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ANALYTICITY OF DIRICHLET–NEUMANN OPERATORS ON
HÖLDER AND LIPSCHITZ DOMAINS∗

BEI HU† AND DAVID P. NICHOLLS†

Abstract. In this paper we take up the question of analyticity properties of Dirichlet–Neumann
operators with respect to boundary deformations. In two separate results, we show that if the
deformation is sufficiently small and lies either in the class of C1+α (any α > 0) or Lipschitz functions,
then the Dirichlet–Neumann operator is analytic with respect to this deformation. The proofs of both
results utilize the “domain flattening” change of variables recently advocated by Nicholls and Reitich
for the stable, high-order numerical simulation of Dirichlet–Neumann operators. We extend their
analyticity results through the use of more specialized function spaces, and our new theorems are
optimal in terms of boundary regularity. In the case of C1+α boundary perturbations the underlying
field also lies in the Hölder class C1+α and the theorem follows by appealing to familiar Schauder
theory arguments. In contrast, for Lipschitz deformations the field must lie in an Lp-based Sobolev
space (W 1,p), so the relevant elliptic estimates come from Sobolev theory. Additionally, in the case
of Lipschitz domains, the Dirichlet–Neumann operator must be reformulated weakly in order to
accommodate the lack of regularity at the boundary which these Sobolev-class fields possess.
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1. Introduction. Many problems of fundamental importance in engineering and
the sciences are posed in terms of partial differential equations formulated on irregu-
lar and/or moving boundaries. In many instances the differential equations are quite
simple (linear and constant coefficient); however, the nonlinearity of the boundary
conditions and/or the geometrical difficulties of the domain usually prevent analytic
solution of these problems. Classical examples of such problems are the free-surface
evolution of an ideal fluid [15], scattering of electromagnetic radiation from an ir-
regular grating [2], and precipitate growth [13]. For these problems a simplification
and reduction in dimension can be achieved by considering surface quantities and,
if applicable, the shape of the boundary as fundamental variables. Then, if desired,
bulk quantities can be recovered from these boundary measurements via appropriate
integral formulas. In general this procedure is complicated by the necessity of normal
derivatives of field quantities at the boundary. Therefore, Dirichlet–Neumann oper-
ators (DNOs), which deliver normal derivatives (“Neumann data”) given boundary
measurements (“Dirichlet data”), play a crucial role.

Among the many ways in which the DNO can be simulated numerically (e.g.,
boundary integrals/elements, finite differences, finite elements, etc.), methods based
upon boundary perturbations are particularly appealing. These approaches view the
shape of the domain as a (small) deformation of a separable geometry (e.g., disk, torus,
infinite strip) and seek solutions as a Taylor series expanded in powers of this small
parameter. Aside from being highly accurate within their domain of applicability,
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a particularly appealing property of these methods is that, in contrast with most
alternative approaches, the spatial dimension of the problem does not affect their
implementation or performance. See [18, 19, 20] for a complete discussion of these
issues and presentation of numerical results.

Since perturbation algorithms play such a crucial role in the study of DNOs
we take up the mathematical question of their analyticity with respect to boundary
perturbations, i.e., with respect to ε, which measures the size of the perturbation.
The first results along these lines can be derived from the work of Calderón [4] and of
Coifman and Meyer [6], who showed that if the upper boundary of a two-dimensional
domain is a (one-dimensional) Lipschitz curve, then the DNO maps H1 to L2 and is
analytic in ε (sufficiently small). Next, Craig, Schanz, and Sulem [10] showed that the
DNO maps W k+1,p to W k,p for k ≥ 0 and is analytic in ε (sufficiently small) for three-
dimensional domains provided that the two-dimensional upper boundary is C1; Craig
and Nicholls [8] extended this result to general d dimensions ((d − 1)–dimensional
upper boundary) by the same techniques but, due to the application at hand, also
required the boundary deformation to be in the class W k+1,p for k ≥ 0.

These results are the most general to date but rely heavily on an implicit boundary
integral formulation for the DNO which, from a numerical standpoint, undermines the
computational advantages of boundary perturbation approaches. With this consider-
ation in mind, Nicholls and Reitich studied analyticity through the transformed field
expansion (TFE) approach [18, 19, 20]. While this method did not deliver the sharpest
results from a theoretical standpoint (the boundary deformation was required to be
in the class C3/2+δ for any δ > 0), it did produce a new, stabilized, high-order numer-
ical procedure for the approximation of DNOs with all the advantages of boundary
perturbation methods (e.g., ease of implementation, dimension independent perfor-
mance) without the shortcomings of classical implementations (e.g., cancellations and
high-order instability); please see [18, 19, 20] for a complete discussion and [21, 22]
for recent advancements in the setting of acoustic and electromagnetic scattering ap-
plications. Finally, we mention the recent work of Buffoni [3] who, in the setting
of an existence theory for two-dimensional traveling capillary-gravity waves, utilized
the DNO in Zakharov’s formulation [23] of surface water wave evolution. However,
since other techniques prevailed, the analyticity of the DNO with respect to boundary
perturbations was not used.

The goal of this paper is to show that the TFE approach can, in addition to pro-
viding a stabilized numerical approach, be used to realize the most general analyticity
results possible (in terms of boundary regularity) in arbitrary dimension. Concerning
smoothness of the boundary, this matches the theorems of Calderón [4] and Coifman
and Meyer [6] in two dimensions. However, the underlying function spaces are quite
different being based upon Lp-Sobolev spaces rather than L2-Sobolev spaces. Our
results extend those of Craig, Schanz, and Sulem [10] and Craig and Nicholls [8] in
higher dimensions. Of course, our method can be extended to spaces with higher reg-
ularity if greater smoothness is assumed on the boundary deformation and Dirichlet
data. We begin by showing that the TFE method analyzed with Schauder theory in
Hölder spaces gives a simple and elegant analyticity theorem for surface deformations
in the class C1+α for any α > 0. We then follow this analysis with a more involved
calculation in W k,p spaces using Sobolev theory and demonstrate that, in fact, the
regularity of the surface shape can be reduced to Lipschitz.

The paper is organized as follows: In section 2 we introduce the TFE change of
variables and state our main results. In section 3.1 we work in the classical Hölder
spaces via Schauder theory and conclude analyticity for boundary deformations of
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class C1+α for any α > 0, and we show that the DNO will map C1+α Dirichlet data
to Cα Neumann data and is uniformly analytic in ε. In section 3.2 we utilize the
Sobolev theory of W k,p spaces and show that, in fact, the regularity of the boundary
deformation can be reduced to Lipschitz in any spatial dimension; in this case, the
DNO is analytic in ε and maps W 1−1/p,p Dirichlet data to W−1/p,p Neumann data
(see section 2 for the precise definition of W−1/p,p). In Appendix A, we review the
key elliptic estimates which enable our analysis of the DNO.

2. Problem statement and change of variables. To focus upon a particular
problem we consider the classical free-boundary problem of the evolution of a d-
dimensional ideal fluid under the effects of gravity. The fluid sits above the bottom
of a flat ocean bed at mean depth h and is bounded above by the free surface η(x, t),
giving the domain

Sh,η = {(x, y) ∈ Rd−1 × R | − h < y < η}.

The fundamental variables for this problem are the shape of the free surface, η, and
the velocity potential ϕ(x, y, t) which gives the velocity of the fluid from �v = ∇ϕ. The
equations of motion are [15]

Δϕ = 0 in Sh,η,(2.1a)

∂yϕ(x,−h) = 0,(2.1b)

∂tη + ∇xϕ · ∇xη − ∂yϕ = 0 at y = η,(2.1c)

∂tϕ +
1

2
|∇ϕ|2 + gη = 0 at y = η.(2.1d)

These equations must be supplemented with initial conditions and lateral boundary
conditions, which we discuss later.

In a fundamental paper on stability of free-surface ocean waves, Zakharov [23]
noted that the Euler equations, (2.1), could be stated as a Hamiltonian system in
terms of the canonical variables (η(x, t), ξ(x, t) ≡ ϕ(x, η(x, t), t)). This observation,
coupled with the solvability of Laplace’s equation on the domain Sh,η given ξ, leads
to the realization that (2.1) can be equivalently stated at the surface of the domain
Sh,η. The restatement was first made by Craig and Sulem [11] as

∂tη = G(η) ξ,(2.2a)

∂tξ = −gη − 1

2(1 + |∇xη|2)

[
|∇xξ|2 − (G(η) ξ)2

−2(G(η) ξ)∇xξ · ∇xη + |∇xξ|2 |∇xη|2 − (∇xξ · ∇xη)
2
]
,(2.2b)

where G(η) ξ is the DNO. This set of equations, (2.2), has been useful in a variety of
analytical [8, 7] and numerical [16, 17, 9, 14] treatments of the Euler equations, and
clearly a detailed understanding of the DNO is at the heart of these analyses.

Inspired by the geometry of the Euler equations (2.1) and the reduction of Craig
and Sulem, we study the DNO, G(η), and its associated boundary value problem:

Δv(x, y) = 0 in Sh,η,(2.3a)

∂yv(x,−h) = 0,(2.3b)

v(x, η(x)) = ξ(x).(2.3c)
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Upon the solution of (2.3) the DNO is defined as

G(η) ξ = ∇v|y=η ·Nη = [−∇xη · ∇xv + ∂yv]y=η ,(2.4)

where the normal N = (−∇xη, 1)T (not of unit length) is chosen to simplify the
restatement of the kinematic condition (2.1c) as (2.2a). Regarding lateral boundary
conditions, it is well known that bounded solutions to (2.3) are unique. Thus, v(x, y)
is periodic in x if η(x) and ξ(x) are periodic in x; similarly, the behavior of v(x) as
x → ±∞ will be uniquely determined by the behavior of ξ(x) near infinity. In this
way we incorporate quite general boundary conditions into the definition of the DNO.

In order to work with more general Lipschitz boundaries, we now derive a weak
formulation of the DNO: Take any test function ψ ∈ T 1

R(Sh,η), where

T 1
R(Sh,η) =

{
f ∈ C1(Sh,η) | f = 0 on {|x| > R} for some large R

}
.

Then

0 =

∫
Sh,η

(Δv)ψ dV

=

∫
y=η(x)

(∂νv)ψ dS −
∫
Sh,η

(∇xv · ∇xψ + ∂yv ∂yψ) dV

=

∫
Rd−1

G(η) ξ√
1 + |∇xη|2

ψ(x, η(x))

√
1 + |∇xη|2 dx−

∫
Sh,η

(∇xv · ∇xψ + ∂yv ∂yψ) dV.

Thus ∫
Rd−1

(G(η) ξ)ψ(x, η(x)) dx =

∫
Sh,η

∇xv · ∇xψ + ∂yv ∂yψ dV.(2.5)

For any ψ ∈ T 1
R(Sh,η) we can always approximate ψ with ψj ∈ C1(Sh,η) such that

ψj → ψ strongly in C(Sh,η),

∇ψj → ∇ψ weak* in L∞(Sh,η)
d.

Using this approximation, we find that (2.5) also extends to functions ψ ∈ T 0,1
R (Sh,η),

where

T 0,1
R (Sh,η) =

{
f ∈ C0,1(Sh,η) | f = 0 on {|x| > R} for some large R

}
.

Using the notation

〈a, b〉 =

∫
Rd−1

a(x) b(x) dx,

we restate (2.5) as follows: For any ψ ∈ T 0,1
R (Sh,η),

〈G(η) ξ, ψ(x, η(x))〉 =

∫
Sh,η

(∇xv · ∇xψ + ∂yv ∂yψ) dV.(2.6)

It is clear that the right-hand side of this equality requires v only to be W 1,1
loc (Sh,η).
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It has been discovered [18, 19, 20] that an effective technique for establishing the
analyticity of DNOs is to make a “domain flattening” change of variables

x′ = x, y′ = h
y − η

h + η
,(2.7)

which maps Sh,η to Sh,0. Considering the transformed field

u(x′, y′) = v(x′, (h + η)y′/h + η),(2.8)

the change of variables induces the formulas

(h + η)∇x = (h + η)∇x′ − (h + y′)(∇x′η)∂y′ ,(2.9a)

(h + η) divx = (h + η) divx′ − (h + y′)(∇x′η) · ∂y′ ,(2.9b)

(h + η)∂y = h∂y′ ,(2.9c)

which include a prefactor of (h+ η) in order to realize transformed equations with no
quotients involving η. Upon making this transformation, (2.3) becomes

Δu(x′, y′) = F (x′, y′) in Sh,0,(2.10a)

∂yu(x′,−h) = 0,(2.10b)

u(x′, 0) = ξ(x′),(2.10c)

where

F (x′, y′) = divx′

[
F (1)(x′, y′)

]
+ ∂y′F (2)(x′, y′) + F (3)(x′, y′).(2.11)

The form for F can be found most easily from the following calculation:

0 = (h + η)2{Δxv + ∂2
yv}

= (h + η)2Δxv + (h + η)2∂2
yv

= (h + η)divx [(h + η)∇xv] −∇xη · (h + η)∇xv + (h + η)∂y [(h + η)∂yv] .

Using (2.9) it is straightforward to show that

0 = h2Δ′
xu + h2∂2

y′u

+η divx′ [h∇x′u] + h divx′ [η∇x′u] + η divx′ [η∇x′u] − h divx′ [(h + y)∇x′η∂y′u]

−η divx′ [(h + y)∇x′η∂y′u] − (h + y)∇x′η · ∂y′ [h∇x′u]

−(h + y)∇x′η · ∂y′ [η∇x′u] + (h + y)∇x′η · ∂y′ [(h + y′)∇x′η∂y′u]

−h∇x′η · ∇x′u− η∇x′η · ∇x′u + (h + y′) |∇x′η|2 ∂y′u.

From this point, several manipulations can be effected to realize the divergence struc-
ture of F . Upon dropping primes, this results in

F (1) = − 2

h
η∇xu− 1

h2
η2∇xu +

h + y

h
∇xη∂yu +

(h + y)

h2
η∇xη∂yu,(2.12a)

F (2) =
h + y

h
∇xη · ∇xu +

(h + y)

h2
η∇xη · ∇xu− (h + y)2

h2
|∇xη|2 ∂yu,(2.12b)

F (3) =
1

h
∇xη · ∇xu +

1

h2
η∇xη · ∇xu− (h + y)

h2
|∇xη|2 ∂yu,(2.12c)
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where F (1), F (2), and F (3) are all O(η). At this point we note that, as claimed above,
the right-hand side of (2.10a) contains no quotients involving η.

Of course, we are primarily concerned with the DNO; formula (2.4) transforms
as

(h + η)G(η) ξ

= {−∇xη · (h + η)∇xv + (h + η)∂yv}
∣∣∣
y′=0

= {h∂y′u− h∇x′η · ∇x′u− η∇x′η · ∇x′u + (h + y′) |∇x′η|2 ∂y′u}
∣∣∣
y′=0

.

(2.13)

Therefore, again dropping primes,

G(η) ξ(x) = ∂yu(x, 0) + J(x),(2.14)

where

J = −η

h
G(η) ξ −∇xη · ∇xu(x, 0)

− 1

h
η∇xη · ∇xu(x, 0) + |∇xη|2 ∂yu(x, 0),

and clearly J = O(η). The weak statement of the DNO, (2.6), transforms as

〈G(η) ξ, ψ(x, 0)〉

=

∫
Sh,0

{(
∇xu− h + y

h + η
(∇xη)∂yu

)
·
(
∇xψ − h + y

h + η
(∇xη)∂yψ

)
+

h2

(h + η)2
(∂yu)∂yψ

}
h + η

h
dV

(2.15)

for any ψ ∈ T 0,1
R (Sh,0). Finally, we point out that sometimes it is more convenient to

write the DNO in the following form:

G(η) ξ(x) = −∇xη · ∇xξ +
h(1 + |∇xη|2)

h + η
∂yu

∣∣∣∣∣
y=0

,(2.16)

where we have used the fact that u(x, 0) = ξ(x).
In the spirit of the boundary perturbation methods we alluded to in the Intro-

duction, we now suppose that we are considering η to be a small perturbation of a
flat geometry, i.e., η(x) = εf(x). In this case, for future reference, (2.16) becomes

G(η) ξ(x) = −ε∇xf · ∇xξ +
h(1 + |ε∇xf |2)

h + εf
∂yu

∣∣∣∣∣
y=0

.(2.17)

We show the following theorem in section 3.1.
Theorem 2.1. Let f, ξ ∈ C1+α(Rd−1), 0 < α < 1. Let v(x, y) be the solution of

(2.3) in the region Sh,η with η = εf and define

u(x, y, ε) = v

(
x,

(h + εf)y

h
+ εf

)
, −∞ < x < ∞,−h < y < 0

(cf. (2.8)). Define the DNO G(εf) by (2.14) with η = εf . Then both the solution
u(x, y, ε) and the DNO G(εf) are analytic as functions of ε; i.e., they can be expressed
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as the convergent series

u(x, y, ε) =

∞∑
n=0

un(x, y) εn, G(εf) =

∞∑
n=0

Gn(f) εn,(2.18)

for small ε, where un and Gn(f) satisfy, for some constants B and C independent
of ε,

|un|C1+α(Sh,0)
≤ CBn |ξ|C1+α(Rd−1) , |Gn(f)|L(C1+α(Rd−1),Cα(Rd−1)) ≤ CBn.

This theorem implies that the DNO maps C1+α Dirichlet data to Cα Neumann
data.

By working in Lp-based Sobolev spaces, W k,p (p > d), we can refine this result
by requiring the boundary to be only Lipschitz continuous. In dealing with these
Sobolev spaces, we must appeal to the trace operator and its mapping properties (see
[1, Chapter 7 (e.g., Theorem 7.53)] for trace theorems); in particular, if ∂Ω ∈ Ck,
then the trace operator W k,p(Ω) → W k−1/p,p(∂Ω) is continuous and surjective.

To state the next result with complete accuracy we first define a pair of function
spaces. We denote by Br(x

∗) the ball of radius r centered at x∗, and for p > 1 define

Xp = {ξ | ξ ∈ W 1−1/p,p(B1(x
∗)) for any x∗ ∈ Rd−1}.

For ξ ∈ Xp we define

‖ξ‖Xp = sup
x∗∈Rd−1

‖ξ‖W 1−1/p,p(B1(x∗)).

Recall that [1, Chapter 7]

‖ξ‖W 1−1/p,p(B1(x∗)) = inf ‖ζ‖W 1,p(B1(x∗)×[−h,0]) ,

where the infimum is taken over all functions ζ ∈ W 1,p(B1(x
∗) × [−h, 0]) such that

ζ(x, 0) = ξ(x) in the trace sense; i.e., for any C∞ function γ(x, y) such that γ = 0 on

{∂B1(x
∗) × [−h, 0]} ∪ {B1(x

∗) × {y = −h}} ,

γ(ζ − ξ) ∈ W 1,p
0 ((B1(x

∗) × (−h, 0))). It is clear that with this definition

‖ξ‖Xp ≤ sup
x∗∈Rd−1

‖ξ‖W 1−1/p,p(B2(x∗)) ≤ 2(d−1)/p ‖ξ‖Xp .

We also define

Y k,p = {u | u ∈ W k,p(B1(x
∗) × [−h, 0]) for any x∗ ∈ Rd−1}

and

‖u‖Y k,p = sup
x∗∈Rd−1

‖u‖Wk,p(B1(x∗)×[−h,0]) .

In the case of boundary data in Xp, the solution u(x, y, ε) will only be in the space
W 1,p in the domain. Therefore, the first order derivative ∇u will only be an Lp

function in the domain and the trace operator in (2.14) is not well defined. Thus
we shall use the weak formulation (2.15). Since the DNO is local in nature, we shall
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discuss the DNO only in a neighborhood of an arbitrarily fixed point x̂ ∈ Rd−1. We
will establish the following in section 3.2.

Theorem 2.2. If f ∈ C0,1(Rd−1), ξ ∈ Xp, p > d. Let v(x, y) be the solution of
(2.3) in the region Sh,η with η = εf and define

u(x, y, ε) = v

(
x,

(h + εf)y

h
+ εf

)
, −∞ < x < ∞,−h < y < 0

(cf. (2.8)). Define the DNO G(εf) by (2.15) with η = εf . Then both the solution
u(x, y, ε) and the DNO G(εf) are analytic as functions of ε; i.e., they can be expressed
as the convergent series

u(x, y, ε) =

∞∑
n=0

un(x, y) εn, G(εf) =

∞∑
n=0

Gn(f) εn,

for small ε, where un and Gn(f) satisfy, for some constants B and C independent
of ε,

‖un‖Y 1,p ≤ CBn ‖ξ‖Xp , ‖Gn(f)‖L(Xp,(Xq
c (x̂))∗) ≤ CBn(2.19)

for any fixed x̂ ∈ Rd−1. In these formulas, q is the conjugate of p, i.e., q = p/(p− 1),
and (Xq

c (x̂))∗ is the dual space of Xq
c (x̂):

Xq
c (x̂) = {ϕ ∈ Xq | ϕ = 0 for |x− x̂| > 1}

∼= W
1−1/q,q
0 (B1(x̂)).

Remark. Roughly speaking, Xp behaves like W 1−1/p,p and Xq behaves like
W 1−1/q,q. Thus, the dual space of W 1−1/q,q behaves locally like W−(1−1/q),p =
W−1/p,p. Therefore, the above theorem states that the DNO “loses one spatial deriva-
tive” and is analytic in ε. This is the optimal regularity that one can expect for the
DNO.

Remark. Theorem 2.2 concerns a field, v, in W 1,p with boundary trace, ξ, in
W 1−1/p,p. Such assumptions were made to enable a proof which demands the weak-
est possible regularity on the boundary perturbation. Of course, if the boundary
deformation and Dirichlet data are more regular, then the field and DNO will be
smoother as well. Results mentioned in the Introduction (e.g., Calderón [4], Coifman
and Meyer [6], Craig, Schanz, and Sulem [10], Craig and Nicholls [8], and Nicholls
and Reitich [18, 20]) provide such results in a wide array of function spaces.

Remark. We introduced the spaces Xp and Y k,p in order to include quite general
behavior at infinity. For instance, we can accommodate periodicity or convergence (at
infinity) to a constant. If we specialize to periodic boundary conditions, say on the
period cell Q ⊂ Rd−1, we can simplify the statements of the theorem by replacing Xp

with W 1−1/p,p(Q), Y 1,p with W 1,p(Q× [−h, 0]), and B1(x̂) with Q in Theorem 2.2.
Remark. Finally, a direct, “method of majorants” approach could be pursued to

derive these results; cf. [18, 19, 20]. This would involve (for Theorem 2.1) inserting
the expansions (2.18) into (2.10) and (2.14), finding equations satisfied by the un and
Gn, and then estimating them directly in an appropriate function space. Since our
purpose is to simply establish analyticity in ε (rather than joint analyticity in x, y,
and ε; cf. [20]), we have found that a complexification approach greatly simplifies the
argument while delivering the most general result possible.
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3. Analyticity. In this section we establish analyticity of u(x, y, ε) in ε via a
complexification argument. Of course, in the original system (2.3) we cannot allow ε
to be complex-valued as ε measures the magnitude of the (real) deformation of the
domain. On the other hand, in the transformed system (2.10) ε has no such interpre-
tation and we are free to allow ε = ε1 + iε2 ∈ C and to look for complex solutions, u.
The advantage of this approach is the availability of the formulas of complex analysis
which readily deliver analyticity provided that straightforward estimates are estab-
lished. Once this is accomplished we may set ε2 = 0 and obtain the series expansion
for u which must be real-valued.

The complexification approach requires us to simply show that u(x, y, ε) is dif-
ferentiable in ε = ε1 + iε2 for |ε| sufficiently small. To this end we define the finite
difference operator as follows:

Tδ[u](x, y, ε) =
1

δ
[u(x, y, ε + δ) − u(x, y, ε)], δ = δ1 + iδ2.

A simple computation shows that

Tδ[u · w](x, y, ε) = Tδ[u](x, y, ε) · w(x, y, ε) + u(x, y, ε + δ) · Tδ[w](x, y, ε).(3.1)

In the next two subsections we show that Tδ[u](x, y, ε) converges as δ → 0, for ε
in a small disk. This is done in Hölder spaces in section 3.1 and in W k,p spaces in
section 3.2.

3.1. Hölder estimates. To begin this section we recall the following well-known
algebra property of the space Cα.

Lemma 3.1. Let 0 ≤ α ≤ 1. For f ∈ Cα(Rd−1), u ∈ Cα(Sh,0), the product
fu ∈ Cα(Sh,0), and

|fu|Cα ≤ |f |Cα |u|Cα .

For convenience, we often use Ck+α to denote either Ck+α(Rd−1) or
Ck+α(Sh,0); the meaning should be clear from the context. Now, recalling that since
ε ∈ C, solutions u of (2.10) will generally be complex-valued (with the real and imag-
inary parts individually satisfying (2.10)), we establish the following lemma regarding
existence and uniqueness of solutions.

Lemma 3.2. Given f, ξ ∈ C1+α for any α ∈ (0, 1), there exists c0 > 0 such
that (2.10) (with the right-hand side of (2.10) given by (2.12)) has a unique solution
u ∈ C1+α for all ε in the disk |ε| ≤ c0. Furthermore,

|u|C1+α ≤ C|ξ|C1+α ,(3.2)

where the constant C is independent of ε.
Proof. The contraction mapping principle will be utilized. Consider the space

X = {u ∈ C1+α | u(x, 0) = ξ, ∂yu(x,−h) = 0}

and the map Φ, defined by the following steps: For u ∈ X, compute R(x, y) =
F (x, y, u(x, y)) from (2.11) and (2.12), and find the solution of

Δw(x, y) = R(x, y) in Sh,0,

w(x, 0) = ξ(x),

∂yw(x,−h) = 0,
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guaranteed by Theorem A.2. Setting η = εf , we note that if u ∈ C1+α, then∣∣∣F (1)
∣∣∣
Cα

≤ 2

h
|εf∇xu|Cα +

1

h2

∣∣ε2f2∇xu
∣∣
Cα +

∣∣∣∣h + y

h
ε(∇xf)∂yu

∣∣∣∣
Cα

+

∣∣∣∣ (h + y)

h2
ε2f(∇xf)∂yu

∣∣∣∣
Cα

≤ 2|ε|
h

|f |Cα |u|C1+α +
|ε|2
h2

|f |2Cα |u|C1+α +
Y |ε|
h

|f |C1+α |u|C1+α

+
Y |ε|2
h2

|f |Cα |f |C1+α |u|C1+α

≤ |ε|K1,1 |f |C1+α |u|C1+α + |ε|2K1,2 |f |2C1+α |u|C1+α ,

where we have used Lemma 3.1, and Y is defined by

|(h + y)u|Cα ≤ Y |u|Cα .

Similarly, it can be shown that∣∣∣F (2)
∣∣∣
Cα

≤ |ε|K2,1 |f |C1+α |u|C1+α + |ε|2K2,2 |f |2C1+α |u|C1+α ,∣∣∣F (3)
∣∣∣
L∞

≤ |ε|K3,1 |f |C1 |u|C1 + |ε|2K3,2 |f |2C1 |u|C1 ,

so that from (A.1) of Theorem A.2, w ∈ C1+α. Thus, Φ : X → X defined by w = Φu
is well-defined.

Now, if we choose u, ũ ∈ X, this will generate w, w̃ ∈ X, respectively. Further-
more,

|w − w̃|C1+α ≤ Ce

[∣∣∣R(1) − R̃(1)
∣∣∣
Cα

+
∣∣∣R(2) − R̃(2)

∣∣∣
Cα

+
∣∣∣R(3) − R̃(3)

∣∣∣
L∞

]
≤ |ε|K4,1 |f |C1+α |u− ũ|C1+α + |ε|2K4,2 |f |2C1+α |u− ũ|C1+α

≤ γ |u− ũ|C1+α

for γ < 1 if

|ε| ≤ c0 ≡ max

{
γ

2K4,1 |f |C1+α

,

√
γ√

2K4,2 |f |C1+α

}
.

Clearly the estimate is uniformly valid for all ε in the disk |ε| ≤ c0, and thus the
contraction mapping principle gives existence and uniqueness of solutions. Repeating
the above estimation procedure we find that (3.2) is valid.

We next establish differentiability of u in ε.
Lemma 3.3. By shrinking the constant c0 in Lemma 3.2 if necessary, we have

|Tδ[u]|C1+α ≤ C for |ε| ≤ c0, |δ| ≤ c0,(3.3)

where the constant C is independent of ε and δ.
Proof. We begin by applying the difference operator Tδ to (2.10) as follows:

ΔTδ[u] = divx

[
Tδ[F

(1)]
]

+ ∂yTδ[F
(2)] + Tδ[F

(3)].(3.4)
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The product rule (3.1) can be used to derive

Tδ[F
(1)]

= − 2

h
εf∇xTδ[u](ε) − 2

h
f∇xu(ε + δ) − ε2

h2
f2∇xTδ[u](ε) − 2ε

h2
f2∇xu(ε + δ)

− δ

h2
f2∇xu(ε + δ) +

ε(h + y)

h
∇xf∂yTδ[u](ε) +

(h + y)

h
∇xf∂yu(ε + δ)(3.5)

+
ε2(h + y)

h2
f∇xf∂yTδ[u](ε) +

2ε(h + y)

h2
f∇xf∂yu(ε + δ)

+
δ(h + y)

h2
f∇xf∂yu(ε + δ).

Estimating this in Cα we find∣∣∣Tδ[F
(1)]

∣∣∣
Cα

≤
{
K5,1|ε| |f |C1+α + K5,2|ε|2 |f |2C1+α

}
|Tδ[u](ε)|C1+α

+K6 {|f |C1+α + |ε| |f |C1+α + |δ| |f |C1+α} |u(·, ·, ε + δ)|C1+α ;

similar expressions for
∣∣Tδ[F

(2)]
∣∣
Cα and

∣∣Tδ[F
(3)]

∣∣
L∞ can be found. These results

coupled with Theorem A.2 imply that

|Tδ[u]|C1+α ≤ Ce

[∣∣∣Tδ[F
(1)]

∣∣∣
Cα

+
∣∣∣Tδ[F

(2)]
∣∣∣
Cα

+
∣∣∣Tδ[F

(3)]
∣∣∣
L∞

]
≤ Ce

[{
K7,1 |ε| |f |C1+α + K7,2 |ε|2 |f |2C1+α

}
|Tδ[u]|C1+α

+K8

{
|f |C1+α + |ε| |f |2C1+α + |δ| |f |2C1+α

}
|u|C1+α

]
.

Clearly, if ε and δ are chosen sufficiently small, then |Tδ[u]|C1+α is bounded indepen-
dently of ε and δ.

In the next step we show that this difference quotient converges to the derivative
of u with respect to ε.

Lemma 3.4. There exists a small positive constant c0 such that, in the disk {|ε| ≤
c0}, the complexified solution u of (2.10) is differentiable in the complex variable ε in
the space C1+β, for any β ∈ (0, α), i.e.,

Tδ[u] → ∂εu as |δ| → 0.

Proof. For any β ∈ (0, α), we can use the compactness of C1+α to conclude that
there exists a subsequence δn → 0 such that

Tδn [u] → w in C1+β(S0,h ∩ {|x| ≤ K})

for any K > 1. By passing δn to 0 in the equation, we find that w satisfies

Δw = divx

[
H(1)

]
+ ∂yH

(2) + H(3),

where

H(1) = − 2

h
εf∇xw − 2

h
f∇xu− ε2

h2
f2∇xw − 2ε

h2
f2∇xu

+
ε(h + y)

h
∇xf∂yw +

(h + y)

h
∇xf∂yu

+
ε2(h + y)

h2
f∇xf∂yw +

2ε(h + y)

h2
f∇xf∂yu,
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and similar expressions hold for H(2) and H(3). Similar to the proof of Lemma 3.2,
the C1+β solution w to such a system is unique. This uniqueness implies that the
convergence is independent of the subsequence of δn.

At this point we can prove Theorem 2.1.
Proof of Theorem 2.1. By Cauchy’s formula, for |ε| < c0,

u(x, y, ε) =
1

2πi

∫
|ζ|=c0

u(x, y, ζ)

ζ − ε
dζ =

∞∑
n=0

un(x, y) εn,

where

un(x, y) =
1

2πi

∫
|ζ|=c0

u(x, y, ζ)

ζn+1
dζ.

From this formula, we obtain the estimates on un from the estimates for u as follows:

|un|C1+α ≤ 1

cn+1
0

max
|ζ|=c0

|u(·, ·, ζ)|C1+α ≤ CBn |ξ|C1+α ,

where B = 1/c0. Since G(εf) ξ(x) is expressed in terms of u and its first order
derivatives (see (2.17)), we can extend G(εf) ξ(x) to complex ε. Using the (complex)
analyticity of u in ε, we immediately have the differentiability of G(εf) ξ with respect
to ε and

|G(εf) ξ|Cα ≤ C |u|C1+α ≤ C |ξ|C1+α .

Thus, for |ε| < c0,

G(εf) ξ =
1

2πi

∫
|ζ|=c0

G(ζf) ξ

ζ − ε
dζ =

∞∑
n=0

(Gn(f) ξ) εn,

where

Gn(f) ξ =
1

2πi

∫
|ζ|=c0

G(ζf) ξ

ζn+1
dζ.

From this, we obtain

|Gn(f) ξ|Cα ≤ 1

cn+1
0

max
|ζ|=c0

|G(ζf) ξ|Cα ≤ C

cn+1
0

max
|ζ|=c0

|u(·, ·, ζ)|C1+α ≤ CBn |ξ|C1+α .

This implies

|Gn(f)|L(C1+α(Rd−1),Cα(Rd−1)) ≤ CBn.

The theorem is proved.

3.2. W 1,p estimates. Using W 1,p(Sh,η) (W 1−1/p,p on the boundary) estimates,
we will extend the result of the previous section to Lipschitz boundaries; i.e., we will
assume

f ∈ C0,1, ξ ∈ Xp (p > d),

and approximate f and ξ by smooth functions where necessary. The key result which
allows the estimation of Lipschitz boundaries is the following.
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Lemma 3.5. For f ∈ C0,1, u ∈ Y 0,p, the product (∇xf)u ∈ Y 0,p, and

‖(∇xf)u‖Y 0,p ≤ |f |C0,1 ‖u‖Y 0,p .

Given this result we can prove the following lemma.
Lemma 3.6. Given f ∈ C0,1, ξ ∈ Xp (p > d), there exists c0 > 0 such that (2.10)

has a unique solution u ∈ Y 1,p for all ε in the disk |ε| ≤ c0. Furthermore,

‖u‖Y 1,p ≤ C ‖ξ‖Xp ,(3.6)

where the constant C is independent of ε.
Proof. The proof is the same as in Lemma 3.2, with the C1+α Hölder esti-

mate (Theorem A.2) replaced by the W 1,p estimate (Theorem A.3) given in Appen-
dix A. For instance, the key estimate which guaranteed the contraction property in
Lemma 3.2 now reads∥∥∥F (1)

∥∥∥
Y 0,p

≤ 2

h
‖εf∇xu‖Y 0,p +

1

h2

∥∥ε2f2∇xu
∥∥
Y 0,p +

∥∥∥∥h + y

h
ε(∇xf)∂yu

∥∥∥∥
Y 0,p

+

∥∥∥∥ (h + y)

h2
ε2f(∇xf)∂yu

∥∥∥∥
Y 0,p

≤ 2|ε|
h

|f |C0,1 ‖u‖Y 1,p +
|ε|2
h2

|f |2C0,1 ‖u‖Y 1,p

+
Ỹ |ε|
h

|f |C0,1 ‖u‖Y 1,p +
Ỹ |ε|2
h2

|f |2C0,1 ‖u‖Y 1,p

≤ |ε|K̃1,1 |f |C0,1 ‖u‖Y 1,p + |ε|2K̃1,2 |f |2C0,1 ‖u‖Y 1,p ,

where Ỹ is defined by

‖(h + y)u‖Y 0,p ≤ Ỹ ‖u‖Y 0,p .

From this calculation, using Lemma 3.5, we see the explicit appearance of the Lipschitz
norm on the boundary deformation f(x).

To establish the differentiability in complex ε, we apply the finite difference op-
erator, Tδ[·].

Lemma 3.7. By shrinking the positive constant c0 in Lemma 3.6 if necessary, we
have

‖Tδ[u]‖Y 1,p ≤ C for |ε| ≤ c0, |δ| ≤ c0,(3.7)

where the constant C is independent of ε.
Proof. Again, the proof is essentially the same as for Lemma 3.3 with the C1+α

Hölder estimate (Theorem A.2) replaced by the W 1,p estimate (Theorem A.3) given
in Appendix A.

Now we are ready to establish the differentiability in complex ε.
Lemma 3.8. If |ε| ≤ c0 and u is the solution of (2.10), then u is differentiable

in ε as a complex function almost everywhere; i.e.,

Tδ[u] → ∂εu as |δ| → 0.

Proof. The proof is similar to that of Lemma 3.4. However, since we no longer
have compactness for the first order derivatives, the subsequential convergence as
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δn → 0 must be replaced by the following:

Tδn [u] → w strongly in C0({|x| < K} × [−h, 0]) for any K > 1,

(∇x, ∂y)Tδn [u] → (∇x, ∂y)w weakly in [Lp({|x| < K} × [−h, 0])]d for any K > 1.

We note that Tδn [u] satisfies equation (3.4) from Lemma 3.3. The terms in (3.5) are
all linear in Tδn [u] and its first order of derivatives; furthermore, all the coefficients
are in L∞ since we assume that f is Lipschitz continuous. These key facts allow us
to use weak convergence to take the limit δn → 0. Thus we obtain the equation for
w. The rest of the proof remains the same as that of Lemma 3.4.

Proof of Theorem 2.2. The analyticity of u(x, y, ε) in ε, and the corresponding
estimate for un in Y 1,p, can be obtained in the same manner as in the proof of
Theorem 2.1. However, the estimates on G(εf) must be modified since we are only
permitted the weak formulation of the DNO in this case. It is clear that this weak
formulation, (2.15), allows the complexification in ε. To use this definition, however,
we have to show that (2.15) defines a DNO in the appropriate space also for complex ε.
Namely, we have to show that the value on the right-hand side of (2.15) is independent
of the way the function ψ(x, 0) is extended to Rd−1 × [−h, 0].

Since

T∞
R (Sh,0) =

{
f ∈ C∞(Sh,0) | f = 0 on {|x| > R} for some large R

}
is dense in T 0,1

R (Sh,0), we only need to show that the right-hand side of (2.15) is
independent of the extension for such ψ; namely, we need to show∫

Sh,0

{(
∇xu− h + y

h + η
(∇xη)∂yu

)
·
(
∇xψ − h + y

h + η
(∇xη)∂yψ

)
+

h2

(h + η)2
(∂yu)∂yψ

}
h + η

h
dV = 0,

(3.8)

for any ψ ∈ C∞(Sh,0) such that ψ(x, 0) ≡ 0 for all x ∈ Rd−1 and ψ(x, y) ≡ 0 for
|x| > R for some R > 1. Under our assumptions, all boundary terms vanish upon
utilization of integration by parts in (3.8), so we can establish (3.8) by using the weak
formulation of the complexified equation for u.

We next proceed to establish the estimates for G(εf). As in the proof of Theo-
rem 2.1,

〈G(εf) ξ, ψ(x, 0)〉 =
1

2πi

∫
|ζ|=c0

〈G(ζf) ξ, ψ(x, 0)〉
ζ − ε

dζ =
∞∑

n=0

〈Gn(f) ξ, ψ(x, 0)〉 εn,

where ψ(x, 0) ∈ C0,1
c (Rd−1), and

〈Gn(f) ξ, ϕ(x, 0)〉 =
1

2πi

∫
|ζ|=c0

〈G(ζf) ξ, ϕ(x, 0)〉
ζn+1

dζ.

Thus the conclusion of our theorem will follow if we can establish the estimate

‖G(εf)‖L(Xp,(Xq
c (x̂))∗) ≤ C(3.9)

for some C, independent of ε, and for all |ε| ≤ c0.
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For any Ψ ∈ Xq
c (x̂), we use the definition of Xq

c (x̂) to extend Ψ to a function
ψ ∈ W 1,q

loc (Rd−1 × [−h, 0]) such that

ψ(x, 0) = Ψ(x) in the trace sense,(3.10a)

ψ(x, y) = 0 for |x− x̂| > 1, −h < y < 0,(3.10b)

‖ψ‖W 1,q(B1(x̂)×(−h,0)) ≤ C ‖Ψ‖Xq .(3.10c)

Since we have already established a W 1,p(B1(x̂) × (−h, 0)) estimate for u, we can
approximate ψ with C0,1 functions so that its first order derivatives converge weakly
in Lq(B1(x̂)× (−h, 0)). Thus the test function defined in (3.10) can be used in (2.15).
Using (2.15) we find that, for all Ψ ∈ Xq

c (x̂),

| 〈G(εf) ξ,Ψ〉 | ≤ C ‖u‖W 1,p(B1(x̂)×(−h,0)) ‖∇ψ‖Lq(B1(x̂)×(−h,0))

≤ C ‖ξ‖Xq ‖Ψ‖Xq .

This implies that

‖G(εf) ξ‖(Xq
c (x̂))∗ ≤ C ‖ξ‖Xp ;

i.e., the estimate (3.9) is valid.

Appendix A. Elliptic estimates. In this appendix we present the statements
(together with brief proofs) of the elliptic estimates which are at the heart of the
analyticity results, Theorems 2.1 and 2.2. Of course, the great simplification of our
approach was the use of the “domain flattening” change of variables, (2.7), which
maps the domain Sh,η to the strip Sh,0. Consequently, it is sufficient to analyze
(inhomogeneous) elliptic equations on a much simpler geometry. This, in turn, allows
the simple establishment of the following results which, we point out, are true on
much more general domains (e.g., see [5]).

We begin with the “comparison principle” on a domain, which implies the unique-
ness of bounded solutions.

Theorem A.1. If w is bounded and satisfies (in the weak sense)

−Δw(x, y) ≥ 0 in Sh,0,

−∂yw(x,−h) ≥ 0,

w(x, 0) ≥ 0,

then

w(x, y) ≥ 0 in Sh,0.

Proof. Since we can only use weak comparison in the bounded domain, we choose
M = |w|L∞ and let

Φ =
2(d− 1)

R
M

[x2
1 + · · · + x2

d−1

2(d− 1)
− (y + h)2

2
+

h2

2

]
+ w.

It is clear that

−ΔΦ ≥ 0 in Sh,0,

−∂yΦ(x,−h) ≥ 0,

Φ ≥ 0 on {y = 0} ∪ {x2
1 + · · · + x2

d−1 = R2}.
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We can now apply the comparison principle on the bounded domain {x | x2
1 + · · · +

x2
d−1 < R2} × (−h, 0) to conclude that Φ ≥ 0 there. If we fix (x, y) and let M → ∞,

we obtain w > 0 on Sh,0.
We next state the Hölder estimate used in section 3.1.
Theorem A.2. For any α ∈ (0, 1) there exists a constant Ce such that for any

R(1), R(2) ∈ Cα, R(3) ∈ L∞, and ξ ∈ C1+α there exists a unique solution w(x, y) of

Δw = divx

[
R(1)

]
+ ∂yR

(2) + R(3) in Sh,0,

∂yw(x,−h) = 0,

w(x, 0) = ξ(x),

which satisfies

|w|C1+α ≤ Ce

{∣∣∣R(1)
∣∣∣
Cα

+
∣∣∣R(2)

∣∣∣
Cα

+
∣∣∣R(3)

∣∣∣
L∞

+ |ξ|C1+α

}
.(A.1)

Proof. The uniqueness is a corollary of the comparison principle. The existence
can be proved using a continuation argument once we obtain the estimate, (A.1), in
this theorem. This estimate is a special case of the general C1+α theory for elliptic
systems in divergence form which is established using Campanato spaces Lp,μ (see [5,
Theorems 2.6 and 2.7, pp. 152–154]).

Since our system is of constant coefficients and in a special domain, we provide a
short proof here. We write

w =
d−1∑
j=1

∂xj
w

(1)
j + ∂yw

(2) + w(3) + w(4) + w(5),

where

Δw
(1)
j = R

(1)
j in Sh,0,(A.2a)

∂yw
(1)
j (x,−h) = 0,(A.2b)

w
(1)
j (x, 0) = 0;(A.2c)

Δw(2) = R(2) in Sh,0,(A.3a)

∂yw
(2)(x,−h) = 0,(A.3b)

w(2)(x, 0) = 0;(A.3c)

Δw(3) = R
(3)
j in Sh,0,(A.4a)

∂yw
(3)(x,−h) = 0,(A.4b)

w(3)(x, 0) = 0;(A.4c)

Δw(4) = 0 in Sh,0,(A.5a)

∂yw
(4)(x,−h) = 0,(A.5b)

w(4)(x, 0) = ξ(x);(A.5c)
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and, finally,

Δw(5) = 0 in Sh,0,(A.6a)

∂yw
(5)(x,−h) = −∂yyw

(2)(x,−h) = −R(2)(x,−h),(A.6b)

w(5)(x, 0) = 0.(A.6c)

We can apply standard Schauder theory [12] to w(1) and w(2) to obtain C2+α estimates
for w(1) and w(2). We can apply W 2,p estimates to w(3) for p > d/(1 − α) and then
use an embedding theorem to obtain the C1+α estimate for w(3). Since the Dirichlet
boundary data for w(4) is C1+α, we obtain C1+α estimates for w(4). Finally, if we let

z(x, y) =

∫ y

−h

w(5)(x, s) ds,

then

Δz = w(5)
y (x,−h) = −R(2)(x,−h) in Sh,0,

∂yz(x,−h) = 0,

z(x, 0) = 0.

Since R(2) is in Cα, we can apply the Schauder C2+α estimate for z and obtain an
C1+α estimate for w(5) = ∂yz.

Finally, we state the W k,p estimate used in section 3.2.
Theorem A.3. For any p > d there exists a constant C̃e such that for any

R(1), R(2), R(3) ∈ Y 0,p, and ξ ∈ Xp there exists a unique solution w(x, y) of

Δw = divxR
(1) + ∂y{(h + y)R(2)} + R(3) in Sh,0,(A.7a)

∂yw(x,−h) = 0,(A.7b)

w(x, 0) = ξ(x),(A.7c)

which satisfies

‖w‖Y 1,p ≤ C̃e

{∥∥∥R(1)
∥∥∥
Y 0,p

+
∥∥∥R(2)

∥∥∥
Y 0,p

+
∥∥∥R(3)

∥∥∥
Y 0,p

+ ‖ξ‖Xp

}
.

Proof. This estimate is a special case of the general Lp theory for elliptic systems
in divergence form which is established in [5] (see page 157, Theorem 2.2 for interior
estimates; the boundary estimates can be done in a similar way). In this short proof
for our special system, we will assume that the involved functions are smooth since
we can always approximate them with smooth functions. The estimate is valid as
long as the constants involved are independent of the smoothness. We use the ideas
of the earlier proof (Theorem A.2) and divide the proof into two cases.

Case 1: ξ(x) ≡ 0. The proof is similar to the proof of Theorem A.2. For any
x∗ ∈ Rd−1, it suffices to establish estimates on B1(x

∗)× (−h, 0) in terms of norms of
R(1), R(2), and R(3) on B2(x

∗)× (−h, 0). We decompose w into w(j) (j = 1, 2, 3, 4, 5)
as before, and we can then apply the standard W 2,p interior-boundary estimates to
w(1), w(2), and w(3). Since we have a factor (h + y) on the right-hand side of (A.7)
in the R(2) term, w(5) vanishes. Since we have assumed, in this case, that ξ ≡ 0,
w(4) also vanishes and the estimate is established.

Case 2: General case. We need only estimate w(4); by the maximum principle,∣∣∣w(4)
∣∣∣
L∞

≤ |ξ|L∞ .
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Since p > d, we have, by embedding, |ξ|L∞ ≤ C ‖ξ‖Xp . Thus we can use the standard
elliptic regularity estimates to derive∥∥∥w(4)

∥∥∥
C2(B2(x∗)×[−h,−h/2])

≤ C ‖ξ‖Xp .

For any x∗ ∈ Rd−1, we use the definition of Xp to extend the function ξ to a function
Φ(x, y) ∈ W 1,p

loc (B2(x
∗) × [−h, 0]) ∩ C2(B2(x

∗) × [−h,−h/2]) so that

‖Φ‖W 1,p(B2(x∗)×(−h,0)) ≤ C ‖ξ‖Xp ,(A.8)

where we understand that Φ(·, 0) = ξ(·) in the trace sense. By using a cut-off function
if necessary, we may assume, without loss of generality, that

Φ(x, y) ≡ w(4)(x, y) for x ∈ B2(x
∗),−h ≤ y ≤ −h

2
.

It is clear that w(4) satisfies

Δ(w(4) − Φ) = −divx [μ1(y)∇xΦ] − ∂y

(
(y + h)

μ1(y)

y + h
∂yΦ

)
in Sh,0,

∂y(w
(4) − Φ)(x,−h) = 0,

w(4)(x, 0) − Φ(x, 0) = 0,

where

μ1(y) = 1 for
−h

2
≤ y < 0, μ1(y) = 0 for − h ≤ y <

−h

2
;

we point out that, in fact, w(4) − Φ ≡ 0 for −h ≤ y ≤ −h/2. Using (A.8), we have∥∥∥∥ μ1(y)

(h + y)
∂yΦ

∥∥∥∥
Lp(B2(x∗)×(−h,0))

≤ 2

h
‖∂yΦ‖Lp(B2(x∗)×(−h,0)) ≤ C ‖ξ‖Xp

and

‖μ1(y)∇xΦ‖Lp(B2(x∗)×(−h,0)) ≤ C ‖ξ‖Xp .

We can now apply Case 1 to obtain∥∥∥w(4)
∥∥∥
W 1,p(B1(x∗)×(−h,0))

≤ C ‖ξ‖Xp .

Combining all the estimates for w(j) (j = 1, 2, 3, 4, 5) and taking the supremum over
all x∗ ∈ Rd−1, we conclude the theorem.
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