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In this contribution we study the spectral stability problem for periodic traveling
gravity-capillary waves on a two-dimensional fluid of infinite depth. We use
a perturbative approach that computes the spectrum of the linearized water
wave operator as an analytic function of the wave amplitude/slope. We extend
the highly accurate method of Transformed Field Expansions to address
surface tension in the presence of both simple and repeated eigenvalues, then
numerically simulate the evolution of the spectrum as the wave amplitude
is increased. We also calculate explicitly the first nonzero correction to the
flat-water spectrum, which we observe to accurately predict the stability (or
instability) for all amplitudes within the disk of analyticity of the spectrum.
With this observation in mind, the disk of analyticity of the flat state spectrum
is numerically estimated as a function of the Bond number and the Bloch
parameter, and compared to the value of the wave slope at the first finite
amplitude eigenvalue collision.

1. Introduction

Free-surface potential flows arise in a wide array of fluid mechanical problems of
engineering interest, for instance, tsunami propagation, the motion of sandbars,
and pollutant transport. Due to their ability to propagate energy, momentum,
and passive scalars (e.g., pollutants) around the world’s oceans, the traveling
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wave solutions are of great interest, and the spectral stability of such solutions
under the influence of gravity and capillarity is the topic of this contribution.

This problem has a rich history of both numerical and asymptotic
investigation, and the Annual Review of Fluid Mechanics is filled with articles
summarizing various aspects of the field (see [1] for a particularly relevant and
well-written example). The field appears to have begun with Stokes who first
expanded periodic traveling water waves as a function of the wave slope in
1845 [2], an approach which has since become commonplace [see, e.g., 3–7].

Regarding dynamic stability of these waveforms, real progress began in the
1960s with the discovery of the Benjamin–Feir instability [8] and, of particular
relevance to this study, the amplitude expansions which led to the development
of Resonant Interaction Theory (RIT) by Phillips [9] and Benney [10] (for an
excellent review of the history of RIT see [11]). In RIT, the dynamics of the
solution are predicted, asymptotically in the wave slope, by equations for the
amplitudes of a small set of resonantly interacting frequencies, called triad
or quartet equations (based on the number of frequencies in the interaction).
For traveling water waves, RIT predicts the existence and growth rates of
instabilities at frequencies which satisfy such interactions. Numerical studies
have computed instabilities in the neighborhood of such resonant interactions,
for example, the Class I and Class II instabilities of [12]. Our goal in this
paper is to verify numerically that these results are reproducible in the full
Euler equations of free-surface ideal fluid flow under the influence of gravity
and capillarity.

To our knowledge, all stability studies to date concerning traveling wave
solutions of the full water wave problem are numerical in nature. Further,
almost all of these entail the linearization of the water wave equations about a
fixed traveling wave solution followed by the numerical approximation of the
resulting eigenvalue problem. Please see the classic results of [13, 14] and the
more recent computations of [15, 16] for these spectral stability analyses.

By contrast to these “Direct Numerical Simulations” (DNS), the authors
have embarked on an investigation of spectral stability using a rather different
philosophy. In short, it was shown in [17] that the spectrum of the water
wave operator linearized about the analytic family of traveling waves [7, 18] is
also analytic so that the eigenpair (λ,w) can be expanded in the strongly
convergent Taylor series

λ = λ(ε) =
∞∑

n=0

λnε
n, w = w(x ; ε) =

∞∑
n=0

wn(x)εn.

These {λn, wn} have been approximated using the stable and highly (spectrally)
accurate [19] method of “Transformed Field Expansions” (TFE), which was
used to such great effect by one of the authors with F. Reitich [18, 7] to
simulate the underlying traveling waves. We refer the interested reader to
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[7] in particular for demonstrations of the capabilities of the TFE approach
versus other Boundary Perturbation Methods including its favorable operation
counts, lack of substantial numerical ill-conditioning, and applicability to large
traveling wave profiles via numerical analytic continuation.

To put the present contribution into context we summarize our previous
results:

1. In [17] it was demonstrated that the spectrum of the water wave operator
linearized about periodic traveling waves is analytic as a function of the
wave height/slope parameter ε in the absence of resonance (i.e., repeated
eigenvalues).

2. In [20] a TFE implementation of the theorem in [17] was used to numerically
study the “evolution” of the spectrum for two-dimensional gravity waves.
The role of singularities (in the Taylor series) in development of instability
from the simple eigenvalue case was investigated.

3. In [21] some conjectures regarding singularities in the spectrum and
instability were resolved by comparing with a DNS of the spectrum in the
gravity wave case.

4. In [22] the TFE method was extended to the crucially important case
of repeated eigenvalues. As we see, RIT correctly tells us that these
configurations give rise to the “first” instabilities, those which arise at
smallest wave slope.

5. In [19] a rigorous numerical analysis of the TFE recursions was studied
in a wide array of contexts, including the spectral stability problem we
consider here.

In this study we augment this line of results by:

1. Performing a nontrivial generalization of the TFE approach to spectral
stability which accommodates effects of capillarity,

2. Computing explicitly the first nonzero correction to the spectrum, λ1 or
λ2, from an alternate formulation of the potential flow equations. As we
will see, this recovers the predictions of RIT and serves as the basis for
comparison with TFE simulations,

3. Estimating the disk of analyticity of the spectrum {λ,w} = {λ(ε), w(x ; ε)}
from our numerical computations using both (1) the growth rates of the
relevant Taylor coefficients and (2) the first uncanceled pole of a Padé
approximant,

4. Comparing these results on the disk of analyticity to the first finite amplitude
eigenvalue collision using a quadratic approximation to the spectrum (with
exactly calculated correction λ1 or λ2). Here we observe that the spectrum
loses analyticity in the neighborhood of the Wilton ripple at Bond number
0.5, as well in the neighborhood of the Benjamin–Feir and Class I instability
curves.
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The paper is organized as follows: In Section 2 we discuss a general
framework for conducting a spectral stability analysis which not only introduces
notation, but also discusses the concept of Bloch periodicity (Section 2.1)
and our analyticity results for traveling waves and the spectrum of the
corresponding linearized water wave operator (Section 2.2). In Section 3 we
present details specific to the water wave problem, with the TFE method
discussed in Section 3.1, the DNS in Section 3.2, and the cubic model equation
in Section 3.3. It is in this cubic model that the connection between resonances
and the structure of the spectrum is presented. We discuss triad resonances in
Section 3.4, degenerate quartet resonances in Section 3.5, and nondegenerate
quartet resonances in Section 3.6. In Section 4 we present our numerical
results including the convergence rate of the method (Section 4.1), the disk of
analyticity of the spectrum (Section 4.2), as well as the computed instabilities
(Section 4.3). Conclusions and future areas of research are discussed in
Section 5.

2. Spectral stability: a general framework

Before discussing the specifics of the water wave problem, we begin with the
general framework we employ for our spectral stability study. Consider the
generic dynamical system

∂tv = H (v), v = v(x, t),

where H may depend on x ∈ Rd and t . Changing to a reference frame traveling
uniformly with velocity c ∈ Rd we derive the evolution equation

∂tv + c · ∂xv = H (v). (1)

Suppose that we have steady (i.e., traveling wave) solutions to (1), {c̄, v̄(x)},
which satisfy

c̄ · ∂x v̄ = H (v̄) (2)

and study the evolution of the spectral stability form

v(x, t) = v̄(x) + δeλtw(x), δ � 1.

The parameter λ dictates the linear stability of the traveling wave {c̄, v̄} (e.g.,
if the real part of λ is positive then the wave is linearly unstable) while the
function w dictates the spatial dependence of the perturbation. Inserting this
form into (1), canceling terms at order zero in δ, equating linear terms, and
dropping terms of higher order, we derive the spectral stability problem

[Hv(c̄, v̄) − c̄ · ∂x ]w = λw,
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which we abbreviate as

Aw = λw, A = A(c̄, v̄). (3)

2.1. Bloch periodicity

Now, a question of fundamental importance arises: Which boundary conditions
should w satisfy? If, as we assume here, the traveling wave is periodic then it is
natural to assume that w is as well. However, this restrictive (superharmonic)
condition will only tell us part of the story [13] and we need a more general
class to recover instabilities, e.g., the Benjamin–Feir [8], to waves of longer
periods [14]. It is standard in these stability studies to consider Bloch (quasi)
periodicity [23, 24]: If v̄ is periodic with respect to the lattice �,

v̄(x + γ ) = v̄(x), ∀γ ∈ �,

then we impose the condition

w(x + γ ) = eip·γw(x), p ∈ Rd, ∀γ ∈ �.

We note that this permits perturbations of quite general periodicities (e.g.,
if d = 1 and waves are 2π -periodic, then p = 1/2 permits w(x), which is
4π -periodic) and even those that are not periodic. Fortunately, it is well
known [23] that, due to periodicity of the spectrum, it suffices to consider a
bounded subset of the Bloch (quasi) periods p. For instance, for 2π -periodic
functions (d = 1) one only need consider the set {0 ≤ p < 1} of Bloch (quasi)
periods.

2.2. Analytic dependence of the spectrum

At this point we diverge from other numerical studies of spectral stability
for water waves. Given a computed traveling wave solution pair {c̄, v̄}, these
discretize the eigenvalue problem (3) for this particular traveling wave, then
compute the spectrum via a standard eigensolver (e.g., the QR algorithm). Not
only must this be recomputed for each waveform (giving rise to a linear cost in
the number of traveling waves simulated), but also any information regarding
how the spectrum evolved from the previous state is lost.

By contrast, we use the fact that the traveling waves come in analytic
families [7, 18]

{c̄, v̄} = {c̄, v̄(x)}(ε) = {c0, 0} +
∞∑

n=1

{cn, vn(x)}εn,
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so that the linear operator A can be expanded

A = A(ε) =
∞∑

n=0

Anε
n.

We posit that the spectrum is also analytic in the same parameter (see [17] for
a rigorous justification) so that the following are strongly convergent

{λ,w} = {λ,w(x)}(ε) =
∞∑

n=0

{λn, wn(x)}εn.

Inserting these into (3) and equating at like orders we find

(A0 − λ0)wn = − (An − λn)w0 −
n−1∑
m=1

(An−m − λn−m)wm .

At order n = 0 we compute {λ0, w0}, which delivers infinitesimal spectral
stability, while at higher orders we find λn such that the right-hand side is in
the range of A0 − λ0 I , and then solve for wn . In this way we can compute the
entire spectrum for all values of ε simultaneously. This not only saves us from
recomputing for every new choice of {c̄, v̄} (there is no extra cost associated
with simulating additional traveling waves), but it also yields full information
about the evolution of the spectrum as the wave height/slope is increased.

3. Spectral stability of traveling water waves

We apply our perturbative approach to two, equivalent, formulations of the
potential flow Equations (4). The two formulations are representative of two
popular methods used to address the difficulty of the unknown domain in this
free boundary problem. In the first, a combination of a transparent boundary
condition and a domain flattening change of variables is used resulting in
the TFE method (Section 3.1). This TFE approach (justified in [17] and,
numerically, in [19]) is used to numerically calculate the spectrum, as in
[20–22]. In the second formulation (Sections 3.2 & 3.3), the free surface
boundary conditions of (4) are expanded about the undisturbed depth, and
the problem is then reformulated in terms of surface variables using the
Dirichlet–Neumann operator (DNO) as in [25–27]. This latter model is used to
calculate exactly the leading order correction to the flat state spectrum, λ1 or λ2.
A brief derivation of both formulations in presented in the following sections.

The widely accepted model for the motion of waves on the surface of a
large body of water are the Euler equations of ideal fluid flow [28]

φxx + φzz = 0, z < εη, (4a)
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φz → 0, z → −∞, (4b)

ηt + εηxφx = φz, z = εη, (4c)

φt + ε

2

(
φ2

x + φ2
z

)+ η − σ∂x

(
∂xη

(1 + ε2(∂xη)2)1/2

)
= 0, z = εη, (4d)

where η is the free-surface displacement, φ is the velocity potential, and
σ = γ /(gL2) is the Bond number which compares surface tension to gravity
forces (γ is the surface tension coefficient, g is the gravitational constant, and
L is a typical length scale). These equations describe the motion of an inviscid
incompressible fluid on deep water undergoing an irrotational motion. System
(4) has been nondimensionalized as in [22, 29] and we assume that the wave
slope, ε = a/L is small (L is chosen in the nondimensionalization so that the
waves have spatial period 2π ).

The potential flow equations support traveling solutions which depend
analytically on ε (see [18] and the references therein), moreover, in the case
of simple eigenvalues, the spectral stability problem has eigenvalues and
eigenfunctions which also depend analytically on ε [20]. In [22] the authors
extended this approach to the case of eigenvalues of higher multiplicity and
used this to numerically compute the spectrum of traveling waves as a function
of ε. In this work we extend the method to the case of nonzero surface tension.

To describe the TFE approach, we recall the standard (see, e.g., [22])
truncation of the water wave domain to {−a < z < εη}, and the equivalent
formulation of the governing Equations (4):

φxx + φzz = 0, −a < z < εη, (5a)

φz − T [φ] = 0, z = −a, (5b)

ηt + εηxφx = φz, z = εη, (5c)

φt + ε

2

(
φ2

x + φ2
z

)+ η − σ∂x

(
∂xη

(1 + ε2(∂xη)2)1/2

)
= 0, z = εη, (5d)

where the order one Fourier multiplier (a DNO at y = a) is given by

T [ψ(x)] = T

[∑
k

ψ̂keikx

]
:=
∑

k

|k| ψ̂keikx ;

here ψ̂k is the kth Fourier coefficient of ψ(x)

ψ(x) =
∑

k

ψ̂keikx .
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3.1. Transformed field expansions

To specify the TFE recursions we consider the domain-flattening change of
variables

x ′ = x, z′ = a

(
z − εη

a + εη

)
,

which are known as σ -coordinates [30] in atmospheric science and the C-method
[31] in the electromagnetic theory of gratings. Defining the transformed
potential

u(x ′, z′) := φ

(
x ′,

(a + εη)z′

a
+ εη

)
,

(5) becomes, upon dropping primes,

uxx + uzz = F(x, z; u, εη), −a < z < 0, (6a)

uz − T [u] = J (x ; u, εη), z = −a, (6b)

ηt − uz = Q(x ; u, εη), z = 0, (6c)

ut + η − σηxx = R(x ; u, εη), z = 0, (6d)

where the precise forms for F , J , Q, and R are reported in [29]. The important
feature of these inhomogeneities is that if u = O(ε) (noting that we already
have εη = O(ε)) then they are O(ε2).

This TFE formulation now fits into the framework of Section 2 with the
choice

v(x, t) = (η(x, t), u(x, 0, t))T ,

and H , implicitly defined by (6). The forms required to produce H and Hv

have been faithfully recorded in our previous work [17, 20–22] and we direct
the motivated reader to the (tedious) details provided therein. However, as we
mentioned in the Introduction, in this work we extend this TFE approach to
include surface tension effects. In (6) this term appears in R alone as

R = Rg + σC(∂xη) − σηxx ,

where Rg refers to the inhomogeneity in the gravity wave problem, and C , is
defined by

C(∂xη) := ∂x

[
∂xη√

1 + (∂xη)2

]
.
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Next we define

Z (∂xη) := 1√
1 + (∂xη)2

so that

C(∂xη) = ∂x [(∂xη) Z (∂xη)] . (7)

We note the following convenient formula which will be useful later:

Z2 + (∂xη)2 Z2 = 1. (8)

For the perturbative TFE method we will need the nth Taylor coefficients
of both C and its first variation with respect to η in the ζ direction (the
η-component of w) which, from (7), can be expressed as

Cη(∂xη){ζ } = ∂x [(∂xζ ) Z (η)] + ∂x

[
(∂xη) Zη(∂xη){ζ }] , (9)

where, from (8),

Zη(∂xη){ζ } + (∂xη)2 Zη(∂xη){ζ } = −Z (∂xη)(∂xζ ). (10)

Based upon the expansions of η and ζ ,

εη =
∞∑

n=1

ζn(x)εn, ζ =
∞∑

n=0

ζn(x)εn,

we seek to find the terms in the Taylor series expansion of C

C = C(η; ε) =
∞∑

n=1

Cn(x)εn,

and Cη

Cη = Cη(η; ε) =
∞∑

n=0

Cη,n(x)εn.

To derive the {Cn,Cη,n} we will utilize the expansions of Z

Z = Z (η; ε) =
∞∑

n=0

Zn(x)εn,

and Zη

Zη = Zη(η; ε) =
∞∑

n=0

Zη,n(x)εn,

and the coefficients {Zn, Zη,n}.
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To begin, we note that from (7)

Cn(x) =
n∑

l=1

∂x [(∂xηl) Zn−l] ,

while from (9)

Cη,n =
n∑

l=0

∂x [(∂xζl) Zn−l] +
n∑

l=1

∂x [(∂xηl)Zη,n−l].

Thus, we are done if we can identify forms for the Zn and Zη,n . For the former
we appeal to the formulas from Akers & Nicholls [29], which can be derived
from (8), and give Z0 = 1 and (for n > 0)

n∑
l=0

Zn−l Zl +
n−2∑
m=0

m∑
q=0

q∑
l=0

(∂xηn−m−1)(∂xηm+1−q)Zq−l Zl = 1.

This leads to

2Z0 Zn = −
n−1∑
l=1

Zn−l Zl −
n−2∑
m=0

m∑
q=0

q∑
l=0

(∂xηn−m−1)(∂xηm+1−q)Zq−l Zl,

and

Zn = −1

2

n−1∑
l=1

Zn−l Zl − 1

2

n−2∑
m=0

m∑
q=0

q∑
l=0

(∂xηn−m−1)(∂xηm+1−q)Zq−l Zl .

On the other hand, from (10) we have

Zη,n +
n−2∑
m=0

m∑
q=0

(∂xηn−m−1)(∂xηm+1−q)Zη,q = −
n−1∑
m=0

m∑
q=0

(∂xηn−m)(∂xζm−q)Zq

giving

Zη,n = −
n−2∑
m=0

m∑
q=0

(∂xηn−m−1)(∂xηm+1−q)Zη,q −
n−1∑
m=0

m∑
q=0

(∂xηn−m)(∂xζm−q)Zq .

3.2. Direct numerical simulation

In an effort to validate this TFE procedure, in Section 4 we compare TFE
simulations to those of a competing method for calculating the spectrum: A
DNS method outlined in [21]. This approach, which computes the spectrum for
discrete values of the wave height/slope parameter ε, uses Zakharov’s surface
formulation of the water wave problem [32] in terms of variables η(x, t) and

ξ (x, t) := φ(x, η(x, t), t),
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the surface velocity potential. This formulation was made more explicit by
Craig & Sulem [33], with the introduction of the DNO,

G(η)ξ := (∂zφ − (∂xη)∂xφ)z=η ,

which maps Dirichlet data, ξ , to Neumann data at the interface η. In terms of
this operator the evolution Equations (4) can be equivalently stated as

∂tη = G(η)ξ, (11a)

∂tξ = −η + σηxx − A(η)B(η, ξ ), (11b)

where

A(η) = 1

2(1 + (∂xη)2)
, (11c)

B(η, ξ ) = (∂xξ )2 − (G(η)ξ )2 − 2(∂xη)(∂xξ )G(η)ξ

+ σ∂x

(
∂xη

(1 + ε2(∂xη)2)1/2
− ∂xη

)
. (11d)

This now fits into our general framework of Section 2 with the choice

v(x, t) = (η(x, t), ξ (x, t))T ,

and

H (v) =
(

G(η)ξ
−η + σηxx − A(η)B(η, ξ )

)

We refer the interested reader to [21] for the full details, including the
fundamental difficulty of computing the first variation of the DNO (see also
[34, 35]).

3.3. A cubic model equation

To further investigate the capabilities of the TFE formulation for simulating
the spectrum of the linearized water wave operator, we also compute exactly
the first nonzero correction to the flat state spectrum. For this, it is much
more convenient to use a cubic approximation to the system (4), see [27].
This approximation (equivalent to the order we require) is based on a Taylor
expansion of the free-surface boundary conditions about the undisturbed depth,
resulting in two new free surface boundary conditions at z = 0:

ηt − φz + ε∂x

( ∞∑
n=0

εn

(n + 1)!
ηn+1∂n

z ∂xφ

)
= 0, at z = 0, (12a)



92 B. Akers and D. P. Nicholls

φt + η − σ∂x

(
ηx(

1 + εη2
x

)1/2

)
+

∞∑
n=1

εn

n!
ηn∂n

z φt + ε

2

( ∞∑
n=0

εn

n!
ηn∂n

z φ
2
x

)

+ ε

2

( ∞∑
n=0

εn

n!
ηn∂n

z φ
2
z

)
= 0, at z = 0. (12b)

The vertical dependence of the potential can then be solved for as a function of
the value of the potential on the free surface, called the surface trace, similar
to the procedure for computing the z-derivatives on the artificial boundary of
the previous section. Keeping only cubic terms yields

ηt − L�+ (η�x )x + 1
2

(
η2L�x

)
x

= 0, (13a)

�t + Sη + (
1
2 (�x )2 + 1

2 (L�)2 + ηL�t

)
+ 1

2

(
σ (ηx )3

x + 2η(�xL�x −�xxL�) − η2�xxt

) = 0. (13b)

Where the operators S and L are defined in terms of their Fourier transform
Ŝ(k) = 1 + σk2 and L̂(k) = |k|, and �(x, t) ≡ φ(x, 0, t) is the trace of the
potential at the undisturbed depth. Once again, we appeal to Section 2 with

v = (η,�)T

and H = (Hη, H�), where

Hη = L�− (η�x )x − 1
2 (η2L�x )x ,

H� = −Sη − (
1
2 (�x )2 + 1

2 (L�)2 + ηL�t

)
− 1

2

(
σ (ηx )3

x + 2η(�xL�x −�xxL�) − η2�xxt

)
.

As we produce rather explicit formulas for the next–order corrections to the
terms in the expansion of the spectrum, we write this out (with an abuse of
notation by setting the perturbation w = (ζ, v)) in full as

λζ + cζx − Lv + Q1(η,�, ζ, v)x + C̃1(η,�, ζ, v) = 0, (14a)

λv + cvx + Sζ + Q2(η,�, ζ, v)x + C̃2(η,�, ζ, v) = 0, (14b)

where the Q j are the linearizations of the quadratic terms and the C̃ j are the
linearizations of the cubic terms in (13), whose formulas are given by

Q1 = (ζ�x + ηvx )x , (15a)

C̃1 = (ηζL�x )x + 1
2

(
η2Lvx

)
x
, (15b)

Q2 = 3
2σ
(
ζxη

2
x

)
x
+ ζ (�xL�x −�xxL�) − cηζ�xxx , (15c)

C̃2 = η(�xLvx −�xxLv + vxL�x − vxxL�) − 1
2η

2(λ+ c∂x )vxx . (15d)



Deep 2-D Gravity-Capillary Water Waves 93

To begin, a perturbation solution is first computed in Equation (13), via a
third-order Stokes expansion as in [22], yielding the traveling Stokes wave

η = εeix + ε2 E2e2i x + . . . ∗, (16a)

u = εic0eix + ε2 F2e2i x + . . .+ ∗, (16b)

c = c0 + εc1 + ε2c2 + . . . , (16c)

where ∗ refers to the complex conjugate of the preceding terms. The coefficients
in (16) are known, see [36, 37], and have been confirmed via rederivation to be

c0 = √
1 + σ,

c1 = 0,

c2 =
(

3σ
√

1 + σ

1 − 2σ
+ 2

√
1 + σ − 3σ

4
√

1 + σ

)
,

E2 = 1 + σ

1 − 2σ
,

F2 = 3iσ
√

1 + σ

1 − 2σ
.

(17)

Notice that the coefficients c2, E2, and F2 are singular when σ = 0.5. This
value of σ corresponds to a Wilton ripple, in which the leading order wave is
in resonance with its first harmonic, and is excluded from this work [38]. Later
we will observe the singularity of the coefficients c2, E2, and F2 manifested in
a singularity of the spectrum. The spectrum is then determined by substitution
of the Stokes wave (16) and the ansatz

ζ = ζ0 + εζ1 + ε2ζ2 + . . . , (18a)

v = v0 + εv1 + ε2v2 + . . . , (18b)

λ = λ0 + ελ1 + ε2λ2 + . . . , (18c)

into Equation (14). The corrections λ1 and λ2 have been computed when λ0

has multiplicity one (where ζ0 is supported at wavenumber k1) and when λ0

has multiplicity two (where ζ0 is supported at wavenumber k1 and k2). When
the kernel of the linear operator has dimension two, there are three cases,
which we categorize by the type of resonance (according to RIT) that occurs
between the frequency of the Stokes wave k0 = 1 and the frequencies of the
perturbation k1 and k2.
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The flat state has eigenvalues, λ0(k) = iω[k] − ic0k, where ω[k j ]2 =
|k j |(1 + σk2

j ). Notice that there are two choices of sign for ω[k]; it need not be
positive. A quick calculation reveals that if λ(k1) = λ(k2), then

ω[k1] − ω[k2] = c0(k1 − k2).

As frequencies with different Bloch parameter are treated separately, we need
only consider collisions between eigenvalues which differ by an integer, and
because k0 = 1 and ω[k0] = c0, this condition can be written as

k1 − k2 − nk0 = 0 and ω[k1] − ω[k2] − nω[k0] = 0, (19)

thus the existence of a flat state eigenvalue collision implies the existence of a
pair of frequencies which are resonant with n instances of the Stokes wave
frequency k0. Because the sign on ω is arbitrary, and ω depends only on the
modulus of k and not its sign, it is common to see the equations in (19) with
many choices of signs, at the cost of possible redefinitions of the sign of the k j

and ω[k j ] [39]. In the following sections we observe that the finite amplitude
behavior of these collisions depends critically on the value of n. We begin with
the case where the wavenumbers of the perturbations differ by one, the triad
case.

3.4. Triad resonances

According to RIT, if three wavenumbers satisfy

k1 − k2 = k0 and ω[k1] − ω[k2] = ω[k0],

then they are said to take part in a resonant triad [39]. In this case, the leading
correction to the flat state spectrum is O(ε), and has been computed

λ1 = ±1

2

√(
A+

2 − ω[k1]

1 + σk2
1

B+
2

)(
A−

1 − ω[k2]

1 + σk2
2

B−
1

)
, (20)

where the k j are labeled so that k1 = k2 + 1 and the A±
j and B±

j are the
projections of the forcing terms in the equation for ζ2 and v2 on the modes
ei(k j ±1)x :

A+
1 = −i(k1 + 1)

(
k1ω[k1]

|k1| + c0

)
,

A−
1 = −i(k1 − 1)

(
k1ω[k1])

|k1| + c0

)
,
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Figure 1. (a) The Bloch parameters, p, for which triad resonances (of the flat state
configuration) occur plotted as a function of the Bond number, σ . (b) The first correction λ1,
which is purely real, to the flat state spectrum at the triad-resonant wavenumbers. This figure
is colour online.

A+
2 = −i(k2 + 1)

(
k2ω[k2])

|k2| + c0

)
,

A−
2 = −i(k2 − 1)

(
k2ω[k2])

|k2| + c0

)
,

B+
1 = −

(
(1 + σ )(|k1| − k1)

ω[k1]

c0|k1| + ω2[k1] + (1 + σ )

)
,

B−
1 = −

(
(1 + σ )(−|k1| − k1)

ω[k1]

c0|k1| + ω2[k1] + (1 + σ )

)
,

B+
2 = −

(
(1 + σ )(|k2| − k2)

ω[k2]

c0|k2| + ω2[k2] + (1 + σ )

)
,

B−
2 = −

(
(1 + σ )(−|k2| − k2)

ω[k2]

c0|k2| + ω2[k2] + (1 + σ )

)
.

For triad resonances, which only occur for σ sufficiently large, the argument
of the term under the square root in Equation (20) determines stability. We
observe instability for a branch of triads, satisfying Hasselman’s criterion [40]
whose Bond numbers are in the range 2 < σ � 45 (see Figure 1). Using the
classification scheme of Henderson and Hammack [11], the traveling solutions
in this range are considered capillary waves.

3.5. Degenerate quartets

If the waves do not participate in a triad interaction then λ1 = 0. In this case,
the wavenumbers are part of a quartet and the leading correction to the flat state
spectrum is O(ε2). Generally, finding solutions to Equation (19) with the same
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Bloch parameter is nontrivial, however one can always find a quartet, by looking
at the case when n = 0. We refer to this solution as the degenerate quartet,

k0 − k0 + k1 − k1 = 0 with ω[k0] − ω[k0] + ω[k1] − ω[k1] = 0, (21)

in which the wave at k1 interacts with itself. Equation (21) is satisfied trivially
at every value of k1. It is this interaction that determines the leading order
correction to λ0 at every simple eigenvalue, as well as at repeated eigenvalues
where the frequencies in the null space have difference larger than twice the
Stokes wave frequency; here k0 = 1 thus the latter case refers to waves with
|k2 − k1| > 2. The reason that these two cases have the same asymptotics is
that perturbation frequencies which differ by more than twice the Stokes
wave frequency do not interact with each other to O(ε2). In carrying out the
asymptotics, the leading order eigenfunction, at O(1), is supported at k1 and
k2, the next order eigenfunction, at O(ε), gains support at k1 ± 1 and k2 ± 1,
etc. At O(εn) then, the frequencies of the perturbation can only interact if their
difference is less than n. As a result to O(ε2), eigenvalues of multiplicity two
whose frequencies differ by more than two behave as two decoupled simple
eigenvalues.

For these degenerate quartets, as well as for simple eigenvalues, the leading
order correction to the flat state spectrum is

λ2 = iω[k1]

2
(
1 + σk2

1

)T1 − 1

2
t1, (22)

where t1 is the coefficient of the harmonic eik1x in the ζ3 equation and T1 is the
coefficient of eik1x in the v3 equation, whose formulas are

t1 = ik1 (c2 + i(k1 + 1)�1 + i(k1 − 1)�2 − γ1c0 − γ2c0 − 2c0 − k1ω[k1]) ,

T1 =
(

−c2k1ω[k1]

|k1| − i(k1 + 1)c0�1 − i |k1 + 1|c0�1 + |k1 + 1|(λ0 + ic0

× (k1 + 1))�1 − γ1(1 + σ ) − i(k1 − 1)c0�2 + i |k1 − 1|c0�2

+ |k1 − 1|(λ0 + ic0(k1 − 1))�2 − γ2(1 + σ ) − 3σk2
1

+ 2(1 + σ ) + 2k1ω[k1]c0 + 2
k1c0ω[k1]

|k1| − k2
1ω[k1]2

|k1|
)
.

The coefficients γ j and � j are the coefficients of ei(k1±1)x in the solution ζ2

and v2, respectively, with formulas(
γ1

�1

)
= 1

(ω[k1] + ω[1])2 − ω2[k1 + 1])

×
(

i(ω[k1] + ω[k0])A+
1 + |k1 + 1|B+

1

i(ω[k1] + ω[k0])B+
1 − (1 + σ (k1 + 1)2)A+

1

)
,
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(
γ2

�2

)
= 1

(ω[k1] + ω[1])2 − ω2[k1 − 1])

×
(

i(ω[k1] − ω[k0])A−
1 + |k1 − 1|B−

1

i(ω[k1] − ω[k0])B−
1 − (1 + σ (k1 − 1)2)A−

1

)
.

A brief inspection reveals that λ2 in Equation (22) is pure imaginary, thus
neither simple eigenvalues nor repeated eigenvalues whose frequencies differ
by more than two lead to instability to this order. The Class II instabilities of
MacKay and Saffman [12] fall into this latter category, and thus do not occur, at
least to O(ε2), for two-dimensional deep-water gravity-capillary waves. This
result fits with the observation that for gravity waves the Class II instability is
fundamentally three dimensional [41]. It is worth noting however that although
in this case λ2 is pure imaginary for all values of p and σ , the disk of
analyticity of the spectrum is vanishingly small in the neighborhood of σ = 0.

3.6. Quartet resonances

Quartets which may lead to instability, to O(ε2), occur at repeated eigenvalues
where the frequencies differ by exactly twice the Stokes wave frequency, 2k0,

k1 − k2 = 2k0 with ω[k1] + ω[k2] = 2ω[k0].

For these quartets, the correction to the flat state eigenvalue is determined
from the root of a quadratic,

λ2 = 1
2 (P2,2 + P1,1) ± 1

2

√
(P2,2 − P1,1)2 + 4P1,2 P2,1, (23)

where the Pj, j are defined as

P1,1 = iω[k1]

2
(
1 + σk2

1

)T1 − 1

2
t1,

P1,2 = iω[k1]

2
(
1 + σk2

1

)T4 − 1

2
t4,

P2,1 = iω[k2]

2
(
1 + σk2

2

)T5 − 1

2
t5,

P2,2 = iω[k2]

2
(
1 + σk2

2

)T2 − 1

2
t2.

The Pj, j are computed by enforcing solvability of the equations for ζ3 and
v3, i.e., that the forcing terms in the equations for v3 and ζ3 are orthogonal
the null space of the linear operator. It is simple to see that these Pj, j are
pure imaginary, and thus stability is determined, to O(ε2), by the discriminant
in Equation (23). The t4, t5 are the coefficients of the harmonics ei(k2+2)x

and ei(k1−2) in the equation for ζ3, while T4 and T5 are the corresponding
coefficients of these same harmonics in the equation for v3. These coefficients
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have been computed to be

t4 = i(k2 + 2)

(
i(k2 + 1)�3 − γ3c0 + 2i F2 − E2

k2ω[k2]

|k2| − c0 − 1

2
ω[k2]k2

)
,

t5 = i(k1 − 2)

(
i(k1 − 1)�2 − γ2c0 − 2i F̄2 − Ē2

k1ω[k1]

|k1| − c0 − 1

2
ω[k1]k1

)
,

T4 = (−i(k2 + 1)�3c0 + i |k2 + 1|�3c0 + |k2 + 1|(λ0 + ic0(k2 + 1))�3

− (1 + σ )γ3 − 2k2 F2(iω[k2])

|k2| + 2iω[k2]F2 − E2ω[k2]2 + 4ic0 F2

+ 3

2
σk2(k2 + 2) − (1 + σ )k2ω[k2]c0 − ω[k2]c0 + k2c0ω[k2]

|k2|

− k2
2ω[k2]c0

|k2| − k2
2ω[k2]2

2|k2|
)
,

T5 = (−i(k1 − 1)c0�2 − i |k1 − 1|c0�2 + |k1 − 1|(λ0 + ic0(k1 − 1))�2

− (1 + σ )γ2 + 2ik1 F̄2ω[k1]

|k1| + 2i F̄2ω[k1] − Ē2ω[k1]2 − 4ic0 F̄2

+ 3

2
σk1(k1 − 2) − (1 + σ )k1ω[k1]c0 + ω[k1]c0 + k1c0ω[k1]

|k1|

+ k2
1c0ω[k1]

|k1| − k2
1ω[k1]2

2|k1|
)
.

The coefficients γ j and � j are the coefficients of ei(k2±1)x in the solution ζ2

and v2, respectively, with formulas(
γ3

�3

)
= 1

(ω[k2] + ω[k0])2 − ω2[k2 + 1]

×
(

i(ω[k2] + ω[k0])A+
2 + |k2 + 1|B+

2
i(ω[k2] + ω[k0])B+

2 − (1 + σ (k2 + 1)2)A+
2

)
,(

γ4

�4

)
= 1

(ω[k2] − ω[k0])2 − ω2[k2 − 1]

×
(

i(ω[k2] − ω[k0])A−
2 + |k2 − 1|B−

2
i(ω[k2] − ω[k0])B−

2 − (1 + σ (k2 − 1)2)A−
2

)
.

Excepting that here the formulas are more complicated, these corrections are
determined by the same procedure as that in [22], in which the calculation of
λ2 without surface tension appears.

In the TFE method of Section 3.1, the solvability conditions to find the first
nonzero λn are the same as in the above exact calculation. The solvability
conditions for all later orders values of λn are linear, and the equations can
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be solved to arbitrary order thus, formally, a solution exists. In the next
section we present the numerical results of this method, including the radius of
convergence of the series expansion of the eigenvalues.

4. Numerical results

In this section we summarize the results of numerical simulations based on three
approaches to the spectral stability problem for gravity-capillary water waves:

1. A numerical method based on the TFE formulation of the potential flow
equations is used to compute the corrections to the spectrum to arbitrary
perturbation order N (Section 3.1);

2. A DNS based upon Zakharov and Craig & Sulem’s formulation of the
water wave problem (Section 3.2);

3. A computation of the first nonzero correction to the spectrum, directly
from the cubic truncation (13) (Section 3.3).

In regards to the first approach, and as we mentioned earlier, we have
extended the numerical method developed in [7, 22, 29] to include both
surface tension and generic eigenvalues collisions (where the eigenvalues have
multiplicity two in the flat state configuration). Furthermore, the domain of
applicability of the method is examined by approximating the disk of analyticity
of the spectrum. Within this the convergence rate of the numerical method is
validated at resonant spectral values. The spectrum itself is examined, with
particular focus on the role of resonances in determining spectral stability.

4.1. A brief convergence study

Before embarking upon this study we investigate the consistency of our
numerical TFE approach with respect to the DNS algorithm we have devised.
In Figure 2 we present both the growth rates of the corrections λn at a triad
resonant eigenvalue (where λ0 has multiplicity two and the functions in the
null space have frequencies which differ by one), and the error of the TFE
method for fixed ε (ε = 0.05). The error is measured by comparing the partial
sum of the eigenvalue corrections to the calculations of the nonperturbative
DNS calculation, ∣∣∣∣∣

n∑
m=0

λmε
m − λDNS

∣∣∣∣∣ .
As is typical inside the disk of analyticity, the convergence is exponential and
only a small number of terms are required to achieve machine precision (e.g.,
in this figure it is sufficient to choose N ≈ 10).
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Figure 2. Left-hand side: The size of the corrections λn are plotted as a function of the
perturbation order n for an eigenvalue which is of multiplicity two for the flat state
configuration, (σ, p) = (2, 0.5). Right-hand side: The difference between the TFE calculation
and the DNS calculation of the spectrum plotted as a function of perturbation order for
ε = 0.05. This figure is colour online.
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Figure 3. Left-hand side: Two simple pure imaginary eigenvalues collide at finite wave
slope ε ≈ 0.016. This spectrum is calculated at Bond number σ = 0.12 and Bloch parameter
p ≈ 0.1035, where the flat state has a quartet resonant eigenvalue λ0 ≈ −0.431i . The circles
are DNS approximations and the dotted lines are results of a TFE simulation. Right-hand side:
Real eigenvalues bifurcate from zero at ε ≈ 0.016, the result of the collision the eigenvalues
in the left panel. Although the TFE method can predict such eigenvalue collisions, it cannot
compute “beyond” them as there is a loss of analyticity in ε. This figure is colour online.

4.2. Domain of applicability of the method

In addition to considering the convergence at fixed ε, it is interesting to consider
the performance of this method as a function of ε with fixed perturbation order
N . In Figure 3, we observe the fit of this method to simple eigenvalues at
nonzero Bond number, σ = 0.12. Notice that the TFE calculation does an
excellent job of approximating the spectrum all the way to eigenvalue collision.
The configuration of Figure 3, σ = 0.12 and p ≈ 0.1035, is a resonant one,
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Figure 4. The disk of analyticity of the spectrum is numerically estimated as a function of
the Bond number σ and the Bloch parameter p. On the left, the growth rate of the Taylor
coefficients is used to estimate the disk of analyticity. On the right, the first noncanceled pole
of the Padé expansion is used as an estimate of the disk of analyticity. Triad resonances are
marked with dashed white curves, and each of these corresponds to an instability (in the
neighborhood of which the disk of analyticity vanishes). The additional triad resonance curves
in the left plot do not lead to instability; these triad resonances occur at a collision of
eigenvalues of the same Krein signature. The disk of analyticity of the spectrum also vanishes
at σ = 0.178 (the minimum of the group velocity) and σ = 0.5 (Wilton’s Ripple) and near
p = 0 outside of 0.178 < σ < 0.5 due to the Benjamin–Feir instability. For σ < 0.5 the
dependence on p is also complicated by the accumulation of nonisolated resonances and the
higher order Wilton ripples at σ = 1/n. This figure is colour online.

in that there is an eigenvalue collision at ε = 0, λ0 ≈ 0.431i . However, this
collision is not responsible for the loss of analyticity of the spectrum.

For σ < 0.5, resonances accumulate in the p–σ plane, and both resonances
and near-resonances are common. The configuration (p, σ ) ≈ (0.12, 0.1035)
has a near resonant pair of eigenvalues with λ0 ≈ 0.0425i and λ0 ≈ 0.0435i ,
which lead to a finite amplitude collision and the loss of analyticity of the
spectrum. The remainder of the spectrum remains analytic for much larger ε.
In this work we consider the disk of analyticity of the entire spectrum, and
in later presentations of such we present only the smallest ε for which any
eigenvalue loses analyticity. Thus the TFE method can, in fact, compute much
of the spectrum to larger values of ε than this smallest value (reported in
Figure 4).

4.3. Disk of analyticity

A novel feature of the TFE method, relative to traditional computations of the
spectrum, is the ability to study the disk of analyticity of the spectrum (see
Figure 4). To generate Figure 4, the Bloch parameter and Bond number were
discretized using uniform spacings �p = 0.01 and �σ = 0.12. For every
value of p and σ sampled to create the plot, all of the eigenvalues in the flat
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Figure 5. The smallest value of ε for which there is a collision of eigenvalues is calculated
using the quadratic approximation λ ≈ λ0 + ε2λ2 about simple eigenvalues in the p–σ plane.
This approximation predicts collisions of eigenvalues near resonance curves. Four isolated
resonances are marked with white dotted lines. The lowermost dashed white curve is an
opposite Krein signature quintet resonance. The uppermost dashed curve is an opposite Krein
signature triad resonance. The middle two dashed curves are triad resonances of eigenvalues
with the same Krein signature. Small amplitude eigenvalue collisions are also predicted for
σ < 0.5, where the resonances accumulate, and near p = 0, the Benjamin–Feir instability.
This figure is colour online.

state spectrum are simple. In fact, repeated eigenvalues happen on a set of
measure zero. The disk of analyticity was then estimated in two ways: First, by
estimating the growth rate of the Taylor series coefficients λn , and second, by
the first noncanceled pole of the diagonal Padé approximant. (Both estimates
were made using N = 24 terms.)

4.4. Results on stability

It is well known that small ε instabilities occur near resonant configurations
(see [1]). Moreover, instabilities arise from resonant configurations only with
opposite Krein signature [12]. This necessary condition is known to be
insufficient for general collisions [20, 22], but is both necessary and sufficient
for triads [40].

In Figure 5 four resonant curves are marked with dashed lines. These
curves are, from top to bottom, three resonant triads and a resonant quintet.
The uppermost curve is a resonant triad of opposite Krein signature, which
results in instability, often referred to as a Class I instability [12]. The leading
order growth rate of this instability, λ1, is plotted in Figure 1. This instability
is also evident in the uppermost dark band in both panels of Figure 4. The



Deep 2-D Gravity-Capillary Water Waves 103

Figure 6. Left-hand side: The disk of analyticity of the spectrum is numerically estimated
versus the Bloch parameter p, at fixed σ = 2.28 (circles) and by the smallest collision of
opposite Krein signature eigenvalues using the second-order approximation (diamonds). A
triad resonance occurs at p ≈ 0.318. The numerical estimate of the disk of analyticity uses
the first noncanceled pole of the diagonal Padé approximant, as in Figure 4. Notice that the
disk of analyticity for fixed p shrinks to zero as p approaches the resonant value, however, at
the resonant value of p the spectrum is analytic to much larger radius. Right-hand side: A
log–log plot shows that the disk of analyticity near a triad vanishes linearly with distance to
the triad Bloch parameter, |�p| = |p − p∗|. The radius of convergence is marked with circles
as in the left panel. A line of slope one, corresponding to a linear relationship between ε and
|�p|, is marked by the solid line. As in the left panel, σ = 2.28 and the triad occurs at the
critical p∗ ≈ 0.318. This figure is colour online.

lowermost dashed curve in Figure 5 is quintet resonance of opposite Krein
signature, which does not lead to instability, a Class II resonance. Comparing
Figures 5 and 4, we also observe that the radius of convergence of the Taylor
series shrinks at the three triad resonances (the uppermost of opposite Krein
signature, the lower two of the same Krein signature) but does not vanish near
the opposite Krein signature quintet resonance of Figure 5. On the other hand,
the Padé approximation (presented in the right panel of Figure 4) predicts that
the solution does not lose analyticity near these lower three resonance curves,
only near the uppermost which is an opposite Krein signature triad resonance.

In the immediate neighborhood of the opposite Krein signature resonant
triad, the spectrum loses analyticity at small amplitude, where the radius of
analyticity scales linearly with distance to the resonant configuration. This loss
of analyticity is due to the collision of the two near-resonant, but simple,
eigenvalues. In Figure 6 the disk of analyticity is estimated as a function of p
at σ = 2.28 by the first noncanceled pole of the numerically computed series
to N = 30 orders. Figure 6 is essentially a cross-section of Figure 4, in which
we have included the resonant configuration at p ≈ 0.318. Notice that the disk
of analyticity vanishes as p approaches this configuration (linearly in �p). In
this figure, the numerically computed disk of analyticity of the spectrum is
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compared to a prediction of the first finite amplitude collision based on the
O(ε2) approximation of the spectrum (see Section 3.3 for the derivation of the
λ2) with good agreement.

The ε at which the collision occurs appears to scale linearly in p. This
suggests that it may be possible to expand p as a function of ε about
the resonant configurations. Such an expansion would allow the current
method to compute more instabilities, including the neighborhood of the triad
resonance in Figure 4 as well as the Benjamin–Feir instability. Neither of the
aforementioned instabilities are analytic in ε for fixed p, and with p fixed both
are finite amplitude instabilities. A near-resonant Stokes’ expansion, essentially
expanding in p, has been successfully applied to compute near-resonant
traveling waves to the KdV equation [42]; a similar expansion in the TFE
method is an area which is being actively pursued.

4.5. Nonisolated resonances

The structure of the set of resonances of spectrum of traveling waves in the
potential flow Equations (4) is quite rich. In addition to the isolated resonances
mentioned in the previous paragraphs, the equation supports nonisolated
resonances, at which λ0 has kernel of dimension higher than two. Nonisolated
resonances (e.g., where a wavenumber is part of both a triad and a quartet),
create the “rough” regions in Figure 4. We note that these nonisolated resonances
accumulate in the region σ ≈ 0 [43]. It is not clear that an amplitude expansion
is the right approach to compute the spectrum in a region where the resonant
sets are intertwined in such a complicated manner (as they are in 0 < σ ≤ 0.5).

Apart from the triad resonance, the spectrum loses analyticity near the two
sets: The Wilton ripple resonance at σ = 0.5, and the Benjamin–Feir instability
at p = 0 (outside the interval σ = [0.178, 0.5]). Both of these regions require
nontrivial extension of the current algorithm which currently finds the spectrum
of Stokes waves perturbed about eigenvalues of multiplicity one or two.

Wilton’s ripple is a traveling wave which bifurcates from a flat state
configuration which has a two-dimensional null space [38]. The extension of
[29] to compute Wilton ripples and resonant short crested waves with amplitude
expansions is currently being pursued. The TFE algorithms of [7, 29] do not
currently compute such waves. The Benjamin–Feir instability bifurcates from
a collision of flat state eigenvalues of algebraic multiplicity four, also not
currently supported by the algorithm [29]. Extending the algorithm to higher
dimensional null spaces is not sufficient to compute this instability, however,
as for fixed p the instability is either not present (p = 0) or not analytic in ε
(for p small). For fixed p, the Benjamin–Feir instability can be thought of as
being the result of a collision of near-resonant eigenvalues, or “sidebands.” The
extension of the method to near-resonant eigenvalues is a planned direction of
future research as is the finite depth problem.
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5. Conclusion

A perturbative numerical method was presented for computing simple and
resonant spectra for deep-water gravity-capillary waves, extending previous
work on simple and resonant gravity wave spectra. This method assumes
analyticity of the spectrum for fixed Bloch parameter p and can be used to
numerically approximate the disk of analyticity of the relevant Taylor series.
Using a different approach, the leading order asymptotics of the spectrum are
also directly calculated and compared with this stable perturbative approach.
A branch of unstable triads is observed to be analytically connected to the flat
state spectrum, in the neighborhood of which the spectrum is not analytic. The
analyticity of the spectrum is also studied at other resonant configurations
(of Bloch parameter p and Bond number σ ). A modulational extension of
this method, which expands the Bloch parameter in ε, should allow for the
computation of instabilities which are not analytically connected to the flat
state at fixed p (e.g., the Benjamin–Feir instability). This extension to near
resonances as well as the finite depth problem, are avenues of ongoing
research.
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