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Dirichlet–Neumann operators arise in many applications in the sciences, and this has
inspired a number of studies on their analytical properties. In this paper we further
investigate the analyticity properties of Dirichlet–Neumann operators as functions of
the boundary shape. In particular, we study the size of the disc of convergence of
their Taylor-series representation. For this we use a complexification technique which
requires a novel reformulation of the problem, coupled with methods for systems of
elliptic partial differential equations. Numerical results to illustrate our theoretical
conclusions are presented.

1. Introduction

Dirichlet–Neumann operators (DNOs) arise in a diverse array of physically relevant
problems. From the boundary-value problems of linear acoustics [14,18] and electro-
magnetics [7] to the free-boundary problems of solid [16] and fluid mechanics [1,20],
these operators (and their higher-order analogues) permit the equivalent restate-
ment of the governing partial differential equations in terms of boundary quantities.
This not only typically simplifies the statement of the problem (e.g. by incorporating
far-field boundary conditions in the unknown solution), but also reduces the dimen-
sion of the governing equations, delivering huge savings in a numerical simulation.
For these reasons the detailed analytic study of DNOs and their effective numerical
simulation have received a great deal of interest in the literature [6, 10,17,26].

In the applications listed above, the governing equation is linear with constant
coefficients (e.g. the Laplace or the Helmholtz equation) so that the difficulty in
computing the DNO lies in the geometric complications. For a simple, separable
geometry the DNO is easy to compute and this observation has been used by sev-
eral groups [11, 13–15,19] to specify ‘transparent’ boundary conditions at artificial
boundaries for problems of unbounded extent (e.g. linear acoustics, electromagnet-
ics or linear elasticity). For more complicated geometries, if the domain shape is
a small deformation of a separable geometry, then the observations above suggest
that a perturbative approach would be fruitful. In fact, this line of enquiry has been
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followed by several groups with great success [8,9,12,17,21–28,30]. The current con-
tribution compares most closely with the previous work of the present authors [17]
on the most general conditions under which the DNO depends analytically upon
boundary perturbations. Here we use the method of complexification to re-establish
the analyticity result. However, this method will additionally provide a radius of
convergence (equal to the distance to the closest singularity in the complex plane).
More specifically, we show that if the domain is given by {(x, y) | −h < y < λf(x)},
then the domain of analyticity is given by{

λ ∈ R

∣∣∣∣ λ <

((
|f |L∞

h

)2

+ |∇xf |2
)−1/2}

(cf. theorem 4.5). Actually, if we allow λ to vary in C, after a change of variable
(see (2.6)), then the above domain of analyticity is extended to complex λ in the
open disc with radius ((

|f |L∞

h

)2

+ |∇xf |2
)−1/2

.

Note that the radius is a combination of the physical obstruction at depth h and
the supremum norm of the gradient of the domain shape. This new complexification
method not only delivers this crucial information on the location of singularities of
the expansion of the DNO, but is also much simpler than the ‘method of majorants’
used in our previous work [17].

To establish analyticity we show first-order complex differentiability, which we
accomplish with a finite difference of our complexified equation. To show that this
difference converges, we require elliptic estimates which, in the absence of the imag-
inary part, are straightforward. However, this ellipticity fails if the imaginary part
is too large and, thus, we impose conditions on the domain shape and its gradient
(see lemma 2.1) to ensure that the complexified system retains its ellipticity. In
fact, the domain of ellipticity is given by{

λ ∈ C

∣∣∣∣ | Re λ| |f |L∞

h
+ | Im λ||∇xf | � 1 − δ

}
(1.1)

(cf. (2.7)), where f(x) characterizes the domain shape and h denotes its depth.
Thus, the real part of the singular set is restricted only by the physical obstruction
at depth h, while the imaginary part is constrained by the supremum norm of the
gradient of the domain shape.

The elliptic estimates we establish guarantee the convergence of subsequences.
However, to show the convergence for the full limit we need uniqueness of solutions
to the limit system. This is not obvious as we have an elliptic system posed on an
infinite domain. To simplify our approach, we use a particular complexification so
that the resulting system does not contain any lower-order terms (see (2.4)). For
this system we are able to establish uniqueness rigorously (see theorem 3.1).

The organization of the paper is as follows. In § 2 we recall the defining equations
for the DNO associated with the Laplace equation on a deformed strip which arises
in ideal free-surface fluid flows [20]. In § 2.1 we review a change of variables which
we have found useful in studies of analyticity properties of DNOs, and in § 2.2 we
prove a coercivity result which is the key to our theory. In § 3 we give existence and
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uniqueness results for the complexified equations defining the DNO. Using these, in
§ 4, we show the analyticity of the solutions of the complexified system together with
the DNO itself. In § 5 we display illustrative numerical examples which demonstrate
the conclusions of our theorems.

2. Governing equations

As mentioned in § 1, DNOs arise in a wide array of applications. One problem which
has generated a considerable amount of interest recently is that of the simulation of
ocean waves via the Euler equations of ideal fluid, free-surface fluid mechanics [20].
For an ocean of depth h, the problem domain is the perturbed strip

Sh,η = {(x, y) ∈ R
d−1 × R | −h < y < η(x, t)},

where d = 2, 3. The well-known Euler equations governing the motion of the ideal
fluid are

∆ϕ = 0 in Sh,η,

∂yϕ = 0 at y = −h,

∂tη = ∂yϕ − ∇xη · ∇xϕ at y = η,

∂tϕ = −gη − 1
2 |∇ϕ|2 at y = η,

where ϕ is the velocity potential (u = ∇ϕ) and g is the gravitational constant.
Zakharov [31] showed that this water-wave problem admits a Hamiltonian formula-
tion in terms of surface quantities provided that one chooses the canonical variables
(η(x, t), ξ(x, t)), where ξ(x, t) := ϕ(x, η(x, t), t) is the velocity potential at the free
surface. Craig and Sulem [9] later made this formulation more explicit with the
introduction of the DNO, G(η), which maps the Dirichlet data ξ to the Neumann
data:

ν(x, t) = G(η)[ξ(x, t)] := [∂yϕ − ∇xη · ∇xϕ]y=η(x,t).

Our purpose in this paper is to study the analyticity properties of just such a DNO
although, for clarity, we remove the specific notation of water waves.

Our starting point is the elliptic boundary-value problem which defines our DNO:

∆v = 0 in Sh,g, (2.1 a)
v(x, g(x)) = ξ(x), (2.1 b)

∂yv(x,−h) = 0, (2.1 c)

which is posed on the domain

Sh,g = {(x, y) ∈ R
d−1 × R | −h < y < g(x)}.

With this notation the DNO, G, is defined by

G(g)[ξ] = [∂yv − ∇xg · ∇xv]y=g(x). (2.2)
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2.1. A change of variables

We have found the change of variables

x′ = x, y′ = h

(
y − g(x)
h + g(x)

)

to be very useful in our previous theoretical investigations [17] and we use these
again here. Note that this change of variables transforms the domain Sh,g to Sh,0.
Defining

u(x′, y′) := v

(
x′, y′

[
h + g(x′)

h

]
+ g(x′)

)
,

we now seek differential equations for u from (2.1) and the transformed differential
operators:

(h + g(x))∇x = (h + g(x′))∇x′ − (h + y′)∇x′g(x′)∂y′ ,

(h + g(x)) divx = (h + g(x′)) divx′ −(h + y′)∇x′g(x′) · ∂y′ ,

(h + g(x))∂y = h∂y′ .

Clearly, the most challenging transformation is the Laplace equation, (2.1 a), and
there are many possible ways to write the resulting equations (see, for example, [26,
30]). However, we have found it necessary in this work to maintain the divergence
form of the differential operator. For this we begin with

0 = (h + g) divx ∇xv + (h + g)∂y∂yv

= divx[(h + g)∇xv] − ∇xg · ∇xv + ∂y[(h + g)∂yv].

Using the transformation formulae above, it is not difficult to see that

divx′ [(h + g)∇x′u] − divx′ [(h + y′)∇x′g∂y′u]

− ∂y′ [(h + y′)∇x′g · ∇x′u] + ∂y′

[
h2 + (h + y′)2|∇x′g|2

h + g
∂y′u

]
= 0,

which, upon dropping the primes, we write abstractly as

div[A∇u] = 0, (2.3)

where

A :=

(
(h + g)I −(h + y)∇xg

−(h + y)∇xg· Q

)

and

Q(x, y) :=
h2 + (h + y)2|∇xg|2

h + g
.

We point out that we interpret the term |∇xg|2 as (∇xg) · (∇xg) throughout the
paper. For real-valued g the two are equivalent but, of course, for complex-valued
functions the two are quite different. It is not difficult to transform (2.1 b) and



The domain of analyticity of Dirichlet–Neumann operators 371

(2.1 c) so that (2.1) reads, in the transformed coordinates:

div[A∇u] = 0 in Sh,0, (2.4 a)
u(x, 0) = ξ(x), (2.4 b)

∂yu(x,−h) = 0. (2.4 c)

2.2. The strong Legendre condition

As stated in § 1, we take a perturbative approach to this problem. Where we
depart from previous treatments of this problem is that we allow g(x) to vary in
the complex plane. While this may not make sense physically, (2.4) makes sense as
long as h+g(x) does not vanish. However, a second, crucial concern for our analysis
is the ellipticity of (2.4): for g(x) and u(x, y) real functions, this system is elliptic,
but this is not guaranteed when g(x) is complex. To investigate this further we
define

g = g1 + ig2, ξ = ξ1 + iξ2, u = u1 + iu2, (2.5)

and insert these into (2.4). It is straightforward to show that this gives rise to the
two-equation system

div[A1∇u1] − div[A2∇u2] = 0,

div[A1∇u2] + div[A2∇u1] = 0,

}
(2.6)

where A1 and A2 are the real and imaginary parts of A:

A1 : =

(
(h + g1)I −(h + y)∇xg1

−(h + y)∇xg1· Q1

)
,

A2 : =

(
g2I −(h + y)∇xg2

−(h + y)∇xg2· Q2

)
,

and

Q1 : =
1

(h + g1)2 + (g2)2
{{h2 + (h + y)2(|∇xg1|2 − |∇xg2|2)}(h + g1)

+ {2(h + y)2∇xg1 · ∇xg2}g2},

Q2 : =
1

(h + g1)2 + (g2)2
{−{h2 + (h + y)2(|∇xg1|2 − |∇xg2|2)}g2

+ {2(h + y)2∇xg1 · ∇xg2}(h + g1)}.

To establish our analyticity theorem we appeal to Schauder’s theory for systems
in divergence form. The relevant function spaces are

C1+α(Rd−1) = {g | |g|C1+α = |g|C1+α(Rd−1) < ∞},

where

|g|C1+α = |g|L∞ + sup
x1 �=x2

|∇xg(x1) − ∇xg(x2)|
|x1 − x2|α

.

For Schauder’s theory we need the following ‘strong’ Legendre condition (cf. [5]).
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Lemma 2.1. Assume that g1, g2 ∈ W 1,∞(Rd−1) and∣∣∣∣(h + g1)∇x

(
g2

h + g1

)∣∣∣∣
L∞

� 1 − δ, h + g1(x) � δ (2.7)

for some δ > 0. Then the strong Legendre condition is satisfied, i.e.

〈A1ξ
(1), ξ(1)〉 − 〈A2ξ

(2), ξ(1)〉 + 〈A2ξ
(1), ξ(2)〉 + 〈A1ξ

(2), ξ(2)〉 � τ(‖ξ(1)‖2 + ‖ξ(2)‖2)

for all ξ(1), ξ(2) ∈ R
d, τ > 0 depends on δ, h, ‖g1‖W 1,∞(Rd−1), ‖g2‖W 1,∞(Rd−1).

Proof. We define

J := 〈A1ξ
(1), ξ(1)〉 − 〈A2ξ

(2), ξ(1)〉 + 〈A2ξ
(1), ξ(2)〉 + 〈A1ξ

(2), ξ(2)〉
= 〈A1ξ

(1), ξ(1)〉 + 〈A1ξ
(2), ξ(2)〉

by the self-adjointness of A2. Thus, the lemma rests upon the coercivity of A1 and
the calculation

J1 := 〈A1ξ, ξ〉
= (h + g1)ξx · ξx + Q1ξ

2
y − 2(h + y)ξy∇xg1 · ξx,

where ξ = (ξx, ξy) ∈ R
d−1 × R. To estimate this we focus on the final term

|2(h + y)ξy∇xg1 · ξx| =
∣∣∣∣
{√

2(h + y)ξy√
h + g1 − τ

∇xg1

}
· {

√
2
√

h + g1 − τξx}
∣∣∣∣

�
(h + y)2ξ2

y

h + g1 − τ
|∇xg1|2 + (h + g1 − τ)|ξx|2,

where we need to choose τ small enough such that h + g1 − τ > 0. With this we
have

J1 � (h + g1)|ξx|2 − (h + g1 − τ)|ξx|2 + Q1ξ
2
y − (h + y)2|∇xg1|2

h + g1 − τ
ξ2
y

= τ |ξx|2 +
{

Q1 − (h + y)2|∇xg1|2
h + g1 − τ

}
ξ2
y ,

and we are done if the second term is bounded from below by τ . We write this term
as A/D − B/(C − τ), where

A = {h2 + (h + y)2(|∇xg1|2 − |∇xg2|2)}(h + g1) + {2(h + y)2∇xg1 · ∇xg2}g2,

D = (h + g1)2 + (g2)2,

B = (h + y)2|∇xg1|2,
C = h + g1,

so that we need
A

D
− B

C − τ
� τ

or
AC − BD � τ [(A + CD) − Dτ ]. (2.8)
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After some simplifications, we can show that

AC − BD = h2(h + g1)2 − (h + y)2|(h + g1)∇xg2 − g2∇xg1|2

= h2(h + g1)2 − (h + y)2(h + g1)4
∣∣∣∣∇x

(
g2

h + g1

)∣∣∣∣
2

,

so that (noticing that −h < y < 0), using our hypotheses,

AC − BD � h2(h + g1)2 − h2(h + g1)4
∣∣∣∣∇x

(
g2

h + g1

)∣∣∣∣
2

= h2(h + g1)2
{

1 − (h + g1)2
∣∣∣∣∇x

(
g2

h + g1

)∣∣∣∣
2}

� h2δ3,

and we find that (2.8) is valid if we choose sufficiently small τ .

Given this coercivity result we can easily establish the following inequality, which
will be of use several times later in the paper.

Lemma 2.2. Assume that the hypotheses of lemma 2.1 hold and that

φ(x) ∈ C∞(Rd−1).

Suppose that a solution W = (W1, W2) of

div[A1∇W1] − div[A2∇W2] = F1, (2.9 a)
div[A2∇W1] + div[A1∇W2] = F2, (2.9 b)

W1(x, 0) = W2(x, 0) = 0, (2.9 c)
∂yW1(x,−h) = ∂yW2(x,−h) = 0 (2.9 d)

satisfies ∫
Sh,0

φ2(x)|W |2 dxdy < ∞. (2.10)

Then, for any ε1, ε2, µ > 0, 0 < α < 1 with τ − C1ε1 − C2ε2 > 0,

K1

∫
Sh,0

φ2|∇W |2 dxdy + K0

∫
Sh,0

|W |2φ2 dxdy

� K̃0

∫
Sh,0

|W |2|∇φ|2 dxdy +
C0

µ

∫
Sh,0

|F |2φ2 dxdy, (2.11)

where
K1 = α(τ − C1ε1 − C2ε2),

K0 =
2(1 − α)(τ − C1ε1 − C2ε2)

h2 − C0µ,

K̃0 =
(

C1

ε1
+

C2

ε2

)

and F = (F1, F2). Here τ is defined in lemma 2.1, and the Cj = Cj(Aj) > 0 come
from the boundedness of Aj.
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Proof. We shall first assume that

φ(x) ≡ 0 for |x| 	 1. (2.12)

We begin with an elementary Poincaré estimate providing a lower bound on the
gradient of W . Since W (x, 0) ≡ 0, we can write

W (x, y) = −
∫ 0

y

∂yW (x, s) ds.

Using this and the Cauchy–Schwarz inequality,

|W (x, y)|2 �
( ∫ 0

y

|∂yW (x, s)|2 ds

)( ∫ 0

y

1 ds

)
� |y|

( ∫ 0

y

|∂yW (x, s)|2 ds

)
.

Multiplying by φ(x)2 and integrating over Sh,0, we obtain the estimate∫
Sh,0

φ2|W |2 dxdy � 1
2h2

∫
Sh,0

φ2|∇W |2 dxdy. (2.13)

Proceeding to the estimate (2.11), we multiply (2.9 a) by φ2W1 and, upon re-
arranging, we find

φ2W1F1 = φ2W1{div[A1∇W1] − div[A2∇W2]}
= div[φ2W1A1∇W1] − φ2∇W1 · (A1∇W1) − 2W1φ∇φ · (A1∇W1)

− div[φ2W1A2∇W2] + φ2∇W1 · (A2∇W2) + 2W1φ∇φ · (A2∇W2).

Integrating over Sh,0 and using the divergence theorem gives∫
Sh,0

φ2{∇W1 · (A1∇W1) − ∇W1 · (A2∇W2)} dxdy

= 2
∫

Sh,0

φ{−W1∇φ · (A1∇W1) + W1∇φ · (A2∇W2)} dxdy −
∫

Sh,0

φ2W1F1 dxdy.

A similar calculation with (2.9 b) multiplied by φ2W2 yields∫
Sh,0

φ2{∇W2 · (A2∇W1) + ∇W2 · (A1∇W2)} dxdy

= 2
∫

Sh,0

φ{−W2∇φ · (A2∇W1) − W2∇φ · (A1∇W2)} dxdy −
∫

Sh,0

φ2W2F2 dxdy.

Summing these, and using lemma 2.1 to bound the left-hand side from below, we
obtain

τ

∫
Sh,0

φ2|∇W |2 dxdy � 2
∫

Sh,0

φ{−W1∇φ · (A1∇W1) + W1∇φ · (A2∇W2)

− W2∇φ · (A2∇W1) − W2∇φ · (A1∇W2)} dxdy

−
∫

Sh,0

φ2(W · F ) dxdy.
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Taking advantage of the boundedness of Aj , we can estimate

2
∫

Sh,0

φWl∇φ · (Aj∇Wm) dxdy

� Cj

εj

∫
Sh,0

W 2
l |∇φ|2 dxdy + Cjεj

∫
Sh,0

|∇Wm|2φ2 dxdy,

∫
Sh,0

φ2(W · F ) dxdy � C0µ

∫
Sh,0

|W |2φ2 dxdy +
C0

µ

∫
Sh,0

|F |2φ2 dxdy,

so that

(τ − C1ε1 − C2ε2)
∫

Sh,0

φ2|∇W |2 dxdy

�
(

C1

ε1
+

C2

ε2

) ∫
Sh,0

|W |2|∇φ|2 dxdy

+ C0µ

∫
Sh,0

|W |2φ2 dxdy +
C0

µ

∫
Sh,0

|F |2φ2 dxdy.

‘Interpolating’ the left-hand side with 0 < α < 1, we find that

α(τ − C1ε1 − C2ε2)
∫

Sh,0

φ2|∇W |2 dxdy

+ (1 − α)(τ − C1ε1 − C2ε2)
∫

Sh,0

φ2|∇W |2 dxdy

�
(

C1

ε1
+

C2

ε2

) ∫
Sh,0

|W |2|∇φ|2 dxdy

+ C0µ

∫
Sh,0

|W |2φ2 dxdy +
C0

µ

∫
Sh,0

|F |2φ2 dxdy.

By using (2.13) in the second term on the left-hand side and bringing the second
term on the right-hand side to the left, we obtain

α(τ − C1ε1 − C2ε2)
∫

Sh,0

φ2|∇W |2 dxdy

+
[

2
h2 (1 − α)(τ − C1ε1 − C2ε2) − C0µ

] ∫
Sh,0

φ2|W |2 dxdy

�
(

C1

ε1
+

C2

ε2

) ∫
Sh,0

|W |2|∇φ|2 dxdy +
C0

µ

∫
Sh,0

|F |2φ2 dxdy.

Upon rearranging we are done. To remove assumption (2.12), we replace φ(x) by
φ(x)η(x/k), where η ∈ C∞ such that

0 � η(t) � 1, η(t) = 1 for |t| < 1, η(t) = 0 for |t| > 2. (2.14)

Using (2.10) and letting k → ∞, we conclude the lemma for the general case.
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3. Existence and uniqueness of solutions

With lemma 2.1 in hand, we can establish the existence and uniqueness of solu-
tions of system (2.4). We begin with the uniqueness, which is actually valid in a
larger class of functions. We recall that Sh,0 is the fluid domain in the transformed
coordinates, and that Hk corresponds to the Sobolev space of functions with k-
many derivatives in L2.

Theorem 3.1 (uniqueness). Let g1, g2 ∈ W 1,∞(Rd−1). Suppose that

g(x) = g1(x) + ig2(x)

and that assumption (2.7) holds. Then system (2.4) admits at most one weak solu-
tion (as usual, a weak solution is defined through integration by parts) u(x, y, λ) =
u1(x, y, λ) + iu2(x, y, λ) in the class

u ∈ H1
loc(S̄h,0, C),

∫
Sh,0

e−δ
√

1+|x|2(|u|2 + |∇u|2) dxdy < ∞, (3.1)

where δ is a small positive number.

Proof. Since the system is linear it suffices to consider the case ξ(x) ≡ 0 in (2.4).
We consider lemma 2.2 in the case when F ≡ 0 with the test function

φ(x) = e−δ
√

1+|x|2 .

This function has gradient

∇φ = − δx√
1 + |x|2

e−δ
√

1+|x|2 ,

so that (2.11) implies

K1

∫
Sh,0

φ2|∇u|2 dxdy + (K0 − δ2K̃0)
∫

Sh,0

φ2|u|2 dxdy � 0

and, if a sufficiently small δ is chosen, then∫
Sh,0

e−2δ
√

1+|x|2(|u|2 + |∇u|2) dxdy = 0,

and hence u ≡ 0.

We now turn our attention to the existence of solutions to the complexified
system, (2.6).

Theorem 3.2 (existence). Let g1, g2, ξ1, ξ2 ∈ C1+α(Rd−1) with

|g1|C1+α(Rd−1) + |g2|C1+α(Rd−1) + |ξ1|C1+α(Rd−1) + |ξ2|C1+α(Rd−1) < ∞.

Suppose that g(x) = g1(x) + ig2(x) and suppose that the assumption (2.7) holds.
Then system (2.4) has a solution u(x, y, λ) = u1(x, y, λ) + iu2(x, y, λ) such that
u1, u2 ∈ C1+α(S̄h,0).
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Proof. Using the change of variables

U(x, y) := u(x, y) − ξ(x),

(2.4) becomes

div[A∇U ] = divx[F (x)] + F (h) in Sh,0,

U(x, 0) = 0,

∂yU(x,−h) = 0,

⎫⎪⎬
⎪⎭ (3.2)

where

F (x) = −(h + g)∇xξ, F (h) = ∇xg · ∇xξ.

Clearly,

|F (x)|Cα + |F (h)|Cα � C(|g1|C1+α + |g2|C1+α)(|ξ1|C1+α + |ξ2|C1+α).

Akin to our approach earlier, we will set g = g1 + ig2, which gives rise to U =
U1 + iU2, which, upon insertion into (3.2), gives

div[A1∇U1] − div[A2∇U2] = divx[F (x)
1 ] + F

(h)
1 , (3.3 a)

div[A1∇U2] + div[A2∇U1] = divx[F (x)
2 ] + F

(h)
2 , (3.3 b)

U1(x, 0) = U2(x, 0) = 0, (3.3 c)
∂yU1(x,−h) = ∂yU2(x,−h) = 0. (3.3 d)

If, in addition to the given assumptions, we further assume that ξ(x) has compact
support, then the right-hand side of (3.3 a) also has compact support. It follows that
this right-hand side defines a bounded linear operator on X × X, where X is the
closure in H1(Sh,0) of C∞(S̄h,0) functions which vanish on {y = 0}. X is a Banach
space with H1(Sh,0) norm.

Thus, we can look for solutions (U1, U2) ∈ X ×X. The strong Legendre condition
implies the coerciveness of this bilinear form in X × X. The Lax–Milgram theorem
(cf. [5]) can be applied to obtain the existence of an H1 solution pair for the
corresponding linear problem. A standard procedure can then be applied to obtain
a unique H1 solution for our problem. We then apply Schauder’s estimates (cf. [5])
to bound the C1+α norm of our solution.

In order to remove the compactness assumptions for ξ(x), we must derive esti-
mates for this solution. Choosing φ(x) = exp(−δ

√
1 + |x|2) and noting that

|∇xφ|2 � δ2|φ|2,

lemma 2.2 implies

K1

∫
Sh,0

φ2|∇U |2 dxdy + (K0 − δ2K̃0)
∫

Sh,0

φ2|U |2 dxdy � C0

µ

∫
Sh,0

φ2|F |2 dxdy
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so that, for sufficiently small δ,∫
Sh,0

φ2|U |2 dxdy +
∫

Sh,0

φ2|∇U |2 dxdy

� C

∫
Sh,0

φ2|F (x)|2 dxdy + C

∫
Sh,0

φ2|F (h)|2 dxdy

� C‖ξ‖2
W 1,∞‖g‖2

W 1,∞(Rd−1).

Notice that the above proof is independent of the choice of origin. In particular, for
any x0 ∈ R

d−1, we have∫
Sh,0

φ(x−x0)2|U |2 dxdy+
∫

Sh,0

φ(x−x0)2|∇U |2 dxdy � C‖ξ‖2
W 1,∞‖g‖2

W 1,∞ , (3.4)

where the constant C is independent of x0 ∈ R
d−1.

We can now approximate general ξ with functions of compact support. Using
(3.4), we can pass to the limit and obtain a solution in H1

loc satisfying the esti-
mates (3.4). This estimate enables us to apply Schauder’s theory [5] to U and to
obtain C1+α solutions. This completes the existence proof.

4. Analyticity

At this point we can prove our analyticity theorem. We proceed by taking

g(x) = g0(x) + λf(x),

where g0, f, λ are all complex valued, and establish the differentiability with respect
to λ.

We formally differentiate (2.4) with respect to λ and, upon setting w(x, y) :=
∂λu(x, y), we have

div[A∇w] = − div[Aλ∇u] in Sh,0,

w(x, 0) = 0,

∂yw(x,−h) = 0,

⎫⎪⎬
⎪⎭ (4.1)

where

Aλ =

(
fI −(h + y)∇xf

−(h + y)∇xf Qλ

)
,

Qλ =

2λ(h + y)2∇xg0 · ∇xf(h + g0 + λf)
−{h2 + (h + y)2(∇xg0 + λ∇xf) · (∇xg0 + λ∇xf)}f

(h + g0 + λf)2
.

Theorem 4.1. Under the assumptions of theorem 3.2 (one of the assumptions is
that the function g ≡ g0 + λf satisfies (2.7)), system (4.1) has a unique solution
w(x, y, λ) = w1(x, y, λ) + iw2(x, y, λ) such that w1, w2 ∈ C1+α(S̄h,0).



The domain of analyticity of Dirichlet–Neumann operators 379

Proof. We can write this system in the same form as (3.3) with the right-hand side
replaced by div[F ] for some F that satisfies, by the regularity of u from theorem 3.2,

|F |Cα � C.

From this estimate we conclude, as in the proof of theorems 3.1 and 3.2, the exis-
tence and uniqueness of the C1+α solution.

Theorem 4.2. The solution to the complexified system u(x, y, λ) = u1(x, y, λ) +
iu2(x, y, λ) is an analytic function in λ in the domain in which the assumptions of
theorem 3.2 are satisfied.

Proof. We follow the technique used by Hu and Nicholls [17] and find a system of
equations for the finite difference

u(x, y; λ + δλ) − u(x, y; λ)
δλ

which satisfies an equation much like (4.1), for which C1+α estimates can be derived
(cf. theorems 3.2 and 4.1). The compactness of the embedding C1+α → C1+β for
0 < β < α implies that a subsequence of solutions of the system satisfied by
the finite difference converges in C1+β to the solution of (4.1). By the uniqueness
theorem (theorem 3.1), the limit is independent of the choice of subsequence. Thus,
the finite difference converges to the unique limit w, thereby proving that u(x, y, λ)
is analytic in λ.

Theorem 4.3. The Dirichlet–Neumann operator G is a holomorphic (analytic)
map from C1+α(Rd−1) into L(C1+α(Rd−1), Cα(Rd−1)) in the domain where (2.7)
is satisfied.

Proof. Let g0 be any (complex) function in C1+α(Rd−1) satisfying (2.7). For any
(complex) f ∈ C1+α(Rd−1) and any |λ| � 1, g0 +λf will clearly satisfy (2.7) (with
a different δ). Theorem 4.2 shows that, for the above g0 and f , the corresponding
u(x, y, λ) is analytic in λ, and hence G is (complex) Gâteaux differentiable at g0
in the direction f . The estimates derived also clearly show that G is a locally
bounded operator. Thus, the Grave–Taylor–Hille–Zorn theorem implies that G is
holomorphic [4, ch. 14, p. 198].

We now go back to our original problem in the real spaces and establish the radius
of convergence. All that we have to do now is find the conditions under which (2.7)
will hold when f(x) is real. We note that, in the case when g(x) = (λ1 + iλ2)f(x),
f(x) real, (2.7) is satisfied (for some different δ > 0) if, for some δ > 0,

|λ1|
|f |L∞

h
+ |λ2||∇xf |L∞ � 1 − δ. (4.2)

Remark 4.4. If
|λ| � 1√

[|f |L∞/h]2 + |∇xf |2
L∞

− δ,

then clearly (4.2) is satisfied. In other words, the analytic extension of u depends
on the oscillation of f : more specifically, the L∞ norm of the derivative; smaller
oscillation gives a larger domain of analyticity.
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Theorem 4.5. Consider the special case in which g(x) = λf(x), where λ is a
real number and f is a real function. If f, ξ ∈ C1+α(Rd−1) then both the solution
u(x, y, λ) of (2.1) defined by (2.4) and the DNO G(λf) defined in (2.2) are analytic
as functions of λ, i.e. there exists δ > 0 such that they can be expressed as the
convergent series

u(x, y, λ) =
∞∑

n=0

un(x, y)λn, G(λf) =
∞∑

n=0

Gn(f)λn (4.3)

for all

|λ| � 1√
[|f |L∞/h]2 + |∇xf |2L∞

− δ.

Furthermore, un and Gn(f) satisfy

|un|C1+α � CBn|ξ|C1+α , ‖Gn(f)‖L(C1+α,Cα) � CBn,

where C is a constant independent of λ and B is a positive constant such that

B <
√

[|f |L∞/h]2 + |∇xf |2L∞ + δ.

Proof of theorem 4.5. We assume that ∇xf �≡ 0, otherwise the change of variables
is trivial and there is nothing to prove. Take

c0 =
1√

[|f |L∞/h]2 + |∇xf |2L∞

− δ

2
, 0 < δ � 1.

Then, by theorem 4.2, the function u is analytic in λ for |λ| � c0. Furthermore,
uniform C1+α estimates hold for u(·, ·, λ) for |λ| = c0. By Cauchy’s formula, if
|λ| < c0,

u(x, y, λ) =
1

2πi

∫
|ζ|=c0

u(x, y, ζ)
ζ − λ

dζ =
∞∑

n=0

un(x, y)λn,

where

un(x, y) =
1

2πi

∫
|ζ|=c0

u(x, y, ζ)
ζn+1 dζ.

Using this formula, we obtain estimates on un from estimates for u:

|un|C1+α � 1
cn+1
0

max
|ζ|=c0

|u(·, ·, ζ)|C1+α � CBn|ξ|C1+α ,

where B = 1/c0. Restricting λ to being real and restricting |λ| to less than c0, we
obtain the expansion for u(x, y, λ). Similarly, we can extend G(λf)[ξ] to complex λ.
Using the (complex) analyticity of u in λ, we immediately have the differentiability
of G(λf)[ξ] with respect to λ and

|G(λf)ξ|Cα � C|u|C1+α � C|ξ|C1+α .
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Thus, for |λ| < c0,

G(λf)ξ =
1

2πi

∫
|ζ|=c0

G(ζf)ξ
ζ − λ

dζ =
∞∑

n=0

(Gn(f)ξ)λn,

where

Gn(f)ξ =
1

2πi

∫
|ζ|=c0

G(ζf)ξ
ζn+1 dζ.

From this, we obtain

|Gn(f)ξ|Cα � 1
cn+1
0

max
|ζ|=c0

|G(ζf)ξ|Cα � C

cn+1
0

max
|ζ|=c0

|u(·, ·, ζ)|C1+α � CBn|ξ|C1+α .

This implies
‖Gn(f)‖L(C1+α,Cα) � CBn

and the theorem is proved.

5. Numerical examples

In this section we illustrate the theoretical results of the previous sections by inves-
tigating, numerically, the location of the singularities of the expansion

G(λf) =
∞∑

n=0

Gn(f)λn

(cf. (4.3)). In [27] we described a stable, high-order, accurate numerical scheme for
the simulation of a DNO in the context of water waves for the Laplace equation on
an ocean of depth h. The method is, in fact, based upon the simulation of the un

and Gn, which appear in the expansions (4.3) where, at every order n,

un(x, y) ≈ uNx,Ny
n (x, y) =

Nx/2−1∑
k=−Nx/2

Ny∑
l=0

ûk,l
n Tl

(
2y + h

h

)
eikx,

Gn(x) ≈ GNx
n (x) =

Nx/2−1∑
k=−Nx/2

Ĝk
neikx,

where Tl is the Chebyshev polynomial of degree l. We refer the interested reader
to [27] for the details of how the {ûk,l

n , Ĝk
n} are approximated.

Regarding a numerical approximation of the singularities of the expansion (4.3)
for G(λf), we have chosen the method of Padé approximants [2, § 2.2]. To summarize
our procedure, consider a function c(λ) with Taylor series

c(λ) =
∞∑

n=0

cnλn,
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which converges for |λ| < ρ. The method of Padé approximation seeks to approxi-
mate the Nth partial sum

cN (λ) :=
N∑

n=0

cnλn

by the rational function[
L

M

]
(x) =

aL(λ)
bM (λ)

=
∑L

l=0 alλ
l∑M

m=0 bmλm
,

where L + M = N and [
L

M

]
(x) = cN (λ) + O(λL+M+1)

(see [2] for details and a numerical scheme for obtaining the {al, bm}).
Given this rational function approximation, it is reasonable to consider the set

of denominator zeros
DM := {λ ∈ C | bM (λ) = 0}

as an approximation of the set of singularities of c(λ). However, we quickly discover
that a ‘false singularity’ may be detected if we do not account for the possibility
that a numerator zero may cancel a member of DM . Thus, we define

NL := {λ ∈ C | aL(λ) = 0}

and set
PL,M := DM \ NL.

Of course, in a numerical simulation the members of DM and NL can only be
identified up to machine precision and thus we define the approximate sets D̃M

and ÑL. Furthermore, we have found a ‘cancellation tolerance’, τ , to be necessary
to achieve meaningful results, so, in what follows, we compute

P̃ τ
L,M := {λ ∈ D̃M | |λ − µ| > τ for all µ ∈ ÑL}.

For a complete discussion of the capabilities of this approach to approximating
the singularities of a function we refer the reader to [2, § 2.2] and the insightful
calculations in [3, § 8.3].

For a given profile f(x), our numerical method [27] furnishes us with the data

{Ĝk
n}, 0 � n � N, − 1

2Nx � k � 1
2Nx − 1,

and, thus, we form

ck,N (λ) =
N∑

n=0

Ĝk
nλn, − 1

2Nx � k � 1
2Nx − 1

and compute P̃ τ
L,M,k. In the figures that follow we plot

P =
Nx/2−1⋃

k=−Nx/2

P̃ τ
N/2,N/2,k

so that we consider the singularities of all possible data associated to the DNO
with diagonal Padé approximants.
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Figure 1. Uncancelled singularities in the DNO for the sinusoidal profile with h = 1 and
L = 2π. Here Nx = 256, N = 40, Ny = 64, τ = 10−4.
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Figure 2. Uncancelled singularities in the DNO for the C4 profile with h = 1 and L = 2π.
Here Nx = 256, N = 40, Ny = 64, τ = 10−4.

Of course, the structure of the singular values of G(λf) changes as f is varied,
particularly as it varies from smooth to rough. To investigate this property, we have
chosen three profiles (all 2π-periodic or otherwise periodically extended with period
2π) which possess very different smoothness properties: a sinusoid

fs(x) = cos(x), (5.1 a)

a C4 profile,
f4(x) = (2 × 10−4)x4(2π − x)4 − c0, (5.1 b)
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Figure 3. Uncancelled singularities in the DNO for the Lipschitz profile with h = 1 and
L = 2π. Here Nx = 256, N = 40, Ny = 64, τ = 10−4.
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Figure 4. Uncancelled singularities in the DNO for the sinusoidal profile, with h = 2 and
L = 2π. Here Nx = 256, N = 40, Ny = 64, τ = 10−4.

where c0 is chosen so that f4 has zero mean, and a Lipschitz curve

fL(x) =

⎧⎪⎨
⎪⎩

− 2
π

x + 1, 0 � x � π,

2
π

x − 3, π � x � 2π,

(5.1 c)

(cf. [29]). As pointed out in [29], the latter two equations admit the Fourier series
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Figure 5. Uncancelled singularities in the DNO for the C4 profile, with h = 2 and
L = 2π. Here Nx = 256, N = 40, Ny = 64 and τ = 10−4.

representations

f4(x) =
∞∑

k=1

96(2k2π2 − 21)
125k8 cos(kx),

fL(x) =
∞∑

k=1

8
π2(2k − 1)2

cos((2k − 1)x),

and we have found it useful in numerical simulations to approximate these by the
truncations

f4,P (x) =
P∑

k=1

96(2k2π2 − 21)
125k8 cos(kx), (5.2 a)

fL,P (x) =
P/2∑
k=1

8
π2(2k − 1)2

cos((2k − 1)x), (5.2 b)

where we set P = 40 in the simulations presented here.
In figures 1–3 we plot P for the profiles fs, f4,40 and fL,40, respectively (cf.

(5.1 a), (5.2 a) and (5.2 b)), in the case when h = 1. In these simulations we chose
the numerical parameters Nx = 256, Ny = 64 and N = 40 [27]. Here we see, in
each case, a clear region of analyticity near the origin. However, in each case, we
also see a clustering of singularities on the real axis, seemingly contradicting our
results. However, closer inspection reveals that the singularities occur at λ = ±1,
corresponding to the physical obstruction presented by our domain of depth h = 1.
Recall that (2.7) implies

|λ1|
|f |L∞

h
� 1 − δ.
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Figure 6. Uncancelled singularities in the DNO for the Lipschitz profile, with h = 2 and
L = 2π. Here Nx = 256, N = 40, Ny = 64 and τ = 10−4.
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Figure 7. Uncancelled singularities in the DNO for the sinusoidal profile, with h = ∞
and L = 2π. Here Nx = 256, N = 40, Ny = 64 and τ = 10−4.

To further illustrate, we simulate the profiles fs, f4,40 and fL,40 in the case when
h = 2 (the numerical parameters are once again Nx = 256, Ny = 64 and N = 40).
The results for P are presented in figures 4, 5 and 6, respectively. We again notice a
well-defined region of analyticity and a clustering of singularities on the real axis for
all three profiles. However, the clustering occurs around λ = ±2 which is, again, the
location of the physical obstruction presented by the finite extent of the problem
domain.
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Figure 8. Uncancelled singularities in the DNO for the C4 profile with h = ∞ and
L = 2π. Here Nx = 256, N = 40, Ny = 64, τ = 10−4.
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Figure 9. Uncancelled singularities in the DNO for the Lipschitz profile, with h = ∞ and
L = 2π. Here Nx = 256, N = 40, Ny = 64 and τ = 10−4.

Finally, we consider the case when h = ∞ (in fact, we chose h = 106) for all three
profiles. The results are given in figures 7–9. Here, |λ1||f |L∞/h � 1 − δ is always
satisfied and the singularities for all three profiles have disappeared entirely from
the real axis, showing that the DNO can be continued analytically for any real λ
(cf. [28]).
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Remark 5.1. Before closing, we observe that our results give information not only
about the permitted location of poles on the real axis, but also about their appear-
ance on the imaginary axis. While (1.1) indicates that the latter poles are essentially
governed by h (the depth of the fluid which parametrizes the physical obstruction
at the bottom of the fluid domain), the same equation states that poles on the
imaginary axis are restricted only by the L∞ norm of the gradient of f and are
independent of h. A quick inspection of figures 1–9 reveals that the smallest singu-
larity on the imaginary axis is always in a neighbourhood of ±i, both independent
of h and reasonably close to |∂xf |−1

L∞ .
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