
Digital Object Identifier (DOI) 10.1007/s002110200399
Numer. Math. (2003) 94: 107–146 Numerische

Mathematik

Analytic continuation
of Dirichlet-Neumann operators

David P. Nicholls, Fernando Reitich

School of Mathematics, University of Minnesota, Minneapolis, MN 5545, USA;
e-mail: {nicholls,reitich}@math.umn.edu

Received October 10, 2000 / Revised version received January 21, 2002 /
Published online June 17, 2002 – c©Springer-Verlag 2002

Summary. The analytic dependence of Dirichlet-Neumann operators
(DNO) with respect to variations of their domain of definition has been
successfully used to devise diverse computational strategies for their es-
timation. These strategies have historically proven very competitive when
dealing with small deviations from exactly solvable geometries, as in this
case the perturbation series of the DNO can be easily and recursively eval-
uated. In this paper we introduce a scheme for the enhancement of the
domain of applicability of these approaches that is based on techniques of
analytic continuation. We show that, in fact, DNO depend analytically on
variations of arbitrary smooth domains. In particular, this implies that they
generally remain analytic beyond the disk of convergence of their power se-
ries representations about a canonical separable geometry. And this, in turn,
guarantees that alternative summation mechanisms, such as Padé approxi-
mation, can be effectively used to numerically access this extended domain
of analyticity. Our method of proof is motivated by our recent development
of stable recursions for the coefficients of the perturbation series. Here, we
again utilize this recursion as we compare and contrast the performance of
our new algorithms with that of previously advanced perturbative methods.
The numerical results clearly demonstrate the beneficial effect of incorporat-
ing analytic continuation procedures into boundary perturbation methods.
Moreover, the results also establish the superior accuracy and applicability
of our new approach which, as we show, allows for precise calculations
corresponding to very large perturbations of a basic geometry.
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1 Introduction

Many fundamental problems in mathematical physics are phrased in terms of
partial differential equations posed on irregular or moving domains. While,
in many cases, the equations governing quantities in the interior of the do-
main may be simple (linear, and even constant coefficient), the geometrical
complexity of the boundary and/or nonlinearities in the boundary conditions
generally render these problems analytically intractable. This is the case,
for instance, for standard boundary value problems such as those arising in
scattering models associated with irregular obstacles (see e.g. [3]), or for
classical free boundary problems such as those modeling water waves, Hele-
Shaw flows [15], precipitate growth, and solid-liquid phase transformations
[12]. It is a general principle of the aforementioned problems that a simpli-
fication and reduction in dimension can be accomplished by considering the
field quantities evaluated at the boundary and, if applicable, the shape of the
boundary itself, as fundamental variables. From these boundary variables
the field quantities can be recovered from suitable representation formulas.
Generally, a complication in such a reduction is that normal derivatives of the
fields at the boundary of their domain of definition may be required (to en-
force continuity of electromagnetic quantities, or kinematic/dynamic com-
patibility, or conservation of energy, etc). Such requirements then demand
that Dirichlet-Neumann operators (DNO), and their higher order analogues,
enter into these surface formulations to relate boundary values (“Dirichlet
data”) to normal derivatives (“Neumann data”).

From a computational perspective, the above reduction procedure makes
the accurate and stable estimation of DNO essential. Among the myriad
of methods that can be devised for the numerical approximation of DNO,
boundary perturbation methods present an appealing alternative within their
regime of relevance. These methods are based on the observation that for
certain (“separable”) simple geometries, DNO can be explicitly constructed.
Thus, a perturbation series in powers of a parameter measuring deviation
from such a geometry can be effectively obtained through the recursive so-
lution of a sequence of relatively simple problems. A particularly attractive
feature of these methods is that, in contrast with alternative approaches (e.g.
finite elements or surface potentials), their implementation and performance
do not depend strongly on the spatial dimension. In fact, it has been shown
that perturbation methods can lead very efficiently to highly accurate results
for small to moderate perturbations of two- and three-dimensional separable
geometries, see e.g. [10,16,17,20,21,9,14,19,18,27]. For large deforma-
tions, on the other hand, these implementations are limited by the radius of
convergence of the perturbation series. In this paper we address this very
issue, as we introduce a scheme for the enhancement of the domain of ap-
plicability of boundary perturbation approaches that is based on techniques
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of analytic continuation. We show that, in fact, DNO depend analytically
on variations of arbitrary smooth domains (see Sect. 3). In particular, this
implies that they generally remain analytic beyond the disk of convergence
of their power series representations about a canonical geometry. And this,
in turn, guarantees that alternative mechanisms for summation of Taylor
series, such as Padé approximation, can be effectively used to numerically
access this extended domain of analyticity (corresponding to large deforma-
tions; see Sect. 5). As we demonstrate, the incorporation of these analytic
continuation techniques substantially improves the overall performance of
algorithms based on boundary variations.

The extended analyticity theorems for DNO that we present in Sect. 3 and
4 are in the spirit of the results in [3] where similar properties were shown to
hold for solutions to (exterior) scattering problems. In [3] these properties
were established through a careful inversion in a space of holomorphic
functions of an appropriate integral equation formulation. Our method of
proof is quite different and, in fact, more direct and generally applicable, as
it is based on the inductive estimation of suitable recurrences for the Taylor
coefficients of the field quantities. In particular, and as we show in Sect. 4, a
simple extension of our arguments delivers an alternative proof of the exact
analogue of the results in [3], namely that of joint analyticity of the fields
in spatial variables and variation parameter.

As we said, the recurring nature of the formulas for the coefficients in
a representation of the DNO in powers of a boundary roughness parame-
ter constitutes a main ingredient in perturbative approaches. And, in fact,
several implementations of these recursions have been proposed. In the con-
text of simulations of gravity water waves, for instance, the early work of
Dommermuth and Yue [10] advocated the expansion of the field (i.e. the
velocity potential) in powers of the water’s surface elevation and the sub-
sequent evaluation of its normal derivative (normal velocity). In contrast,
and still within the context of water waves, Craig and Sulem [9] later on
devised a recursion that applies to the DNO itself and thus directly produces
the normal velocity at the surface from the values of the potential there (see
also [26,23,22,7]). Their scheme, in fact, closely resembles that introduced
earlier by Milder [16,17] (see also [20,21,14,19,18,27]) in his studies of
electromagnetic ocean scattering. Interestingly, we have recently shown [24]
that none of these procedures produces recursions that are suitable for an in-
ductive estimation that would lead to a proof of analyticity of DNO. Indeed,
we have demonstrated that both the “field expansion” (FE) approach of [10]
and the “operator expansion” (OE) method of [9,16,17] result in recurrences
that contain cancellations and, thus, lead to rather unstable numerics (see
Sect. 2). From a theoretical standpoint, these cancellations conspire against a
straightforward estimation of the terms in the series. In [24] we resolved this
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problem by introducing yet another set of recursive formulas for the Taylor
series of the DNO, leading to what we termed the method of “transformed
field expansions” (TFE). These formulas, which are obtained after a change
of variables is effected that transforms the perturbed domain onto the unper-
turbed geometry, can be shown to be free of cancellations and were used in
[24] to establish the analyticity of DNO for small boundary perturbations.
Here, we again utilize this idea to establish the analytic continuation results
mentioned above.

The paper is organized as follows: first, and for the sake of completeness,
we review, in Sect. 2, the basic concepts relating to perturbation methods
as applied to the approximation of DNO. We further introduce the FE and
OE implementations and we demonstrate their rather unstable behavior,
due to the presence of strong cancellations in the associated recursions. In
Sect. 3 we introduce our new recurrence based on collapsing the perturbed
domains onto the unperturbed geometry. We show that, in contrast with
those arising in the OE and FE schemes, these formulas can in fact be used to
establish the analyticity of DNO for perturbations of an arbitrary (smooth)
domain. A similar, though slightly more subtle, argument is presented in
Sect. 4 that shows that, for analytic perturbations, the field is in fact jointly
analytic in spatial variables and perturbation parameter. Finally, in Sect. 5,
we present a variety of numerical results that demonstrate the beneficial
effect of incorporating analytic continuation mechanisms into perturbative
approaches as we compare the OE and FE schemes with our new TFE
method. These results also establish the superior accuracy and applicability
of TFE which, as we show, allows for precise calculations corresponding to
very large perturbations of a basic geometry.

2 Perturbative methods for evaluation of DNO

In this section we review the fundamental ideas underlying the perturbative
expansion of DNO as we introduce the recursive formulas that constitute
the basis of the various implementations of these approximation schemes.
Clearly, the details of these recurrences will depend upon the physical model
under consideration, its natural characteristics, and geometrical features. For
the sake of definiteness, and for ease of comparison with prior work, here
we shall consider a model that arises in the study of water waves [10,9] and
which leads to the DNO associated with a (periodic) rectangular geometry.
As will be evident, our results apply more generally to perturbations of any
exactly solvable geometry. More precisely, we shall consider

(1) Sσ = {(x, y) ∈ Rd−1 × R | − 1 < y < σ(x)}
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and the unique solution, v, of the problem

∆v = 0 in Sσ(2a)

v(x, σ(x)) = ξ(x)(2b)

∂yv(x,−1) = 0(2c)

v(x + γ, y) = v(x, y) for all γ ∈ Γ(2d)

where Γ ⊂ Rd−1 is a lattice of periodicity. Then the Dirichlet-Neumann
operator, G(σ), is defined as

(3) G(σ) ξ = ∇v|y=σ · (−∇xσ, 1)T.

We remark that the above definition could be based upon a domain of any
depth h (i.e. −h < y < σ(x)) or even of infinite depth (−∞ < y < σ(x))
by suitably adjusting (2c), e.g. for infinite depth by enforcing

(4) ∂yv(x, y) → 0 as y → −∞.

The accurate numerical evaluation of DNO is evidently a nontrivial mat-
ter as it entails, directly or indirectly, the approximation of singular integrals
(see e.g. [8]). There is, however, one exception: for a separable geometry, the
operator can be explicitly found. In our case, such a geometry is provided
by a “flat ocean”, corresponding to σ = 0. Indeed, in this case, we have

(5) G(0) ξ = |D| tanh(|D|)ξ(x) =
∑
k∈Γ ′

|k| tanh(|k|)ξ̂(k)

for a domain of unit depth (c.f. (1)), or

(6) G(0) ξ = |D| ξ(x) =
∑
k∈Γ ′

|k| ξ̂(k)

for a domain of infinite depth, where D = −i∇x and Γ ′ is the conjugate
lattice to Γ (i.e. wavenumbers). In view of this, a perturbative approach
suggests itself whereby a general surface is viewed as a deviation from a
plane. More precisely, a family of surfaces σ = εf , |ε| ≤ ε̄, gives rise to
DNO, G(εf), and a perturbation series

(7) G(εf) ξ =
∞∑

n=0

(Gn(f) ξ)εn

could be used for their approximation. The feasibility of such an approach
obviously hinges on two main factors: 1) the convergence of the series (7),
and 2) the development of an algorithm for the efficient evaluation of its
coefficients.
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The question of convergence of the series (7) has a long history and,
for two-dimensional domains (i.e. d = 2), an affirmative answer can be
derived from the work of Calderón [4] and Coifman and Meyer [5]. Indeed,
it follows from these that for any Lipschitz profile f there exists a constant
B > 0 such that

(8) ‖Gn(f) ξ‖L2 ≤ C ‖ξ‖H1 Bn

which implies that the series (7) converges in L2 for sufficiently small values
of ε. Extensions of these results to higher dimensions were recently estab-
lished by Craig, Schanz, and Sulem [8] and Craig and Nicholls [6] (see also
Nicholls and Reitich [24]).

As for the numerical evaluation of the Taylor coefficients Gn(f) in (7),
the perturbative nature of the series implies that, at least formally, they can
be recursively obtained. In the next section we review two implementations
of these recursions that have been previously proposed. As we explain in
Sect. 2.2 these algorithms, though very efficient, are somewhat limited by
their conditioning properties.

2.1 The field expansion and operator expansion methods

A natural approach to the perturbative approximation of DNO, which we
shall refer to as the method of Field Expansions (FE), consists of simply
expanding the field v = v(x, y, ε) solving Eqn. (2) (or (2) with (2c) replaced
by (4)), for σ(x) = εf(x), in the form

(9) v(x, y, ε) =
∞∑

n=0

vn(x, y)εn

and, a posteriori, of computing the DNO based on this expansion via the
formula
(10)

Gn(f) ξ = −∇xf ·
n−1∑
l=0

f l

l!
∂l

y∇xvn−1−l(x, 0) +
n∑

l=0

f l

l!
∂l+1

y vn−l(x, 0)

(see [10]). For instance, in the case of infinite depth (cf. (4)) it is easy to
show that the functions vn(x, y) must satisfy

∆vn(x, y) = 0 in S0(11a)

∂yv(x, y) → 0 as y → −∞(11b)

vn(x, 0) = Hn(x)(11c)

vn(x + γ, y) = vn(x, y) for all γ ∈ Γ(11d)
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where

(12) Hn(x) = −
n−1∑
l=0

fn−l

(n − l)!
∂n−l

y vl(x, 0) + δn,0ξ(x)

and δj,k is the Kronecker delta. A spectral representation of the solution of
Eqns. (11a), (11b), (11d) is given by

(13) vn(x, y) =
∑
k∈Γ ′

dn,keik·x+|k|y

where dn,k are Fourier coefficients. Eqn. (11c) then translates into the re-
cursion

(14) dn,k = −
n−1∑
l=0

∑
q∈Γ ′

Cn−l,k−qdl,q |q|n−l + δn,0ξ̂(k),

where the numbers Cl,k are the Fourier coefficients of the function f(x)l/l!,
that is

(15)
f(x)l

l!
=

∑
k∈Γ ′

Cl,keik·x.

The formula (14) can be used to recursively evaluate the coefficients dn,k

and these, in turn, allow for the calculation of the Fourier representation of
Gn(f) by means of equation (10).

An alternative and elegant scheme for the calculation of the operators
Gn(f) was proposed by Milder [16] in the context of ocean scattering and
again by Craig and Sulem [9] in their study of gravity water waves. The
method works directly with the DNO without reference to the bulk potential
and has thus been termed the “Operator Expansion” (OE) method. To review
this approach, let us assume again that the basic geometry is of infinite extent
in y, in which case the unperturbed DNO is given by (6). Since the function

(16) wp(x, y) = eip·x+|p|y,

is a solution of (2a), (2d), (4) we have

(17) G(εf)
[
eipx+|p|εf

]
= (∂y − ε∇xf · ∇x) (eip·x+|p|y)

∣∣∣
y=εf

,

that is

(18) G(εf)
[
eipx+|p|εf

]
= (|p| − ε∇xf · ip)eip·x+|p|εf .
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Thus, expanding the equality (18) in the form of a series in ε and equating
like powers we obtain the recursion

Gn(f)eip·x =
fn

n!
|p|n+1 eip·x − (∇xf)

fn−1

(n − 1)!
· (ip) |p|n−1 eip·x

−
n−1∑
l=0

Gl(f)
[

fn−l

(n − l)!
|p|n−l eip·x

]
(19)

or, symbolically,
(20)

Gn(f) ξ(x) = D
fn

n!
D |D|n−1 ξ(x) −

n−1∑
l=0

Gl(f)
[

fn−l

(n − l)!
|D|n−l ξ(x)

]
.

Finally, using the self-adjoint nature of Gn(f) and |D|, we may rewrite (20)
in the form

(21) Gn(f) ξ(x) = |D|n−1 D
fn

n!
Dξ(x)−

n−1∑
l=0

|D|n−l fn−l

(n − l)!
Gl(f)ξ(x)

which gives a direct recurrence for the operators Gn(f).

2.2 Cancellations and Ill-conditioning

It is important to note that the above derivations of (14) and (21) are for-
mal in nature. Indeed, although the results in [4,5,8,6,24] do guarantee the
convergence of the expansion (7), the validity of these recursions demands
more careful consideration. In fact, at first glance the formulas would seem
to require a high degree of regularity on the profile f , as is most evidently
displayed in equation (21). On the other hand, the theoretical results on an-
alyticity of DNO apply to general “rough” (Lipschitz or C1) perturbations
of a plane. As conjectured in [24] and demonstrated in [25], this apparent
contradiction is at the heart of the unstable behavior of the OE and FE algo-
rithms in high-order calculations. Indeed, as shown in [24,25], substantial
cancellations occur in (14) and (21) so that the overall sums in their re-
spective right-hand-sides give rise to finite quantities in spite of possible
singularities in the individual terms.

To motivate the need for a better conditioned approach let us consider
here the case of smooth (one dimensional) perturbations of the plane y = 0
given by

f(x) = 2 cos(x)
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Fig. 1. Computation of Qn and Pn in finite precision and exact arithmetic

with Dirichlet data
ξ(x) = 2 cos(x).

In this case, calculations in exact (rational) arithmetic can be performed by
resorting to a symbolic manipulator (Maple, in our case) with rather modest
memory and time requirements. In this manner the precise values of the
Fourier coefficients dn,k (cf. (14)) and those of an,k corresponding to the
(periodic) functions

Gn(f) ξ =
∑
k∈Γ ′

an,keik·x

can be obtained and compared to the outcome of FE and OE implementa-
tions in double precision arithmetic, respectively. In fact, an even simpler
calculation can be performed in this case. Indeed, setting Qn = an,n−1 and
Pn = dn,n+1 we have (see [24])

Qn = −2
(n − 1)n

n!
−

n−1∑
l=2

(n − 1)n−l

(n − l)!
Ql(22a)

Pn = −
n−1∑
l=0

(l + 1)n−l

(n − l)!
Pl + δn,0.(22b)

The computed values are displayed in Fig. 1, showing the detrimental effect
of cancellations in formulas (21) and (14): in finite precision the values of
Qn and Pn lose approximately one digit of accuracy every time n increases
by one and five, respectively.
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Table 1. Significant digits in real part of an,1

n FE OE

2 16 16
4 15 15
6 15 15
8 14 14
10 13 14
12 12 14
14 10 12
16 7 11
18 5 6
20 2 5
22 0 2

Although suggestive of the overall behavior of the recursions (21) and
(14) the example above does not provide us with an estimate of the loss of
accuracy that can be expected on a fixed Fourier coefficient ak(ε) of the
DNO

G(εf) ξ(x) =
∑
k∈Γ ′

ak(ε)eik·x

when using the FE and OE approaches. For this, we have recorded in Table 1
the significant digits retained by FE and OE in the calculation of the Taylor
coefficients an,1 of a1(ε), that is

a1(ε) =
∞∑

n=0

an,1ε
n

(the behavior for other coefficients ak(ε) is qualitatively similar, and it de-
teriorates with increasing wavenumber k). We see that even in this most
favorable case of analytic, low frequency perturbations and Dirichlet data,
there is a substantial loss of accuracy in the calculation of the coefficients
an,1 as n increases: approximately one digit is lost every time the number
of derivatives n increases by one beyond n = 10.

3 Analytic continuation: the method of transformed field expansions

From a theoretical standpoint, the cancellations in the FE and OE recur-
rences conspire against a straightforward iterative estimation of the Taylor
coefficients of the DNO. As we have shown [24], however, an alternative
formulation that allows for such a strategy can be attained with a simple
change of variables. Indeed, we have demonstrated that by transforming the
perturbed domains onto the unperturbed geometry, a new set of recursive
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formulas is obtained that is free of cancellations. These formulas were used
in [24] to provide an alternative (simple) proof of analyticity of DNO and
in [25] to introduce a new stable perturbative scheme for its evaluation,
which we termed the method of “Transformed Field Expansions” (TFE).
The results of [25] clearly establish the superior applicability and precision
of TFE as it allows for accurate high-order calculations.

Still, all theoretical and numerical results to date are obviously limited
to the domain of convergence of the perturbation series about a separable
geometry. On the other hand, perturbative methods deliver the full Taylor
series of the DNO which, as we know, suffices to determine the operators
throughout their domain of analyticity. In this section we shall show, using
a generalization of the TFE approach, that this domain of analyticity actu-
ally extends well beyond the disk of convergence. This, in turn, implies that
classical mechanisms of analytic continuation may be incorporated into per-
turbative procedures thus enabling predictions for very large deformations
of the basic domain. In Sect. 5 we demonstrate that this can be numerically
realized, for instance, with the aid of Padé approximants.

To investigate the domain of analyticity of DNO we shall consider a fixed
profile f(x) and the operator

G(δf)

which we shall show is analytic for δ ∈ R as long as y = δf does not
intersect the bottom boundary of the domain of definition. In particular, our
results will imply that for a domain of depth h the operator is analytic in a
complex neighborhood of the interval [−h/µ, h/µ] where µ = |f |L∞ (and
in all of R if h = ∞).

For the sake of definiteness we shall assume that h = 1 and we shall
consider a fixed δ0 ∈ [−1/µ, 1/µ]. Writing

f0 = δ0f, ε = δ − δ0,

for δ near δ0, we have

G(δf) = G(f0 + εf)

and our problem reduces to establishing analyticity in ε at ε = 0. For this,
following [24], we introduce the change of variables

x′ = x(23a)

y′ =
y − f0(x) − εf(x)
1 + f0(x) + εf(x)

,(23b)
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which maps Sf0+εf onto the strip S0. The change of variables (23) trans-
forms v into

(24) u(x′, y′, ε) = v(x′, y′ + (f0 + εf)(1 + y′), ε),

and (2) into

L′u = F (x′, y′, ε) in S0(25a)

u(x′, 0, ε) = ξ(x′)(25b)

∂y′u(x′,−1, ε) = 0(25c)

u(x′ + γ, y′, ε) = u(x′, y′, ε) for all γ ∈ Γ .(25d)

The operator L′ and the function F (x′, y′) are defined respectively as

(26) L′u ≡ divx′

[
∇x′u − (∇x′f0)(1 + y′)

1 + f0
∂y′u

]

+ ∂y′

[
1

(1 + f0)2
∂y′u − (∇x′f0)(1 + y′)

1 + f0
· ∇x′u

+
|∇x′f0|2 (1 + y′)2

(1 + f0)2
∂y′u

]

+
∇x′f0

1 + f0
· ∇x′u − |∇x′f0|2 (1 + y′)

(1 + f0)2
∂y′u,

and

(27) F (x′, y′, ε) ≡ divx′

[{
(∇x′f0 + ε∇x′f)(1 + y′)

1 + f0 + εf

−(∇x′f0)(1 + y′)
1 + f0

}
∂y′u

]

+ ∂y′

[{
− 1

(1 + f0 + εf)2
+

1
(1 + f0)2

}
∂y′u

+
{

(∇x′f0 + ε∇x′f)(1 + y′)
1 + f0 + εf

− (∇x′f0)(1 + y′)
1 + f0

}
· ∇x′u

+

{
−|∇x′f0 + ε∇x′f |2 (1 + y′)2

(1 + f0 + εf)2
+

|∇x′f0|2 (1 + y′)2

(1 + f0)2

}
∂y′u

]

+
{

−∇x′f0 + ε∇x′f

1 + f0 + εf
+

∇x′f0

1 + f0

}
· ∇x′u

+

{
|∇x′f0 + ε∇x′f |2 (1 + y′)

(1 + f0 + εf)2
− |∇x′f0|2 (1 + y′)

(1 + f0)2

}
∂y′u.
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In these new coordinates, and upon dropping the primes, the DNO becomes

(28) G(f0 + εf) ξ = −(∇xf0 + ε∇xf) · ∇xu(x, 0, ε)

+
1 + |∇xf0 + ε∇xf |2

1 + f0 + εf
∂yu(x, 0, ε).

Note that, since ∇xu(x, 0, ε) = ∇xξ(x), to evaluate (28) it suffices to
compute ∂yu(x, 0, ε). Thus, expanding

(29) u(x, y, ε) =
∞∑

n=0

un(x, y)εn,

we need only find

∂yu(x, 0, ε) =
∞∑

n=0

∂yun(x, 0)εn.

The equations for un are

Lun = (1 − δn,0)Fn(x, y) in S0(30a)

un(x, 0) = δn,0ξ(x)(30b)

∂yun(x,−1) = 0(30c)

un(x + γ, y) = un(x, y) for all γ ∈ Γ ,(30d)

where L is given by (26) (with the primes omitted) and

(31) Fn(x, y) = divx

[
F

(1)
n (x, y)

]
+ ∂yF

(2)
n (x, y) + F

(3)
n (x, y).

The functions F
(j)
n are given by

(32a) F
(1)
n (x, y) =

1 + y

1 + f0
[(∇xf0)q + ∇xf ]

n−1∑
j=0

qj∂yun−1−j ,
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(32b) F
(2)
n (x, y) = − 1

(1 + f0)2

n−1∑
j=0

(j + 2)qj+1∂yun−1−j

+
1 + y

1 + f0
[(∇xf0)q + ∇xf ] ·

n−1∑
j=0

qj∇xun−1−j

− |∇xf0|2 (1 + y)2

(1 + f0)2

n−1∑
j=0

(j + 2)qj+1∂yun−1−j

− 2
(∇xf0) · (∇xf)(1 + y)2

(1 + f0)2

n−1∑
j=0

(j + 1)qj∂yun−1−j

− |∇xf |2 (1 + y)2

(1 + f0)2

n−2∑
j=0

(j + 1)qj∂yun−2−j

and

(32c) F
(3)
n (x, y) =

1
1 + f0

[−(∇xf0)q − ∇xf ] ·
n−1∑
j=0

qj∇xun−1−j

+
|∇xf0|2 (1 + y)

(1 + f0)2

n−1∑
j=0

(j + 2)qj+1∂yun−1−j

+ 2
(∇xf0) · (∇xf)(1 + y)

(1 + f0)2

n−1∑
j=0

(j + 1)qj∂yun−1−j

+
|∇xf |2 (1 + y)

(1 + f0)2

n−2∑
j=0

(j + 1)qj∂yun−2−j

where q(x) is defined as

(33) q(x) = − f(x)
1 + f0(x)

.

Finally, the DNO can be formally expanded as

(34) G(f0 + εf) ξ =
∞∑

n=0

Gn(f0, f) ξ εn.
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where the n-th term in the expansion is

(35) Gn(f0, f) ξ = −(∇xf0) · (∇xξ)δn,0 − (∇xf) · (∇xξ)δn,1

+
1 + |∇xf0|2

1 + f0

n∑
j=0

qj∂yun−j(x, 0)

+ 2
∇xf0 · ∇xf

1 + f0

n−1∑
j=0

qj∂yun−1−j(x, 0)

+
|∇xf |2
1 + f0

n−2∑
j=0

qj∂yun−2−j(x, 0).

To recursively estimate the functions un we shall make repeated use of
the inequality

(36) ‖fg‖Hs ≤ M |f |Cs ‖g‖Hs

where M = M(d, s) and which is valid for any f ∈ Cs(P (Γ )) and g ∈
Hs(P (Γ ) × [−1, 0]) where P (Γ ) is the basic periodicity cell associated
with the lattice Γ . Our main result is:

Theorem 1 Given an integer s ≥ 0, if f0, f ∈ Cs+2(P (Γ )) and ξ ∈
Hs+3/2(P (Γ )), there exist constants C0 = C0(d, s, |f0|Cs+2), K0 =
K0(d, s, |f0|Cs+2), and a unique solution (29) of Eqn. (25) satisfying

(37) ‖un‖Hs+2(P (Γ )×[−1,0]) ≤ K0 ‖ξ‖Hs+3/2(P (Γ )) Bn

for any B > max{3 |f |Cs+2 K0C0, 2M(d, s) |q|Cs+1}.

From this the analyticity of DNO follows immediately by combining
(37) and (35). Indeed, we have

Theorem 2 For an integer s ≥ 0, if f0, f ∈ Cs+2(P (Γ )) then the
series (34) converges strongly as an operator from Hs+3/2(P (Γ )) to
Hs+1/2(P (Γ )). More precisely, there exists a constant

K∗
0 = K∗

0 (d, s, |f0|Cs+2)

such that

(38) ‖Gn(f0, f) ξ‖Hs+1/2(P (Γ )) ≤ K∗
0 ‖ξ‖Hs+3/2(P (Γ )) Bn,

for any B > max{3 |f |Cs+2 K0C0, 2M(d, s) |q|Cs+1}.
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Note that, using (33), we have

max{3 |f |Cs+2 K0C0, 2M(d, s) |q|Cs+1} ≤ C∗
0 (d, s, |f0|Cs+2) |f |Cs+2

so that, as expected, the radius of convergence of the series (29) and (34)
depend linearly on the size of the perturbation f .

As we said, to derive (38) it suffices to establish Thm. 1. For this we
shall show that the Sobolev norms of the functions un can be recursively
controlled from (30) by appealing to classical elliptic estimates. In our case,
these estimates correspond to the periodic analogue of Theorem 8.13 in [11],
which we record here for the sake of completeness.

Lemma 1 For an integer s ≥ 0 there exists a constant

K0 = K0(d, s, |f0|Cs+2)

such that for any ξ ∈ Hs+3/2(P (Γ )) and g(j) ∈ Hs+1(P (Γ ) × [−1, 0]),
the solution w(x, y) of

Lw(x, y) = divx

[
g(1)(x, y)

]
+ ∂yg

(2)(x, y) + g(3)(x, y) in S0

w(x, 0) = ξ(x)
∂yw(x,−1) = 0
w(x + γ, y) = w(x, y) for all γ ∈ Γ

satisfies

‖w‖Hs+2(P (Γ )×[−1,0]) ≤ K0

[
‖ξ‖Hs+3/2(P (Γ ))

+
3∑

j=1

∥∥∥g(j)
∥∥∥

Hs+1(P (Γ )×[−1,0])

]
.

The recursive estimation of the functions un demand that we obtain
bounds on the right hand sides of (30) at each step of the inductive procedure.
With this in mind we next establish

Lemma 2 Let s ≥ 0 be an integer and let f0, f ∈ Cs+2(P (Γ )). Assume

(40) ‖un‖Hs+2(P (Γ )×[−1,0]) ≤ K1B
n

for n < N and constants K1, B > 0. Then if

B > max{|f |Cs+2 , 2M(d, s) |q|Cs+1}
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there exists a constant C0 = C0(d, s, |f0|Cs+2) such that the functions F
(j)
N

in (32) satisfy

(41)
∥∥∥F

(j)
N

∥∥∥
Hs+1(P (Γ )×[−1,0])

≤ K1 |f |Cs+2 C0B
N−1.

Proof. For the sake of brevity we shall only consider the term F
(3)
N ; F

(1)
N

and F
(2)
N can be similarly handled. From (32c) and (36) we have

∥∥∥F
(3)
N

∥∥∥
Hs+1

≤ M2
∣∣∣∣ 1
1 + f0

∣∣∣∣
Cs+1

[
M |f |Cs+1

∣∣∣∣ ∇xf0

1 + f0

∣∣∣∣
Cs+1

+ |f |Cs+2

]

×
N−1∑
j=0

M j |q|j
Cs+1 ‖∇xuN−1−j‖Hs+1

+ M2 |f |Cs+1

∣∣∣∣∇xf0 · ∇xf0

(1 + f0)3

∣∣∣∣
Cs+1

×
N−1∑
j=0

(j + 2)M j |q|j
Cs+1 2 ‖∂yuN−1−j‖Hs+1

+ 2M2 |f |Cs+2

∣∣∣∣ ∇xf0

(1 + f0)2

∣∣∣∣
Cs+1

×
N−1∑
j=0

(j + 1)M j |q|j
Cs+1 2 ‖∂yuN−1−j‖Hs+1

+ M3 |f |2Cs+2

∣∣∣∣ 1
1 + f0

∣∣∣∣
2

Cs+1

×
N−2∑
j=0

(j + 1)M j |q|j
Cs+1 2 ‖∂yuN−2−j‖Hs+1

where we have used

‖(1 + y)g‖Hs+1(P (Γ )×[−1,0]) ≤ 2 ‖g‖Hs+1(P (Γ )×[−1,0])
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which holds for any g ∈ Hs+1(P (Γ ) × [−1, 0]). Then, using (40), we get

∥∥∥F
(3)
N

∥∥∥
Hs+1

≤ K1 |f |Cs+2 CBN−1
N−1∑
j=0

(
M |q|Cs+1

B

)j

+ K1 |f |Cs+2 CBN−1
N−1∑
j=0

(j + 2)
(

M |q|Cs+1

B

)j

+ K1 |f |Cs+2 CBN−1
N−1∑
j=0

(j + 1)
(

M |q|Cs+1

B

)j

+ K1 |f |Cs+2 C

( |f |Cs+2

B

)
BN−1

N−2∑
j=0

(j + 1)
(

M |q|Cs+1

B

)j

where C = C(d, s, |f0|Cs+2). Finally, if B > |f |Cs+2 , the estimate (41)
follows provided that B > 2M |q|Cs+1 .

Proof. (Theorem 1) The proof of the estimate (37) proceeds inductively.
The case n = 0 follows directly from Lemma 1 (g(j) = 0). Now assume
that (37) holds for all n < N . Again an application of Lemma 1 implies that

‖uN‖Hs+2(P (Γ )×[−1,0]) ≤ K0

3∑
j=1

∥∥∥F
(j)
N

∥∥∥
Hs+1(P (Γ )×[−1,0])

.

Thus, from Lemma 2 (letting K1 = K0 ‖ξ‖s+3/2) we obtain

‖uN‖Hs+2(P (Γ )×[−1,0]) ≤ K03
{

K0 ‖ξ‖Hs+3/2(P (Γ ))

}
C0 |f |Cs+2 BN−1,

and (37) holds provided that 3K0C0 |f |Cs+2 < B.

4 Joint analyticity

As we said (see Sect. 2.2), the basic recursions underlying the OE and FE
methods involve high order derivatives of the perturbation profile f and
therefore demand a suitable interpretation if f is not smooth. This remark
was actually at the core of our observation that these recurrences are rather
unstable [24]. In fact, the very validity of the OE and FE formulas (in the
strong sense in which they were proposed) becomes questionable for a gen-
eral profile of finite regularity. On the other hand, the formulas would be
completely justified if the potential u could be shown to be holomorphic in
(x, y, ε) up to and beyond the boundary y = f0(x) + εf(x), for in this case
all differentiations leading to the recurrence would be amply substantiated.
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In this section we show that such a result can be derived for analytic pertur-
bations f with a suitable modification of the arguments in Sect. 3. As stated
in the introduction, an analogous result in the context of scattering applica-
tions was previously derived in [3]. There, the analyticity of the scattered
fields was established with a subtle use of potential theoretic and complex
analytic techniques that avoided any reference to the corresponding recur-
sions. In particular, for instance, the extension to three dimensional space
was not immediate, due to the different nature of the singularities of the
corresponding surface potentials [2]. In contrast, our approach here is based
once again on the direct estimation of the (transformed) recursions (30), and
it therefore easily extends to any number of dimensions and, in fact, to a
variety of other physical scenarios (including the scattering applications of
[3,2]).

For simplicity of presentation we establish the analyticity result in the
setting of perturbations from a flat domain (f0 = 0); the extension to general
basic (analytic) geometries is straightforward. Of course, to establish the
joint analyticity of the potential u in (x, y, ε) up to and beyond the boundary
y = εf(x), we must certainly require that both the perturbation f itself and
the Dirichlet data ξ be spatially analytic. In particular, we must have that∣∣∣∣ ∂k

x

|k|!ξ
∣∣∣∣
C2

≤ Cξ

d−1∏
j=1

Akj

(kj + 1)2
∀k(42a)

∣∣∣∣ ∂k
x

|k|!f
∣∣∣∣
C2

≤ Cf

d−1∏
j=1

Akj

(kj + 1)2
∀k(42b)

and some constants Cξ, Cf , A ∈ R. Here we use “multi-index” notation
where, for l = (l1, . . . , ld−1)

∂l
x = ∂l1

x1
. . . ∂

ld−1
xd−1

l! = l1! . . . ld−1!
|l| = l1 + . . . + ld−1

and if r = (r1, . . . , rd−1) then r ≤ l if and only if rj ≤ lj for j = 1 . . . d−1.
For such data, our main result is

Theorem 3 If f and ξ satisfy (42) then the solution

u(x, y, ε) =
∞∑

n=0

un(x, y) εn

of Eqn. (25) (f0 = 0) satisfies

(43)

∥∥∥∥∥ ∂k
x∂l

y

(|k| + l)!
un

∥∥∥∥∥
H2

≤ K2CξB
n Dl

(l + 1)2

d−1∏
j=1

Akj

(kj + 1)2
∀k, l, n
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for any B > K3Cf , D > C(1 + A), where C, K2 and K3 are constants
depending only on d.

Remark 1 Note that if (43) holds then, since

1
k!l!

≤ d|k|+l

(|k| + l)!
,

we have ∥∥∥∥∥∂k
x

k!
∂l

y

l!
∂n

ε

n!
u(·, 0)

∥∥∥∥∥
H2

≤ K2CξB
n (dD)l

(l + 1)2

d−1∏
j=1

(dA)kj

(kj + 1)2

so that the function u(x, y, ε) is indeed jointly analytic in (x, y, ε). Further-
more, from equation (35) it is clear that joint analyticity of u(x, y, ε) leads
directly to that of DNO.

We shall prove Theorem 3 by induction in l. Thus we must first establish
(43) for l = 0 which we accomplish, for each k, with an inductive procedure
in the order n. More precisely we first show that

Lemma 3 If f and ξ satisfy (42) then, there exist constants K2 = K2(d),
K4 = K4(d) such that

(44)

∥∥∥∥ ∂k
x

|k|!un

∥∥∥∥
H2

≤ K2CξB
n

d−1∏
j=1

Akj

(kj + 1)2
∀k, n

and any B > K4Cf .

To prove Lemma 3 we need

Lemma 4 Let f satisfy (42) and assume

∥∥∥∥ ∂k
x

|k|!un

∥∥∥∥
H2

≤ K2CξB
n

d−1∏
j=1

Akj

(kj + 1)2
∀k,

for all n < N , and for some constants K2, B > 0. Then if B > 2CfS (with
S as in (64)) there exists a constant K5 = K5(d) such that the functions

F
(j)
N in (32) satisfy

(45)

∥∥∥∥ ∂k
x

|k|!F
(j)
N

∥∥∥∥
H1

≤ K2K5CξCfBN−1
d−1∏
j=1

Akj

(kj + 1)2
∀k.
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Proof. As before, for the sake of brevity, we shall only consider the term
F

(3)
n ; the other terms can be dealt with in the same manner. From (32c) we

have

∥∥∥∥ ∂k
x

|k|!F
(3)
N

∥∥∥∥
H1

≤ M

N−1∑
l=0

∑
r≤k

∣∣∣∣ ∂r
x

|r|!
[
(∇xf)(−f)l

]∣∣∣∣
C1

×
∥∥∥∥ ∂k−r

x

|k − r|!∇xuN−1−l

∥∥∥∥
H1

k! |r|! |k − r|!
|k|!r!(k − r)!

+ 2M

N−2∑
l=0

(l + 1)
∑
r≤k

∣∣∣∣ ∂r
x

|r|!
[
|∇xf |2 (−f)l

]∣∣∣∣
C1

×
∥∥∥∥ ∂k−r

x

|k − r|!∂yuN−2−l

∥∥∥∥
H1

k! |r|! |k − r|!
|k|!r!(k − r)!

≤ M

N−1∑
l=0

∑
r≤k

∣∣∣∣ ∂r
x

|r|!
[
(∇xf)(−f)l

]∣∣∣∣
C1

×
∥∥∥∥ ∂k−r

x

|k − r|!∇xuN−1−l

∥∥∥∥
H1

+ 2M

N−2∑
l=0

(l + 1)
∑
r≤k

∣∣∣∣ ∂r
x

|r|!
[
|∇xf |2 (−f)l

]∣∣∣∣
C1

×
∥∥∥∥ ∂k−r

x

|k − r|!∂yuN−2−l

∥∥∥∥
H1

(46)

where we have used the inequality

(47)
k!

r!(k − r)!
≤ |k|!

|r|! |k − r|! .

On the other hand, from Lemma 7 we have

∣∣∣∣ ∂r
x

|r|!
[
(∇xf)(−f)l

]∣∣∣∣
C1

=
∣∣∣∣(−1)

∂r
x

|r|!∇x

[
(−f)l+1

l + 1

]∣∣∣∣
C1

≤
∣∣∣∣ ∂r

x

|r|!
[
(−f)l+1

l + 1

]∣∣∣∣
C2

≤ C l+1
f Sl

l + 1

d−1∏
j=1

Arj

(rj + 1)2
(48)
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and, again using (47),

(49)∣∣∣∣ ∂r
x

|r|!
[
|∇xf |2 (−f)l

]∣∣∣∣
C1

=
∣∣∣∣(−1)

∂r
x

|r|!
[
(∇xf) · ∇x

[
(−f)l+1

l + 1

]]∣∣∣∣
C1

≤
∑
s≤r

∣∣∣∣ ∂s
x

|s|!f
∣∣∣∣
C2

∣∣∣∣ ∂r−s
x

|r − s|!
(−f)l+1

l + 1

∣∣∣∣
C2

r! |s|! |r − s|!
|r|!s!(r − s)!

≤
∑
s≤r

Cf

d−1∏
j=1

Asj

(sj + 1)2
C l+1

f

l + 1
Sl

d−1∏
j=1

Arj−sj

(rj − sj + 1)2

≤ C l+2
f

l + 1
Sl+1

d−1∏
j=1

Arj

(rj + 1)2
.

Combining (46), (48), and (49) we get

∥∥∥∥ ∂k
x

|k|!F
(3)
N

∥∥∥∥
H1

≤ M

N−1∑
l=0

∑
r≤k

C l+1
f Sl

l + 1

d−1∏
j=1

Arj

(rj + 1)2
K2CξB

N−1−l

×
d−1∏
j=1

Akj−rj

(kj − rj + 1)2

+ 2M

N−2∑
l=0

∑
r≤k

C l+2
f Sl+1

d−1∏
j=1

Arj

(rj + 1)2
K2CξB

N−2−l

×
d−1∏
j=1

Akj−rj

(kj − rj + 1)2

≤ MK2CξB
N−1Cf

[
N−1∑
l=0

(
CfS

B

)l
] (

1 + 2
(

CfS

B

))

×
d−1∏
j=1

Akj

(kj + 1)2


 kj∑

rj=0

(kj + 1)2

(rj + 1)2(kj − rj + 1)2




≤ MK2CξB
N−1Cf

[
N−1∑
l=0

(
CfS

B

)l
]

×
(

1 + 2
(

CfS

B

))
S

d−1∏
j=1

Akj

(kj + 1)2

so that (45) follows provided (CfS)/B < 1/2.
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Proof. (Lemma 3) The proof proceeds inductively in n; notice that since the
un satisfy (30) (with f0 = 0), the functions [∂k

x/k!]un satisfy

∆
∂k

x

|k|!un = (1 − δn,0)
∂k

x

|k|!Fn in S0(50a)

∂k
x

|k|!un(x, 0) = δn,0
∂k

x

|k|!ξ(x)(50b)

∂y
∂k

x

|k|!un(x,−1) = 0(50c)

∂k
x

|k|!u0(x + γ, y) =
∂k

x

|k|!u0(x, y) for all γ ∈ Γ .(50d)

In the case n = 0, Lemma 1 and the analyticity of ξ imply∥∥∥∥ ∂k
x

|k|!u0

∥∥∥∥
H2

≤ K0

∥∥∥∥ ∂k
x

|k|!ξ
∥∥∥∥

H3/2
≤ K2Cξ

d−1∏
j=1

Akj

(kj + 1)2

for all indices k ≥ 0. Now suppose that∥∥∥∥ ∂k
x

|k|!un

∥∥∥∥
H2

≤ K2CξB
n

d−1∏
j=1

Akj

(kj + 1)2

for all n < N and all indices k ≥ 0. Using Lemma 1 we can estimate∥∥∥∥ ∂k
x

|k|!uN

∥∥∥∥
H2

≤ K0

3∑
j=1

∥∥∥∥ ∂k
x

|k|!F
(j)
N

∥∥∥∥
H1

.

Finally, using Lemma 4 we obtain∥∥∥∥ ∂k
x

|k|!uN

∥∥∥∥
H2

≤ 3K0K2K5CξCfBN−1
d−1∏
j=1

Akj

(kj + 1)2
,

and the proof is complete provided that K4 = max{2S, 3K0K5}.

Lemma 3 establishes (43) for l = 0. To enable the inductive step for
l > 0 we will need the following two results.

Lemma 5 If ξ satisfies (42) then the solution w(x, y) of

∆w(x, y) = 0 in S0(51a)

w(x, 0) = ξ(x)(51b)

∂yw(x,−1) = 0(51c)

w(x + γ, y) = w(x, y) for all γ ∈ Γ(51d)
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satisfies

(52)

∥∥∥∥∥ ∂k
x∂L

y

(|k| + L)!
w

∥∥∥∥∥
H2

≤ K2Cξ
DL

(L + 1)2

d−1∏
j=1

Akj

(kj + 1)2
∀k, L

provided that D > C(1 + A) where C = C(d) is a constant.

Proof. To simplify the notation we shall denote by C(d) a generic constant
depending only on dimension. From Lemma 3 we have the estimate in the
case L = 0. Proceeding by induction, assume that the estimate holds for all
l < L, then∥∥∥∥∥ ∂k

x∂L
y

(|k| + L)!
w

∥∥∥∥∥
H2

≤
∥∥∥∥∥ ∂k

x∂L
y

(|k| + L)!
w

∥∥∥∥∥
H1

+

∥∥∥∥∥ ∂k
x∂L

y

(|k| + L)!
∇xw

∥∥∥∥∥
H1

+

∥∥∥∥∥ ∂k
x∂L+1

y

(|k| + L)!
w

∥∥∥∥∥
H1

≤
∥∥∥∥∥ ∂k

x∂L−1
y

(|k| + L)!
w

∥∥∥∥∥
H2

+

∥∥∥∥∥ ∂k
x∂L−1

y

(|k| + L)!
∇xw

∥∥∥∥∥
H2

+ C(d)

∥∥∥∥∥ ∂k
x∂L−1

y

(|k| + L)!
∇xw

∥∥∥∥∥
H2

,

the last term coming from the fact that w solves Laplace’s equation. By the
inductive assumption∥∥∥∥∥ ∂k

x∂L
y

(|k| + L)!
w

∥∥∥∥∥
H2

≤ K2Cξ
DL−1

L2 C(d)(1 + A)
d−1∏
j=1

Akj

(kj + 1)2

and the proof is complete as long as D ≥ C(1 + A).

Lemma 6 Let f satisfy (42). Assume

(53)

∥∥∥∥∥ ∂k
x∂l

y

(|k| + l)!
un

∥∥∥∥∥
H2

≤ K2CξB
n Dl

(l + 1)2

d−1∏
j=1

Akj

(kj + 1)2

for all indices n, k ≥ 0, when l < L, and for all k ≥ 0 and n < N when
l = L. Then there exists a constant K6 = K6(d) such that the function FN

in (31) satisfies
(54)∥∥∥∥∥ ∂k

x∂L−1
y

(|k| + L)!
FN

∥∥∥∥∥
H1

≤ K2K6CξCfBN−1 DL

(L + 1)2

d−1∏
j=1

Akj

(kj + 1)2
∀k

provided that B > 2CfS.
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Proof. We first note that from (31)

(55)

∥∥∥∥∥ ∂k
x∂L−1

y

(|k| + L)!
FN

∥∥∥∥∥
H1

≤
∥∥∥∥∥ ∂k

x∂L−1
y

(|k| + L)!
divx

[
F

(1)
N

]∥∥∥∥∥
H1

+

∥∥∥∥∥ ∂k
x∂L−1

y

(|k| + L)!
∂yF

(2)
N

∥∥∥∥∥
H1

+

∥∥∥∥∥ ∂k
x∂L−1

y

(|k| + L)!
F

(3)
N

∥∥∥∥∥
H1

.

Once again, in the interests of brevity, we shall establish the bound (54) for
the second term in (55) only; the other terms can be handled in a similar
fashion. Moreover, since

∂yF
(2)
N = ∂y

[
−

N−1∑
m=0

(m + 2)(−f)m+1∂yuN−1−m

+ (1 + y)∇xf ·
N−1∑
m=0

(−f)m∇xuN−1−m

− |∇xf |2 (1 + y)2
N−2∑
m=0

(m + 1)(−f)m∂yuN−2−m

]

(c.f. (32b) (f0 = 0)) we shall only estimate the last term, as the others can
be dealt with more simply. We begin with

R ≡
∥∥∥∥∥ ∂k

x∂L
y

(|k| + L)!

[
|∇xf |2 (1 + y)2

N−2∑
m=0

(m + 1)(−f)m∂yuN−2−m

]∥∥∥∥∥
H1

≤ M

N−2∑
m=0

∑
k≤r

(m + 1)
∣∣∣∣ ∂r

x

|r|!
[
|∇xf |2 (−f)m

]∣∣∣∣
C1

×
∥∥∥∥∥ ∂k−r

x ∂L
y

(|k − r|! + L)!
[
(1 + y)2∂yuN−2−m

]∥∥∥∥∥
H1

k! |r|!(|k − r| + L)!
r!(k − r)!(|k| + L)!

≤ M

N−2∑
m=0

∑
k≤r

Cm+2
f Sm+1

d−1∏
j=1

Arj

(rj + 1)2

×
∥∥∥∥∥ ∂k−r

x ∂L
y

(|k − r|! + L)!
[
(1 + y)2∂yuN−2−m

]∥∥∥∥∥
H1

where we have used (49) and

k! |r|!(|k − r| + L)!
r!(k − r)!(|k| + L)!

≤ 1.
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Next, since

∂L
y

[
(1 + y)2∂yuN−2−m

]
= (1 + y)2∂L+1

y uN−2−m

+ 2L(1 + y)∂L
y uN−2−m

+ L(L − 1)∂L−1
y uN−2−m

we can estimate

R ≤ M
N−2∑
m=0

∑
k≤r

Cm+2
f Sm+1

d−1∏
j=1

Arj

(rj + 1)2
C(d)

×
{∥∥∥∥∥ ∂k−r

x ∂L
y

(|k − r|! + L)!
uN−2−m

∥∥∥∥∥
H2

+ L

∥∥∥∥∥ ∂k−r
x ∂L−1

y

(|k − r|! + L)!
uN−2−m

∥∥∥∥∥
H2

+L2

∥∥∥∥∥ ∂k−r
x ∂L−2

y

(|k − r|! + L)!
uN−2−m

∥∥∥∥∥
H2

}

so that, using (53), we obtain

R ≤ MC(d)CfK2CξB
N−1

(
CfS

B

) N−2∑
m=0

(
CfS

B

)m

×
∑
k≤r

d−1∏
j=1

Arj

(rj + 1)2

d−1∏
j=1

Akj−rj

(kj − rj + 1)2(
DL

(L + 1)2
+

L

|k − r| + L

DL−1

L2

+
L2

(|k − r| + L)(|k − r| + L − 1)
DL−2

(L − 1)2

)

≤ MC(d)CfK2CξSBN−1 DL

(L + 1)2

d−1∏
j=1

Akj

(kj + 1)2

and (54) follows provided that K6 ≥ MC(d)S.

Proof. (Theorem 3) Once again we work inductively. We begin with an
induction on l. For l = 0 and any k, n ≥ 0 we use Lemma 3. Now we
assume ∥∥∥∥∥ ∂k

x∂l
y

(|k| + l)!
un

∥∥∥∥∥
H2

≤ K2CξB
n Dl

(l + 1)2

d−1∏
j=1

Akj

(kj + 1)2
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for all l < L and any k, n ≥ 0, and seek to prove

(56)

∥∥∥∥∥ ∂k
x∂L

y

(|k| + L)!
un

∥∥∥∥∥
H2

≤ K2CξB
n DL

(L + 1)2

d−1∏
j=1

Akj

(kj + 1)2

for any k, n ≥ 0. We accomplish this with another induction, this time on
n. Lemma 5 gives (56) in the case n = 0. We next assume∥∥∥∥∥ ∂k

x∂L
y

(|k| + L)!
un

∥∥∥∥∥
H2

≤ K2CξB
n DL

(L + 1)2

d−1∏
j=1

Akj

(kj + 1)2

for all n < N and seek to establish∥∥∥∥∥ ∂k
x∂L

y

(|k| + L)!
uN

∥∥∥∥∥
H2

≤ K2CξB
N DL

(L + 1)2

d−1∏
j=1

Akj

(kj + 1)2
.

We proceed with∥∥∥∥∥ ∂k
x∂L

y

(|k| + L)!
uN

∥∥∥∥∥
H2

≤
∥∥∥∥∥ ∂k

x∂L
y

(|k| + L)!
uN

∥∥∥∥∥
H1

+

∥∥∥∥∥ ∂k
x∂L

y

(|k| + L)!
∇xuN

∥∥∥∥∥
H1

+

∥∥∥∥∥ ∂k
x∂L+1

y

(|k| + L)!
uN

∥∥∥∥∥
H1

≤
∥∥∥∥∥ ∂k

x∂L−1
y

(|k| + L)!
uN

∥∥∥∥∥
H2

+

∥∥∥∥∥ ∂k
x∂L−1

y

(|k| + L)!
∇xuN

∥∥∥∥∥
H2

+

∥∥∥∥∥ ∂k
x∂L−1

y

(|k| + L)!
∆xuN

∥∥∥∥∥
H1

+

∥∥∥∥∥ ∂k
x∂L−1

y

(|k| + L)!
FN

∥∥∥∥∥
H1

≤
∥∥∥∥∥ ∂k

x∂L−1
y

(|k| + L)!
uN

∥∥∥∥∥
H2

+

∥∥∥∥∥ ∂k
x∂L−1

y

(|k| + L)!
∇xuN

∥∥∥∥∥
H2

+ C(d)

∥∥∥∥∥ ∂k
x∂L−1

y

(|k| + L)!
∇xuN

∥∥∥∥∥
H2

+

∥∥∥∥∥ ∂k
x∂L−1

y

(|k| + L)!
FN

∥∥∥∥∥
H1

where C is a generic function of dimension and we have used the fact that
uN solves (30a). Using Lemma 6 we get∥∥∥∥∥ ∂k

x∂L
y

(|k| + L)!
uN

∥∥∥∥∥
H2

≤ K2Cξ [1 + C(d)A] BN DL−1

L2

d−1∏
j=1

Akj

(kj + 1)2

+ K2Cξ [K6Cf ] BN−1 DL

(L + 1)2

d−1∏
j=1

Akj

(kj + 1)2

and the desired estimate holds provided that D > C(1+A) and B > K6Cf .
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5 Numerical implementation and results

As we anticipated, the relevance of the analytic continuation results es-
tablished in previous sections goes beyond the theoretical. Indeed, Theo-
rem 2 guarantees the existence of a complex neighborhood of the interval
[−1/ |f |L∞ , 1/ |f |L∞ ] in the ε complex plane where DNO is holomorphic.
On the other hand, the formulas (10), (21), (35) (f0 = 0) produce the full
Taylor series of the operators at ε = 0 and these, of course, completely
determine the DNO throughout their domain of analyticity. Thus, our theo-
retical results suggest a means to enhance the performance of perturbative
approaches, namely by “numerical analytic continuation” of the power se-
ries of the DNO. In this section we present numerical results that illustrate
how this can, in fact, be attained with classical Padé approximation [1].
These examples show that, overall, substantial gains in performance can be
achieved regardless of the particular perturbative implementation (OE, FE
or TFE). Moreover, they further show that the improved stability properties
of TFE [25], which allow for very high-order calculations, can result in sig-
nificantly more accurate results over those produced by the classical OE and
FE realizations.

5.1 Numerical implementation

The implementation of OE is based upon the evaluation of Eqn. (21) (or its
analogue in finite depth). The periodic boundary conditions in the x vari-
able and the conspicuous appearance of Fourier multipliers in the formula
naturally suggest a Fourier spectral method. In this scheme the unknowns
are represented by Fourier series of a fixed order Nx/2 (with Nx collocation
points) and all nonlinearities are evaluated using fast convolutions via the
FFT algorithm. These calculations are partially de-aliased: a product of two
series of size Nx/2 is computed exactly (in the form of a series of size Nx)
and a posteriori truncated back to size Nx/2.

The FE approximation, on the other hand, is constructed from the re-
currence (14) (or its analogue in finite depth) and the representation (10).
Once again a Fourier basis is very natural and we thus use a Fourier spectral
approach with fast, partially de-aliased convolutions.

The implementation of the TFE approximation is somewhat different
from that of the OE and FE methods. Indeed, both the OE and FE approaches
rely on the homogeneity of the differential equation (11a) to express the so-
lutions in closed form as linear combinations of suitable basis functions
(exponentials in this case, cf. (13), (16)). In contrast, the “source terms”
in (30) preclude the use of a standard basis for the exact representation of
solutions, which we therefore approximate numerically. As we shall demon-
strate, the consequent increase in computational cost is compensated by a
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substantial increase in accuracy that can, in fact, allow for computations
beyond the reach of the OE and FE algorithms (see also [25]).

For the numerical solution of (30) we have chosen a spectral
Fourier/Chebyshev-tau method which posits an approximate solution of the
form

ũn(x, y) =
∑

k∈Γ ′,|k|<Nx/2

Ny∑
l=0

ûn(k, l)eik·xTl(2y + 1)

where Tl(z) is the l-th Chebyshev polynomial. The resulting set of equations
can be efficiently solved via the use of fast Fourier and Chebyshev transforms
in conjunction with the fast elliptic solve outlined in [13, §10]. Finally, the
DNO is approximated from this representation through Eqn. (35).

All three methods deliver spectral approximations of DNO in the form

G
approx
N (εf) ξ =

N∑
n=0

∑
k∈Γ ′

an,keik·xεn

=
∑
k∈Γ ′

SN
k (ε)eik·x

for ε small, where SN
k (ε) is a truncated Taylor series of the k-th Fourier

coefficient Sk(ε). On the other hand, our results ensure the possibility of
extending the functions Sk(ε), and therefore the DNO, beyond the disk of
convergence of their power series about ε = 0. For the numerical realization
of such analytic continuations, we shall resort here to Padé approximation
[1]. We recall that the [P,Q] Padé approximant to a series

(57) S(ε) =
∞∑

n=0

anεn

is the unique rational function of order P over Q which coincides with
S(ε) to order P + Q + 1. In the experiments below we use diagonal or
paradiagonal Padé sequences. As is well-known, Padé approximants have
some remarkable properties of approximation of (a large subclass of) ana-
lytic functions from their Taylor series (57) for points far outside their radii
of convergence, see e.g. [1]. They can be calculated by first solving a set
of linear equations for the denominator coefficients, and then using simple
formulas to compute the numerator coefficients.

5.2 Numerical results

In this section we present numerical results for representative surface pro-
files in two and three dimensions. Our first set of experiments are designed
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Fig. 2. Plot of approximations to Re(S2(ε)) for f(x1) = cos(x1) and ξ(x1) = cos(x1):
Taylor series of order 40, and Padé approximations of order [5,5], [10,10], [15,15], and
[20,20]

to demonstrate the exceptional performance of Padé approximation in the
numerical analytic continuation of power series. For this, we consider the
evaluation of the Taylor series (7) of the DNO corresponding to the profile
y = f(x1) = cos(x1) applied to Dirichlet data ξ(x1) = cos(x1) in two
dimensions. The results in Fig. 2 were obtained with a TFE implementation
with Nx = 256 and Ny = 64. The outcome of such computations con-
sists of the coefficients an,k of the Taylor expansion of each Fourier mode
Sk(ε) in the spectral representation of the function (7). Figure 2 contains
plots of the Taylor series and various Padé approximants to the second mode
S2(ε), which clearly show the convergence of the diagonal Padé sequence;
the effect on other modes is similar. Moreover, the figure also shows the
very significant extension of the domain of convergence of a perturbative
algorithm when used in combination with Padé approximation.

In a second set of experiments we compare the performance of each of
the three implementations (OE, FE, TFE), with and without Padé approx-
imation, on some model two and three-dimensional profiles. To allow for
very significant perturbations without topological complications we have
chosen to experiment on domains of depth h = 10, that is

Sf = {(x, y) ∈ Rd−1 × R | − 10 < y < f(x)}.
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Fig. 3. Plot of go, the “rough ocean” profile

We consider a smooth sinusoidal profile

(58a) fs(x1) = cos(x1)

and a Lipschitz profile

(58b) fL(x1) =

{
− 2

πx1 + 1 0 ≤ x1 < π
2
πx1 − 3 π ≤ x1 < 2π

in two dimensions, and a rather generic profile

(58c) go(x1, x2) = cos(x1+x2)+
1
3

cos(2x1+3x2)+
1
9

cos(7x1+4x2).

reminiscent of a “rough ocean,” in three dimensions (see Fig. 3). To test the
convergence of the algorithms in each case we consider exact solutions to
(2) of the form

(59) vk(x, y) = cosh(|k| (y + 1)) cos(k · x).

For these, we obviously have

(60) G(εf)(vk(x, εf(x)) = ∇vk|y=εf · (−ε∇xf, 1)T
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for any function f . Then, for the outcome of a numerical simulation, the
defect in this relation (e.g. in the discrete L2 norm) can be used as an error
estimate.

Figures 4 and 5 display results with Nx = 256 and Ny = 64 for the
profile (58a). The figures correspond to two different values of ε, one in-
side the disk of convergence of the Taylor series (ε = 1.0) and one outside
(ε = 2.0). We see then that Padé approximation substantially enhances the
performance of each algorithm not only by enlarging the domain of ap-
plicability (Fig. 5) but also by accelerating the rate of convergence of the
Taylor series whenever it has a finite sum (Fig. 4). Moreover, the effect of
ill-conditioning in the OE and FE approaches is quite evident here as these
results sharply deviate from those given by the TFE method beyond a critical
order (n = 10 for OE and n = 20 for FE). Indeed, the continued reduction
in the error displayed by the TFE implementation as n increases demon-
strates that the OE and FE results are genuinely corrupted beyond these
critical values. This corruption can be attributed solely to ill-conditioning
as the number of Fourier modes retained in the calculation (Nx/2 = 128)
is sufficient to guarantee the absence of substantial aliasing errors.

Similar comments apply to Figs. 6 and 7 corresponding to the sawtooth
profile (58b) again performed with Nx = 256 and Ny = 64. For compu-
tational purposes the Fourier series representation of the profile must, of
course, be truncated. Here, for illustration, we have chosen to approximate
(58b) with a Fourier series of order 20. In this case, and in contrast with
the sinusoidal profile, the resolution of our computations is not sufficient to
preclude potentially significant aliasing errors (e.g. the n-th power of the
truncated profile will contain modes of order 20n so that aliasing occurs if
20n > 128). However, computations with larger values of Nx do not yield
improved results for the OE and FE implementations which again implies
that their observed divergence from the TFE results is due to ill-conditioning.

Finally we present in Figs. 8 and 9 results for the profile (58c) performed
with Nx1 = 64, Nx2 = 64, and Ny = 64. Here, the onset of divergence of
the OE and FE methods appears at a relatively low order (n = 5) in spite of
the smoothness of the profile, hinting to the possible effects of aliasing errors.
In fact, Figs. 10 and 11, which display the results of calculations with Nx1 =
Nx2 = 128, confirm this conjecture: further de-aliasing results in divergence
at a higher order (n = 10). In other words, this example demonstrates a
further limitation of the OE and FE algorithms, which compute quantities
with larger high-frequency content than those produced by TFE. As a result,
Padé approximation has little effect for OE and FE in these calculations
since the higher order derivatives are not accurately computed. In contrast,
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Fig. 4. Convergence of FE, OE, TFE with smooth profile in 2D (ε = 1.0)

a substantial improvement is observed when Padé approximation is used in
conjunction with the TFE approach.
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Fig. 5. Convergence of FE, OE, TFE with smooth profile in 2D (ε = 2.0)

A Estimates on products of analytic functions

Lemma 7 Given analytic functions g, h ∈ Cω(P (Γ )) which satisfy

∣∣∣∣ ∂k
x

|k|!g
∣∣∣∣
C2

≤ Cg

d−1∏
j=1

Akj

(kj + 1)2
(61)

∣∣∣∣ ∂k
x

|k|!h
∣∣∣∣
C2

≤ Ch

d−1∏
j=1

Akj

(kj + 1)2
(62)

we have
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Fig. 6. Convergence of FE, OE, TFE with Lipschitz profile in 2D (ε = 1.3)

∣∣∣∣ ∂k
x

|k|! (gh)
∣∣∣∣
C2

≤ CgChS

d−1∏
j=1

Akj

(kj + 1)2
(63a)

∣∣∣∣ ∂k
x

|k|! (g
l)

∣∣∣∣
C2

≤ C l
gS

l−1
d−1∏
j=1

Akj

(kj + 1)2
(63b)

∣∣∣∣ ∂k
x

|k|! (g
lh)

∣∣∣∣
C2

≤ C l
gChSl

d−1∏
j=1

Akj

(kj + 1)2
(63c)

where

(64) S = S(d) =


 ∞∑

p=0

8
(p + 1)2




d−1

=
(

4π2

3

)d−1

.
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Fig. 7. Convergence of FE, OE, TFE with Lipschitz profile in 2D (ε = 2.0)

Proof. It suffices to establish (63a). For this we compute

∣∣∣∣ ∂k
x

|k|! (gh)
∣∣∣∣
C2

≤
∑

0≤m≤k

2
|∂m

x g|C2

|m|!

∣∣∂k−m
x h

∣∣
C2

|k − m|!
( |m|! |k − m|!k!

m!(k − m)! |k|!
)

≤ 2CgCh

∑
0≤m≤k

d−1∏
j=1

Amj

(mj + 1)2

d−1∏
j=1

Akj−mj

(kj − mj + 1)2

≤ 2CgCh

d−1∏
j=1

Akj

(kj + 1)2

kj∑
mj=0

(kj + 1)2

(mj + 1)2(kj − mj + 1)2

≤ 2SCgCh

d−1∏
j=1

Akj

(kj + 1)2



Analytic continuation of Dirichlet-Neumann operators 143

Fig. 8. Convergence of FE, OE, TFE with ocean profile in 3D (ε = 0.3)

which holds by (47) and since

|fg|C2 =
2∑

k=0

∣∣∣∂k
x(fg)

∣∣∣
L∞

≤ 2 |g|C2 |f |C2

and (for integers p and q)

q∑
p=0

(q + 1)2

(p + 1)2(q − p + 1)2

=
[q/2]∑
p=0

(q + 1)2

(p + 1)2(q − p + 1)2
+

q∑
p=[q/2]

(q + 1)2

(p + 1)2(q − p + 1)2



144 D.P. Nicholls, F. Reitich

Fig. 9. Convergence of FE, OE, TFE with ocean profile in 3D (ε = 0.5)

≤
[q/2]∑
p=0

(q + 1)2

(p + 1)2(q − q/2 + 1)2
+

q∑
p=[q/2]

(q + 1)2

(q/2 + 1)2(q − p + 1)2

≤
[q/2]∑
p=0

4(q + 1)2

(p + 1)2(q + 2)2
+

q∑
p=[q/2]

4(q + 1)2

(q + 2)2(q − p + 1)2

≤ 4
[q/2]∑
p=0

1
(p + 1)2

+ 4
q∑

p=[q/2]

1
(q − p + 1)2

≤ 8
[q/2]+1∑

p=0

1
(p + 1)2

≤ 8
∞∑

p=0

1
(p + 1)2

.
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Fig. 10. Convergence of FE and OE with ocean profile in 3D (ε = 0.3) with higher precision

Fig. 11. Convergence of FE and OE with ocean profile in 3D (ε = 0.5) with higher precision
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14:615–667, 1997.

9. Walter Craig and Catherine Sulem. Numerical simulation of gravity waves. Journal of
Computational Physics, 108:73–83, 1993.

10. Douglas G. Dommermuth and Dick K. P. Yue. A high-order spectral method for the
study of nonlinear gravity waves. Journal of Fluid Mechanics, 184:267–288, 1987.

11. David Gilbarg and Neil S. Trudinger. Elliptic partial differential equations of second
order. Springer-Verlag, Berlin, second edition, 1983.
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