))

]
𝑅[

𝜏(𝑤)(−𝑖𝛾(𝑤)) − 𝜏(𝑢)(𝑖𝛾(𝑢))
]
𝑇

)
=

([
−𝜏(𝑢)(𝑖𝛾(𝑢)) − 𝜏(𝑤)(𝑖𝛾(𝑤))(−1)

][
−𝜏(𝑢)(𝑖𝛾(𝑢)) + 𝜏(𝑢)(𝑖𝛾(𝑢))(−1)

]) ,

or (
1 𝐹

0 (1 + 𝐺)

)(
𝑅

𝑇

)
=

1

𝜏(𝑢)𝛾(𝑢) + 𝜏(𝑤)𝛾(𝑤)

(
𝜏(𝑢)𝛾(𝑢) − 𝜏(𝑤)𝛾(𝑤)

2𝜏(𝑢)𝛾(𝑢)

)
,

which, when 𝐹 ≡ 𝐺 ≡ 0, deliver the Fresnel coefficients

𝑅 =
𝜏(𝑢)𝛾(𝑢) − 𝜏(𝑤)𝛾(𝑤)

𝜏(𝑢)𝛾(𝑢) + 𝜏(𝑤)𝛾(𝑤)
, 𝑇 =

2𝜏(𝑢)𝛾(𝑢)

𝜏(𝑢)𝛾(𝑢) + 𝜏(𝑤)𝛾(𝑤).

APPENDIX F: THREE LAYERS
We close with the three-layer model (𝑀 = 2) where the governing equations, (15), reduce to

⎛⎜⎜⎜⎜⎝
𝐼 𝐹𝑢 + (𝐼 + 𝐹̃𝑢)𝑅

𝑢𝑢 (𝐼 + 𝐹̃𝑢)𝑅
𝑢𝓁 0

𝑄 (𝐼 + 𝐺𝑢) + 𝐺̃𝑢𝑅
𝑢𝑢 𝐺̃𝑢𝑅

𝑢𝓁 0

0 0 𝐼 𝐹𝓁 + (𝐼 + 𝐹̃𝓁)𝑆

0 𝑅𝓁𝑢 𝑅𝓁𝓁 (𝐼 + 𝐺𝓁) + 𝐺̃𝓁𝑆

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
𝑈

𝑉𝑢

𝑉𝓁

𝑊

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
𝜁𝑢
𝜓𝑢

𝜁𝓁
𝜓𝓁

⎞⎟⎟⎟⎟⎠
,

and

𝑈 = 𝑈(0),𝓁, 𝑉𝑢 = 𝑈(1),𝑢, 𝑉𝓁 = 𝑈(1),𝓁, 𝑊 = 𝑈(2),𝑢,

𝜁𝑢 = 𝜁(1), 𝜓𝑢 = 𝜓(1), 𝜁𝓁 = 𝜁(2), 𝜓𝓁 = 𝜓(2),
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574 NICHOLLS

𝐹𝑢 = 𝐹(1), 𝐹̃𝑢 = 𝐹̃(1), 𝐹𝓁 = 𝐹(2), 𝐹̃𝓁 = 𝐹̃(2),

𝐺𝑢 = 𝐺(1), 𝐺̃𝑢 = 𝐺̃(1), 𝐺𝓁 = 𝐺(2), 𝐺̃𝓁 = 𝐺̃(2)

𝑌(𝑢) = 𝑌(1), 𝑍(𝑢) = 𝑍(1), 𝑌(𝓁) = 𝑌(2), 𝑍(𝓁) = 𝑍(2),

𝜏(𝑢) = 𝜏(0), 𝜏(𝑣) = 𝜏(1), 𝜏(𝑤) = 𝜏(2).

Heeding Remarks A1 and A3, we choose {𝑌(𝑢), 𝑌(𝓁)} such that

𝑌
(𝓁)
𝑝 = 𝜏(𝑤)(𝑖𝛾

(𝑤)
𝑝 ),

𝑌
(𝑢)
𝑝 =

−(𝜏(𝑣))2(𝛾
(𝑣)
𝑝 )2𝑆(2ℎ) − 𝜏(𝑣)𝑌

(𝓁)
𝑝 𝐶(2ℎ)

−𝜏(𝑣)𝐶(2ℎ) + 𝑌
(𝓁)
𝑝 𝑆(2ℎ)

=
−(𝜏(𝑣))2(𝛾

(𝑣)
𝑝 )2𝑇(2ℎ) − 𝜏(𝑣)𝜏(𝑤)(𝑖𝛾

(𝑤)
𝑝 )

−𝜏(𝑣) + 𝜏(𝑤)(𝑖𝛾
(𝑤)
𝑝 )𝑇(2ℎ)

,

where

𝛾
(𝑢)
𝑝 = 𝛾

(0)
𝑝 , 𝛾

(𝑣)
𝑝 = 𝛾

(1)
𝑝 , 𝛾

(𝑤)
𝑝 = 𝛾

(2)
𝑝 ,

and

𝑇(𝑧) ∶=
𝑆(𝑧)

𝐶(𝑧)
=

⎧⎪⎨⎪⎩
tan(𝛾

(𝑚)′
𝑝 𝑧)∕𝛾

(𝑚)′
𝑝 , 𝛾

(𝑚)′′
𝑝 = 0,

𝑧, 𝛾
(𝑚)
𝑝 = 0,

tanh(𝛾
(𝑚)′′
𝑝 𝑧)∕𝛾

(𝑚)′′
𝑝 , 𝛾

(𝑚)′
𝑝 = 0,

so that 𝑆(0) ≡ 𝑅𝑢𝑢(0) ≡ 0. With Remarks A2 and A3 in mind, we select {𝑍(𝑢), 𝑍(𝓁)} such that

𝑍
(𝑢)
𝑝 = 𝜏(𝑢)(𝑖𝛾

(𝑢)
𝑝 ),

𝑍
(𝓁)
𝑝 =

−(𝜏(𝑣))2(𝛾
(𝑣)
𝑝 )2𝑆(2ℎ) − 𝜏(𝑣)𝑍

(𝑢)
𝑝 𝐶(2ℎ)

−𝜏(𝑣)𝐶(2ℎ) + 𝑍
(𝑢)
𝑝 𝑆(2ℎ)

=
−(𝜏(𝑣))2(𝛾

(𝑣)
𝑝 )2𝑇(2ℎ) − 𝜏(𝑣)𝜏(𝑢)(𝑖𝛾

(𝑢)
𝑝 )

−𝜏(𝑣) + 𝜏(𝑢)(𝑖𝛾
(𝑢)
𝑝 )𝑇(2ℎ)

,

so that 𝑄(0) ≡ 𝑅𝓁𝓁(0) ≡ 0.
We now need to verify the hypotheses of Theorem 2:

1. The first, Hypothesis 1, can be satisfied by simply assuming that the interface deformations,
𝑓(𝑢) and 𝑓(𝓁), are sufficiently smooth.
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NICHOLLS 575

2. The second requires that we determine the invertibility of (𝑌(𝑢) + 𝑍(𝑢)) and (𝑌(𝓁) + 𝑍(𝓁)). For
this, we require

𝑌
(𝑢)
𝑝 + 𝑍

(𝑢)
𝑝 =

−(𝜏(𝑣))2(𝛾
(𝑣)
𝑝 )2𝑇(2ℎ) − 𝜏(𝑣)𝜏(𝑤)(𝑖𝛾

(𝑤)
𝑝 )

−𝜏(𝑣) + 𝜏(𝑤)(𝑖𝛾
(𝑤)
𝑝 )𝑇(2ℎ)

+ 𝜏(𝑢)(𝑖𝛾
(𝑢)
𝑝 ) ≠ 0, (F1a)

𝑌
(𝓁)
𝑝 + 𝑍

(𝓁)
𝑝 = 𝜏(𝑤)(𝑖𝛾

(𝑤)
𝑝 ) +

−(𝜏(𝑣))2(𝛾
(𝑣)
𝑝 )2𝑇(2ℎ) − 𝜏(𝑣)𝜏(𝑢)(𝑖𝛾

(𝑢)
𝑝 )

−𝜏(𝑣) + 𝜏(𝑢)(𝑖𝛾
(𝑢)
𝑝 )𝑇(2ℎ)

≠ 0. (F1b)

3. The third mandates an investigation of

Δ
(𝑢)
𝑝 = −𝜏(𝑢)(𝑖𝛾

(𝑢)
𝑝 ) − 𝑌

(𝑢)
𝑝 ≠ 0, (F2a)

Δ
(𝑤)
𝑝 = 𝜏(𝑤)(−𝑖𝛾

(𝑤)
𝑝 ) − 𝑍

(𝓁)
𝑝 ≠ 0, (F2b)

Δ
(𝑣)
𝑝 =

(
(𝜏(𝑣))2(𝛾

(𝑣)
𝑝 )2 − 𝑍

(𝑢)
𝑝 𝑌

(𝓁)
𝑝

)
𝑆(2ℎ) + 𝜏(𝑣)

(
𝑍

(𝑢)
𝑝 + 𝑌

(𝓁)
𝑝

)
𝐶(2ℎ) ≠ 0. (F2c)

4. The fourth hypothesis asks that we verify that the choices for𝑌(𝑢) and 𝑍(𝓁) can bemade. These
require that, for all 𝑝 ∈ 𝐙,

𝑌
(𝓁)
𝑝 𝑆(2ℎ) ≠ 𝜏(𝑣)𝐶(2ℎ), (F3a)

𝑍
(𝑢)
𝑝 𝑆(2ℎ) ≠ 𝜏(𝑣)𝐶(2ℎ). (F3b)

5. Finally, Hypothesis 5 requires that both (𝐼 + 𝐺𝑢) and (𝐼 + 𝐺𝓁) be invertible. In the absence of
a current, each of these is trivially invertible as they become the identity. In the presence of a
current, these can be guaranteed by demanding that

(𝑌
(𝑢)
𝑝 + 𝑍

(𝑢)
𝑝 ) + 𝑍

(𝑢)
𝑝

[
𝑝(𝑢)𝑌

(𝑢)
𝑝 + 𝑠(𝑢)

] ≠ 0, (F4a)

(𝑌
(𝓁)
𝑝 + 𝑍

(𝓁)
𝑝 ) + 𝑍

(𝓁)
𝑝

[
𝑝(𝓁)𝑌

(𝓁)
𝑝 + 𝑠(𝓁)

] ≠ 0. (F4b)

These are quite intricate formulas even with the simple Drude model we have selected, (4),
and we leave these as a constraints to be verified based upon the configuration at hand.

Remark F1. Unfortunately, these four sets of constraints, (F1), (F2), (F3), and (F4), are demands
upon the grating structure (layer thickness, ℎ, infinitesimal period, 𝑑, permittivities, 𝜖(𝑚), and
currents, 𝜎̂(𝑚)) and the illumination (expressed in 𝛾(𝑚)) that mandate complicated transcenden-
tal functions be nonzero on the integer lattice; an unfathomable labyrinth for even themost gifted
Number Theorist.While this state of affairs is not ideal, these do present only nine explicitly verifi-

 14679590, 2021, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sapm

.12389 by U
niversity O

f Illinois, W
iley O

nline L
ibrary on [10/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



576 NICHOLLS

able conditions which one could readily check once the physical specifications of the problem are
made. It is obvious that this extends rather readily to the (𝑀 + 1)-layer case save that the number
of equations grows linearly in 𝑀. Of course, any well-posedness results established for the gov-
erning equations as a system of Partial Differential Equations77 or Integral Equations65 could also
be used to verify these conditions.
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