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This paper outlines the theoretical background of a new approach towards an
accurate and well-conditioned perturbative calculation of Dirichlet—Neumann
operators (DNOs) on domains that are perturbations of simple geometries. Previous
work on the analyticity of DNOs has produced formulae that, as we have found, are
very ill-conditioned. We show how a simple change of variables can lead to recursions
that satisfy analyticity estimates without relying on subtle cancellation properties at
the heart of previous formulae.

1. Introduction

In many problems of physical relevance one must solve complicated systems of
partial differential equations on perturbations of simple domains. In this situa-
tion, Dirichlet—Neumann operators (DNOs) can play an important role, especially
if information at the boundary is all that is required. Often, systems of partial
differential equations formulated on the entire domain can be reduced to equations
defined only at the boundary by using DNOs. This is the case, for instance, for a
variety of free boundary problems from fluid mechanics (water waves, Hele-Shaw
flows, etc. [19]) and solid-state physics (Stefan problems, crystal growth, etc. [15]).
Alternatively, DNOs may serve computational purposes, such as in the realization of
radiation conditions in scattering problems (see [16,17] and the references therein).
If the domain deviates from an exactly solvable geometry, then a perturbative esti-
mation of DNOs can yield excellent results [10,11,20,21]. In this context, a detailed
understanding of analyticity properties of DNOs is vital to determining the range
of applicability of such approximations.

In this paper we develop the theoretical background of a new approach towards
an accurate and well-conditioned perturbative calculation of DNOs on domains
that are perturbations of simple geometries. As a byproduct, we produce a novel
proof of analyticity of DNOs associated with Laplace’s equation upon boundary
perturbations. Previous results on analyticity properties of DNOs include those of
Coifman and Meyer [8], who considered small Lipschitz perturbations of a line in the
plane, and those of Craig et al. [12] and Craig and Nicholls [9] on C'* perturbations of
a hyperplane in three and n dimensions, respectively. In every case, the derivation of
such results relied on subtle estimates of the associated singular integral operators.
In contrast, our own approach, applicable to somewhat smoother perturbations
(slightly less than C?), is based on classical and explicit estimation of recursions

© 2001 The Royal Society of Edinburgh
1411



1412 D. P. Nicholls and F. Reitich

that result from the exact solvability of Laplace’s equation on a strip (or in a half-
space).

In fact, a different version of these recursions had been previously derived and
numerically implemented by Craig and Sulem [11], Schanz [21] and Nicholls and
Craig [10,20]. Our main observation relates to the subtle cancellations present
in these formulae that manifest themselves as severe numerical ill-conditioning
(see §3). Our resolution of this issue is accomplished, quite simply, by a change
of variables (see §4). Indeed, as we shall show, a transformation of the varying
domains onto the fixed unperturbed geometry bypasses these cancellations without
compromising the recursive nature of the formulae. In this manner, and in contrast
with the original formulation, the estimation of the solution of the successive prob-
lems can proceed without regard for the interactions between previously computed
terms (see §5). More important, perhaps, are the possible numerical implications
of this approach. Our convergence proof suggests that no significant cancellation
occurs in our new recursive formulae, which should, therefore, prove numerically
more stable. Preliminary results do indeed confirm this hypothesis; a thorough
investigation of the corresponding numerical method and other algorithmic issues,
however, will be left for future work.

2. Dirichlet—INeumann operators

2.1. Motivation and definition

The relevance of DNOs goes beyond their mathematical interest, as they have
become an integral part of simulation models in a variety of areas. In this section
we motivate their study within the context of the classical free boundary model of
gravity water waves. As will be clear from the discussion, an analogous treatment
is possible for other free boundary models such as Stefan, Hele-Shaw or Mullins—
Sekerka problems. The model we shall consider assumes an ocean of finite or infinite
depth with periodic surface waves. For the sake of definiteness, we shall perform our
analysis of DNOs for such configurations. Extensions to perturbations from other
separable geometries are immediate.

The classical problem of water waves [19] relates to the motion of an ideal (invis-
cid, irrotational and incompressible) fluid under the influence of gravity. The fluid
occupies the region

Shy={(z,y) e RN"I xR | —=h <y < n(x,t)},

where h is the depth (possibly infinite) and 7 specifies the water surface. In the
case of finite depth, no generality is lost by setting h = 1, as this amounts to a
simple rescaling of independent variables. We adopt this convention and note that
any information concerning h dependence of the constants in our results can be
recovered a posteriori using a scaling argument. Thus the fluid motion is governed
by [19]
Ap =0 in Syy,
Oyp =0 aty=—1,
O+ Vap-Ven—0,0=0 aty=n,
Oup +5IVel +gn=0 aty=n,
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where ¢ = p(x,y,t) is the velocity potential and g is the acceleration due to gravity.
To consider water of infinite depth, equation (2.1b) is replaced with the condition

Vo -0 asy— —oo. (2.1€)

To complete the description of the fluid’s evolution, boundary conditions in
the horizontal direction must be imposed. As in many classical treatments [19],
we assume periodicity of the structure: given a lattice I' and a parallelogram
P(I') € RY~! based on that lattice, we require that o(z + v,y,t) = ¢(z,y,t)
and n(x + v,t) = n(x,t) for all v € T

As pointed out by Zakharov [23] and Craig and Sulem [11], for both theoretical
and computational analysis, a convenient form of the water waves problem can
be achieved through its reformulation in the form of a Hamiltonian system. This,
however, requires the introduction of DNOs associated with Laplace’s equation on
the domain S ;. As their names suggest, DNOs take Dirichlet data at the surface
and return Neumann data. More precisely, within the present context, they can be
defined as follows.

DEFINITION 2.1. Consider the domain
So ={(z,y) € P(I) xR | -1 <y <o)}

Given Dirichlet data (), the unique solution v(z,y) of

Av =20 in S, (2.2a)
( o(x)) = 5( ) (2.:20)
o(z, —1) = (2.2¢)
(Jc +7,y) = (Jc y) forallyel’ (2.2d)
can be found and the Dirichlet—Neumann operator G(o) is defined as
G(O’)g = V'U|y:o Ny,
where
Ny = (=Vao,1)7T.
Once again, equation (2.2¢) should be replaced by
Vo —=0 asy— —o0o, (2.3)

in the case of infinite depth.

With this definition, the Hamiltonian of the water wave problem is
1
H(n,€) = 5/ EG ()€ + gn* dzx
P(I)

and the equations of motion can be posed entirely at the free surface,
aﬂ’] = (SéH, 3t§ = _(SnH,

where £(z,t) = p(z,n(x,t),t) [11,23].
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2.2. Analytic dependence on perturbations

For simple separable geometries, DNOs can be easily computed. For instance, if
o =0, h =00 and I'" denotes the lattice conjugate to I', then

0>[Z£(k>e““'f} Y [klE(k)ette,

kel kel

that is, G(0) = HV,, where H denotes the Hilbert transform. On the other hand,
for general surfaces, the numerical estimation of DNOs presents substantial chal-
lenges (see, for example, [1,2] and the references therein). For small deviations of
a hyperplane (or other exactly solvable configurations), however, a perturbative
method offers an appealing approach [10,11,20,21]. Indeed, if

for e < 1, then a formal approximation of G(o) in the form of a power series in ¢
can be derived. Indeed, letting v = v(z, y, ) denote the solution of

Av =20 inSEf,
v(z,ef,e) = §(x),
dyv(z,—1) =0,
v(z+v,y) =v(z,y) forallyel,

then
G(ef)f = 0yv — eV f - Vyu.

To find the series expansion
G(ef)e = 2 (Gal£)E)", (2.4)
n=0
we note [13] (see also [4-6]) that the expansion for v,

(x,y,¢ ZU" (z,y)e (2.5)

can be recursively computed by solving

Av, =0 in Sp, (2.6a)
vp(z,0) = Hp(x), (2.6b)
Oyvp(x,—1) =0, (2.6¢)
vn(x 4+ v,y) = vn(x,y) forally € I (2.64d)
where

nol pne -

Hy(x)=-) = l)!ay v (2,0) + 6,06 (z) (2.7)
1=0

and ;. is the Kronecker delta.
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The validity of such an approach hinges, of course, on the plausibility of the
expansion (2.4), that is, on the analyticity properties of DNOs upon boundary vari-
ations. Results to this effect for Lipschitz perturbations of a line in two dimensions
follow from the work of Calderén [7] and Coifman and Meyer [8]. More specifi-
cally, for a Lipschitz profile f, a delicate analysis of the associated singular integral
operators can be used to derive estimates for G,, in (2.4) of the form

[Gn(f)€lle < CB"[|€ll

where B depends on the L norm of f’. Similar results for C' perturbations of
hyperplanes in three and more dimensions have been recently established in [9,12].

While these results establish the convergence of the expansion (2.4), the interpre-
tation of the recursion (2.6) demands more careful attention. A close inspection of
these formulae would appear to indicate a requirement that the boundary surface
y = f(zx) be infinitely differentiable and, indeed, under the assumption of its spatial
analyticity, the explicit relations (2.6) have been shown to hold [3]. For general Lip-
schitz perturbations, on the other hand, the individual terms in the right-hand side
of (2.6) may not be well defined and the overall validity of the formulae arises from
certain cancellations that give meaning to these equations. This observation, and
its potential numerical implications (see §3), becomes even clearer perhaps as we
consider an alternative algorithm for the computation of DNOs that only involves
the Taylor coefficients G, (f) [11].

Following [11], we fix p € I'" and consider

wp(.lf,y) = eip'r+|p|y’
a solution of (2.2a), (2.2d) and (2.3). If 0 = &f, then
wp(x7 Ef) = eip'r+|p|€f’

so that
G(ef)[eP Pl = (8, — eV f - Vo) (P HIPlY)| _p,

that is,
G(ef)[eP* P = (|p| — eV, f -ip)e e tIPles. (2.8)

Thus, expanding the equality (2.8) in the form of a series in ¢ and equating like
powers, we obtain

n—1

i~r_ﬁ n ip-x __ i n—1_ip-x
Gn(f)e?™ = lp|" e = (V, )(n i ()l e

ST, I "l) ] @)

=0

Setting D = —iV,, we derive from (2.9) the recursion

Y LR A
Gn(E(@) = DI DID" () = 30 Gilh)| o= IDI"'e@) |- (210)
1=0 ’
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Finally, using the self-adjoint nature of G,, and |D|, we may rewrite (2.10) in the
form

n—I1
Ga(N)E) = 101" DL De(a Z|D|"lf T e

(see [11]). As mentioned in the §1, these formulae were used in [10,11,20,21] as a
basis for a numerical algorithm for the simulation of gravity water waves. Asin (2.7),
the high-order derivatives that are present in (2.11) demand the smoothness of the
profile y = f(x) to guarantee that each individual term in the right-hand side
belongs, for instance, to the space L2. The theoretical results quoted above, on the
other hand, do imply that the overall sum in (2.11) is well defined for rather rough
profiles, so that substantial cancellation must take place. This, in turn, suggests
that a straightforward numerical implementation of high-order versions of (2.6)
or (2.11) could face severe impediments.

3. Cancellations

To illustrate the rather dramatic effects of the cancellations in (2.6) and (2.11), we
shall consider specific instances of these for analytic perturbations of a half-plane
in two dimensions of periodicity 27. More precisely, we shall take

f(z) =2cos(x) = e'® + 77, .
&(x) = 2cos(x). (3.1b)

To motivate our discussion (and the subsequent analysis of §§4, 5), let us consider
first the system (2.6). If f is smooth, classical elliptic estimates [18] imply, for
instance, that

v, ||HS([0,27T] x[0,—00))

< ClHnll go-172(p0,27))

n—1
fn ! .
<C) —= 3y i (,0) + 00,01 | zro-1/2([0,27))
=l (n—=1)! He=1/2([0,27))

(3.2)

Thus an alternative approach to a proof of analyticity suggests itself, namely the
recursiwe estimation of v, and its spatial derivatives. An attempt at this procedure,
however, reveals its implausibility, as the second bound in (3.2) destroys the can-
cellations even in the case of analytic boundaries. To see this, consider the spectral
representation of the solution of (2.6),

00
E d, keikm+|k|y.

k=—o0
Then (2.60) translates into a recursion for the Fourier coeflicients d, 4,

n—1 [+1

- Z Z Cn—l,k—qdl,q|Q|n_l + 6n,0£(k:) (33)

=0 g=—1-1
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for |k| < n + 1, where we have set

f(lT)l - Zl: Crse™™", (3.4a)
p—
§(x) = ki E(k)e™, (3.4b)
that is, o
Crs = (= 8)/2)!1((1 T2y Ll is even,
0 if 1 + 5 is odd,
Gy iR =E

0 otherwise.

The convergence of the expansion (2.5) for y = 0 in L? (see, for example, [3]) implies
that

) ) n+1
2 lon(@,0)l[ae" =30 D2 ldnil?e" <00 (3:5)
n=0 n=0k=—n—1
for ¢ sufficiently small. In particular, letting
Pn - dn,n—&-l,
equation (3.5) implies that
Y [PuJe™ < 00 (3.6)
n=0

for small values of ¢ and, from (3.3),

[

n—

Z D 5, 00). (3.7)
=

(n—10!

The effect of the cancellations can now be easily illustrated by considering the
majorizing sequence

6,-3 %@l T b0 (1), (3.8)
=0

which satisfies |P,| < ©,, (compare (3.2)). Indeed, it can be shown [14] that while
the series (3.6) converges for £ < e™!, the series )~ ©,e" diverges for all £ # 0
(see figure 1).

A similar situation holds for the recursion (2.11). In this case, again for f and &
as in (3.1), we have

Go&(x) = 2cos(z), (3.9a)

G1(f)é(z) =0, (3.9b)
Ga(f)é(x) = —2cos(x). (3.9¢)
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Figure 1. Plot of the numerical values of a convergence test for P, and O,
(cf. (3.7), (3.8)).
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Figure 2. Plot of the numerical values of a convergence test for ), and A,
(cf. (3.10), (3.11)).

In general, letting
n+1

Gn(f)g - Z bn,keikza

k=—n—1

equation (2.11) implies

n+1 n 1
Z bn7keikz — |D|n—1D( Z Cn7keikz> ( Z k’é(k‘)elkm>

k=—n—1 k=—n k=—1

n—1 n—l ' I+1 '
— Z |D|n—l( Z Cn—l,kelkm> ( Z bl,kelkm> )
=0

k=—n+l k=—1-1
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Figure 3. Plot of log(|@Qn|) versus n in finite precision and exact arithmetic.

Using (3.4), we obtain

min{1l,k+n} min{l+1,k+n—1}
b = k" K > Coni—qié(q Z [ > Crt k—qbiq-
g=max{—1,k—n} g=max{—1l—1,k—n+l}

Now, from (3.9), we have b x = 65,1, b1,x =0 and ba p = =6 1, and letting

Qn = bn,n—la
a straightforward inductive argument shows that
(n—1)" — (n—1)"
Qn = Z Q (3.10)

—  (n—1)!

for n > 3. Again, as before, we have plotted in figure 2 the values of |Q,|'/" and
those corresponding to the majorizing sequence

An=2u+im_—wAl. (3.11)

In this case, we have computed, in addition, the values of @,,, as derived from (3.10),
using both finite double precision and exact arithmetic (using MATLAB and MAPLE,
respectively). The results showing the detrimental effect of the cancellations are
presented in figure 3 and table 1.

4. Change of variables

In our discussion of § 3, we alluded to a possible alternative proof of analyticity of
DNOs that is suggested by the recursive relations (2.6), and we showed that such
a procedure could only succeed if cancellations are accounted for properly. In this
and the next sections we shall show that this can be achieved through a change of
variables.
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Table 1. Comparison of Qn in finite double precision versus exact arithmetic

digits of
n Qn (finite precision) Qn (exact arithmetic) accuracy
4 —0.25 —0.25 16
5 —0.066 666 666 666 66643 —0.066 666 666 666 666 67 14
6 —0.01388888888889284 —0.013 888 888 888 888 89 12
7 —0.002380952 380960 366 —0.002 380 952 380 952 380 11
8  —0.0003472222221034826 —0.000 347 222 222 222 222 2 9
9 —4.409171117458754 x 10~° —4.409171 075837742 x 107° 7
10 —4.960316573487944 x 107° —4.960 317 460 317 460 x 10~° 6
11 —5.010433596908115 x 10~ —5.010421 677088 343 x 1077 5
12 —4.592948243953288 x 107° —4.592 886 537330981 x 10~° 4
13 —3.841705620288849 x 107" —3.854170520 837187 x 10~° 2
14  —3.637978807091713 x 107*° —2.982 393 855 409 728 x 107'° 0
15 2.3283064365386960 x 107'°  —2.141 205844 909 548 x 10~ 0

For the present configuration, we introduce the transformation

=z y/:y_Ef(x)
’ 1+ef(z)’
mapping the domain S.y onto the strip Sy = P(I") x [—1,0]. The original prob-
lem (2.2) (with o = €f) then transforms into

A'v=F(2',y,e) in Sp, (4.1a)
u(a’,0,2) = £(). (4.11)
Oyu(z',—1) =0, (4.1¢)
w(@' +7,9y") = u(z',y") for all v € T, (4.1d)
where
w@,y'e) = vy +ef(@)(1+y)e)
and
Ve (1 !
F(2',y ) = divy [%&;y)@,u]
e(1+y)
’ —vr/ 'vr/
+ 0y |: 1 Tef f u
Vo [P0 +y)? 1 ]
- (1—|—Ef)2 ay/u—may/u+8y/u
€ Vo fPA+Y)
— Vr/ -Vr/ Oy
l+ef f v (1+ef)? vt

In these new coordinates, and upon dropping the primes, the Dirichlet—-Neumann
operator takes the form

G(ef)§ = (Vv Neg)ly=cy

1+ 2|V, f|?
VoS Vau(e,0,6) + E VST

14+¢ef

Oyu(z,0,¢). (4.2)



A new approach to analyticity of Dirichlet—-Neumann operators 1421

Since V u(x,0,e) = V;&(x), the evaluation of (4.2) reduces to that of d,u(x,0,¢).
For this, we formally expand

u(z,y,e Zun (w,y)e (4.3)

so that
u(z,y, e Z Oyun(z,y)e (4.4)

and proceed to derive equations for the functions u,,. At order zero we have

Aug =0 in So, (4.5a)
ug(z,0) = {(x), (4.5b)
Oyug(x,—1) =0, (4.5¢)
ug(x +v,y) = up(x,y) forally e I (4.54d)
and for n > 0,
Auy, = Fy(z,y) in So, (4.6a)
Up(2,0) =0, (4.6b)
Oyun(z,—1) =0, (4.6¢)
Up (T + 7,y) = up(x,y) forally e, (4.64d)
where
Fo(w,y) = diva [F{V (2, 9)] + 0, B2 (2,9) + FiP (2, 9) (4.7)
and
n—1
Fr(zl)(xvy) 1 + y v f Z 8yun—l—la (48&)
1=0
n—1
F(@,y) = 1+ 9)(Vaf) - ) (=)' Vaun1
1=0
n—2
— (L + 92|V f 2D+ 1) (=) Oyun—2-
1=0
+f Z(z +2)(= 1) Dytin—1-1, (4.80)
F(B) (.Z‘ y Z run—l—l
1=0
(1+9)|Vafl? Z L4+ 1)(=f)'0ytin 1. (4.8¢)

As will be apparent from our discussion below, and in contrast with the formulae
for H, in (2.7), the representation of Fj, in (4.7) and (4.8) does not involve strong
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cancellations. Indeed, we shall show that the functions u,, can be explicitly and
recursively estimated in a manner that guarantees the convergence of the series

n (4.3) and (4.4).
5. Analyticity

In order to state our results precisely, let us initially introduce our notation for the
function spaces of relevance. First recall that any function u € L2(P(I")) can be

expressed as
1 R ik
W) =—=x Q i(k)e™",
NoT k;,

where
1

Vor" P(I")
and ), |(k)[* < co. We define the symbol (k) as

(k) = v1+ K[>

and use this to introduce the following Sobolev norms,

I3 pery = 2 k)Y, (5.1a)
kel

I -n o Z / 0 (0) dy, (5.10)

el i =2 2 [ ek P, G

=0 kel " —

p(z)e T dy

fi(k) =

which define the obvious Sobolev spaces. C*(P(I")) is the space of continuous func-
tions o : P(I') — R with s many continuous derivatives. If s is not an integer,
then these refer to the classical Holder spaces. Finally, we note that for positive
integers s,

If 1l (pry)y < C(s) (5.2)
and furthermore, as we establish in lemma A.1, that given § > 0,
I fullgsrr2pery < CE)Fleesims il ez ey (5.3)

We now state the main theorem, followed by the essential lemmas necessary to
prove it. Finally, we close with the proof of the theorem itself.

THEOREM 5.1. Given an integer s > 0 and any § > 0, if f € C*+3/2¥9(P(I")) and
€ € H*TY(P(I)), there exists a unique solution,

u(x,y, e Zunxy
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of (4.1) satisfying

0y un (2, 0)| s (p(ry) < Koll&llzs+1(p(ry)B™ (5.4a)
> (k)2 18y n (ks ) 1 T2 (=100 () < Ko NENFre41 (p(ry B2 (5.4b)
kel
D (Y23 (ke )32 1.0y (ay) < < K l€ll 31 p(ry)y B> (5.4¢)
kel

for any B > Co(s)|f
only on s.

cs+3/2+5, where Kg is a universal constant and Cy(s) depends

To establish (5.4), we shall use estimates for general problems of the form (4.5)
and (4.6), along the lines of classical elliptic regularity theory [18], and which, for
the sake of completeness, we explicitly derive in lemmas 5.2 and 5.3 below. To deal
with (4.5) then, we shall resort to the following lemma.

LEMMA 5.2. Given an integer s > 0, if ¢ € H¥TY(P(I')), then there exists a unique
solution w(zx,y) of

Aw =0 in So, (5.5a)
w(z,0) = ¢(x), (5.50)
Oyw(z,—1) =0, (5.5¢)
w(z+v,y) =w(z,y) forallyel (5.5d)
satisfying
0yw(z,0)l g+ (p(ry) < Kolléllgs+1(pcry), (5.6a)
> (B2 0y (R, )12 (1,0 (ay) < Ko €N Fr+1 (p(ry)» (5.60)
kel
2 (B bk, y)l1 721 oy < KSIENT pry)- (5.6¢)
kel
where Ky 1s a universal constant.
Proof. The Fourier transform of the solution of (5.5) can be written as
. 2. cosh(k|(y +1))
ky) =¢&(k)——————
k) =€) 2 S
and its y derivative as
. - sinh(|k|(y + 1
0,1 (k,y) = &0y 22 Ew L 1) (5.7)

cosh(|k|)
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for all k € I'". The first estimate (5.6 a) results from evaluating (5.7) at y = 0 and
noting that (|k|tanh(|k|)) is bounded by (k). To establish (5.6b), we compute

Y B0y (@, vz (10 ay)

ker:
= Z (k;>25+1/ |k |QW|£(/€)|2dy
Py -1 osh?([k|)
EY2HLE2T 1 sinh(2]k]) 7, 2
- WP N L ShCED g 2
kep/\{o} COSh (|k|) | |
< K€l (p(ry) -
Finally, the estimate (5.6¢) can be similarly derived. O

To estimate the solutions u,, for n > 0 (cf. (4.6)), we shall use the following
lemma.

LEMMA 5.3. For an integer s > 0, if g9)(z,0) € H*(P(I")) and

> ()M 159 (R ) 172 (1.0 (ay) < OO
kel

then there exists a unique solution w(z,y) of

Aw = divy[g™M (2,y)] + 0,9P (2, y) + 9P (2,y) in Sp, (5.8a)

w(z,0) =0, (5.8b)

ayw(x7_1) = Oa (580)

w(z +7,y) = w(z,y) forally e (5.8d)
satisfying

DRk, )12 (1o ) < &ZZ ()= TH1G9 ey )32 (1.0 ()

kel =1 kel
(5.9a)
Z (kY>> 0y w(k, w210y < KT Z Z k)2 189 (k) 132 (11,00 (ag)
kel J=1 kel
(5.95)
and

|0y w(z, O)H%IS(P(F))

KQ[ZZ V2D (ke y)lI32 - vopyagy T 2 (K) 25|g“><k70)|2} (5.9¢)

j=1ker" keI

where K1 is a universal constant.
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Proof. The solution of (5.8) can be written as w = w; + wq 4+ w3, where each w;
solves (5.8), with (5.8 a) replaced by

Awy = div,[gM (2,y)],
Aws = 0 g(Q)(x y),
Awg = g% (z,y),
respectively. Taking the Fourier transform of these equations, we are led to solve
(= 1k1* + 07y (k) = ik 9V (k. ),
(= IkI* + 8y (k. y) = 0,5 (k. ),
(= 1k1* + 0y () = 5 (K, ),
supplemented with the boundary conditions
w;(k,0) =0, Oyw;i(k,—1) = 0.

Using the homogeneous solutions, the full solutions can be written as (‘variation of
parameters’)
w;(k,y) = A;(k,y)e!™V” + B;(k,y) sinh(|kly)
for k # 0 and
w;(0,y) = A;(0,y) + B;(0,y)y
for k = 0, where A; and B; can be chosen to satisfy

8ij(k:,y)e|k|y + 0yBj(k,y)sinh(|k|y) =0

for k # 0 and
9yA;(0,y) + 9y B;(0,y)y = 0

for £k = 0. Substituting this form into the differential equations leads to explicit
formulae for the functions A;(k,y) and B;(k,y). For instance, in the case j = 1,
k # 0, the functions A;(k,y) and Bl(k‘,y) satisfy

dy A1 (k,y) = - sinh([k|y) g™ (k,y),

Ikl
ik X
— elFlygM (& ),

ayBl(kvy) = |k‘|

which result in the solutions

0 .
ik
Al(k:,y):/ Tl -sinh(|k|s)§® (k, s) ds + Cy,

Yoik

By (k,y) 2/ T elFlsgM (K s) ds + Oy,
1

Using the boundary conditions, we can deduce that C; = 0 and that

e [k| 0
=—————=(1k) - inh (1) _
2 = ~TTeosng ) /_18111 (1k]s)g® (k. s) ds
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Thus, using similar reasoning, we can express the functions w; in the form

) sinh(|k . Y s
in () = T i [ o0 1s) s

elkly
T
e~ ¥l sinh(|k|y)

- [ W
_W(lm./_lsmhum iV (k,s)ds,  (5.10a)

0
(ik) - / sinh(|k|s)g™ (k, s) ds

wo(k,y) = —smh(|k:|y)/1 kls G2 (k. 5) ds

0
—elkly/ cosh(|k|s)g? (k, s) ds
y

e_|k|sinh(|k:|y)/
— h([kl5)§ 1
cosh (k) _1cos (|k]s)g'*) (k, s) ds, (5.100)
. sinh(|k L
il y) = T [ g 1, s
—1
[kly
+ e|T| Slnh(|k:|s) ) (k,s)ds
%“h%H/
€ Sin. Yy (3)
- sinh(|k k,s)ds 5.10¢
Wcosh(i)) J_, P (F9ITE2) (5:10¢)
for k # 0 and
w1(0,y) =0, (5.11a)
0
w3(0,y) = —/ §(0,5)ds, (5.11b)
Yy
0
w3(0,y) —y/l §(0,s) ds+/ 5330, 5) ds (5.11¢)
Yy

for k = 0, where we have assumed, without loss of generality, that ¢®)(z,—1) =0
(see (4.6¢) and (4.8b)). Alternatively, we may write

ink) = g - TG0 () = 1o ) (o)
T3 (3D (k,y) + Ta(§D) (b, )
- gl LR -1 + TGk DL (20
wa(k,y) = $[T(GP) (k,y) — To(3P) (k,y) = Ts(§P) (k. y) — Ta(@®) (%, )]
SIBURIY) (620 (0, 1) + Ta(§) (0, — 1)), (5.120)

cosh(|k|)
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i (k,y) = ﬁ[—ﬂ(ﬁ)(hy) = T2(g™) (k)
+ T35 (ks 9) + Ta(3") (k. )
- gl SR (-1 + TGOk D) (5120
where
1)) = [ O, 5) s
0
LWy = [ e MOk ds
1)) = [ 050, s
0
L@y = [ MO, ds

Now, from Schwartz’s inequality, we have

ITo(0)(k, ~1)| < 1| R ( / 01 |w<k,s>|2ds)1/2, (5.130)
Ty () (k, — f/ﬂ(/o p(k s)|2ds>1/2. (5.13b)

On the other hand,

([ mwwr W) -([

and using Minkowski’s inequality,

0 1/2 1 0 1/2
(/ |T1<w><k,y>|2dy) < / e"’“'“(/ |w<k7y—u>|2xu<y+1dy) du
—1 0 —1

< |—,1€|( / 01 |w<k7y>|2dy)l/2. (5.14)

(/_01 ITj(w)(k:,y)IQdy>1/2 < |—]1€|(/_01 |1/)(/€,y)|2dy>1/2 (5.15)

for j = 2,3,4. Then it follows from (5.12), (5.13), (5.14) and (5.15) that

1/2
/ (k,s) —Ikl(y 5) ds dy)

vt 2 \1/2
/ Y(k,y — u)e k% dy dy) ,

Similarly,

3

Z (B> Nk, I F 21,01y (dy) < K%Z Z k)2 169 (k)12 (11,00 (ay) -
kel j=1kel
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Also, since
OyT1(¥)(k,y) = —|k|T1 () (k,y) + P (k, y), (5.16a)
OyTa () (k,y) = [k T2 () (k, y) — ¥ (k,y), (5.16b)
0y Ts(¥)(ky) = |KIT5(v) (k, ) + W (k. y), (5-16¢)
0y Ta(¥) (k,y) = k| Tu(v) (k,y) — W (k,y), (5.16d)
we deduce again from (5.12), (5.13), (5.14) and (5.15) that

Z (kY>> 0y (k, w210y < KT Z Z k)2 1G9 (k)12 (11,00 (ag) -
kel j=1 kel

Finally, since

1/2
ol < —=( [ wenra) (5.170)
1/2
T ( vl ay) (5.171)
the estimate (5.9 ¢) follows from (5.12), (5.16) and (5.17). O

The final lemma relates to the recursive estimation of the functions F,, in (4.7)
and (4.8).

LEMMA 5.4. Let s = 0 be an integer and let f € CT3/2+5(P(I")) for some & > 0.
Assume

IV 2t (2,0)[| g (p(ry) < K2B™ (5.18a)
10yt (2, 0)[| = (P (1)) < Ko Bm (5.18b)
> ()21 8yt (ks 9172 (1,07 (ay) < KB, (5.18¢)
ker:
D (B i (ks )32 (10 ay) < KB (5.184)
ker:
for constants Ko, B > 0 and for allm < n. Then if
B> 2max{C(s)|f cs+1,é($)|f cs+3/2+5},
the functions EY) in (4.8) satisfy
|ED (2, 0)| o s(P(I)) S 3C(S)|f cor1 KoB" L, (5.19a)
D EETHED (k)32 vopay) < K3C()21farssars K3BXMD (5.190)

kel

for a universal constant K.

Proof. Recalling (5.2) and (5.3), we set, for convenience,

=C(s) B =C(s)lf

Os+1/2+6.
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We will prove the estimates for the functions FT(LQ); the estimates for FT(LD and FT(LB)
can be established in a similar manner. From (4.8) and (5.18), we have

n—1 !
_ (6%
cror Y ()
=0

n—2 1
+ C(5)*|Vauf|2: Ko B" 2 Z(l + 1)(%)

=0

C(s)|flo- K B"—lnf(zw)(“)l

cs i =
=0 B

< 16C(s)|f

IEP (2,0l = (pery) < C()|Vaf

cor1 KaB"

where we have used B > C(s)|V.f
compute

¢+ and B > 2«. Finally, to derive (5.19b), we

Y (B THED (k)12 (1.0 ay)
kel

0
:/ ||FT(LQ)(337y)||%;s+1/2(1>(r))dy

n—1 ﬂ N2
o (52

=0

n—2 IN2
OO k3802 (T4 1)(2))

< 6(5)2|vrf

=0
_ n—1 ﬂ IN2
+ B35 (T 2(5))
=0
< 56C(s)?|f és+3/z+5K2232("_1),

where we have used B > C(s)|V.f

Cs+1/2+6 and B > Qﬂ O

Proof of theorem 5.1. We will prove the estimates of (5.4) inductively. The case
n = 0 follows immediately from lemma 5.2. We now assume estimates (5.4) hold
for all n < M and we set

Ky = Koll¢ll gs+1(p(ry)-

Then, from lemma 5.3,

3R g Ok, ) 122 1.0 ay) < &ZZ kY2 ESD () 2210 ()
keI j=1ker"

Y B2 1Dy dnr (ks )12 (1.0 ay)

kel
3

K%Z Z 2SHHF(J) k y)||L2 —1,0])(dy)>
j=1ker’
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and

0yuns (x,0) 3 (p(ry)

Kl[ZZ kY2 ED ()22 vop g + 2 25|F§}’<k,o>|2},

j=1 kel ker

and, using lemma 5.4, we obtain

Z ()2 Nang By )T 2 (10 (a) < BETEG K3C(5)2|f1Zs0rs 200 BXM Y,
ker
Z (k)2 M 10y tnr (ks ) 1721101y (ay) S 3KTESKZC(8)?|fGss/2es BXM Y,
ker
||ayuM(va)||%rs(P(r)) 3KTKIK3(C ( 117 Cs+3/2+5

C ()| f[frera) BZM D,
Finally, the estimates (5.4) for n = M follow, provided we take

B > V6K, K3 max{C(s)|f

Cs+3/2+6, C(S)|f

Y
Thus we can set Co(s) = V6K K3 max{C(s),C(s)}. O

An immediate corollary of theorem 5.1 is the analyticity of DNOs. To begin, we
recall (4.2) and express the DNOs as a series (cf. (2.4)),

G(ef)e =Y (Gu(f)E)e
n=0

where

n

Gu(£)E =D (=)' Oyun—i(2,0)=0, 1V f-Vob(a)+| Vo f|? Z ) Oyt —z—1(x,0).
= (5.20)

THEOREM 5.5. For an integer s > 0 and § > 0, if f € C*T3/2F(P(I")), then the
series

ef) =Y. Gulf)e
n=0

converges strongly as an operator from H*tY(P(I')) to H*(P(I")). More precisely,

G (FEllr=pcryy < [2Ko + 3]l e+ (p(ry)B™ (5.21)

for any B > Co(s)|f

cs+a/2+5, where Co(s) depends only on s.
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Proof. From (5.20), we have

G (£)Ell e pery) < D (= F) ' Oyrun—i(z, 0l = (pry)
=0
+ 00,11V f - Vab(@) | ue (pry)

n—2
+ Z NV f12 (= 1) Oyun—a-1(x,0)|l g=(p(ry)
=0

<
l

e 18y un—1(2,0)|l g+ (pry)

C(s)'If

=0
+601C(s)|f

s

oo+ Vi&(x) HHS(P(F))

e ll0ytn—a—1(2,0)ll = (p(r))-

n—2
+ Y C)2 |2 Cs)|f
=0

Hence, using theorem 5.1, we can estimate

n ([ C(s 2\
=0

+ dn,10($)|f

ot lEll e+ (pery)

n !
2 B2 Z(—C(S)]'j cS)
=0

< [2Ko + 6n,13 + 2 Kolll€ll g+ (p(r)) B,
con > 20(s)| fles O

+ Kolléll g+ (pry) C(s)? | f

since B > 2Cy(s)|f

Cs+3/248 > 20(5)|f

REMARK 5.6. In the case of water of infinite depth (h = 00), the analogues of
theorems 5.1 and 5.5 can also be established. One approach to the proof is to con-
sider solutions of (4.5), (4.6) in a space of square integrable functions weighted for
exponential decay as y — —o0. An alternative method, which is also applicable to
scattering problems (governed by Helmholtz’s equation), involves the deformation
of the integration contours in the formulae (5.10), (5.11) onto a complex ray where
the solutions can be shown to decay exponentially.
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Appendix A. A multiplier result

LEMMA A.1. Given an integer s > 0 and 6 > 0, if f € CtV2H(P(I")) and
p € HtY/2(P(IN)), we have

I £l ssrrzpry) < C()If lsrrras |l sz pery) (A1)
for some constant C(s) depending only on s.

Proof. We recall that if s = p and 0 < p < 1, a norm in H?(P(I")), P(I") € RY,
which is equivalent to that in (5.1a), is given by

@) = )
Il = Nl + | . [ & O (A2)

22]). Now, to prove (A1), let us begin with the case s = 0. Using (A 2) with

p) — fyp)?
G I I |em_ely|N+1 drdy

1f(@) = f)I? 2
ly|N+1 ()" dz dy

<l el + 2 / -
P(I") P(F) |e —-¢

(@) = ny)?
+2/ / de dy. A3
P(I) P(F) le”“ — [N S (43)

The first and third terms can be grouped together and bounded by C|f]7« [[1l|31 2
As for the second term in (A 3), we have

Py JP(r) le”“— WIN+1 e Y

|3C— |1+25 2
<o [ Sl

< Clf[Zessllplle- (Ad)
In general, if s > 0,
Il Fpesare = luallFs + 1V 50l 31 e, (A5)
and clearly
[ fulles < C(s) (A6)
On the other hand, the estimate
IVZ(f )l iz < C(8)Iflesrarmss | pllgorare (AT)

follows from the regularity properties of f and the estimates (A 3) and (A 4). Finally,
equations (A5), (A6) and (A7) deliver (A1) for all s > 0. O
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