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The propagation of linear elastic waves arises in a wide array of applications, for instance,
in mechanical engineering, materials science, and the geosciences. Many configurations of
interest can be effectively modeled as layers of isotropic, homogeneous materials separated
by thin interfaces across which material properties vary rapidly. In the frequency domain
one must solve a system of coupled elliptic partial differential equations, however, this can
be greatly simplified in the instance of layered media by considering interface unknowns.
To realize this one must be able to produce normal stresses (tractions) at these interfaces
and Dirichlet–Neumann Operators accomplish this. In this contribution we discuss a novel
Boundary Perturbation approach to compute these operators in a rapid, high-order, and
robust fashion.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The propagation of linear elastic waves in an inhomogeneous medium arises in a wide array of applications, for instance,
in mechanical engineering [2], materials science [20], and the geosciences [9,56]. These disturbances are governed by the
wave equation where the velocity of propagation depends upon the properties of the material in question [1,2]. In many
applications, e.g. in the instance of plane-wave incident radiation, it is sufficient to compute the scattering at a single
temporal frequency and thus, in light of the linear nature of the governing equations, one may adopt the frequency-domain
approach as we do here resulting in a system of elliptic PDE to be solved.

In many instances, the medium may be effectively modeled by two or more isotropic, homogeneous layers which are
delineated by sharp interfaces across which the material properties vary rapidly. Furthermore, for many purposes these can
be specified by graphs of (single-valued) functions which, additionally, are periodic. Many numerical algorithms have been
devised for the simulation of this problem. The Finite Difference (FDM) [39,50], Finite Element (FEM) [29,61], and Spectral
Element (SEM) [31,32] methods have been studied but suffer from the fact that they discretize the full volume of the model
which not only introduces a huge number of degrees of freedom, but also raises the difficult question of appropriately
specifying a far-field boundary condition explicitly. Furthermore, the Finite Difference method, while simple to devise and
implement is not well-suited to the complex geometries of general layered media.

An attractive alternative is surface integral methods [3,55] (e.g. Boundary Integral Methods—BIM—or Boundary Element
Methods—BEM) which only require a discretization of the layer interfaces (rather than the whole structure) and which,
due to the choice of the Green’s function, enforce the far-field boundary condition exactly. These methods can deliver
high-accuracy simulations with greatly reduced operation counts, however, such formulations typically require not only the

* Corresponding author.
http://dx.doi.org/10.1016/j.jcp.2014.04.038
0021-9991/© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jcp.2014.04.038
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
http://dx.doi.org/10.1016/j.jcp.2014.04.038
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2014.04.038&domain=pdf


Z. Fang, D.P. Nicholls / Journal of Computational Physics 272 (2014) 266–278 267
surface trace of the field (the displacement), but also the surface trace of the normal derivative of the field (the traction)
in order to close the set of coupled boundary conditions. “Dirichlet–Neumann Operators” (DNOs), and their generalizations,
perform the operation of mapping the Dirichlet trace to its unique Neumann trace and thus it is clear that these DNOs play
a central role in surface formulations. Before proceeding, we point out that DNOs have been studied in many contexts and
are alternatively known as “Dirichlet-to-Neumann Maps” [16,26,30] and “Steklov–Poincaré Operators” [12].

For many problems, the layer interface shapes are moderate deviations from an exactly solvable flat-layer (infinites-
imal) configuration, in which case a perturbative approach is natural. In particular, there are many low-order theories
for scattering problems going back to the classical work of Rayleigh [51] and Rice [52]. In the general case we refer
the interested reader to [10,11,15,18,21,23,24,27,28,33,34,42,53,57,58], while specifically to elasticity we suggest [17,22,
54,59,60]. Boundary Perturbation Methods (BPMs) are built upon this philosophy, and have been shown to be a rapid,
accurate, and robust class of numerical procedures for this problem (see [44] for a complete discussion and a list of
references). BPMs built upon Operator Expansions [34–37,40,41], Field Expansions [4–8], and Transformed Field Expan-
sions [45–49] have proven to be highly successful within their domains of applicability (which are not restricted by the
size of the perturbation [47]), and we follow the Operator Expansions (OE) philosophy in this contribution (though other
BPM could be easily imagined based upon our work here). While the developments in this contribution follow these to
a certain degree, a fundamental complication of the equations of linear elastodynamics is their three-dimensional nature,
not only of the independent variable, but also the unknown field. One well-known consequence of this property is that
within a homogeneous medium there are two (body) propagation velocities, those of the primary (P-) and secondary (S-)
waves. As we shall see, this plays a crucial role in our developments and distinguishes it significantly from the previous
work.

Our approach is a Fourier/Taylor method which expands the quasiperiodic scattered field in a (generalized) Fourier series
in the spatial variable, and the field in powers of the interface deformation which we characterize by a single quantity,
ε, which we view as an (not necessarily small [47]) amplitude/slope. In the previous work it has been shown that the
scattered fields depend analytically upon the parameter ε with the radius of convergence dependent on the smoothness of
the interface perturbation (as rough as Lipschitz [13,25,47]). For smooth deformations the field will be jointly analytic with
respect to both spatial and perturbation variables which results in a numerical scheme which converges exponentially as
the numerical parameters are refined.

The organization of the paper is as follows: In Section 2 we recall the well-known governing equations, specialize to
an elastic half-space in Section 2.1, and specify the notion of outgoing solutions in Section 2.2. In Section 3.1 we recall
the classical solution in the case of a layered media with infinitesimal (vanishingly small) interfaces, and then use this to
provide a formula for the Displacement-Traction Operator (DTO) in this simple case. In Section 3.2 we devise an algorithm
for approximating the DTO in the important case of non-trivial geometries. Finally, in Section 4 we present numerical results
which demonstrate the stability and high accuracy which our numerical algorithm can deliver.

2. Governing equations

We refer the interested reader to the very clear description in Chapter 5 of Billingham and King [2] for the governing
equations of the propagation of linear waves in a solid (see also the classical text by Achenbach [1]). To summarize these
developments, we recall that for small (total) displacements

ut = ut(x, t), x ∈ R3,

of an elastic body, the governing equations are Navier’s equations

ρ∂2
t ut

i = ∂ jσi j
(
ut),

where ρ is the undisturbed density of the elastic solid and σi j is the symmetric stress tensor expressing the constitutive
relation

σi j = λekkδi j + 2μeij .

In these, λ and μ are the Lamé constants, and δi j is the identity tensor. Substituting in the strain tensor [1], ei j =
(1/2){∂ jut

i + ∂iut
j}, we arrive at (the vector form of) Navier’s equation

ρ∂2
t ut = (λ + μ)∇ div

[
ut] + μ�ut .

If we seek time-harmonic solutions ut(x, t) = exp(−iωt)ut(x), Navier’s equation becomes

μ�ut + (λ + μ)∇ div
[
ut] + ω2ρut = 0. (2.1)

Appealing to the Helmholtz decomposition [1,2]

ut = ∇φt + curl
[
ψ t], div

[
ψ t] = 0,
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where φt is the scalar potential and ψ t is the vector potential, (2.1) becomes

∇[
(λ + 2μ)�φt + ω2ρφt] + curl

[
μ�ψ t + ω2ρψ t] = 0.

We can satisfy this equation by enforcing two Helmholtz equations (one scalar and one vector)

�φt + (
ω/c(1)

)2
φt = 0, �ψ t + (

ω/c(2)
)2

ψ t = 0, div
[
ψ t] = 0, (2.2)

where c(1) := √
(λ + 2μ)/ρ and c(2) := √

μ/ρ are the primary wave (P-wave) and secondary wave (S-wave) velocities,
respectively.

2.1. Plane harmonic waves in elastic half-space

The problem we wish to study is the reflection of an incident plane wave in an elastic half-space adjoining a medium
which does not transmit mechanical waves. In particular, we focus upon incident plane-waves

ui = Aei(α·x̃−γ x3), A ∈ R3, α = (α1,α2)
T , x̃ = (x1, x2)

T ,

impinging from above upon a periodic interface

x3 = g(x̃), g(x̃ + d̃) = g(x̃), d̃ = (d1,d2)
T ,

where the solid occupies the domain x3 > g(x̃). This incident radiation will satisfy (2.1) provided that either

γ 2 = (
ω/c(1)

)2 − |α|2, and A parallel to (α,−γ )T ,

or

γ 2 = (
ω/c(2)

)2 − |α|2, and A orthogonal to (α,−γ )T ,

while α can be freely chosen. Such an incident plane-wave will generate scattered surface displacements, u, satisfying the
boundary condition

u
(
x̃, g(x̃)

) = ξ(x̃) := −ui(x̃, g(x̃)
)
.

Due to the linear character of the problem the scattered displacement also satisfies the Navier equation, cf. (2.1),

μ�u + (λ + μ)∇ div[u] + ω2ρu = 0, (2.3)

and, upon appealing to the Helmholtz decomposition, the Helmholtz equations, cf. (2.2),

�φ + (
ω/c(1)

)2
φ = 0, �ψ + (

ω/c(2)
)2

ψ = 0, div[ψ] = 0. (2.4)

This problem is known to have a unique, α-quasiperiodic,

u(x̃ + d̃, x3) = eiα·d̃u(x̃, x3),

solution which is outgoing [1].

2.2. Outgoing solutions

To make the notion of outgoing solutions more precise, for x3 > |g|L∞ , the exact solutions (given by the Rayleigh expan-
sions) for the Helmholtz equations, (2.4), are

φ(x) =
∞∑

|p|=−∞
φ̂(p)ei(α(p)·x̃+γ (1)(p)x3), ψ(x) =

∞∑
|p|=−∞

ψ̂(p)ei(α(p)·x̃+γ (2)(p)x3), (2.5)

where ψ(x) must be divergence-free. In these formulas p = (p1, p2)
T ∈ Z2 (so that the summation notation above is short-

hand for the double sum over all p ∈ Z2) and

α(p) = α + 2π

(
p1/d1
p2/d2

)

γ ( j)(p) =
{√

(ω/c( j))2 − |α(p)|2, |α(p)|2 < (ω/c( j))2

i
√|α(p)|2 − (ω/c( j))2, |α(p)|2 > (ω/c( j))2

, j = 1,2.

The outgoing wave condition is reflected in the choice of the positive signs before γ ( j)(p) in the expressions for φ and ψ

in (2.5).
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With the definition of the wavevector

κ( j)(p) :=
(

α(p)

γ ( j)(p)

)
,

we can write

φ(x) =
∞∑

|p|=−∞
φ̂(p)eiκ(1)(p)·x, ψ(x) =

∞∑
|p|=−∞

ψ̂(p)eiκ(2)(p)·x, iκ(2)(p) · ψ̂(p) = 0.

We can now express the scattered elastic wave field as

u(x) = ∇φ + curl[ψ] =
∞∑

|p|=−∞

(
iκ(1)(p)

)
φ̂(p)eiκ(1)(p)·x +

∞∑
|p|=−∞

{(
iκ(2)(p)

) × ψ̂(p)
}

eiκ(2)(p)·x,

(
iκ(2)(p)

) · ψ̂(p) = 0. (2.6)

Remark 2.1. In this expression the scalar coefficient φ̂(p) delivers the P-waves, while the vector quantity {(iκ(2)(p)) × ψ̂(p)}
gives the S-waves. Due to the orthogonality constraint

(
iκ(2)(p)

) · ψ̂(p) = 0,

the latter lies in a two-dimensional space which can be spanned by a vector in the vertical plane (the SV-waves) and one
in the horizontal plane (the SH-waves). Therefore (2.6) captures all of the body waves which propagate in a homogeneous,
isotropic solid.

3. The displacement-traction operator

The fundamental object of our study is a generalized Dirichlet–Neumann Operator (DNO), namely the Displacement-
Traction Operator (DTO), which we define here.

Definition 3.1. Consider the time-harmonic Navier’s equations, (2.3),

μ�u + (λ + μ)∇ div[u] + ω2ρu = 0, x3 > g(x̃),

supplemented with displacement (Dirichlet) data

u
(
x̃, g(x̃)

) = ξ(x̃). (3.1)

The unique, α-quasiperiodic, outgoing solution delivers the surface traction (normal stress; Neumann) data

νi(x̃) = σi j(u)|x3=g N j,

with exterior normal

N = (∂1 g, ∂2 g,−1)T ,

and the Displacement-Traction Operator (DTO), G , is defined as the operation of computing ν given ξ ,

G(g) : ξ → ν.

Remark 3.2. In light of the relation

σi j = λekkδi j + 2μeij,

we introduce the notation G = L + M where

L := λekkδi j N j|x3=g = λekk Ni|x3=g, M := 2μeij N j|x3=g . (3.2)

Clearly, the DTO depends linearly upon the Dirichlet data ξ , while the dependence on g is nonlinear. However, this
dependence is analytic and we use this fact to great effect to produce a robust high-order numerical algorithm.
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3.1. Infinitesimal deformations

Before coming to this, we begin with the (relatively) simple case of the DTO in the case of an infinitesimal (non-zero but
vanishingly small) interface that we model by g ≡ 0 with normal Ni = −δi3. While this is not the focus of our study, it is
the “base case” which allows us to address non-zero deformations.

The first step is to find the unique solution to Navier’s equation with displacement boundary condition, (3.1). From (2.6)
we have

∞∑
|p|=−∞

ξ̂ (p)eiα(p)·x̃ = ξ(x̃) = u(x̃,0) =
∞∑

|p|=−∞

[(
iκ(1)(p)

)
φ̂(p) + {(

iκ(2)(p)
) × ψ̂(p)

}]
eiα(p)·x̃,

subject to (iκ(2)(p)) · ψ̂(p) = 0. The solution is found by solving the linear system of equations(
iκ(2)(p)× iκ(1)(p)

iκ(2)(p)T 0

)(
ψ̂(p)

φ̂(p)

)
=

(
ξ̂ (p)

0

)
,

which, for each p, is four equations in four unknowns. We denote the solution map by

ψ̂(p) = Lψ

[
ξ̂ (p)

]
, φ̂(p) = Lφ

[
ξ̂ (p)

]
.

Regarding the operator L = L(0), from (2.6) we have

ekk(x) = ∂kuk(x) =
∞∑

|p|=−∞

(
iκ(1)(p)

) · (iκ(1)(p)
)
φ̂(p)eiκ(1)(p)·x =

∞∑
|p|=−∞

−∣∣κ(1)(p)
∣∣2

φ̂(p)eiκ(1)(p)·x,

so that

L(0)[ξ ] =
∞∑

|p|=−∞
λ
∣∣κ(1)(p)

∣∣2Lφ

[
ξ̂ (p)

]
eiα(p)·x̃δi3. (3.3)

For M = M(0) we compute

∂ jui(x) =
∞∑

|p|=−∞

(
iκ(1)

j (p)
)(

iκ(1)
i (p)

)
φ̂(p)eiκ(1)(p)·x +

∞∑
|p|=−∞

(
iκ(2)

j (p)
){(

iκ(2)(p)
) × ψ̂(p)

}
ie

iκ(2)(p)·x,

again subject to (iκ(2)(p)) · ψ̂(p) = 0. So

2eij = ∂ jui + ∂iu j =
∞∑

|p|=−∞
2
(
iκ(1)

j (p)
)(

iκ(1)
i (p)

)
φ̂(p)eiκ(1)(p)·x

+
∞∑

|p|=−∞

[(
iκ(2)

j (p)
){(

iκ(2)(p)
) × ψ̂(p)

}
i + (

iκ(2)
i (p)

){(
iκ(2)(p)

) × ψ̂(p)
}

j

]
eiκ(2)(p)·x,

and

M(0)[ξ ] = 2μeij N j3|x3=0 = −2μeijδ j3|x3=0

= μ

∞∑
|p|=−∞

[
2κ

(1)
j (p)κ

(1)
i (p)φ̂(p) + κ

(2)
j (p)

{
κ(2)(p) × ψ̂(p)

}
i + κ

(2)
i (p)

{
κ(2)(p) × ψ̂(p)

}
j

]
eiα(p)·x̃δ j3

= μ

∞∑
|p|=−∞

[
2κ

(1)
j (p)κ

(1)
i (p)Lφ

[
ξ̂ (p)

]
+ κ

(2)
j (p)

{
κ(2)(p) ×Lψ

[
ξ̂ (p)

]}
i + κ

(2)
i (p)

{
κ(2)(p) ×Lψ

[
ξ̂ (p)

]}
j

]
eiα(p)·x̃δ j3. (3.4)

3.2. General deformations

We now move to the general setting of DTOs connected to non-trivial geometries with interface shaped by the graph
of the function x3 = g(x̃). Of course this is generally quite a difficult problem and the key to our approach is to consider
deformations of the form

g(x̃) = ε f (x̃),
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which gives rise to expansions

u = u(x;ε) =
∞∑

n=0

u(n)(x)εn, L = L(ε) =
∞∑

n=0

L(n)εn, M = M(ε) =
∞∑

n=0

M(n)εn,

that can be shown to be strongly convergent [25,45,47]. We now outline the Method of Operator Expansions (OE) [14,34,
35,48] for simulating DTO in this setting of linear elastodynamics.

To begin our development consider the following α-quasiperiodic, outgoing solution of the time-harmonic Navier’s equa-
tion

u(x; p) = (
iκ(1)(p)

)
φ̂(p)eiκ(1)(p)·x + {(

iκ(2)(p)
) × ψ̂(p)

}
eiκ(2)(p)·x, (3.5)

subject to (iκ(2)(p)) · ψ̂(p) = 0. We note that, in terms of these, (2.6) can be written as

u(x) =
∞∑

|p|=−∞
u(x; p),

(
iκ(2)(p)

) · ψ̂(p) = 0.

We now define the surface quantities

U (x̃; g, p) := u
(
x̃, g(x̃); p

)
(3.6a)

K (x̃; g, p) := ∂kuk
(
x̃, g(x̃); p

)
(3.6b)

Eij(x̃; g, p) := {
∂ jui

(
x̃, g(x̃); p

) + ∂iu j
(
x̃, g(x̃); p

)}
, (3.6c)

and observe that, expressing g = ε f , these are analytic in ε so that

{U , K , Eij}(x̃;ε f , p) =
∞∑

n=0

{
U (n)(x̃; p), K (n)(x̃; p), E(n)

i j (x̃; p)
}
εn.

We will derive forms for the {U (n), K (n), E(n)
i j } in Appendix A.

Turning to the operator L, from (3.2) we can write

L(ε f )
[
U (x̃;ε f , p)

] = λK (x̃;ε f , p)Ni(ε f ),

and expand( ∞∑
n=0

εn L(n)( f )

)[ ∞∑
m=0

U (m)(x̃; f , p)εm

]
= λ(ε∂1 f )

∞∑
n=0

K (n)(x̃; f , p)εnδi1

+ λ(ε∂2 f )
∞∑

n=0

K (n)(x̃; f , p)εnδi2 − λ

∞∑
n=0

K (n)(x̃; f , p)εnδi3.

Equating at order zero we find

L(0)
[
U (0)

] = −λK (0)δi3,

where

U (0) = u(x̃,0; p) = (
iκ(1)(p)

)
φ̂(p)eiα(p)·x̃ + {(

iκ(2)(p)
) × ψ̂(p)

}
eiα(p)·x̃ = ξ̂ (p)eiα(p)·x̃

K (0) = −∣∣κ(1)(p)
∣∣2

φ̂(p)eiα(p)·x̃ = −∣∣κ(1)(p)
∣∣2Lφ

[
ξ̂ (p)

]
eiα(p)·x̃,

so that we recover (3.3)

L(0)
[
ξ̂ (p)eiα(p)·x̃] = λ

∣∣κ(1)(p)
∣∣2Lφ

[
ξ̂ (p)

]
eiα(p)·x̃δi3.

At order n > 0 we find

L(n)( f )
[
ξ̂ (p)eiα(p)·x̃] = L(n)( f )

[
U (0)

] = −λK (n)( f )δi3 + λ(∂1 f )K (n−1)( f )δi1

+ λ(∂2 f )K (n−1)( f )δi2 −
n−1∑
m=0

L(m)( f )
[
U (n−m)

]
. (3.7)

In an exactly analogous fashion we can show that



272 Z. Fang, D.P. Nicholls / Journal of Computational Physics 272 (2014) 266–278
M(0)
[
ξ̂ (p)eiα(p)·x̃] = M(0)

[
U (0)

] = μE(0)
i j δ j3

= μ
[
2κ

(1)
j (p)κ

(1)
i (p)Lφ

[
ξ̂ (p)

]
+ κ

(2)
j (p)

{
κ(2)(p) ×Lψ

[
ξ̂ (p)

]}
i + κ

(2)
i (p)

{
κ(2)(p) ×Lψ

[
ξ̂ (p)

]}
j

]
δ j3,

which recovers (3.4), and

M(n)( f )
[
U (0)

] = −μE(n)
i3 ( f ) + μ(∂1 f )E(n−1)

i1 ( f ) + μ(∂2 f )E(n−1)
i2 ( f ) −

n−1∑
m=0

M(m)( f )
[
U (n−m)

]
. (3.8)

Of course the key to all of these developments is the derivation of useful forms for the {U (n), K (n), E(n)
i j } which we describe

in Appendix A.

4. Numerical results

We now provide detailed results of numerical simulations of scattering quantities compared with exact solutions. We
show that our numerical method is efficient and accurate, and applicable to quite general configurations.

4.1. Exact solutions

Naturally, for a problem as complicated as what we consider here (that of non-trivial interfaces), there are no known
exact solutions. Thus, to perform a convergence study for our algorithm we utilize the following principle: When imple-
menting a solver for the homogeneous problem:

Lu = 0 in Ω

Bu = 0 at ∂Ω,

it is usually no more difficult to construct a method for the corresponding inhomogeneous problem:

Lu = R in Ω

Bu = Q at ∂Ω.

For any function w , we can compute

Rw := Lw, Qw := Bw,

and realize an exact solution to the problem

Lu = Rw in Ω

Bu = Qw at ∂Ω,

namely u = w . Thus, we have a means to test the inhomogeneous solver in this (special) case. However, it is the most
helpful to consider w which have the same “behavior” as solutions u of the inhomogeneous problem and here we specify
w such that Rw ≡ 0. These exact solutions correspond to plane-wave reflection rather than incidence.

More specifically, we consider the functions, cf. (3.5),

u(x; p) = (
iκ(1)(p)

)
Φ̂(p)eiκ(1)(p)·x + {(

iκ(2)(p)
) × Ψ̂ (p)

}
eiκ(2)(p)·x, (4.1)

which, for any choice of integer p, real Φ̂(p), and real three-vector Ψ̂ (p) such that iκ(2)(p) · Ψ̂ (p) = 0, satisfy Navier’s
equations (2.3) and is outgoing so that Rw ≡ 0. However, the boundary conditions satisfied by these functions are not those
satisfied by an incident plane wave. With the construction of the Qw in mind we compute the surface data

ξ(x̃; p) = u
(
x̃, g(x̃); p

) = [(
iκ(1)(p)

)
Φ̂(p)eiγ (1)(p)g(x̃) + {(

iκ(2)(p)
) × Ψ̂ (p)

}
eiγ (2)(p)g(x̃)]eiα(p)·x̃.

We now have a family of exact solutions against which to test our numerical algorithm for any choice of deformation g(x̃).
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4.2. Numerical implementation

The description of our numerical scheme is not complicated which, in our view, is a distinct advantage of our method.
Our Boundary Perturbation approach posits, for instance, an expansion of the traction in the form

ν(x̃;ε) =
∞∑

n=0

ν(n)(x̃)εn

and we seek as an approximation, the truncation of this Taylor series after N terms

νN(x̃;ε) :=
N∑

n=0

ν(n)(x̃)εn.

Without approximation we can recover the ν(n) from the formulas (3.3) and (3.4) at order zero, and (3.7) and (3.8) for
n > 0. However, the functions which appear in these formulas generally involve Fourier series with an infinite number of
non-zero coefficients. Thus, we make a spectral approximation to each of the ν(n)(x̃) by

νn,Nx(x̃) :=
Nx/2−1∑

|p|=−Nx/2

ν̂(n)(p)eiα(p)·x̃. (4.2)

Products appearing in (3.3), (3.4), (3.7), and (3.8) are computed by fast convolutions via the Fast Fourier Transform (FFT)
algorithm [19] and our final Fourier/Taylor approximation is

νN,Nx(x̃;ε) :=
N∑

n=0

Nx/2−1∑
|p|=−Nx/2

ν̂(n)(p)eiα(p)·x̃εn. (4.3)

Before leaving our discussion of the numerical scheme, we address one (initially) subtle, but crucially important con-
sideration which can be effectively demonstrated in the formula for L(n) , (3.7). Careful inspection of this formula reveals
its recursive nature: In order to compute L(n)[ψ] one needs to evaluate L(n−1) applied to the function U (1) which, in turn
requires the evaluation of L(n−2) applied to U (1) , etc. Clearly, the complexity of this formula is O(Nx log(Nx)n!).

In the previous work we have shown [43,48] how adjointness properties of these operators can be used to reduce this
to O(Nx log(Nx)n2), however, we have been unable (thus far) to reproduce this success in this setting. However, there is
an alternative which avoids the prohibitive factorial cost of a direct implementation of (3.7). For this we store at every
perturbation order the action of L(n) as a matrix acting on the basis functions exp(iα(p) · x̃) evaluated at the equally spaced
gridpoints x̃l . While this is far from optimal (at every perturbation order one must evaluate at every wavenumber p which
we represent, of order O(N2

x n2)), it certainly makes our algorithm feasible.

4.3. Error measurement

With these numerical approximations we can make error measurements versus the exact solutions (4.1). We choose to
measure the defect in the traction which is quite difficult due to the fact that this data is posed on the very surfaces around
which we perturb. For the results described in Section 4.4 we measure the relative supremum norm,

Errorrel(N, Nx) = |ν − νN,Nx |L∞

|ν|L∞
. (4.4)

4.4. Numerical tests

We now consider a (2π) × (2π) periodic interface bounding a three-dimensional solid. We follow the lead of [38,46]
and select the following interface shapes: The cosine

f s(x1, x2) = cos(x1 + x2), (4.5a)

the analytic profile,

fa(x1, x2) = W (x1)W (x2), (4.5b)

where

W (z) = B2 cos(z) − B
2

, B = (2ρ)−1/(R−1), ρ = 10−16, R = 10,

B + 1 − 2B cos(z)
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Fig. 1. Plot of relative L∞ error versus perturbation order N for the cosine profile, (4.5a) (ε = 10−3,3 × 10−3,10−2,3 × 10−2).

Fig. 2. Plot of relative L∞ error versus perturbation order N for the analytic profile, (4.5b) (ε = 10−3, 3 × 10−3, 10−2, 3 × 10−2).

the “rough” (C2 but not C3) profile

fr(x1, x2) =
(

2

9
× 10−3

){
x2

1(2π − x1)
2x2

2(2π − x2)
2 − 64π8

225

}
, (4.5c)

and the Lipschitz boundary

f L(x1, x2) = 1

3
+

⎧⎪⎨
⎪⎩

−1 + (2/π)x1, x1 ≤ x2 ≤ 2π − x1
3 − (2/π)x2, x2 > x1, x2 > 2π − x1
3 − (2/π)x1, 2π − x1 < x2 < x1
−1 + (2/π)x2, x2 < x1, x2 < 2π − x1.

(4.5d)

All four profiles have zero mean, approximate amplitude 2, and maximum slope of roughly 1. To clarify the choice fa we
point out [38] that the Fourier coefficients of W are

Ŵ p =
{ 1

2 (2ρ)(|p|−1)/(R−1) p 
= 0
0 p = 0
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Fig. 3. Plot of relative L∞ error versus perturbation order N for the C2 profile, (4.5c) (ε = 10−3, 3 × 10−3, 10−2, 3 × 10−2).

Fig. 4. Plot of relative L∞ error versus perturbation order N for the Lipschitz profile, (4.5d) (ε = 10−3, 3 × 10−3, 10−2, 3 × 10−2).

so that the profile has mean zero, Ŵ1 = Ŵ−1 = 1/2 like the cosine, the coefficients decay exponentially fast (giving analyt-
icity of the profile), and the R-th coefficient has value ρ .

In Figs. 1, 2, 3, and 4 we display results of our numerical simulations for the cosine, (4.5a), analytic, (4.5b), C2, (4.5c), and
Lipschitz, (4.5d), profiles respectively, for values of ε = 10−3,3 × 10−3,10−2,3 × 10−2. For physical parameters we picked
values meant to be representative of steel [2]

ρ = 7800, λ = 8.6 × 1010, μ = 7.9 × 1010,

so that c(1) ≈ 5600 and c(2) ≈ 3180, and the academic value ω = 8000 under normal illumination so that∣∣κ(1)
∣∣ = ω/c(1) ≈ 1.429,

∣∣κ(2)
∣∣ = ω/c(2) ≈ 2.516.

For all four simulations we have chosen numerical parameters Nx1 = Nx2 = 8 and perturbation orders N = 0, . . . ,10. In all
four cases we see the rapid and stable convergence which our algorithm delivers in agreement with the spectral properties
our Fourier/Taylor approach should satisfy.
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Appendix A. Recursive formulas for the U (n) , K (n) , and E(n)
i j

Of crucial importance to our Operator Expansions approach outlined in Section 3.2 are forms for the {U (n), K (n), E(n)
i j }, and

in this section we briefly derive these. We begin by recalling the α-quasiperiodic outgoing solution of the time-harmonic
Navier’s equation, cf. (3.5),

u(x; p) = (
iκ(1)(p)

)
φ̂(p)eiκ(1)(p)·x + {(

iκ(2)(p)
) × ψ̂(p)

}
eiκ(2)(p)·x,

and the surface quantities, cf. (3.6),

U (x̃; g, p) = u
(
x̃, g(x̃); p

)
K (x̃; g, p) = ∂kuk

(
x̃, g(x̃); p

)
Eij(x̃; g, p) = {

∂ jui
(
x̃, g(x̃); p

) + ∂iu j
(
x̃, g(x̃); p

)}
.

We begin with the U (n) by writing

U (x̃;ε f , p) = {(
iκ(1)(p)

)
φ̂(p)eiγ (1)(p)ε f + (

iκ(2)(p)
) × ψ̂(p)eiγ (2)(p)ε f }eiα(p)·x̃

so that

∞∑
n=0

U (n)εn =
∞∑

n=0

εn Fn
{(

iγ (1)(p)
)n(

iκ(1)(p)
)
φ̂(p) + (

iγ (2)(p)
)n(

iκ(2)(p)
) × ψ̂(p)

}
eiα(p)·x̃,

where Fn = f n/n!. Thus

U (0) = {(
iκ(1)(p)

)
φ̂(p) + (

iκ(2)(p)
) × ψ̂(p)

}
eiα(p)·x̃

= {(
iκ(1)(p)

)
Lφ

[
ξ̂ (p)

] + (
iκ(2)(p)

) ×Lψ

[
ξ̂ (p)

]}
eiα(p)·x̃

= ξ̂ (p)eiα(p)·x̃,

and, for n > 0,

U (n) = Fn
{(

iγ (1)(p)
)n(

iκ(1)(p)
)
φ̂(p) + (

iγ (2)(p)
)n(

iκ(2)(p)
) × ψ̂(p)

}
eiα(p)·x̃

= Fn
{(

iγ (1)(p)
)n(

iκ(1)(p)
)
Lφ

[
ξ̂ (p)

] + (
iγ (2)(p)

)n(
iκ(2)(p)

) ×Lψ

[
ξ̂ (p)

]}
eiα(p)·x̃.

Moving to K (n) we write

K (x̃;ε f , p) = −∣∣κ(1)(p)
∣∣2

φ̂(p)eiγ (1)(p)ε f eiα(p)·x̃,

so that

∞∑
n=0

K (n)εn = −
∞∑

n=0

εn Fn
(
iγ (1)(p)

)n∣∣κ(1)(p)
∣∣2

φ̂(p)eiα(p)·x̃.

Thus

K (0) = −∣∣κ(1)(p)
∣∣2

φ̂(p)eiα(p)·x̃

= −∣∣κ(1)(p)
∣∣2Lφ

[
ξ̂ (p)

]
eiα(p)·x̃,

and, for n > 0,

K (n) = −Fn
(
iγ (1)(p)

)n∣∣κ(1)(p)
∣∣2

φ̂(p)eiα(p)·x̃

= −Fn
(
iγ (1)(p)

)n∣∣κ(1)(p)
∣∣2Lφ

[
ξ̂ (p)

]
eiα(p)·x̃.
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To close, consider E(n)
i j by writing

Eij(x̃;ε f , p) = {
2
(
iκ(1)

j (p)
)(

iκ(1)
i (p)

)
φ̂(p)eiγ (1)(p)ε f

+ [(
iκ(2)

j (p)
){(

iκ(2)(p)
) × ψ̂(p)

}
i + (

iκ(2)
i (p)

){(
iκ(2)(p)

) × ψ̂(p)
}

j

]
eiγ (2)(p)ε f }eiα(p)·x̃,

so that

∞∑
n=0

E(n)
i j εn =

∞∑
n=0

εn Fn
{

2
(
iγ (1)(p)

)n(
iκ(1)

j (p)
)(

iκ(1)
i (p)

)
φ̂(p)

+ (
iγ (2)(p)

)n[(
iκ(2)

j (p)
){(

iκ(2)(p)
) × ψ̂(p)

}
i + (

iκ(2)
i (p)

){(
iκ(2)(p)

) × ψ̂(p)
}

j

]}
eiα(p)·x̃.

Thus

E(0)
i j = {

2
(
iκ(1)

j (p)
)(

iκ(1)
i (p)

)
φ̂(p)

+ [(
iκ(2)

j (p)
){(

iκ(2)(p)
) × ψ̂(p)

}
i

+ (
iκ(2)

i (p)
){(

iκ(2)(p)
) × ψ̂(p)

}
j

]}
eiα(p)·x̃

= −{
2
(
κ

(1)
j (p)

)(
κ

(1)
i (p)

)
Lφ

[
ξ̂ (p)

]
+ [(

κ
(2)
j (p)

){(
κ(2)(p)

) ×Lψ

[
ξ̂ (p)

]}
i

+ (
κ

(2)
i (p)

){(
κ(2)(p)

) ×Lψ

[
ξ̂ (p)

]}
j

]}
eiα(p)·x̃,

and, for n > 0,

E(n)
i j = Fn

{
2
(
iγ (1)(p)

)n(
iκ(1)

j (p)
)(

iκ(1)
i (p)

)
φ̂(p)

+ (
iγ (2)(p)

)n[(
iκ(2)

j (p)
){(

iκ(2)(p)
) × ψ̂(p)

}
i

+ (
iκ(2)

i (p)
){(

iκ(2)(p)
) × ψ̂(p)

}
j

]}
eiα(p)·x̃

= −Fn
{

2
(
iγ (1)(p)

)n(
κ

(1)
j (p)

)(
κ

(1)
i (p)

)
Lφ

[
ξ̂ (p)

]
+ (

iγ (2)(p)
)n[(

κ
(2)
j (p)

){(
κ(2)(p)

) ×Lψ

[
ξ̂ (p)

]}
i

+ (
κ

(2)
i (p)

){(
κ(2)(p)

) ×Lψ

[
ξ̂ (p)

]}
j

]}
eiα(p)·x̃.
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