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Despite significant recent advances in numerical methodologies for simulating rough-surface
acoustic scattering, their applicability has been constrained by the limitations of state-of-the-art
computational resources. This has been particularly true in high-frequency applications where the
sheer size of the full-wave simulations render them impractical, and engineering processes must
therefore rely on asymptotic models �e.g., Kirchhoff approximation �KA��. However, the demands
for high precision can make the latter inappropriate, thus efficient, error-controllable methodologies
must be devised. This paper presents a computational strategy that combines the virtues of rigorous
solvers �error control� with those of high-frequency asymptotic models �frequency-independent
computational costs�. These methods are based on high-order “boundary perturbations,” which
display high precision and unparalleled efficiency. This is accomplished by incorporating
asymptotic phase information to effect a significant decrease in computational effort, simultaneously
retaining the full-wave nature of the approach. The developments of this contribution are
constrained to configurations that preclude multiple scattering; it is further explained how the
schemes can be made applicable to general scattering scenarios, though implementation details are
left for future work. Even for single-scattering configurations, the approach presented here gives
significant gains in accuracy when compared to asymptotic theories �e.g., KA� with modest
additional computational cost. © 2008 Acoustical Society of America. �DOI: 10.1121/1.2897104�

PACS number�s�: 43.30.Hw, 43.20.Fn, 43.20.Bi, 43.20.El �DSB� Pages: 2531–2541
I. INTRODUCTION

The significant advances in high-performance algo-
rithms and hardware that have been attained over the last
three decades have had a substantial impact on the classical
engineering and design paradigm of repeated physical ex-
perimentation, interpretation, and modification in the most
varied applications. Those relating to wave dynamics �e.g.,
acoustic, electromagnetic, elastic�, such as in remote
sensing,1 nondestructive testing,2 or imaging,3 for instance,
have increasingly relied on numerical simulations to accel-
erate assessment and/or prototyping projects. The success of
such strategies has, in turn, provided further impetus to con-
tinue to migrate towards virtual experimentation and it has
thus enhanced the need for evermore efficient and accurate
simulators. These needs are, however, challenged by the in-
creasing complexity of the processes to be numerically rep-
resented, which continuously test the limits of state-of-the-
art computational methodologies and platforms. In the
context of wave propagation these complexities can arise
from that of the geometrical arrangement, from the intrinsic
oscillations of the field quantities, or from both. Current
simulation capabilities allow for the treatment of compli-
cated geometries with a high degree of detail and accuracy. It
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is thus the requirement to resolve field quantities on the scale
of the wavelength of oscillation that typically limits the ap-
plicability of advanced simulation schemes, and that consis-
tently results in the need to abandon these in favor of ap-
proximate �high-frequency� asymptotic theories.

In this paper we introduce a family of numerical algo-
rithms that are designed to overcome these limitations, si-
multaneously avoiding the inaccuracies that arise �at finite
frequencies� from asymptotic solutions, such as those based
on the classical Kirchhoff approximation4 �KA� or on its cor-
rected versions.5–8 The schemes we present are based on
high-order “boundary perturbations” �see, e.g., Refs. 9–16,
and references cited therein� and can therefore be made to
approximate the exact solution of full-wave scattering mod-
els to within any prescribed accuracy. As in classical imple-
mentations of these methods, the procedures we introduce
here display a high degree of precision �owing to their spec-
tral nature�, and efficiency �stemming from the use of accel-
erated evaluations, e.g., based on fast-Fourier transforms
�FFTs��. In contrast with the classical approach, however,
these characteristics are attained here, simultaneously avoid-
ing the need to discretize the fields on the scale of the wave-
length.

The basic observation that allows for such discretiza-
tions, and the consequent reduction in computational cost,

relates to the possibility of predetermining the manner in
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which field quantities oscillate. More precisely, asymptotic
high-frequency theories �e.g., geometrical acoustics� can be
used a priori to predict the phase of the fields and, thus, to
reduce the number of unknowns through its extraction, leav-
ing only a slowly oscillatory modulation to be found. In the
simplest case of impenetrable scatterers and wherein waves
do not undergo multiple reflections, for instance, this phase
takes on a particularly uncomplicated form, given by that of
the incoming radiation on the surface of the obstacles and by
the classical law of reflection away from these. This idea of
phase extraction has been extensively used in the design of
low-order analytical scattering theories �see, e.g., Refs. 5, 8,
and 17–20� and, more recently, in the solution of integral
equation formulations.21–25 Here, in contrast, we explain how
this can be incorporated into classical boundary perturbation
algorithms to allow for efficient solutions of arbitrary accu-
racy.

Unlike low-order theories, the schemes we present here
produce solutions that actually converge to that of the full-
wave model. In fact, this characteristic also contrasts our
approach with the high-order solutions of Refs. 21–23,
which can be shown to be only asymptotic. Our methodol-
ogy is perhaps most closely related to the work in Refs. 24
and 25, which introduces a rigorous approach to the numeri-
cal solution of high-frequency scattering problems based on
the idea of phase extraction. This latter work is concerned
with bounded scatterers for which an integral equation solver
is designed to produce solutions with any prescribed accu-
racy in frequency-independent computational times. To this
end, and in addition to the extraction of the phase, the work
introduces suitable numerical mechanisms for a high-order
treatment of the resulting singular and high-frequency inte-
gration problems, as well as of shadowing transitions24 and
multiple scattering effects.25 Although a similar approach,
based on integral equations, is certainly viable for the case
we consider here of infinite �periodic� rough surfaces, the
alternative perturbative procedures we advocate display
some distinct advantages. In particular, for instance, these
latter methodologies obviate the need to deal with the com-
plications brought about by the corresponding Green’s func-
tion �related to cost of its evaluation26�, which are exacer-
bated at high frequencies, or with those related to the
evaluation of oscillatory integrals.25

Although the derivations that follow apply to every
boundary perturbation approach, for the sake of definiteness
we shall detail these for two particularly popular schemes,
namely the “field expansions” �FE� method of Bruno and
Reitich9–11 �a high-order, analytically continued version of
the classical Rayleigh–Rice theory27,28�; and the “operator
expansion” �OE� method of Milder and co-worker29–33

�based on perturbative expansions of the Dirichlet–Neumann
Operator �DNO��. In this initial contribution we constrain
our developments to configurations that preclude multiple
scattering, and are thus readily comparable with classical
high-frequency approximations �e.g., KA�. Extensions to
cases wherein the effects of multiple scattering are signifi-
cant can be attained through an iterative procedure that suc-
cessively accounts for secondary reflections.25 The numerical

implementation of this procedure, however, is significantly
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more complicated �as it does, for instance, require the devel-
opment of an accurate geometrical acoustics solver� and it is
thus left for future work.

With these considerations, the rest of the paper is orga-
nized as follows: First, and for the sake of completeness, in
Sec. II we recall the governing equations of rough surface
scattering. Then, in Sec. III, we introduce the high-frequency
versions of the OE and FE approaches that incorporate
�single scattering� phase information to greatly reduce the
number of degrees of freedom that are necessary to approxi-
mate the solution to any given accuracy. In Sec. IV we dis-
play results of numerical simulations which substantiate
these claims and which show, in particular, that the approach
can deliver significantly improved results when compared to
classical asymptotic theories �e.g., KA� at a very modest ad-
ditional computational cost. Finally, our conclusions follow
in Sec. V.

II. GOVERNING EQUATIONS

The problem we consider is the scattering of time-
harmonic acoustic waves from an impenetrable infinite sur-
face which, for simplicity, is “sound soft” �our methods are
easily modified to deal with other boundary conditions�. We
will consider the general three-dimensional case with crossed
periodic gratings having shape represented by y=g�x1 ,x2�
where g�x1+d1 ,x2+d2�=g�x1 ,x2� for periods d1 and d2.

If an incident plane wave,

vi�x1,x2,y� = ei��x1+�x2−�y�,

isonifies the surface, then this problem is governed by the
Helmholtz equation with quasiperiodic lateral boundary con-
ditions and a pressure release boundary condition at the scat-
terer, i.e.,

�v + k2v = 0, y � g�x1,x2� , �1a�

v�x1,x2,g�x1,x2�� = − vi�x1,x2,g�x1,x2�� ¬ ��x1,x2� , �1b�

v�x1 + d1,x2 + d2,y� = ei��d1+�d2�v�x1,x2,y� , �1c�

where v is the scattered field, � will denote the boundary
data, and k2=�2+�3+�2. To specify a unique solution of Eq.
�1� we need a boundary condition at infinity; this is given by
an upward propagating condition,34 which states that all scat-
tered waves are “outgoing.” It can be shown15,16 that this can
be explicitly enforced in the near-field with a “transparent
boundary condition” at a hyperplane y=a�max �g�. More
precisely, Eq. �1� is equivalent to

�v + k2v = 0, g�x1,x2� � y � a , �2a�

v�x1,x2,g�x1,x2�� = ��x1,x2� , �2b�

�yv�x1,x2,a� − T�v�x1,x2,a�� = 0, �2c�

v�x1 + d1,x2 + d2,y� = ei��d1+�d2�v�x1,x2,y� , �2d�
where
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T��� ª �
p1=−	

	

�
p2=−	

	

�i�p1,p2
��̂p1,p2

ei��p1
x1+�p2

x2�,

and

�p1
= � + �2
/d1�p1, �p2

= � + �2
/d2�p2,

�p1,p2
= �k2 − �p1

2 − �p2

2 , �3�

and Im��p1,p2
	�0. In this formula we have used the �gener-

alized� Fourier series representation for quasiperiodic func-
tions:

��x1,x2� = �
p1=−	

	

�
p2=−	

	

�̂p1,p2
ei��p1

x1+�p2
x2�. �4�

Once computed, we can use the scattered field v to re-
alize any of several near- and far-field quantities of interest.
In the present context we will consider the normal derivative
of the field at the surface of the scatterer:

��x1,x2� ª ��v · Ng�y=g,

where Ng= ��x1
g ,�x2

g ,−1�T is an exterior normal to the
physical domain of the problem. As the “input” to our prob-
lem is the Dirichlet data � and the “output” is the Neumann
information �, this map is oftentimes called the DNO,15,16 or
Dirichlet-to-Neumann map.35,36 We will denote this DNO by

G�g���� ª ��v · Ng�y=g

= �− �yv + ��x1
g��x1

v + ��x2
g��x2

v�y=g. �5�

We note that knowledge of the DNO is exactly equivalent to
that of the full solution to the scattering problem �2�, as the
field at any point can be readily recovered from this and the
boundary pressure via Green’s identities.

III. BOUNDARY PERTURBATION METHODS

The power and simplicity of boundary perturbation �BP�
methods are based upon viewing the complicated problem
domain as a perturbation of a much simpler one where the
solution is trivial to compute. In the present context we view
the shape of the grating, g, as a perturbation of a flat con-
figuration, g=f where, at the outset,  will be small. Based
upon this identification, one makes expansions of the form,
e.g.,

v�x1,x2,y,� = �
n=0

	

vn�x1,x2,y�n,

G�f���� = �
n=0

	

Gn�f����n, �6�

which can subsequently be shown to be strongly convergent
under quite general conditions.16,37 Additionally, these solu-
tions can typically be continued analytically16,38 so that, in
fact,  can be chosen quite large �provided that it remains
real�. In a numerical implementation this fact can be used to
advantage if a suitable analytic continuation technique, such

39
as Padé approximation, is utilized. As we shall see, this
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combination of ideas leads to algorithms with quite remark-
able properties of reliability, cost-effectiveness, and high-
order accuracy.

A. Field expansions

The derivation of the FE method �originally named the
“Method of Variation of Boundaries”9–11� begins with the
expansion of the field, v:

v = v�x1,x2,y,� = �
n=0

	

vn�x1,x2,y�n.

Upon insertion into Eq. �2� and evaluation at matching pow-
ers of , we realize the following system of equations to be
solved:

�vn + k2vn = 0, 0 � y � a , �7a�

vn�x1,x2,0� = Pn�x1,x2� , �7b�

�yvn�x1,x2,a� − T�vn�x1,x2,a�� = 0, �7c�

vn�x1 + d1,x2 + d2,y� = ei��d1+�d2�vn�x1,x2,y� , �7d�

where

Pn�x1,x2� = �n,0��x1,x2� − �
t=0

n−1

Fn−l�x1,x2��y
n−lvl�x1,x2,0� ,

and

Fl�x1,x2� ª
f�x1,x2�l

l!
.

We recall that solutions vn of Eqs. �7a�, �7c�, and �7d� can be
written as

vn�x1,x2,y� = �
p1=−	

	

�
p2=−	

	

dp1,p2
ei��p1

x1+�p2
x2+�p1,p2

y�, �8�

c.f. Eq. �3�. Given that � can be expressed as

��x1,x2� = �
p1=−	

	

�
p2=−	

	

�̂p1,p2
ei��p1

x1+�p2
x2�,

c.f. Eq. �4�, Eq. �7b� delivers a recursion formula for the
dp1,p2,n:

dp1,p2,n = �n,0�̂p1,p2

− �
l=0

n−1

�
q1=−	

	

�
q2=−	

	

Fn−l,p1−q1,p2−q2
�i�q1,q2

�n−ldq1,q2,l,

�9�

where the coefficients Fl,p1,p2
are defined by

Fl�x1,x2� ¬ �
p1=−	

	

�
p2=−	

	

Fl,p1,p2
ei��2
/d1�p1x1+�2
/d2�p2x2�.
To compute the DNO, Eq. �5�, we note that
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�
n=0

	

Gn�f����n = G�f����

= �− �yv + ��x1
f��x1

v + ��x2
f��x2

v�y=f

= �
n=0

	

n �
p1=−	

	

�
p2=−	

	

�− i�p1,p2
+ ��x1

f�i�p1

+ ��x2
f�i�p2

�

� dp1,p2,nei��p1
x1+�p2

x2+�p1,p2
f�.

From this we deduce that

Gn�f� = �
p1=−	

	

�
p2=−	

	 
− �
l=0

n

Fn−l�i�p1,p2
�n−l+1dp1,p2,l

+ �
l=0

n−1

Fn−l−1���x1
f��i�p1

� + ��x2
f��i�p2

��

��i�p1,p2
�n−l−1dp1,p2,l�ei��p1

x1+�p2
x2�. �10�

B. High frequency field expansions

As we shall see in Sec. IV A, the FE method we have
just described is not particularly well suited for high-
frequency simulations. If the Fourier–Taylor coefficients
dp1,p2,n from Eq. �9� are truncated after Nx1

�Nx2
Fourier

modes and N Taylor terms, then the FE method has quite
modest time �O�Nx1

log�Nx1
�Nx2

log�Nx2
�N�� and memory

�O�Nx1
Nx2

N�� requirements. However, all features of the
scattered field must be resolved to realize an accurate solu-
tion and, for this, the number of Fourier terms Nx1

�Nx2
must

scale like k�k.
However, the technique of phase extraction5,8,19,21,22

gives us insight into how one can create a FE method which
is specially designed for high-frequency calculations. In the
present context, and in the absence of multiple scattering, it
can be shown �see, e.g., Refs. 24 and 40� that

��x1,x2� = ei��x1+�x2−�g�x1,x2����x1,x2� , �11�

where � is a “slowly varying” envelope whose variations do
not accentuate with increasing frequency. Note that this im-
plies, in particular, that a uniformly accurate representation
of � can be attained with a number of degrees of freedom
that is independent of the wave number k. Motivated by this
realization we factor the field

v�x1,x2,y� = ei��x1+�x2−�y�w�x,y�

and substitute this into Eq. �2�, which delivers

�w + 2i��,�,− �� · �w = 0, g�x� � y � a , �12a�

w�x1,x2,g�x1,x2�� = − 1, �12b�

w�x1 + d1,x2 + d2,y� = w�x1,x2,y� . �12c�

For the condition at the artificial boundary y=a, c.f. Eq. �2c�,

we begin with the calculation:
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v�x1,x2,a� = ei��x1+�x2�e−ia�w�x1,x2,a�

= e−ia�ei��x1+�x2� �
p1=−	

	

�
p2=−	

	

d̃p1,p2

�ei��2
/d1�p1x1+�2
/d2�p2x2�

= e−ia� �
p1=−	

	

�
p2=−	

	

d̃p1,p2
ei��p1

x1+�p2
x2�,

where

d̃p1,p2
ª

1

d1d2
�

0

d1 �
0

d2

w�x1,x2,a�

�e−i��2
/d1�p1x1+�2
/d2�p2x2�dx1dx2

is the �p1 , p2�th Fourier coefficient of w�x1 ,x2 ,a�. Now, ap-
plying the operator T:

T�v�x1,x2,a�� = e−ia�T �
p1=−	

	

�
p2=−	

	

d̃p1,p2
ei��p1

x1+�p2
x2��

= e−ia� �
p1=−	

	

�
p2=−	

	

�i�p1,p2
�d̃p1,p2

�ei��p1
x1+�p2

x2�

= ei��x1+�x2�e−ia� �
p1=−	

	

�
p2=−	

	

�i�p1,p2
�d̃p1,p2

�ei��2
/d1�p1x1+�2
/d2�p2x2�.

Finally, Eq. �2c� gives

0 = �yv�x1,x2,a� − T�v�x1,x2,a��

= 
�yw�x1,x2,a� − �
p1=−	

	

�
p2=−	

	

�i�p1,p2
+ i��d̃p1,p2

�ei��2
/d1�p1x1+�2
/d2�p2x2��ei��x1+�x2�e−ia�,

and we realize

�yw�x1,x2,a� − T0�w�x1,x2,a�� = 0, �13�

where, for a periodic function ��x1 ,x2�,

T0���x1,x2�� ª �
p1=−	

	

�
p2=−	

	

�i�p1,p2
+ i��

��̂p1,p2
ei��2
/d1�p1x1+�2
/d2�p2x2�. �14�

Again, it can be shown that the �factored� field w can be
expanded in a convergent Taylor series

w = w�x1,x2,y,� = �
n=0

	

wn�x1,x2,y�n.

These wn must satisfy

�wn + 2i��,�,− �� · �wn = 0, 0 � y � a , �15a�
wn�x1,x2,0� = Qn�x1,x2� , �15b�
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�ywn�x1,x2,a� − T0�wn�x1,x2,a�� = 0, �15c�

wn�x1 + d1,x2 + d2,y� = wn�x1,x2,y� , �15d�

where

Qn�x1,x2� = − �n,0 − �
l=0

n−1

Fn−l�x1,x2��y
n−lwl�x1,x2,0� .

Solutions of Eqs. �15a�, �15c�, and �15d� are given by

wn�x1,x2,y� = �
p1=−	

	

�
p2=−	

	

bp1,p2,ne�i�p1,p2
+i��y

�ei��2
/d1�p1x1+�2
/d2�p2x2�,

so that Eq. �15b� gives
From this we have
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bp1,p2,n = − �n,0�p1,0�p2,0 − �
l=0

n−1

�
q1=−	

	

�
q2=−	

	

Fn−l,p1−q1,p2−q2

��i�q1,q2
+ i��n−lbq1,q2,l, �16�

c.f. Eq. �9�.
To compute the DNO we recall our factorization, Eq.

�11�, of the “fast” surface velocity � as the product of an
oscillatory term and a “slow” surface velocity �. In terms of
the slow field, w, we can write
��x1,x2� = ei�−�x1−�x2+�g�x1,x2����x1,x2� = ei�−�x1−�x2+�g�x1,x2���− �yv + ��x1
g��x1

v + ��x2
g��x2

v�y=g = ei�−�x1−�x2+�g�x1,x2��

���i��ei��x1+�x2−�y�w − ei��x1+�x2−�y��yw + ��x1
g��i��ei��x1+�x2−�y�w + ��x2

g��i��ei��x1+�x2−�y�w

+ ��x1
g�ei��x1+�x2−�y��x1

w + ��x2
g�ei��x1+�x2−�y��x2

w�y=g = ��i��w − �yw + ��x1
g��i��w + ��x2

g��i��w + ��x1
g��x1

w

+ ��x2
g��x2

w�y=g.
Now, if the w depends analytically upon  then so will

G̃�f����x1,x2�� ª ei�−�x1−�x2+�f�x1,x2��

�G�f��ei��x1+�x2−�f�x1,x2����x1,x2�� ,

�17�

where ��−1 corresponds to plane-wave scattering, i.e.,

G̃�f��−1�=��x�. Thus

�
n=0

	

G̃n�f�n = G̃�f��− 1�

= ��i��w − �yw + ���x1
f��i�� + ��x2

f�

��i���w + ��x1
f��x1

w + ��x2
f��x2

w�y=g

= �
n=0

	

n �
p1=−	

	

�
p2=−	

	

�i� − �i�p1,p2
+ i��

+ ��x1
f�i� + ��x2

f�i� + ��x1
f�i�2
/d1�p1

+ ��x2
f�i�2
/d2�p2�

� bp1,p2,nei��2
/d1�p1x1+�2
/d2�p2x2+��+�p1,p2
�f�.
G̃n�f� = �
p1=−	

	

�
p2=−	

	 
�
l=0

n

Fn−l�i���i�p1,p2
+ i��n−lbp1,p2,l

− �
l=0

n

Fn−l�i�p1,p2
+ i��n−l+1bp1,p2,l

+ �
l=0

n−1

Fn−l−1���x1
f��i�� + ��x2

f��i����i�p1,p2

+ i��n−l−1bp1,p2,l + �
l=0

n−1

Fn−l−1���xf�i��2
/d1�p1�

+ ��x2
f�i�2
/d2�p2��i�p1,p2

+ i��n−l−1bp1,p2,l� .

�18�

To reconstruct the DNO we simply multiply each of the G̃n

by the factor exp�i��x1+�x2−�g�x1 ,x2���.

C. Operator expansions

The OE method of Milder and co-worker29–33 is a some-
what different approach than the FE algorithm as it endeav-
ors to compute, given Dirichlet data, only the normal deriva-
tive �the DNO�. Of course, as we mentioned, if the full field
is desired then an appropriate integral can be used to recover
this. To specify this OE algorithm we begin with the obser-

vation that the function
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up�x,y� = ei��p1
x1+�p2

x2+�p1,p2
y�

satisfies Eqs. �2a�, �2c�, and �2d�. Recalling the definition of
the DNO, Eq. �5�, and, again, setting g�x1 ,x2�=f�x1 ,x2�, we
observe that

G�f��ei��p1
x1+�p2

x2+�p2,p2
f�x1,x2���

= �− i�p1,p2
+ ��x1

f��i�p1
� + ��x2

f�

��i�p2
��ei��p1

x1+�p2
x2+�p1,p2

f�x1,x2��. �19�

Our goal is to, once again, take advantage of the analyticity
properties of the DNO to find the Neumann data. This re-
quires a formula for the nth term in the expansion of the
DNO, Gn, c.f. Eq. �6�, as applied to a generic quasiperiodic
function ��x1 ,x2�. Making use of the representation

��x1,x2� = �
p1=−	

	

�
p2=−	

	

�̂p1,p2
ei��p1

x1+�p2
x2�, �20�

c.f. Eq. �4�, it suffices to find a formula for Gn applied to a
single harmonic exp�i��p1

x1+�p2
x2��. For this we use Eq.

�19�:


�
n=0

	

nGn�f��ei��p1
x1+�p2

x2��
n=0

	

Fn�i�p1,p2
�nn�

= �− i�p1,p2
+ ��x1

f��i�p1
� + ��x2

f�

��i�p2
��ei��p1

x1+�p2
x2��

n=0

	

Fn�i�p1,p2
�nn,

where, again, Flª f l / l!. At order 0 we find

G0�ei��p1
x1+�p2

x2�� = − i�p1,p2
ei��p1

x1+�p2
x2�,

which, using Eq. �20�, gives

G0��� = − i�D�

ª �
p1=−	

	

�
p2=−	

	

�− i�p1,p2
��̂p1,p2

ei��p1
x1+�p2

x2�,

and defines the order-one Fourier multiplier G0. At order n,
n�1, we have

Gn�f��ei��p1
x1+�p2

x2��

= − Fn�i�p1,p2
�n+1ei��p1

x1+�p2
x2� + ���x1

f�Fn−1�i�p1
�

+ ��x2
f�Fn−1�i�p2

���i�p1,p2
�n−1ei��p1

x1+�p2
x2�

− �
l=0

n−1

Gl�f��Fn−l�i�p1,p2
�n−lei��p1

x1+�p2
x2�� .

We can simplify the first two terms

Rn ª − Fn�i�p1,p2
�n+1ei��p1

x1+�p2
x2� + ��x1

f�Fn−1�i�p1
�

��i�p1,p2
�n−1ei��p1

x1+�p2
x2� + ��x2

f�Fn−1�i�p2
�

��i�p1,p2
�n−1ei��p1

x1+�p2
x2�

= �− Fn�i�p1,p2
�2 + ��x1

f�Fn−1�i�p1
�

+ ��x f�Fn−1�i�p �	�i�p ,p �n−1ei��p1
x1+�p2

x2�

2 2 1 2
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with the observation that, as �p1

2 +�p2

2 +�p1,p2

2 =k2, we have

Rn = �Fnk2 + Fn�i�p1
�2 + Fn�i�p2

�2 + ��x1
f�Fn−1�i�p1

�

+ ��x2
f�Fn−1�i�p2

�	�i�p1,p2
�n−1ei��p1

x1+�p2
x2�.

Rewriting this using differential operators and the product
rule we realize

Rn = �Fnk2 + Fn�x1

2 + Fn�x2

2 + ��x1
f�Fn−1�x1

+ ��x2
f�Fn−1�x2

	�i�D�n−1ei��p1
x1+�p2

x2�

= �Fnk2 + �x1
Fn�x1

+ �x2
Fn�x2

	�i�D�n−1ei��p1
x1+�p2

x2�,

resulting in

Gn�f���� = k2Fn�i�D�n−1� + �x1
Fn�x1

�i�D�n−1�

+ �x2
Fn�x2

�i�D�n−1� − �
l=0

n−1

Gl�f��Fn−l�i�D�n−l�� ,

�21�

where we have again used Eq. �20�.

D. High frequency operator expansions

In a manner similar to that outlined in Sec. III B we can
design a high-frequency OE method by making use of fac-
torization �11�. For this “high frequency operator expan-
sions” �HFOE� method we wish to work directly with the
DNO, however, now it should be scaled by the incident ra-
diation so that it is slowly varying. Again, our goal is to find
a formula for the nth term in the expansion acting on an
arbitrary function. However, our surface function is the pe-
riodic, factored �slowly varying� incident radiation

��x1,x2� ª ei�−�x1−�x2+�g�x1,x2����x1,x2� = − 1.

Of course, this has a trivial Fourier series

��x1,x2� = �̂0,0ei�0x1+0x2� = �− 1�ei�0x1+0x2�,

but we find it convenient to find the action of the nth term in
the expansion of the reduced DNO applied to a general Fou-
rier mode exp�i��2
 /d1�p1x1+ �2
 /d2�p2x2��.

As before, c.f. Eq. �17�, we claim that G̃�f� depends
analytically upon , so that

G̃�f� = �
n=0

	

G̃n�f�n.

To derive an explicit recurrence for the operators G̃n�f�, we
set

��x1,x2� = ei��2
/d1�p1x1+�2
/d2�p2x2+�g�x1,x2�+�p1,p2
g�x1,x2��.

�22�
Using this and the definition, Eq. �17�, we find
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G̃�g���� = ei�−�x1−�x2+�g�x1,x2��

�G�g��ei��p1
x1+�p2

x2+�p1,p2
g�x1,x2���

= ei�−�x1−�x2+�g�x1,x2���− �y��x1,x2,y�

+ ��x1
g��x1

��x1,x2,y� + ��x2
g��x2

v�x1,x2,y��y=g,

as the Dirichlet data, Eq. �22�, we provide to G gives rise to
the exact solution:

v�x1,x2,y� = ei��p1
x1+�p2

x2+�p1,p2
y�.

Continuing,

G̃�f���� = ei�−�x1−�x2+�f�x1,x2���− i�p1,p2
+ ��x1

f��i�p1
�

+ ��x2
f��i�p2

��ei��p1
x1+�p2

x2+�p1,p2
f�x1,x2��

= �− i�p1,p2
+ ��x1

f��i�p1
� + ��x2

f��i�p2
��

� ei�2
/d1�p1x1+i�2
/d2�p2x2+�i�p1,p2
+i��f�x1,x2�,

c.f. Eq. �19�. Expanding as we did in the previous section:


�
n=0

	

nG̃n�f��ei��2
/d1�p1x1+�2
/d2�p2x2��
n=0

	

Fn�i�p1,p2

+ i��nn�
= �− i�p ,p + ��x f��i�p � + ��x f�

0 1 2 3 4 5 6
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0 1 2 3 4 5 6
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

(b)

(a)

FIG. 1. �Color online� Plots of the two-dimensional profiles fs�x�=cos�x�,
Eq. �24a�, and fL,40, Eq. �25�.
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�i�p2
��ei��2
/d1�p1x1+�2
/d2�p2x2�

��
n=0

	

Fn�i�p1,p2
+ i��nn,

we find that, at order zero,

G̃0��� = − �i�D�� ,

and at order n�1,

G̃n��� = − Fn�i�D��i�D + i��n� + ��x1
f�Fn−1�i�D��i�D + i��n−1

�� + ��x2
f�Fn−1�i�D��i�D + i��n−1�

− �
l=0

n−1

G̃l�Fn−l�i�D + i��n−l�� . �23�

IV. NUMERICAL TESTS

In this section we illustrate the superior accuracy one
can realize with our new algorithms with cost independent of
the frequency. We begin with a series of numerical tests in
two dimensions, Sec. IV A, where we consider gratings
which are invariant in one direction and the incident field is
aligned precisely so that this invariant direction can be ig-
nored. This configuration can be simulated with the algo-
rithms outlined earlier by simply setting �=0, setting d=d1,
x=x1, etc. In Sec. IV B we consider the full three-
dimensional problem and show that our general conclusions
are unchanged.

A. Two-dimensional tests

To test the usefulness of the two new algorithms, high-
frequency field expansion �HFFE� and high frequency opera-
tor expansion �HFOE�, outlined previously we will use them

TABLE I. Relative error in FE, OE, HFFE, and HFOE algorithms �all with
Nx=16� vs perturbation order N for the cosine profile, Eq. �24a�, as com-
pared to a highly resolved TFE simulation �Nx=1024, Ny =64, N=28�; fre-
quency is ��=1,�=1�.

N FE HFFE OE HFOE

0 9.91�10−3 1.57�10−2 9.91�10−3 1.57�10−2

2 1.37�10−6 8.8�10−7 1.37�10−6 8.8�10−7

4 3.53�10−10 3.66�10−10 3.53�10−10 3.66�10−10

6 3.53�10−10 3.53�10−10 3.53�10−10 3.53�10−10

8 3.53�10−10 3.53�10−10 3.53�10−10 3.53�10−10

TABLE II. Relative error in FE, OE, HFFE, and HFOE algorithms �all with
Nx=16� vs perturbation order N for the cosine profile, Eq. �24a�, as com-
pared to a highly resolved TFE simulation �Nx=1024, Ny =64, N=28�; fre-
quency is ��=10,�=10�.

N FE HFFE OE HFOE

0 2�100 1.01�10−2 2�100 1.01�10−2

2 2�100 6.31�10−7 2�100 6.31�10−7

4 2�100 1.99�10−8 2�100 1.99�10−8

6 2�100 1.07�10−10 2�100 1.07�10−10

8 2�100 3.62�10−11 2�100 3.62�10−11
D. P. Nicholls and F. Reitich: Boundary perturbation methods 2537



to compute the induced normal surface velocity for two scat-
terers with very different smoothness. For simplicity we as-
sume the period to be d=2
, and we consider the following
profiles:15,16 A sinusoid

fs�x� = cos�x� , �24a�

and a nondifferentiable �“Lipschitz”� function

fL�x� = �− �2/
�x + 1, 0 � x � 


�2/
�x − 3, 
 � x � 2
 .
�24b�

For our simulations we point out that fL admits an infinite
Fourier series expansions:15

TABLE III. Relative error in FE, OE, HFFE, and HFOE algorithms �all with
Nx=16� vs perturbation order N for the cosine profile, Eq. �24a�, as com-
pared to a highly resolved TFE simulation �Nx=1024, Ny =64, N=28�; fre-
quency is ��=100,�=100�.

N FE HFFE OE HFOE

0 2�100 9.9�10−3 2�100 9.9�10−3

2 2�100 2.33�10−8 2�100 2.33�10−8

4 2�100 5.97�10−12 2�100 5.97�10−12

6 2�100 5.97�10−12 2�100 5.97�10−12

8 2�100 5.97�10−12 2�100 5.97�10−12
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FIG. 2. Plots of the real parts of the slow surface velocity, ��x�, and fast
surface velocity, v�x�. These plots are for profile �24a� and ��=100, �

=100�.
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fL�x� = �
r=1

	
8


2�2r − 1�2 cos��2r − 1�x� ,

which, in our numerical simulations, we will truncate after P
terms:

fL,P�x� = �
r=1

P/2
8


2�2r − 1�2 cos��2r − 1�x�; �25�

please see Fig. 1 for depictions of, Eqs. �24a� and �25� �P
=40�.

Of course, for a generic profile there is no exact closed-
form solution to the problem of plane-wave scattering by a
grating so we resort to an alternative method to produce an
“exact solution” with which we can compare. For this pur-
pose we use the reliable, high-order “transformed field ex-
pansion” �TFE� method16,41 for very large and/or very rough
scatterers. For all of the two-dimensional simulations we
present, a highly resolved reference solution was produced
using this TFE algorithm with Nx=1024 �horizontal� Fourier
modes, Ny =64 �vertical� Chebyshev coefficients, and N=28
Taylor orders; see Ref. 16 for a complete description of this
method and these numerical parameters. These reference so-
lutions can be shown to attain relative accuracies of the order
of 10−10 which certainly suffice for our demonstration pur-
poses. In this context then this becomes the smallest realiz-
able “error,” though the actual solutions we compute can be
significantly more accurate when compared to the actual ex-
act solution.

TABLE IV. Relative error in FE, OE, HFFE, and HFOE algorithms �all with
Nx=16, N=8� vs perturbation size , for the cosine profile, Eq. �24a�, as
compared to a TFE simulation �Nx=1024, Ny =64, N=28�; frequency is ��
=100,�=100�.

 FE HFFE OE HFOE

0.02 2.01�100 2.9�10−12 2.01�100 3.07�10−12

0.03 2.06�100 4.01�10−12 2.06�100 6.05�10−12

0.04 2.22�100 5.63�10−12 2.17�100 4.01�10−11

0.05 2.33�100 9.8�10−12 2.25�100 1.9�10−10

0.06 2.34�100 2.09�10−11 2.25�100 7.36�10−10

0.07 2.21�100 5.72�10−11 2.16�100 2.33�10−9

0.08 2.53�100 7.73�10−10 2.16�100 5.21�10−9

0.09 2.23�100 2.21�10−9 2.13�100 8.2�10−9

0.1 2.13�100 1.83�10−9 2.11�100 1.14�10−8

TABLE V. Relative error in HFFE and HFOE algorithms summed via Tay-
lor and Padé algorithms �all with Nx=32� vs perturbation order N for the
cosine profile, Eq. �24a�, as compared to a highly resolved TFE simulation
�Nx=1024, Ny =64, N=28�; frequency is ��=100,�=100�.

N HFFE �Taylor� HFFE �Padé� HFOE �Taylor� HFOE �Padé�

0 9.09�10−2 9.09�10−2 9.09�10−2 9.09�10−2

2 2.38�10−5 2.38�10−5 2.38�10−5 2.38�10−5

4 3.12�10−7 2.85�10−8 3.13�10−7 2.85�10−8

6 4.46�10−9 2.1�10−9 2.17�10−8 4.86�10−8

8 1.25�10−8 4.22�10−9 1.09�10−5 4.88�10−8

10 5.88�10−7 2.16�10−9 6.47�10−3 3.26�10−8

12 4.17�10−5 1.54�10−8 2.33�100 2.89�10−8
D. P. Nicholls and F. Reitich: Boundary perturbation methods



In Tables I–III we display results of FE, HFFE, OE, and
HFOE simulations of plane-wave scattering from the sinu-
soidal profile, Eq. �24a�, with =0.01 �to exclude the possi-
bility of multiple reflections� for �� ,��= �1,1�, �10,10�, and
�100,100�, respectively. To exemplify the capabilities of our
new methods, in all of these simulations we fix the number
of Fourier modes at Nx=16 and study our solutions as the
Taylor order is varied among N=0, 2, 4, 6, and 8. In this, and
all future simulations, we have summed these Taylor series
using Padé approximation39 although, as the order N is quite
small, the accuracy gains were typically modest.

In Table I we see that all four algorithms realize the
optimal errors with respect to the TFE solution �of the order
of 1010� by perturbation order N=6 which is to be expected
as this solution for �� ,��= �1,1� is not very oscillatory.
However, for this discretization, the FE and OE algorithms
produce inaccurate results for �� ,��= �10,10� and �100,100�.
Of course, this is not surprising as these algorithms attempt
to resolve quite oscillatory functions with only �r � �Nx /2
=8 modes. By contrast, as our new HFFE/HFOE methods
simulate the slowly varying envelope �, we notice uniformly
excellent convergence behavior for all choices of �� ,��
where accuracies of 10−9 or 10−10 are always achieved with
N=8 perturbation orders. For this final frequency we also
display a plot of the slow, ��x�, and fast, ��x�, surface ve-
locities in Fig. 2. From this we can clearly see how our new
approach delivers such superior accuracy as the slowly
changing function ��x� can easily be represented with Nx

=16 which is obviously insufficient for the highly oscillatory
��x�.

In Table IV we display results of FE, HFFE, OE, and

TABLE VI. Relative error in FE, OE, HFFE, and HFOE algorithms �all with
Nx=256� vs perturbation order N for the Lipschitz profile, Eq. �25�, as com-
pared to a highly resolved TFE simulation �Nx=1024, Ny =64, N=28�; fre-
quency is ��=1,�=1�.

N FE HFFE OE HFOE

0 2.02�10−2 3.6�10−2 2.02�10−2 3.6�10−2

2 9.59�10−6 1.32�10−6 9.59�10−6 1.32�10−6

4 3.5�10−10 3.55�10−10 3.55�10−10 3.55�10−10

6 3.46�10−10 3.46�10−10 3.64�10−10 3.46�10−10

8 3.46�10−10 3.46�10−10 3.75�10−10 3.46�10−10

10 3.46�10−10 3.46�10−10 3.72�10−10 3.46�10−10

12 3.46�10−10 3.46�10−10 3.72�10−10 3.46�10−10

TABLE VII. Relative error in FE, OE, HFFE, and HFOE algorithms �all
with Nx=256� vs perturbation order N for the Lipschitz profile, Eq. �25�, as
compared to a highly resolved TFE simulation �Nx=1024, Ny =64, N=28�;
frequency is ��=10,�=10�.

N FE HFFE OE HFOE

0 1.06�10−2 1.79�10−2 1.06�10−2 1.79�10−2

2 1.31�10−4 8.97�10−6 1.31�10−4 8.97�10−6

4 1.82�10−10 2.96�10−8 1.85�10−10 2.96�10−8

6 4.04�10−11 4.54�10−11 6.06�10−11 4.54�10−11

8 4.04�10−11 4.17�10−11 7.3�10−11 4.17�10−11

10 4.05�10−11 4.1�10−11 6.97�10−11 4.1�10−11

12 4.05�10−11 4.1�10−11 6.99�10−11 4.1�10−11
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HFOE simulations of plane-wave scattering from the sinu-
soidal profile, Eq. �24a�, with various values of , Nx=16,
N=8, and �� ,��= �100,100�. The results in this table exem-
plify the broad range of applicability of our scheme within
the setting of single scattering configurations. To determine
the limits of our new approach, a simple geometrical acous-
tics calculation is needed to determine the first appearance of
multiple reflection for the given incidence and grating shape.
For instance, in the present case of the sinusoidal profile, Eq.
�24a�, and incident radiation �=� we have determined that
multiple reflections occur once �0.36. By contrast, for the
same profile but normal incidence, �=0, we found that sec-
ondary reflections occur at �0.82.

In Table V we display results which illustrate the stabi-
lizing effect which Padé summation can have on our algo-
rithm. We again consider scattering from the cosine profile
with incident radiation of frequency �� ,��= �100,100�, but
now focus on the largest value of  presented thusfar �
=0.1� and compare, for values of the Taylor order N
=0, . . . ,12 �for a slightly larger Nx=32 to avoid aliasing�, the
convergence of our high-frequency methods �HFFE and
HFOE� with both Taylor and Padé summation. We see that
through six orders all four calculations produce roughly the
same precision, however, beyond eight orders the results
from Taylor summation begin to deteriorate. This is particu-
larly true for the HFOE algorithm, and highlights the advan-
tageous properties of Padé summation even within the disk
of convergence of these Taylor series.

We now present calculations for the Lipschitz profile,
Eq. �25�, �with =0.01� which features Fourier series which
decay very slowly �as r increases�. Due to this extremely
slow decay we found it necessary to choose Nx=256 before
our high-frequency algorithms gave uniformly good results.
For this reason, the unmodified algorithms �FE and OE� were
quite competitive up to �� ,��= �10,10� �see Tables VI and
VII�. However, once the frequency reached �� ,��

TABLE VIII. Relative error in FE, OE, HFFE, and HFOE algorithms �all
with Nx=256� vs perturbation order N for the Lipschitz profile, Eq. �25�, as
compared to a highly resolved TFE simulation �Nx=1024, Ny =64, N=28�;
frequency is ��=100,�=100�.

N FE HFFE OE HFOE

0 2.02�10−3 8.08�10−3 2.02�10−3 8.08�10−3

2 1.2�10−3 9.01�10−6 1.2�10−3 9.01�10−6

4 1.2�10−3 1.73�10−5 1.2�10−3 1.73�10−5

6 1.2�10−3 2.78�10−7 1.2�10−3 2.78�10−7

8 1.2�10−3 3.57�10−9 1.2�10−3 3.57�10−9

10 1.2�10−3 3.21�10−10 1.2�10−3 3.22�10−10

12 1.2�10−3 2.71�10−10 1.2�10−3 2.72�10−10

TABLE IX. Relative error in Kirchhoff Approximation for cosine, Eq. �24a�
and Lipschitz profiles, Eq. �25�, as compared to a highly resolved TFE
simulation �Nx=1024, Ny =64, N=28�.

Profile �� ,��= �1,1� �� ,��= �10,10� �� ,��= �100,100�

Cosine 0.019 767 2 0.002 010 72 0.000 198 089
Lipschitz 0.040 357 3 0.021 093 1 0.003 682 25
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= �100,100� our specially designed algorithms were clearly
superior, see Table VIII. Again, the range of applicability of
our algorithm is determined by the onset of multiple scatter-
ing events which, we have calculated, to set in at �0.42 for
�=� and �0.91 for normal incidence, �=0.

Finally, we make a comparison of our new methods to
the KA for these configurations. The results are summarized
in Table IX and show that, while the KA does give improved
results as the frequency is increased, it never approaches the
accuracy of our new HFFE/HFOE algorithms.

B. Three-dimensional test

We now present a set of illustrative numerical simula-
tions to show that the HFFE and HFOE algorithms again
deliver highly accurate solutions with very few degrees of
freedom even in the three-dimensional case of scattering by a
crossed grating. For this set of experiments we consider the
three-dimensional smooth profile:

fr
�3��x1,x2� = cos�x1 − x2� + cos�2x1 − 2x2� , �26�

which is 2
 periodic in both the x1 and x2 directions, and
choose =0.01 to avoid multiple reflections �see Fig. 3�.
Again, we will use all four algorithms to compute the normal
derivative of the field at the surface of the scatterer and com-
pare this with a highly resolved TFE simulation, again accu-
rate to around 10−10 �Nx1

=128, Nx2
=128, Ny =64, N=28�. We

display results of these simulations with Nx1
=32, Nx2

=32,
and Taylor orders N=0, 2, 4, 6, and 8 in Tables X–XII for
�� ,� ,��= �1,1 ,1�, �10,10,10�, and �100,100,100�, respec-
tively.

TABLE X. Relative error in FE, OE, HFFE, and HFOE algorithms �all with
Nx1

=32 and Nx2
=32� vs perturbation order N for the three dimensional

smooth profile, Eq. �26�, as compared to a highly resolved TFE simulation
�Nx1

=128, Nx2
=128, Ny =64, N=28�; frequency is ��=1,�=1,�=1�.

N FE HFFE OE HFOE

0 3.25�10−2 5.25�10−2 3.25�10−2 5.25�10−2

2 3.78�10−5 3.77�10−5 3.78�10−5 3.77�10−5

4 2.79�10−9 2.1�10−8 2.79�10−9 2.1�10−8

6 1.62�10−10 1.62�10−10 1.62�10−10 1.62�10−10

8 1.61�10−10 1.61�10−10 1.61�10−10 1.61�10−10

0
2

4
6

0

2

4

6

−0.05

0

0.05

FIG. 3. Plot of the three-dimensional profile fr
�3��x1 ,x2�, Eq. �26�.
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For a relatively small frequency, �� ,� ,��= �1,1 ,1�, all
four algorithms work very well, c.f. Table X. However, at the
more moderate frequency �� ,� ,��= �10,10,10� the standard
FE/OE methods become disadvantaged and can only resolve
the normal derivative of the field to 10−5, see Table XI. Fi-
nally, once we reach the relatively high frequency �� ,� ,��
= �100,100,100� the FE/OE approaches produce inaccurate
results while the HFFE and HFOE methods produce solu-
tions which are accurate to 10−10.

To close, we note, for sake of comparison, that the KA
delivers solutions with errors 0.065 260 7, 0.010 607 6,
0.000 975 237 for �� ,� ,��= �1,1 ,1�, �10,10,10�, and
�100,100,100�, respectively. Again, these errors are decreas-
ing as the frequency is increased, but the KA solution cannot
compete with the ones that HFFE/HFOE produce.

V. CONCLUSIONS

In this paper we have shown how asymptotic phase in-
formation can be incorporated into high-order boundary per-
turbation methods to produce numerical algorithms for
acoustic scattering, which are error controllable with
frequency-independent computational cost. A detailed speci-
fication has been given for two particularly popular boundary
perturbation schemes, the “field expansions” method, based
on perturbative expansions of the pressure, and the “operator
expansion” method which works with expansions of the rel-
evant Dirichlet–Neumann operator. Of particular note, these
new methods never produce significantly worse results than
the original FE/OE recursions, regardless of the frequency.
Therefore it appears that these high-frequency schemes are to
be recommended for all configurations where FE and OE are
applicable. Also, provided that we have properly resolved the
profile, there is always a smallest frequency for which these

TABLE XI. Relative error in FE, OE, HFFE, and HFOE algorithms �all with
Nx1

=32 and Nx2
=32� vs perturbation order N for the three dimensional

smooth profile, Eq. �26�, as compared to a highly resolved TFE simulation
�Nx1

=128, Nx2
=128, Ny =64, N=28�; frequency is ��=10,�=10,�=10�.

N FE HFFE OE HFOE

0 5.34�10−3 2.99�10−2 5.34�10−3 2.99�10−2

2 7.39�10−4 3.89�10−4 7.39�10−4 3.89�10−4

4 5.3�10−5 7.03�10−6 5.3�10−5 7.03�10−6

6 5.3�10−5 1.79�10−8 5.3�10−5 1.79�10−8

8 5.3�10−5 5.56�10−11 5.3�10−5 5.56�10−11

TABLE XII. Relative error in FE, OE, HFFE, and HFOE algorithms �all
with Nx1

=32 and Nx2
=32� vs perturbation order N for the three dimensional

smooth profile, Eq. �26�, as compared to a highly resolved TFE simulation
�Nx1

=128, Nx2
=128, Ny =64, N=28�; frequency is ��=100,�=100,�

=100�.

N FE HFFE OE HFOE

0 1.21�100 2.66�10−2 1.21�100 2.66�10−2

2 1.21�100 1.29�10−6 1.21�100 1.29�10−6

4 1.21�100 4.33�10−10 1.21�100 4.33�10−10

6 1.21�100 1.43�10−10 1.21�100 1.48�10−10

8 1.21�100 1.43�10−10 1.21�100 1.51�10−10
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new methods are significantly more accurate than the stan-
dard FE/OE algorithms. Further, for frequencies larger than
this critical value the FE/OE recursions become unreliable,
whereas our new procedures produce consistently accurate
results. In this first contribution we have restricted our de-
scriptions and numerical results to geometries which do not
generate multiple reflections. However, we have discussed
how these single-reflection methods can be rendered appli-
cable to multiple scattering configurations, though we leave
the specification and implementation to future work.
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