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Abstract. One of the important open questions in the theory of free–
surface ideal fluid flows is the dynamic stability of traveling wave solu-
tions. In a spectral stability analysis, the first variation of the governing
Euler equations is required which raises both theoretical and numeri-
cal issues. With Zakharov and Craig and Sulem’s formulation of the
Euler equations in mind, this paper addresses the question of analytic-
ity properties of first (and higher) variations of the Dirichlet–Neumann
operator. This analysis will have consequences not only for theoretical
investigations, but also for numerical simulations of spectral stability of
traveling water waves.

1. Introduction

One of the central unresolved questions in the theory of ideal free–surface
fluid flows is that of dynamic stability. It has been rigorously known for
almost a century [20, 40] that traveling wave solutions exist to the govern-
ing Euler equations of these water wave flows. However, complete results
concerning their dynamic stability are largely lacking (see [9]). A first step
towards a comprehensive stability theory for the full Euler equations is to
study the special case of spectral stability of periodic traveling wave solu-
tions. This, in turn, involves the analysis of the first variation of the water
wave equations about this traveling solution. A convenient formulation of
the Euler equations due to Zakharov [42] involves only surface quantities
and recognizes the Hamiltonian structure of the water wave equations. The
explicit nature of this set of equations was clarified by Craig & Sulem [7]
with the introduction of the Dirichlet–Neumann operator (DNO) and, with
Zakharov’s and Craig & Sulem’s formulation in mind, in this paper we pro-
vide a mathematically rigorous analysis of analyticity properties of the first
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variation of the DNO. An important consequence of our method of proof is
that it generates a sequence of recursions which is particularly amenable to
stable, high–order numerical simulation.

Boundary integral operators, such as the DNO, arise in a wide array of
free–boundary and boundary–value models in mathematical physics (see,
e.g., [11, 41, 12, 18]). In these models, the DNO allows the volumetric
statement of the problem to be simplified to one involving surface quantities
alone. The crucial role played by the DNO is that, given values of the
field variable at the interface (Dirichlet data), it produces surface normal
derivatives of the field (Neumann data) giving closure to the set of surface
equations.

In many free–boundary and boundary–value problems, the domain of def-
inition is a small departure from a simple, separable geometry (e.g., a strip
or half–space). In these cases, a perturbative approach is quite natural and,
in fact, the DNO can be shown to depend analytically upon the size of the
boundary deformation (provided that it is sufficiently smooth) [2, 3, 6, 4, 35,
37, 15, 38]. These results have proven crucial to not only theoretical devel-
opments, e.g. the traveling–wave existence proof of Craig & Nicholls [4], but
also to numerical simulations, see e.g. [25, 26, 29, 30, 28, 27, 16, 41, 7, 36].
In the latter, the DNO is approximated by a truncation of its strongly con-
vergent Taylor series producing highly accurate solutions, typically with a
small number of terms.

In this work, we utilize the “Transformed Field Expansion” (TFE) ap-
proach of Nicholls & Reitich [35] to show that, for sufficiently smooth bound-
ary perturbations, first and higher functional variations of the DNO are also
parametrically analytic. Our theoretical developments are particularly im-
portant as they specify a stable, high–order algorithm for the numerical
approximation of these variations. This is noteworthy as there is currently
no stable, perturbative scheme for simulating these crucially important oper-
ators. Moreover, the recursions we derive are straightforward to implement
(c.f. [37]), a task which we save for future work.

As mentioned above, we focus upon a spectral stability analysis of periodic
traveling waves, i.e. the study of the time evolution of

u(x, t) = ū(x) + δeλtv(x), δ � 1,

in a frame of reference moving with speed c, where ū is a traveling wave
(periodic with respect to a lattice Γ), and Re{λ} > 0 indicates spectral
instability. For this, Mielke’s “Generalized Principle of Reduced Instability”
[24] (essentially a generalization of Floquet’s theory [8]) can be applied,
provided that v(x) is permitted to be “quasiperiodic” or “Bloch periodic”
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with respect to the lattice Γ:

v(x+ γ) = eip·γv(x), ∀γ ∈ Γ,

for some real number p. Note that if p is rational, then v is periodic with
respect to Γ, however, p irrational permits “perturbations” v with no period-
icity properties relative to Γ. Mielke’s theory enables a most general study
of both super–harmonic and sub–harmonic instabilities simultaneously (see,
e.g., [22, 23]).

We discuss the spectral stability analysis in such detail to contrast our
new theorems with the only other known results on functional variations of
the DNO (associated to water waves) with respect to domain shape, those
due to Lannes [19]. Lannes required boundedness properties of these opera-
tors to carry out a Newton’s iteration to solve the initial value problem, so
Bloch periodicity never entered his theoretical developments. While these
results are related, our new results improve on those of Lannes in a num-
ber of directions. First, our technique permits domain deformations with
less smoothness (e.g., in the class of C2, C1+α, or even Lipschitz functions
depending on the Dirichlet data; see Remark 4.8). Also, with seamless pre-
sentation, we can accommodate the Bloch periodicity of the function v that
our stability analysis requires. We point out that these differing periodicity
requirements mandate that the “evaluation point,” ū (later, for the DNO,
η), and the “direction,” v (later, for the DNO, w), will generically lie in
different function spaces. For this reason, we cannot appeal to previous re-
sults on analyticity of DNO which do not distinguish the very different roles
these functions play (e.g., [2, 3, 6, 4, 35, 37, 15, 38]). Most importantly,
our results differ from those of Lannes in that, as was demonstrated for the
DNO in [37], our recursions lead to a stable, high–order numerical scheme
for the approximation of variations of the DNO which Lannes’ formulation
does not provide (naturally, as this was not his intention).

The organization of the paper is as follows, in § 2 we review the governing
equations of ideal free–surface fluid mechanics and outline a spectral stability
analysis in Zakharov and Craig & Sulem’s formulation. In § 3, we recall the
TFE method and review known analyticity results for DNO. In § 4 & § 5,
we show how these results can be extended to first and higher variations of
the DNO using the same TFE methodology.

2. Governing Equations

The Euler equations model the free–surface evolution of an ideal fluid
under the influence of gravity (capillarity effects can easily be incorporated
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but we suppress them for this presentation). Consider the fluid domain

Sh,η := {(x, y) ∈ Rd−1 ×R : −h < y < η(x, t)}, (2.1)

where h is the mean depth, d = 2, 3 is the problem dimension, and η is the
perturbation of the free air–fluid interface from its rest state at y = 0. Inside
Sh,η the well–known equations of motion are the Euler equations [18]

∆ϕ = 0 in Sh,η (2.2a)

∂yϕ = 0 at y = −h (2.2b)

∂tη − ∂yϕ+∇xη · ∇xϕ = 0 at y = η (2.2c)

∂tϕ+ g̃η +
1
2
|∇ϕ|2 = 0 at y = η, (2.2d)

where ϕ(x, y, t) is the velocity potential (the velocity is given by ~u = ∇ϕ)
and g̃ is the gravitational constant. As we stated in the Introduction, we
are interested in periodic traveling waves and their stability, so we enforce
the condition that the x–dependence of ϕ and η is periodic with respect to
a lattice Γ ⊂ Rd−1.

V. Zakharov [42] pointed out that the water wave problem (2.2) can be
restated in terms of surface quantities, η(x, t) and ξ(x, t) := ϕ(x, η(x, t), t),
and, furthermore, that this system is Hamiltonian. As the formulation is
somewhat implicit in nature, a clarifying contribution was made by Craig
& Sulem [7] who introduced the Dirichlet–Neumann operator (DNO) to the
problem. We define this DNO by considering the prototype elliptic problem
motivated by (2.2)

∆v = 0 in Sh,g (2.3a)

v(x, g(x)) = ξ(x) (2.3b)

∂yv(x,−h) = 0 (2.3c)

v(x+ γ, y) = v(x, y) ∀ γ ∈ Γ. (2.3d)

If g is sufficiently smooth, then (2.3) admits a unique solution and we can
compute the normal derivative of the solution at the surface y = g. The
DNO carries out this procedure by mapping the Dirichlet data, ξ, to the
Neumann data:

G(g)[ξ] := [∇v]y=g ·N = ∂yv(x, g(x))−∇xg · ∇xv(x, g(x)).

In terms of this operator, the Euler equations can now be written [7]

∂tη = G(η)[ξ] (2.4a)



Dirichlet–Neumann operators 545

∂tξ = −g̃η − 1
2(1 + |∇xη|2)

[
|∇xξ|2 − (G(η)[ξ])2

−2 (∇xξ · ∇xη)G(η)[ξ] + |∇xξ|2 |∇xη|2 − (∇xξ · ∇xη)2
]
. (2.4b)

Any analysis of the Euler equations, in particular the dynamic stability of
traveling waves, can be performed equivalently on the surface equations (2.4).

Before proceeding, we recall that while the dependence of the DNO upon
the Dirichlet data, ξ, is linear, the g dependence is genuinely non-linear. In
particular, this dependence is parametrically analytic [35] (see also [37, 15,
38]) which implies the strong convergence (see Theorem 3.2) of the following
expansion:

G(g)[ξ] = G(εf)[ξ] =
∞∑
n=0

Gn(f)[ξ]εn, (2.5)

for g(x) = εf(x) sufficiently small. Using this expansion, the action of the
DNO can be approximated by the truncated Taylor series

GN (g)[ξ] :=
N∑
n=0

Gn(f)[ξ]εn,

a method which has been used with great success in a number of numerical
simulations [7, 39, 31, 32, 5, 13, 14]. Our purpose is to justify a similar
expansion for the first variation of the DNO for use in spectral stability
simulations.

2.1. Spectral Stability. To motivate our subsequent theoretical develop-
ments, we briefly review the spectral stability analysis of evolution equations
(see, e.g., Deconinck & Kutz [8] for a full description and a complete list of
references). Consider the generic dynamical system

∂tu = F (u), (2.6)

which possesses the solution u(x, t) = ū(x); for instance F could be the
right–hand side of (2.4) modified to follow solutions in a reference frame
moving with speed c, and ū could be a periodic Stokes wave [33]. To decide
upon the dynamic stability of ū, one adds a (small) perturbation

u(x, t) = ū(x) + δũ(x, t), δ � 1,

and then studies the evolution of ũ. It is not difficult to show that ũ satisfies
the evolution equation

∂tũ = δuF (ū)[ũ] +O(δ), (2.7)
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where δuF is the first variation of the right–hand side, F , evaluated at the
steady solution ū. At this point, we can now see how the first variation of
the DNO will play a role in stability calculations for traveling water waves
as it appears explicitly in the variation of the right–hand side of (2.4). If we
ignore the order δ correction our analysis becomes a linear stability analysis,
and if we further assume the separable form

ũ(x, t) = eλtw(x),

then, ignoring O(δ) terms, (2.7) becomes

λw = δuF (ū)[w] =: A(x)[w]. (2.8)

The study of solutions (λ,w) of this equation constitutes a spectral stability
analysis. The solutions of interest to us are the periodic traveling waves of
the Euler equations, so we point out that if the solutions ū(x) are periodic
(with respect to a lattice Γ), then the operator A(x) will also inherit this
periodicity.

The final specification we make for our spectral stability problem, (2.8),
is the boundary conditions which w must satisfy. For guidance, we follow
the “Generalized Principle of Reduced Instability” developed by Mielke [24],
which is essentially the Floquet theory of differential equations with periodic
coefficients [8]. This method distills the general setting of L2 perturbations
to the study of the “Bloch waves,” e.g.

w(x) = eip·xW (x),

where W (x) is periodic with respect to Γ, the period lattice of the linear
operator A(x). The theory shows that the full L2 spectral stability prob-
lem can be decided by simply considering Bloch waves with p ∈ P (Γ′), the
fundamental cell of wavenumbers (e.g., if Γ = (2π)Z, then Γ′ = Z, and
P (Γ′) = [0, 1]). Thus we are left with the spectral problem [24]

Ap[W ] = λW,

c.f. (2.8), where Ap is the “Bloch operator”

Ap[W ] := e−ip·xA[eip·xW ].

The crucial spectral identity (see [24], Theorems 2.1 and A.4) is:

L2–spec(A) = L2
lu–spec(A) = closure

( ⋃
p∈P (Γ′)

spec(Ap)
)
, (2.9)

where L2
lu is the space of uniformly local L2 functions. Thus, we can obtain

information about stability with respect to all of these perturbations by
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simply considering periodic perturbations W (x) and Ap with p ∈ P (Γ′)
appearing as a parameter [24].

For the current theoretical developments, this Bloch analysis is equivalent
to considering the linear operator A acting on “Bloch periodic” (quasiperi-
odic) functions w(x) which satisfy the “Bloch boundary conditions”:

w(x+ γ) = eip·γw(x), ∀ γ ∈ Γ.

Notice that, if p is a rational number then, these functions will be periodic
with respect to the lattice Γ.

3. Transformed Field Expansions

As we mentioned earlier, for many systems of partial differential equa-
tions of physical interest (including water waves), the problem domain is a
small departure from a separable geometry and quantities of interest (such
as DNO) depend analytically upon these deformations. A useful technique
for establishing such analyticity results is the method of “Transformed Field
Expansions” (TFE) [35]. The TFE strategy begins by selecting a change of
the independent variables which maps the problem domain to the simpler ge-
ometry. This has the effect of not only simplifying the problem coordinates,
but it also moves the perturbation quantity (the domain shape) from the ge-
ometry to the right–hand side of the governing equations. At this point, one
expands the solution in a Taylor series in the perturbation variable which
can typically be shown to converge strongly.

3.1. Change of Variables. To begin, we consider the change of variables

x′ = x, y′ = h
(y − g(x)
h+ g(x)

)
, (3.1)

which transforms the domain Sh,g to Sh,0. The differential operators trans-
form by:

(h+ g(x))∇x = (h+ g(x′))∇x′ − (h+ y′)(∇x′g(x′))∂y′

(h+ g(x))divx = (h+ g(x′))divx′ − (h+ y′)(∇x′g(x′)) · ∂y′

(h+ g(x))∂y = h∂y′ ,

and the system (2.3) becomes a PDE and boundary conditions for the un-
known transformed field

u(x′, y′) := v
(
x′,

y′(h+ g(x′))
h

+ g(x′)
)
.
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These equations are, upon dropping primes,

∆u = F (x, y; g, u) in Sh,0 (3.2a)

u(x, 0) = ξ(x) (3.2b)

∂yu(x,−h) = 0 (3.2c)

u(x+ γ, y) = u(x, y) ∀ γ ∈ Γ, (3.2d)

where
F = divx [Fx] + ∂yFy + Fh, (3.2e)

and the x–derivative, y–derivative, and homogeneous parts of F are given
by:

Fx = −2
h
g∇xu−

1
h2
g2∇xu+

h+ y

h
∇xg∂yu+

h+ y

h2
g∇xg∂yu, (3.2f)

Fy =
h+ y

h
∇xg · ∇xu+

h+ y

h2
g∇xg · ∇xu−

(h+ y)2

h2
|∇xg|2 ∂yu, (3.2g)

and

Fh =
1
h
∇xg · ∇xu+

1
h2
g∇xg · ∇xu−

h+ y

h2
|∇xg|2 ∂yu. (3.2h)

Additionally, the DNO transforms to

G(g)[ξ] = ∂yu(x, 0) +H(x; g, u), (3.3a)

where

H = −1
h
gG(g)[ξ]−∇xg · ∇xu(x, 0)− 1

h
g∇xg · ∇xu(x, 0) + |∇xg|2 ∂yu(x, 0).

(3.3b)
The reason for the particular gathering of terms in these equations is that
both F and H are O(g).

3.2. Analyticity. Now that we have implemented the “transformation” in
the TFE method, all that remains is to expand the field, u, and the DNO, G,
in a power series in a parameter which measures the boundary deformation,
e.g. ε in the relationship g(x) = εf(x). Using this approach, several authors
(see, e.g., [35, 15]) have shown that if ε is small and f is smooth, then the
expansion

u(x, y, ε) =
∞∑
n=0

un(x, y)εn, (3.4)

converges strongly in an appropriate function space, and each un satisfies

∆un = Fn(x, y) in Sh,0 (3.5a)

un(x, 0) = δn,0 ξ(x) (3.5b)
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∂yun(x,−h) = 0 (3.5c)

un(x+ γ, y) = un(x, y) ∀ γ ∈ Γ, (3.5d)

where δn,m is the Kronecker delta,

Fn = divx [Fx,n] + ∂yFy,n + Fh,n, (3.5e)

Fx,n = −2
h
f∇xun−1−

1
h2
f2∇xun−2+

h+ y

h
∇xf∂yun−1+

h+ y

h2
f∇xf∂yun−2,

(3.5f)

Fy,n =
h+ y

h
∇xf ·∇xun−1 +

h+ y

h2
f∇xf ·∇xun−2−

(h+ y)2

h2
|∇xf |2 ∂yun−2,

(3.5g)
and

Fh,n =
1
h
∇xf · ∇xun−1 +

1
h2
f∇xf · ∇xun−2 −

h+ y

h2
|∇xf |2 ∂yun−2. (3.5h)

In these formulas, any function with a negative index should be replaced by
zero. Under the same hypotheses [35, 15], the expansion (2.5) can be shown
to converge strongly, and the Gn can be computed via

Gn(f)[ξ] = ∂yun(x, 0) +Hn(x), (3.6a)

where

Hn = −1
h
fGn−1(f)[ξ]−∇xf · ∇xun−1(x, 0)− 1

h
f∇xf · ∇xun−2(x, 0)

+ |∇xf |2 ∂yun−2(x, 0). (3.6b)

The recursions above can be used directly to establish the strong conver-
gence of (3.4) and (2.5). The details are given in [35, 37, 15], but the results
are summarized here for use in future sections.

Theorem 3.1. Given an integer s ≥ 0, if f ∈ Cs+2 and ξ ∈ Hs+3/2, then
the series (3.4) converges strongly. In other words, there exist constants C̃0

and K̃0 such that
‖un‖Hs+2 ≤ K̃0B

n
0 ,

for any B0 > C̃0 |f |Cs+2.

Theorem 3.2. Given an integer s ≥ 0, if f ∈ Cs+2 and ξ ∈ Hs+3/2, then
the series (2.5) converges strongly as an operator from Hs+3/2 to Hs+1/2.
In other words, there exist constants C0 and K0 such that

‖Gn(f)[ξ]‖Hs+1/2 ≤ K0B
n
0 ,

for any B0 > C0 |f |Cs+2.
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Remark 3.3. As was shown in [35, 15], the constants K̃0 and K0 depend
linearly on ‖ξ‖Hs+3/2 . The same realization can be made for subsequent
constants K̃j and Kj appearing in § 4 & § 5.

Remark 3.4. For convenience of presentation, we suppress the domain de-
pendence of the function spaces where no confusion exists. The surface
spaces (for the functions f , ξ, etc.) are defined on the fundamental period
cell P (Γ), while the volumetric spaces (for y–dependent functions like u) are
defined on P (Γ)× [−h, 0].

Remark 3.5. While Theorem 3.1 establishes the parametric analyticity of
the transformed field u under rather mild assumptions on the boundary
shape, this does not generically extend to the original field v due to the
change of variables, (3.1). However, if the regularity assumptions on f are
sufficiently strengthened (e.g., f analytic) then the same general conclusions
can be realized for v.

4. First Variation

We now proceed to the parametric analyticity of the first variation of the
field, u, and the DNO, G, with respect to the boundary deformation g. Our
analysis is greatly simplified by the change of variables (3.1) as this geometric
perturbation is now included solely as an inhomogeneity in our elliptic PDE.
We recall [21] Gateaux’s definition of the variation of a functional F with
respect to a function ϕ at ϕ0 in the direction ψ as

δϕF (ϕ0){ψ} := lim
τ→0

1
τ

[F (ϕ0 + τψ)− F (ϕ0)] .

It is easy to derive equations for the first variations of the field and DNO in
the direction w:

u(1)(x, y; g){w} := δgu(x, y; g){w}, G(1)(g)[ξ]{w} := δgG(g)[ξ]{w}.

First, the first variation of the field, u(1), satisfies the following elliptic prob-
lem:

∆u(1) = F (1)(x, y) in Sh,0 (4.1a)

u(1)(x, 0) = 0 (4.1b)

∂yu
(1)(x,−h) = 0 (4.1c)

u(1)(x+ γ, y) = u(1)(x, y) ∀ γ ∈ Γ, (4.1d)

where
F (1) = divx

[
F (1)
x

]
+ ∂yF

(1)
y + F

(1)
h , (4.1e)
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F (1)
x = −2

h
w∇xu−

2
h
g∇xu(1) − 2

h2
gw∇xu−

1
h2
g2∇xu(1)

+
h+ y

h
∇xw∂yu+

h+ y

h
∇xg∂yu(1)

+
h+ y

h2
w∇xg∂yu+

h+ y

h2
g∇xw∂yu+

h+ y

h2
g∇xg∂yu(1), (4.1f)

F (1)
y =

h+ y

h
∇xw · ∇xu+

h+ y

h
∇xg · ∇xu(1)

+
h+ y

h2
w∇xg · ∇xu+

h+ y

h2
g∇xw · ∇xu+

h+ y

h2
g∇xg · ∇xu(1)

− 2(h+ y)2

h2
∇xw · ∇xg∂yu−

(h+ y)2

h2
|∇xg|2 ∂yu(1), (4.1g)

and

F
(1)
h =

1
h
∇xw · ∇xu+

1
h
∇xg · ∇xu(1)

+
1
h2
w∇xg · ∇xu+

1
h2
g∇xw · ∇xu+

1
h2
g∇xg · ∇xu(1)

− 2(h+ y)
h2

∇xw · ∇xg∂yu−
h+ y

h2
|∇xg|2 ∂yu(1). (4.1h)

Next, the variation of the DNO satisfies the formula

G(1)(g)[ξ]{w} = ∂yu
(1)(x, 0) +H(1)(x), (4.2a)

where

H(1) = −1
h
wG(g)[ξ]−1

h
gG(1)(g)[ξ]{w}−∇xw·∇xu(x, 0)−∇xg·∇xu(1)(x, 0)

− 1
h
w∇xg · ∇xu(x, 0)− 1

h
g∇xw · ∇xu(x, 0)− 1

h
g∇xg · ∇xu(1)(x, 0)

+ 2∇xw · ∇xg∂yu(x, 0) + |∇xg|2 ∂yu(1)(x, 0). (4.2b)

4.1. Analyticity of the First Variation. As with the case of the field and
DNO, the TFE methodology can be utilized to show that the expansions

u(1)(x, y, ε){w} =
∞∑
n=0

u(1)
n (x, y){w} εn, G(1)(η)[ξ]{w} =

∞∑
n=0

G(1)
n [ξ]{w} εn,

(4.3)
converge strongly; see Theorems 4.2 and 4.3. Given these expansions it is
not difficult to see that the u(1)

n must satisfy

∆u(1)
n = F (1)

n (x, y) in Sh,0 (4.4a)
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u(1)
n (x, 0) = 0 (4.4b)

∂yu
(1)
n (x,−h) = 0 (4.4c)

u(1)
n (x+ γ, y) = u(1)

n (x, y) ∀ γ ∈ Γ, (4.4d)

where
F (1)
n = divx

[
F (1)
x,n

]
+ ∂yF

(1)
y,n + F

(1)
h,n, (4.4e)

and

F (1)
x,n = −2

h
w∇xun −

2
h
f∇xu(1)

n−1 −
2
h2
wf∇xun−1 −

1
h2
f2∇xu(1)

n−2

+
h+ y

h
∇xw∂yun +

h+ y

h
∇xf∂yu(1)

n−1

+
h+ y

h2
w∇xf∂yun−1 +

h+ y

h2
f∇xw∂yun−1 +

h+ y

h2
f∇xf∂yu(1)

n−2, (4.4f)

F (1)
y,n =

h+ y

h
∇xw · ∇xun +

h+ y

h
∇xf · ∇xu(1)

n−1

+
h+ y

h2
w∇xf · ∇xun−1 +

h+ y

h2
f∇xw · ∇xun−1 +

h+ y

h2
f∇xf · ∇xu(1)

n−2

− 2(h+ y)2

h2
∇xw · ∇xf∂yun−1 −

(h+ y)2

h2
|∇xf |2 ∂yu(1)

n−2, (4.4g)

and

F
(1)
h,n =

1
h
∇xw · ∇xun +

1
h
∇xf · ∇xu(1)

n−1

+
1
h2
w∇xf · ∇xun−1 +

1
h2
f∇xw · ∇xun−1 +

1
h2
f∇xf · ∇xu(1)

n−2

− 2(h+ y)
h2

∇xw · ∇xf∂yun−1 −
h+ y

h2
|∇xf |2 ∂yu(1)

n−2. (4.4h)

The G(1)
n can be computed via

G(1)
n (f)[ξ]{w} = ∂yu

(1)
n (x, 0) +H(1)

n (x), (4.5a)

where

H(1)
n = −1

h
wGn(f)[ξ]− 1

h
fG

(1)
n−1(f)[ξ]{w} − ∇xw · ∇xun(x, 0)

−∇xf · ∇xu(1)
n−1(x, 0)− 1

h
w∇xf · ∇xun−1(x, 0)

− 1
h
f∇xw · ∇xun−1(x, 0)− 1

h
f∇xf · ∇xu(1)

n−2(x, 0)
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+ 2∇xw · ∇xf∂yun−1(x, 0) + |∇xf |2 ∂yu(1)
n−2(x, 0). (4.5b)

The primary result of this section is the parametric analyticity of the first
variation of the DNO, G(1), with respect to the boundary variation g = εf .
This can be shown directly from the next result on parametric analyticity
of the first variation of the field, u(1). To make this precise, we define the
quantities D1 and D̃1 which help characterize the disk of convergence of the
Taylor series of G(1) and u(1).

Definition 4.1. For any positive real number B0 (see Theorems 3.1 and
3.2), and functions f, w ∈ Cs+2, let

D1 := |f |Cs+2 +B0 |w|Cs+2

D̃1 := |f |2Cs+2 +B0 |f |Cs+2 |w|Cs+2 .

Theorem 4.2. Given an integer s ≥ 0, if f ∈ Cs+2, ξ ∈ Hs+3/2, and
w ∈ Cs+2 then the series for u(1) in (4.3) converges strongly. In other
words, there exist constants C̃1 and K̃1 such that∥∥∥u(1)

n

∥∥∥
Hs+2

≤ K̃1B
n
1 , (4.6)

for any B1 > max{B0, 2CeC̃1D1,
√

2CeC̃1D̃1}. Ce is given in Lemma 4.5
and B0 is given by Theorem 3.1 which holds with the hypotheses given above.

The parametric analyticity of G(1) now follows.

Theorem 4.3. Given an integer s ≥ 0, if f ∈ Cs+2, ξ ∈ Hs+3/2, and
w ∈ Cs+2, then the series for G(1) in (4.3) converges strongly as an operator
from Hs+3/2 to Hs+1/2. In other words, there exist constants C1 and K1

such that ∥∥∥G(1)
n (f)[ξ]{w}

∥∥∥
Hs+1/2

≤ K1B
n
1 , (4.7)

for any B1 > max{B0, C1D1, C1

√
D̃1}.

A key element in the proof of these results is an “Algebra Property” of
the function spaces Hs and Cs [1, 35].

Lemma 4.4. For any integer s ≥ 0 and any ε > 0, if f ∈ Cs(P (Γ)),
u ∈ Hs(P (Γ)× [−h, 0]), g ∈ Cs+1/2+ε(P (Γ)), and µ ∈ Hs+1/2(P (Γ)), then

‖fu‖Hs(P (Γ)×[−h,0]) ≤M |f |Cs(P (Γ)) ‖u‖Hs(P (Γ)×[−h,0])

‖gµ‖Hs+1/2(P (Γ)) ≤M |g|Cs+1/2+ε(P (Γ)) ‖µ‖Hs+1/2(P (Γ)) ,

where M is a constant depending only on s and the dimension d.
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We note that in [34] a significant variation on this Lemma was utilized
to allow for Dirichlet data in a weak Sobolev space, H−1/2, at the expense
of additional smoothness on the boundary deformation f ; this could also be
pursued in the present context. Another invaluable tool in our analysis is
the following well–known “Elliptic Estimate” [17, 10].

Lemma 4.5. For any integer s ≥ 0 there exists a constant Ce such that for
any F ∈ Hs, ξ ∈ Hs+3/2, the solution W ∈ Hs+2 of

∆W (x, y) = F (x, y) in Sh,0

W (x, 0) = ξ(x)

∂yW (x,−h) = 0

W (x+ γ, y) = W (x, y) ∀ γ ∈ Γ,

satisfies
‖W‖Hs+2 ≤ Ce {‖F‖Hs + ‖ξ‖Hs+3/2} .

Our proof is inductive in nature relying upon the relation (4.4) for u(1)
n ;

therefore a recursive estimate on the right–hand side F (1)
n is essential.

Lemma 4.6. Let s ≥ 0 be an integer and let f, w ∈ Cs+2. Assume

‖un‖Hs+2 ≤ K̃0B
n
0 ∀n (4.8a)∥∥∥u(1)

n

∥∥∥
Hs+2

≤ K̃1B
n
1 n < N, (4.8b)

and constants K̃0, K̃1, B0, B1 > 0. Then if B1 > B0, K̃1 > K̃0, there exists
a constant C̃1 such that∥∥∥F (1)

N

∥∥∥
Hs
≤ C̃1K̃1

{
D1B

N−1
1 + D̃1B

N−2
1

}
.

Proof. We recall that F (1)
N = divx

[
F

(1)
x,N

]
+ ∂yF

(1)
y,N + F

(1)
h,N and focus our

attention upon F (1)
x,N as the other terms can be handled in a similar fashion.

Using Lemma 4.4,∥∥∥divx
[
F

(1)
x,N

]∥∥∥
Hs
≤
∥∥∥F (1)

x,N

∥∥∥
Hs+1

≤ 2M
h
|w|Cs+1 ‖uN‖Hs+2 +

2M
h
|f |Cs+1

∥∥∥u(1)
N−1

∥∥∥
Hs+2

+
2M2

h2
|w|Cs+1 |f |Cs+1 ‖uN−1‖Hs+2 +

M2

h2
|f |2Cs+1

∥∥∥u(1)
N−2

∥∥∥
Hs+2

+
YM

h
|w|Cs+2 ‖uN‖Hs+2 +

YM

h
|f |Cs+2

∥∥∥u(1)
N−1

∥∥∥
Hs+2
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+
YM2

h2
|w|Cs+1 |f |Cs+2 ‖uN−1‖Hs+2 +

YM2

h2
|f |Cs+1 |w|Cs+2 ‖uN−1‖Hs+2

+
YM2

h2
|f |Cs+1 |f |Cs+2

∥∥∥u(1)
N−2

∥∥∥
Hs+2

,

where we have used
‖(h+ y)v‖Hs ≤ Y ‖v‖Hs ,

for some constant Y = Y (s, d). By using |f |Cs+1 ≤ |f |Cs+2 , |w|Cs+1 ≤
|w|Cs+2 , and the inductive hypotheses (4.8), it is easy to show that∥∥∥divx

[
F

(1)
x,N

]∥∥∥
Hs
≤ (2 + Y )M

h
|w|Cs+2 K̃0B

N
0

+
2M2(1 + Y )

h2
|w|Cs+2 |f |Cs+2 K̃0B

N−1
0

+
(2 + Y )M

h
|f |Cs+2 K̃1B

N−1
1 +

M2(1 + Y )
h2

|f |2Cs+2 K̃1B
N−2
1

≤ K̃1

((2 + Y )M
h

|w|Cs+2 B0B
N−1
1 +

2M2(1 + Y )
h2

|w|Cs+2 |f |Cs+2 B0B
N−2
1

+
(2 + Y )M

h
|f |Cs+2 B

N−1
1 +

M2(1 + Y )
h2

|f |2Cs+2 B
N−2
1

)
≤ C̃1K̃1

(
(|f |Cs+2 + |w|Cs+2 B0)BN−1

1 + (|f |2Cs+2 + |f |Cs+2 |w|Cs+2 B0)BN−2
1

)
,

provided that B0 < B1, K̃0 < K̃1, and C̃1 is chosen appropriately; the proof
is now complete. �

We are now in a position to prove the parametric analyticity of the first
variation of the field, u(1).

Proof. (Theorem 4.2) We utilize an inductive method, therefore at order
n = 0 we recall that we must solve (4.4) with

F
(1)
x,0 = −2

h
w∇xu0 +

h+ y

h
∇xw∂yu0,

F
(1)
y,0 =

h+ y

h
∇xw · ∇xu0,

F
(1)
h,0 =

1
h
∇xw · ∇xu0.

Using Lemma 4.5 we find that∥∥∥u(1)
0

∥∥∥
Hs+2

≤ Ce
{

2M
h
|w|Cs+1 ‖u0‖Hs+2 +

YM

h
|w|Cs+2 ‖u0‖Hs+2
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+
YM

h
|w|Cs+2 ‖u0‖Hs+2 +

M

h
|w|Cs+1 ‖u0‖Hs+1

}
≤ CeM

h
(3 + 2Y ) |w|Cs+2 K̃0B0 .

We set

K̃1 = max
{
K̃0,

CeM

h
(3 + 2Y ) |w|Cs+2 K̃0B0

}
,

and the case n = 0 is established. We now assume (4.6) for all n < N and
use (4.4) and Lemma 4.5 to realize∥∥∥u(1)

N

∥∥∥
Hs+2

≤ Ce
∥∥∥F (1)

N

∥∥∥
Hs
.

Since the un satisfy the estimate of Theorem 3.1, we can use Lemma 4.6 to
imply that∥∥∥u(1)

N

∥∥∥
Hs+2

≤ CeC̃1K̃1

{
D1B

N−1
1 + D̃1B

N−2
1

}
≤ K̃1B

N
1 ,

if we choose

B1 > max
{

2CeC̃1D1,

√
2CeC̃1D̃1

}
.

�

Finally, we can show the parametric analyticity of G(1).

Proof. (Theorem 4.3) Again we work by induction and begin with G
(1)
0 .

An important realization to make is that our hypotheses guarantee that
Theorem 3.2 holds together with its estimates on Gn. From (4.5a), we see
at order zero that

G
(1)
0 [ξ]{w} = ∂yu

(1)
0 (x, 0)− 1

h
wG0[ξ]−∇xw · ∇xu0(x, 0).

We now estimate∥∥∥G(1)
0 [ξ]{w}

∥∥∥
Hs+1/2

≤
∥∥∥u(1)

0 (x, 0)
∥∥∥
Hs+3/2

+
M

h
|w|Cs+1/2+ε ‖G0[ξ]‖Hs+1/2

+M |w|Cs+3/2+ε ‖u0(x, 0)‖Hs+3/2

≤ K̃1 +
M

h
|w|Cs+2 K0 +M |w|Cs+2 K̃0.

If we set

K1 = K̃1 +
M

h
|w|Cs+2 K0 +M |w|Cs+2 K̃0,
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then the case n = 0 is resolved. We now suppose that (4.7) holds for n < N

and examine G(1)
N :∥∥∥G(1)

N (f)[ξ]{w}
∥∥∥
Hs+1

2
≤
∥∥∥u(1)

N (x, 0)
∥∥∥
Hs+3/2

+
M

h
|w|Cs+1/2+ε ‖GN (f)[ξ]‖

Hs+1
2

+
M

h
|f |

Cs+1
2+ε

∥∥∥G(1)
N−1(f)[ξ]{w}

∥∥∥
Hs+1

2
+M |w|

Cs+3
2+ε ‖uN (x, 0)‖

Hs+3
2

+M |f |Cs+3/2+ε

∥∥∥u(1)
N−1(x, 0)

∥∥∥
Hs+3/2

+
M2

h
|w|Cs+1/2+ε |f |Cs+3/2+ε ‖uN−1(x, 0)‖Hs+3/2

+
M2

h
|f |Cs+1/2+ε |w|Cs+3/2+ε ‖uN−1(x, 0)‖Hs+3/2

+
M2

h
|f |Cs+1/2+ε |f |Cs+3/2+ε

∥∥∥u(1)
N−2(x, 0)

∥∥∥
Hs+3/2

+ 2M2 |w|Cs+3/2+ε |f |Cs+3/2+ε ‖uN−1(x, 0)‖Hs+3/2

+M2 |f |2Cs+3/2+ε

∥∥∥u(1)
N−2(x, 0)

∥∥∥
Hs+3/2

.

Using the fact that B1 > B0,∥∥∥G(1)
N

∥∥∥
Hs+1/2

≤ K̃1B
N
1 +M

(K1

h
+ K̃1

)
|f |Cs+2 B

N−1
1

+M2K̃1

( 1
h2

+ 1
)
|f |2Cs+2 B

N−2
1 +M

(K0

h
+ K̃0

)
|w|Cs+2 B

N
0

+ 2M2K̃0

(1
h

+ 1
)
|f |Cs+2 |w|Cs+2 B

N−1
0

≤ K̃1B
N
1 +M

[(K1

h
+ K̃1

)
|f |Cs+2 +

(K0

h
+ K̃0

)
(B0 |w|Cs+2)

]
BN−1

1

+M2
[
K̃1

( 1
h2

+ 1
)
|f |2Cs+2 + 2K̃0

(1
h

+ 1
)
|f |Cs+2 (B0 |w|Cs+2)

]
BN−2

1 .

By the bound 2CeC̃1D1 < B1 we are done provided K1 is chosen sufficiently
large. �

Remark 4.7. In § 2.1 we explained in great detail that to consider the
spectral stability problem with respect to general L2 perturbations, then
“Bloch boundary conditions” must be satisfied. In the preceding analysis
we have, somewhat implicitly, enforced periodic boundary conditions on the
perturbation w. We point out, however, that the entire analysis can be
carried out for the more general Bloch conditions in precisely the same man-
ner provided that a generalized version of the elliptic estimate, Lemma 4.5
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with these quasi–periodic boundary conditions, is utilized. Such results are
straightforward extensions of the existing theory and have been presented
in, e.g., [33].

Remark 4.8. To conclude this section, we note an important point regard-
ing the flexibility and utility of the TFE approach. The proofs of Theo-
rems 4.2 and 4.3 used the infrastructure originally devised in [35, 36, 37] to
handle Dirichlet data in the classical L2–based Sobolev spaces. We find this
machinery not only the simplest to present, but also appropriate in light of
the quasi–periodic functions we must consider for the linear stability analy-
sis we have in mind. However, one of the principal contributions of [15] was
to demonstrate how the methods of [35, 36, 37] could be extended to quite
general boundary conditions, the Schauder spaces Ck+α, and domain shapes
g(x) in the Lipschitz class, provided that the Dirichlet data resides in some-
what more complicated spaces. Of course, these generalizations could also be
made in the current setting resulting in the analogues of Theorems 4.2 and
4.3 for deformations f and perturbations w in these Schauder or Lipschitz
spaces.

Here, we see how our new results improve upon those of Lannes [19] as
a careful study of his Theorem 3.20 shows that for d = 2 (Lannes’ d = 1)
f and w must lie in H5/2, while for d = 3 (Lannes’ d = 2) these functions
must be in the class H7/2. Of course Lannes had a different purpose in mind
(the Cauchy problem for water waves) and his Newton’s iteration required
all functions to reside in the same Sobolev spaces, necessitating the use
of Algebra properties which demand indices greater than d/2. The same
remarks hold for Theorems 5.3 and 5.4, again improving upon the results of
Lannes for higher variations.

5. Higher Variations

Though the impact of higher variations of the DNO on a spectral stability
analysis is not immediately apparent, we record in this section parametric
analyticity results for these higher derivatives. However, we do restrict our-
selves to the case of periodic perturbations as products of these functions
appear in the relevant formulas, but the space of Bloch periodic functions is
not closed under multiplication. At this point, the key role that the trans-
formation (3.1) plays is particularly evident as the proof of the relevant
analyticity theorem is no more difficult than that of the first variation case.

To begin, we record a helpful Proposition regarding variations of products
which is easily established using induction.
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Proposition 5.1. Suppose that A and B are linear operators and U is a
non-linear function of g, then if

R(g) = A[g]U(g), S(g) = A[g]B[g]U(g),

and U (k), R(k), and S(k) denote the k–th variations of U , R, and S, respec-
tively, then

R(m){w} = A[g]U (m){w}+
m∑
j=1

A[wj ]U (m−1){w̃j} (5.1a)

S(m)[w] = A[g]B[g]U (m){w}+A[g]
m∑
j=1

B[wj ]U (m−1){w̃j}

+B[g]
m∑
j=1

A[wj ]U (m−1){w̃j}

+
m∑
j=1

m∑
k=1,k 6=j

A[wj ]B[wk]U (m−2){w̃j,k}, (5.1b)

where

w = (w1, . . . , wm)

w̃j = (w1, . . . , wj−1, wj+1, . . . , wm)

w̃j,k = (w1, . . . , wj−1, wj+1, . . . , wk−1, wk+1, . . . , wm).

Gateaux’s definition [21] of the m–th variation of a functional F with
respect to a function ϕ at ϕ0 in the direction ψ = (ψ1, . . . , ψm) is

δmϕ F (ϕ0){ψ} := lim
τm→0

1
τm

[
δm−1
ϕ F (ϕ0 + τmψm){ψ1, . . . ψm−1}

−δm−1
ϕ F (ϕ0){ψ1, . . . , ψm−1}

]
.

As the DNO and its underlying elliptic BVP (in transformed coordinates)
are given in (3.3) and (3.2), it is easy to derive equations for their m–th
variations,

u(m)(x, y; g){w} := δmg u(x, y; g){w}, G(m)(g)[ξ]{w} := δmg G(g)[ξ]{w}.

First, for the m–th variation of the field, u(m) satisfies the following elliptic
problem:

∆u(m) = F (m)(x, y) in Sh,0 (5.2a)

u(m)(x, 0) = 0 (5.2b)
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∂yu
(m)(x,−h) = 0 (5.2c)

u(m)(x+ γ, y) = u(m)(x, y) ∀ γ ∈ Γ, (5.2d)

where
F (m) = divx

[
F (m)
x

]
+ ∂yF

(m)
y + F

(m)
h . (5.2e)

To derive the forms of F (m)
x , F (m)

y , and F (m)
h we use Proposition 5.1 repeat-

edly. For instance, the first term in the expression for Fx is

R(u) = −2
h
g∇xu = −2

h
A[g]U(g),

where A = I and U(g) = ∇xu(g). By Proposition 5.1,

R(m)[w] = −2
h

(
A[g]U (m)[w] +

m∑
j=1

A[wj ]U (m−1)[w̃j ]
)

= −2
h

(
g∇xu(m){w}+

m∑
j=1

wj∇xu(m−1){w̃j}
)
.

Proceeding in this way we can derive the following expressions:

F (m)
x = −2

h

(
g∇xu(m){w}+

m∑
j=1

wj∇xu(m−1){w̃j}
)

− 1
h2

(
g2∇xu(m){w}+ 2g

m∑
j=1

wj∇xu(m−1){w̃j}

+
m∑
j=1

m∑
k=1,k 6=j

wjwk∇xu(m−2){w̃j,k}
)

+
h+ y

h

(
∇xg∂yu(m){w}+

m∑
j=1

∇xwj∂yu(m−1){w̃j}
)

+
h+ y

h2

(
g∇xg∂yu(m){w}+ g

m∑
j=1

∇xwj∂yu(m−1){w̃j}

+∇xg
m∑
j=1

wj∂yu
(m−1){w̃j}+

m∑
j=1

m∑
k=1,k 6=j

wj∇xwk∂yu(m−2){w̃j,k}
)
, (5.2f)

F (m)
y =

h+ y

h

(
∇xg · ∇xu(m){w}+

m∑
j=1

∇xwj · ∇xu(m−1){w̃j}
)
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+
h+ y

h2

(
g∇xg · ∇xu(m){w}+ g

m∑
j=1

∇xwj · ∇xu(m−1){w̃j}

+∇xg ·
m∑
j=1

wj∇xu(m−1){w̃j}+
m∑
j=1

m∑
k=1,k 6=j

wj∇xwk · ∇xu(m−2){w̃j,k}
)

− (h+ y)2

h2

(
|∇xg|2 ∂yu(m){w}+ 2∇xg ·

m∑
j=1

∇xwj∂yu(m−1){w̃j}

+
m∑
j=1

m∑
k=1,k 6=j

∇xwj · ∇xwk∂yu(m−2){w̃j,k}
)
, (5.2g)

and

F
(m)
h =

1
h

(
∇xg · ∇xu(m){w}+

m∑
j=1

∇xwj · ∇xu(m−1){w̃j}
)

+
1
h2

(
g∇xg · ∇xu(m){w}+ g

m∑
j=1

∇xwj · ∇xu(m−1){w̃j}

+∇xg ·
m∑
j=1

wj · ∇xu(m−1){w̃j}+
m∑
j=1

m∑
k=1,k 6=j

wj∇xwk · ∇xu(m−2){w̃j,k}
)

− h+ y

h2

(
|∇xg|2 ∂yu(m){w}+ 2∇xg ·

m∑
j=1

∇xwj∂yu(m−1){w̃j}

+
m∑
j=1

m∑
k=1,k 6=j

∇xwj · ∇xwk∂yu(m−2){w̃j,k}
)
. (5.2h)

Now, the variation of the DNO satisfies the formula

G(m)(g)[ξ]{w} = ∂yu
(m)(x, 0){w}+H(m)(x){w}, (5.3a)

where

H(m) = −1
h

(
gG(m)(g)[ξ]{w}+

m∑
j=1

wjG
(m−1)(g)[ξ]{w̃j}

)
−
(
∇xg · ∇xu(m)(x, 0){w}+

m∑
j=1

∇xwj · ∇xu(m−1)(x, 0){w̃j}
)
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− 1
h

(
g∇xg · ∇xu(m)(x, 0){w}+ g

m∑
j=1

∇xwj · ∇xu(m−1)(x, 0){w̃j}

+∇xg ·
m∑
j=1

wj∇xu(m−1)(x, 0){w̃j}

+
m∑
j=1

m∑
k=1,k 6=j

wj∇xwk · ∇xu(m−2)(x, 0){w̃j,k}
)

+
(
|∇xg|2 ∂yu(m)(x, 0){w}+ 2∇xg ·

m∑
j=1

∇xwj∂yu(m−1)(x, 0){w̃j}

+
m∑
j=1

m∑
k=1,k 6=j

∇xwj · ∇xwk∂yu(m−2)(x, 0){w̃j,k}
)
. (5.3b)

5.1. Analyticity of Higher Variations. Following the development of
§ 4.1 we can now establish the analyticity of the m–th variations of the field
and the DNO. Again, if g = εf is sufficiently smooth then both

u(m)(x, y, ε){w} =
∞∑
n=0

u(m)
n (x, y){w} εn, (5.4a)

G(m)(η)[ξ]{w} =
∞∑
n=0

G(m)
n [ξ]{w} εn, (5.4b)

will converge strongly; see Theorems 5.3 and 5.4. Given these expansions, it
is not difficult to see that the u(m)

n must satisfy

∆u(m)
n = F (m)

n (x, y) in Sh,0 (5.5a)

u(m)
n (x, 0) = 0 (5.5b)

∂yu
(m)
n (x,−h) = 0 (5.5c)

u(m)
n (x+ γ, y) = u(m)

n (x, y) ∀ γ ∈ Γ, (5.5d)

where
F (m)
n = divx

[
F (m)
x,n

]
+ ∂yF

(m)
y,n + F

(m)
h,n , (5.5e)

and

F (m)
x,n = −2

h

(
f∇xu(m)

n−1{w}+
m∑
j=1

wj∇xu(m−1)
n {w̃j}

)
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− 1
h2

(
f2∇xu(m)

n−2{w}+ 2f
m∑
j=1

wj∇xu(m−1)
n−1 {w̃j}

+
m∑
j=1

m∑
k=1,k 6=j

wjwk∇xu(m−2)
n {w̃j,k}

)
+
h+ y

h

(
∇xf∂yu(m)

n−1{w}+
m∑
j=1

∇xwj∂yu(m−1)
n {w̃j}

)
+
h+ y

h2

(
f∇xf∂yu(m)

n−2{w}+ f

m∑
j=1

∇xwj∂yu(m−1)
n−1 {w̃j}

+∇xf
m∑
j=1

wj∂yu
(m−1)
n−1 {w̃j}+

m∑
j=1

m∑
k=1,k 6=j

wj∇xwk∂yu(m−2)
n {w̃j,k}

)
, (5.5f)

F (m)
y,n =

h+ y

h

(
∇xf · ∇xu(m)

n−1{w}+
m∑
j=1

∇xwj · ∇xu(m−1)
n {w̃j}

)
+
h+ y

h2

(
f∇xf · ∇xu(m)

n−2{w}+ f

m∑
j=1

∇xwj · ∇xu(m−1)
n−1 {w̃j}

+∇xf ·
m∑
j=1

wj∇xu(m−1)
n−1 {w̃j}+

m∑
j=1

m∑
k=1,k 6=j

wj∇xwk · ∇xu(m−2)
n {w̃j,k}

)
− (h+ y)2

h2

(
|∇xf |2 ∂yu(m)

n−2{w}+ 2∇xf ·
m∑
j=1

∇xwj∂yu(m−1)
n−1 {w̃j}

+
m∑
j=1

m∑
k=1,k 6=j

∇xwj · ∇xwk∂yu(m−2)
n {w̃j,k}

)
, (5.5g)

and

F
(m)
h,n =

1
h

(
∇xf · ∇xu(m)

n−1{w}+
m∑
j=1

∇xwj · ∇xu(m−1)
n {w̃j}

)
+

1
h2

(
f∇xf · ∇xu(m)

n−2{w}+ f

m∑
j=1

∇xwj · ∇xu(m−1)
n−1 {w̃j}



564 Carlo Fazioli and David P. Nicholls

+∇xf ·
m∑
j=1

wj · ∇xu(m−1)
n−1 {w̃j}+

m∑
j=1

m∑
k=1,k 6=j

wj∇xwk · ∇xu(m−2)
n {w̃j,k}

)
− h+ y

h2

(
|∇xf |2 ∂yu(m)

n−2{w}+ 2∇xf ·
m∑
j=1

∇xwj∂yu(m−1)
n−1 {w̃j}

+
m∑
j=1

m∑
k=1,k 6=j

∇xwj · ∇xwk∂yu(m−2)
n {w̃j,k}

)
. (5.5h)

The G(m)
n can be computed via

G(m)
n (f)[ξ]{w} = ∂yu

(m)
n (x, 0) +H(m)

n (x), (5.6a)

where

H(m)
n = −1

h

(
fG

(m)
n−1(f)[ξ]{w}+

m∑
j=1

wjG
(m−1)
n (f)[ξ]{w̃j}

)
−
(
∇xf · ∇xu(m)

n−1(x, 0){w}+
m∑
j=1

∇xwj · ∇xu(m−1)
n (x, 0){w̃j}

)
− 1
h

(
f∇xf · ∇xu(m)

n−2(x, 0){w}+ f

m∑
j=1

∇xwj · ∇xu(m−1)
n−1 (x, 0){w̃j}

+∇xf ·
m∑
j=1

wj∇xu(m−1)
n−1 (x, 0){w̃j}

+
m∑
j=1

m∑
k=1,k 6=j

wj∇xwk · ∇xu(m−2)
n (x, 0){w̃j,k}

)
+
(
|∇xf |2 ∂yu(m)

n−2(x, 0){w}+ 2∇xf ·
m∑
j=1

∇xwj∂yu(m−1)
n−1 (x, 0){w̃j}

+
m∑
j=1

m∑
k=1,k 6=j

∇xwj · ∇xwk∂yu(m−2)
n (x, 0){w̃j,k}

)
. (5.6b)

We are now in a position to prove our final results, the parametric analyt-
icity of the m–th variation of the field and DNO with respect to ε. Again,
for precision, we define quantities Dm and D̃m which quantify the radius of
convergence of the Taylor series, (5.4).
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Definition 5.2. For any integer m ≥ 2, positive real numbers Bm−1 and
Bm−2, and functions f, w1, . . . , wm ∈ Cs+2, let

Dm := |f |Cs+2 +Bm−1

m∑
j=1

|wj |Cs+2

D̃m := |f |2Cs+2 + 2Bm−1 |f |Cs+2

m∑
j=1

|wj |Cs+2

+B2
m−2

m∑
j=1

m∑
k=1,k 6=j

|wj |Cs+2 |wk|Cs+2 .

Theorem 5.3. Given an integer s ≥ 0, if

f ∈ Cs+2, ξ ∈ Hs+3/2, w1, . . . , wm ∈ Cs+2,

and the series for u(p) (0 ≤ p ≤ m−1) in (5.4) are strongly convergent, then
the series for u(m) in (5.4) converges strongly. In other words, there exist
constants C̃m and K̃m such that∥∥∥u(m)

n

∥∥∥
Hs+2

≤ K̃mB
n
m, (5.7)

for any

Bm > max
{
B0, . . . , Bm−1, 2CeC̃mDm,

√
2CeC̃mD̃m

}
,

where B0, B1, . . . , Bm−1 are given by the analyticity of u, u(1), . . . , u(m−1).

The parametric analyticity of G(m) now follows.

Theorem 5.4. Given an integer s ≥ 0, if

f ∈ Cs+2, ξ ∈ Hs+3/2, w1, . . . , wm ∈ Cs+2,

and the series for G(p) (0 ≤ p ≤ m−1) in (5.4) are strongly convergent, then
the series for G(m) in (5.4) converges strongly as an operator from Hs+3/2

to Hs+1/2. In other words, there exist constants Cm and Km such that∥∥∥G(m)
n (f)[ξ]{w}

∥∥∥
Hs+1/2

≤ KmB
n
m, (5.8)

for any

Bm > max
{
B0, . . . , Bm−1, CmDm, Cm

√
Dm

}
.
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Remark 5.5. These results would easily lead to an inductive proof for the
parametric analyticity of all variations of the field and DNO provided one
had control over the growth of the Bm as m→∞. At present, it is not clear
whether such a bound can be found so we make no such claim.

Our inductive proof again requires a recursive estimate.

Lemma 5.6. Let s ≥ 0 be an integer and let f, w1, . . . wm ∈ Cs+2. Assume

‖un‖Hs+2 ≤ K̃0B
n
0 ∀n∥∥∥u(p)

n

∥∥∥
Hs+2

≤ K̃pB
n
p 0 < p < m, ∀n∥∥∥u(m)

n

∥∥∥
Hs+2

≤ K̃mB
n
m n < N,

and constants K̃0, . . . K̃m, B0, . . . , Bm > 0. Then, if

Bm > max{B0, . . . , Bm−1}, K̃m > max{K̃0, . . . , K̃m−1},

there exists a constant C̃m such that∥∥∥F (m)
N

∥∥∥
Hs
≤ C̃mK̃m

{
DmB

N−1
m + D̃mB

N−2
m

}
.

Proof. Again, we focus our attention on one term in F
(m)
N as the others

can be handled in a similar fashion; consider F (m)
y,N and recall that since it is

∂yF
(m)
y,N which appears in F

(m)
N we measure in the Hs+1 norm.∥∥∥F (m)

y,N

∥∥∥
Hs+1

≤ Y

h

(
M |f |Cs+2

∥∥∥u(m)
N−1

∥∥∥
Hs+2

+
m∑
j=1

M |wj |Cs+2

∥∥∥u(m−1)
N

∥∥∥
Hs+2

)
+
Y

h2

(
M2 |f |Cs+1 |f |Cs+2

∥∥∥u(m)
N−2

∥∥∥
Hs+2

+M |f |Cs+1

m∑
j=1

M |wj |Cs+2

∥∥∥u(m−1)
N−1

∥∥∥
Hs+2

+M |f |Cs+2

m∑
j=1

M |wj |Cs+1

∥∥∥u(m−1)
N−1

∥∥∥
Hs+2

+
m∑
j=1

m∑
k=1,k 6=j

M2 |wj |Cs+1 |wk|Cs+2

∥∥∥u(m−2)
N

∥∥∥
Hs+2

)
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+
Y 2

h2

(
M2 |f |2Cs+2

∥∥∥u(m)
N−2

∥∥∥
Hs+2

+ 2M |f |Cs+2

m∑
j=1

M |wj |Cs+2

∥∥∥u(m−1)
N−1

∥∥∥
Hs+2

+
m∑
j=1

m∑
k=1,k 6=j

M2 |wj |Cs+2 |wk|Cs+2

∥∥∥u(m−2)
N

∥∥∥
Hs+2

)
.

Using the inductive bounds, we now conclude the following:

∥∥∥F (m)
y,N

∥∥∥
Hs+1

≤ MY

h

(
|f |Cs+2 K̃mB

N−1
m +

m∑
j=1

|wj |Cs+2 K̃m−1B
N
m−1

)
+
M2Y

h2

(
|f |2Cs+2 K̃mB

N−2
m + 2 |f |Cs+2

m∑
j=1

|wj |Cs+2 K̃m−1B
N−1
m−1

+
m∑
j=1

m∑
k=1,k 6=j

|wj |Cs+2 |wk|Cs+2 K̃m−2B
N
m−2

)
+
M2Y 2

h2

(
|f |2Cs+2 K̃mB

N−2
m + 2 |f |Cs+2

m∑
j=1

|wj |Cs+2 K̃m−1B
N−1
m−1

+
m∑
j=1

m∑
k=1,k 6=j

|wj |Cs+2 |wk|Cs+2 K̃m−2B
N
m−2

)
.

By rearranging and using

Bm > max{B0, . . . , Bm−1}, K̃m > max{K̃0, . . . , K̃m−1}

we obtain:∥∥∥F (m)
y,N

∥∥∥
Hs+1

≤ MY

h
K̃m

(
|f |Cs+2 +

m∑
j=1

|wj |Cs+2 Bm−1

)
BN−1
m

+
M2Y

h2
K̃m

(
|f |2Cs+2 + 2 |f |Cs+2

m∑
j=1

|wj |Cs+2 Bm−1

+
m∑
j=1

m∑
k=1,k 6=j

|wj |Cs+2 |wk|Cs+2 B
2
m−2

)
BN−2
m

+
M2Y 2

h2
K̃m

(
|f |2Cs+2 + 2 |f |Cs+2

m∑
j=1

|wj |Cs+2 Bm−1
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+
m∑
j=1

m∑
k=1,k 6=j

|wj |Cs+2 |wk|Cs+2 B
2
m−2

)
BN−2
m ,

and we are done if C̃m is chosen appropriately. �

We are now in a position to prove the parametric analyticity of the m–th
variation of the field, u(m).

Proof. (Theorem 5.3) We utilize an induction in n; at order n = 0 we recall
that we must solve (5.5) with

F
(m)
x,0 = −2

h

m∑
j=1

wj∇xu(m−1)
0 {w̃j} −

1
h2

m∑
j=1

m∑
k=1,k 6=j

wjwk∇xu
(m−2)
0 {w̃j,k}

+
h+ y

h

m∑
j=1

∇xwj∂yu(m−1)
0 {w̃j}

+
h+ y

h2

m∑
j=1

m∑
k=1,k 6=j

wj∇xwk∂yu
(m−2)
0 {w̃j,k},

F
(m)
y,0 =

h+ y

h

m∑
j=1

∇xwj · ∇xu(m−1)
0 {w̃j}

+
h+ y

h2

m∑
j=1

m∑
k=1,k 6=j

wj∇xwk · ∇xu
(m−2)
0 {w̃j,k}

− (h+ y)2

h2

m∑
j=1

m∑
k=1,k 6=j

∇xwj · ∇xwk∂yu
(m−2)
0 {w̃j,k},

F
(m)
h,0 =

1
h

m∑
j=1

∇xwj · ∇xu(m−1)
0 {w̃j}

+
1
h2

m∑
j=1

m∑
k=1,k 6=j

wj∇xwk · ∇xu
(m−2)
0 {w̃j,k}

− h+ y

h2

m∑
j=1

m∑
k=1,k 6=j

∇xwj · ∇xwk∂yu
(m−2)
0 {w̃j,k}.

Using Lemmas 4.4 & 4.5 we find that
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0

∥∥∥
Hs+2

≤ Ce
{2M
h

m∑
j=1

|wj |Cs+1

∥∥∥u(m−1)
0

∥∥∥
Hs+2

+
M2

h2

m∑
j=1

m∑
k=1,k 6=j

|wj |Cs+1 |wk|Cs+1

∥∥∥u(m−2)
0

∥∥∥
Hs+2

+ 2
MY

h

m∑
j=1

|wj |Cs+2

∥∥∥u(m−1)
0

∥∥∥
Hs+2

+ 2
M2Y

h2

m∑
j=1

m∑
k=1,k 6=j

|wj |Cs+1 |wk|Cs+2

∥∥∥u(m−2)
0

∥∥∥
Hs+2

+
M2Y 2

h2

m∑
j=1

m∑
k=1,k 6=j

|wj |Cs+2 |wk|Cs+2

∥∥∥u(m−2)
0

∥∥∥
Hs+2

+
M

h

m∑
j=1

|wj |Cs+2

∥∥∥u(m−1)
0

∥∥∥
Hs+2

+
M2

h2

m∑
j=1

m∑
k=1,k 6=j

|wj |Cs+1 |wk|Cs+2

∥∥∥u(m−2)
0

∥∥∥
Hs+2

+
M2Y

h2

m∑
j=1

m∑
k=1,k 6=j

|wj |Cs+2 |wk|Cs+2

∥∥∥u(m−2)
0

∥∥∥
Hs+2

}
.

We set

K̃m = (3 + 2Y )
M

h

m∑
j=1

|wj |Cs+2

∥∥∥u(m−1)
0

∥∥∥
Hs+2

+ (Y 2 + 3Y + 2)
m∑
j=1

m∑
k=1,k 6=j

|wj |Cs+2 |wk|Cs+2

∥∥∥u(m−2)
0

∥∥∥
Hs+2

,

and the case n = 0 is established. We now assume (5.7) for all n < N and
use (5.5) and Lemma 4.5 to realize∥∥∥u(m)

N

∥∥∥
Hs+2

≤ Ce
∥∥∥F (m)

N

∥∥∥
Hs
.

By our hypotheses on the analyticity of u, u(1), . . .u(m−1), Lemma 5.6 holds
which we now use to imply that∥∥∥u(m)

N

∥∥∥
Hs+2

≤ CeC̃mK̃m

{
DmB

N−1
m + D̃mB

N−2
m

}
≤ K̃mB

N
m ,
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provided we choose Bm > max
{

2CeC̃mDm,
√

2CeC̃mD̃m

}
. �

Finally, we can show the parametric analyticity of G(m).

Proof. (Theorem 5.4) By our hypotheses of the analyticity of G, G(1), . . . ,
G(m−1) we have estimates on the terms Gn, G(1)

n , . . . , G(m−1)
n , which are

used later in this proof. We proceed inductively in n and from (5.6a), we
see at order zero that

G
(m)
0 [ξ]{w} = ∂yu

(m)
0 (x, 0){w} − 1

h

m∑
j=1

wjG
(m−1)
0 (f)[ξ]{w̃j}

−
m∑
j=1

∇xwj · ∇xu(m−1)
0 (x, 0){w̃j}

− 1
h

m∑
j=1

m∑
k=1,k 6=j

wj∇xwk · ∇xu
(m−2)
0 (x, 0){w̃j,k}

+
m∑
j=1

m∑
k=1,k 6=j

∇xwj · ∇xwk∂yu
(m−2)
0 (x, 0){w̃j,k}.

We now estimate∥∥∥G(m)
0 [ξ]{w}

∥∥∥
Hs+1/2

≤
∥∥∥u(m)

0 (x, 0)
∥∥∥
Hs+3/2

+
M

h

m∑
j=1

|wj |Cs+1/2+ε

∥∥∥G(m−1)
0 (f)[ξ]{w̃j}

∥∥∥
Hs+1/2

+M

m∑
j=1

|wj |Cs+3/2+ε

∥∥∥u(m−1)
0

∥∥∥
Hs+3/2

+
M2

h

m∑
j=1

m∑
k=1,k 6=j

|wj |Cs+1/2+ε |wk|Cs+3/2+ε

×
∥∥∥u(m−2)

0

∥∥∥
Hs+3/2

+M2
m∑
j=1

m∑
k=1,k 6=j

|wj |2Cs+3/2+ε

∥∥∥u(m−2)
0

∥∥∥
Hs+3/2

≤ K̃m +
M

h

m∑
j=1

|wj |Cs+2 Km−1 +M

m∑
j=1

|wj |Cs+2 K̃m−1
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+
M2

h

m∑
j=1

m∑
k=1,k 6=j

|wj |Cs+2 |wk|Cs+2 K̃m−2

+M2
m∑
j=1

m∑
k=1,k 6=j

|wj |Cs+2 |wk|Cs+2 K̃m−2.

If we set

Km = K̃m +
M

h

m∑
j=1

|wj |Cs+2 Km−1 +M

m∑
j=1

|wj |Cs+2 K̃m−1

+
M2

h

m∑
j=1

m∑
k=1,k 6=j

|wj |Cs+2 |wk|Cs+2 K̃m−2

+M2
m∑
j=1

m∑
k=1,k 6=j

|wj |Cs+2 |wk|Cs+2 K̃m−2,

then the case n = 0 is resolved. We now suppose that (5.8) holds for n < N

and examine G(m)
N in Hs+1/2:∥∥∥G(m)

N

∥∥∥
Hs+1/2

≤
∥∥∥u(m)

N (x, 0)
∥∥∥
Hs+3/2

+
M

h

(
|f |Cs+1/2+ε

∥∥∥G(m)
N−1

∥∥∥
Hs+1/2

+
m∑
j=1

|wj |Cs+1/2+ε

∥∥∥G(m−1)
N

∥∥∥
Hs+1/2

)
+M

(
|f |Cs+3/2+ε

∥∥∥u(m)
N−1(x, 0)

∥∥∥
Hs+3/2

+
m∑
j=1

|wj |Cs+3/2+ε

∥∥∥u(m−1)
N (x, 0)

∥∥∥
Hs+3/2

)
+
M2

h

(
|f |Cs+1/2+ε |f |Cs+3/2+ε

∥∥∥u(m)
N−2(x, 0)

∥∥∥
Hs+3/2

+ |f |Cs+1/2+ε

m∑
j=1

|wj |Cs+3/2+ε

∥∥∥u(m−1)
N−1 (x, 0)

∥∥∥
Hs+3/2

+ |f |Cs+3/2+ε

m∑
j=1

|wj |Cs+1/2+ε

∥∥∥u(m−1)
N−1 (x, 0)

∥∥∥
Hs+3/2

+
m∑
j=1

m∑
k=1,k 6=j

|wj |Cs+1/2+ε |wk|Cs+3/2+ε

∥∥∥u(m−2)
N (x, 0)

∥∥∥
Hs+3/2

)
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+M2
(
|f |2Cs+3/2+ε

∥∥∥u(m)
N−2(x, 0)

∥∥∥
Hs+3/2

+ 2 |f |Cs+3/2+ε

m∑
j=1

|wj |Cs+3/2+ε

∥∥∥u(m−1)
N−1 (x, 0)

∥∥∥
Hs+3/2

+
m∑
j=1

m∑
k=1,k 6=j

|wj |Cs+3/2+ε |wk|Cs+3/2+ε

∥∥∥u(m−2)
N (x, 0)

∥∥∥
Hs+3/2

)
.

Now,∥∥∥G(m)
N

∥∥∥
Hs+1/2

≤K̃mB
N
m+

M

h

(
|f |Cs+2 KmB

N−1
m +

m∑
j=1

|wj |Cs+2 Km−1B
N
m−1

)
+M

(
|f |Cs+2 K̃mB

N−1
m +

m∑
j=1

|wj |Cs+2 K̃m−1B
N
m−1

)
+
M2

h

(
|f |2Cs+2 K̃mB

N−2
m + 2 |f |Cs+2

m∑
j=1

|wj |Cs+2 K̃m−1B
N−1
m−1

+
m∑
j=1

m∑
k=1,k 6=j

|wj |Cs+2 |wk|Cs+2 K̃m−2B
N
m−2

)
+M2

(
|f |2Cs+2 K̃mB

N−2
m + 2 |f |Cs+2

m∑
j=1

|wj |Cs+2 K̃m−1B
N−1
m−1

+
m∑
j=1

m∑
k=1,k 6=j

|wj |Cs+2 |wk|Cs+2 K̃m−2B
N
m−2

)
,

which can be bounded above by KmB
N
m provided

Bm > max{B0, . . . , Bm−1},

and Km is chosen sufficiently large (see the proof of Theorem 4.3). �
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