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This paper presents an accurate and stable numerical scheme for computation of the first
variation of the Dirichlet–Neumann operator in the context of Euler’s equations for ideal
free-surface fluid flows. The Transformed Field Expansion methodology we use is not only
numerically stable, but also employs a spectrally accurate Fourier/Chebyshev collocation
method which delivers high-fidelity solutions. This implementation follows directly from
the authors’ previous theoretical work on analyticity properties of functional variations
of Dirichlet–Neumann operators. These variations can be computed in a number of ways,
but we establish, via a variety of computational experiments, the superior effectiveness of
our new approach as compared with another popular Boundary Perturbation algorithm
(the method of Operator Expansions).
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1. Introduction

Boundary operators such as the Dirichlet–Neumann operator (DNO) appear in many models of physical phenomena,
including free-surface fluid mechanics [1], and acoustic and electromagnetic scattering [2,3]. These operators are important
as they typically permit the restatement of the governing equations at the boundary of the domain on which the problem is
posed. This reduction in dimension is clearly advantageous from both theoretical and numerical points of view and has,
therefore, been pursued by a number of authors. In the particular example of open-ocean free-surface flows (the water wave
problem) which we consider here, the governing Euler equations [4] can be recast as evolution equations for the shape of the
free-surface and the velocity potential at the surface, as shown by Zakharov [5] and Craig and Sulem [1].

In many applications it is necessary to compute the variation of the DNO with respect to the boundary shape. For exam-
ple, one of the authors [6,7] utilized a Newton’s method in a continuation algorithm for locating traveling wave solutions of
the water wave problem. Alternatively, in a linear stability analysis of solutions of the water wave problem, the variation of
the DNO must be computed to estimate the linearized water wave operator [8,9]. Despite the importance of these applica-
tions, very little has been accomplished in the development of algorithms for approximating variations of the DNO. In this
paper we present, for the first time, a stable and high-order numerical scheme for their computation.

Many algorithms are available for the simulation of boundary operators such as the DNO. Methods based upon integral
equations, finite differences, and finite elements are all available, however, if the shape of the geometry is a small deforma-
tion of a simple one (e.g., a separable domain such as a rectangle in two dimensions) then an algorithm based upon
perturbation series is natural. For the computation of DNO, several Boundary Perturbation algorithms are available including
the methods of Operator Expansions (OE) [1,10–15], Field Expansions (FE) [16–22], and Transformed Field Expansions (TFE)
. All rights reserved.

x: +1 312 996 1491.
ioli), nicholls@math.uic.edu (D.P. Nicholls).

http://dx.doi.org/10.1016/j.jcp.2009.10.021
mailto:ccfazioli@math.uic.edu
mailto:nicholls@math.uic.edu
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp


C. Fazioli, D.P. Nicholls / Journal of Computational Physics 229 (2010) 906–920 907
[23–25]. The former two methods are easy to implement, highly accurate within their domain of applicability (e.g., the excel-
lent agreement between the numerical simulations of [13,15] and wave tank experiments), and have computational com-
plexity competitive with state-of-the-art integral equation solvers [26]. However, these methods can become unstable
when applied to domains which are large and/or irregular deformations of the simple geometry. Not only was this behavior
explicitly demonstrated in [23–25], but also a new approach, precisely the TFE method mentioned above, was developed to
overcome these shortcomings and then verified to be stable and highly accurate.

In addition to the numerical stability properties of the TFE recursions, they can also be used to place the theory of func-
tional variations of boundary operators on a solid footing [27]. In particular, the boundary flattening change of variables
which constitutes the first step of the TFE analysis immediately removes the boundary shape from the specification of
the domain to the inhomogeneity of the governing differential equations. At this point a functional variation with respect
to this boundary deformation is now a simple exercise in functional calculus utilizing nothing more sophisticated than
the product rule.

In this contribution we will show that the numerical stability and accuracy properties of the TFE algorithm which were
demonstrated for the computation of DNO [23–25] can be extended to their functional variations. While similar in spirit to
this previous work, there are some significant new algorithmic challenges which must be overcome. For instance, the addi-
tional computational complexity and memory requirements associated to not only computing and storing the field and DNO
(necessary for computing their variation, see (20) and (21), but also the more involved inhomogeneities associated to the
first variation; see again (20) and (21). Additionally, this new algorithm is, to the authors’ knowledge, the only existent meth-
od for the stable and high-order computation of variations of the DNO.

The rest of the paper is organized as follows: The Euler equations of free-surface fluid mechanics and the role of the DNO
in a surface formulation of these equations is given in Section 2. In Section 3 we present two Boundary Perturbation methods
for the computation of DNO and their first variations, the method of Operator Expansions (fully described in Section A), and
our new Transformed Field Expansions (Section 3.1). In Section 4 we outline our numerical method, Section 4.1, and present
new numerical results in Section 4.2 which demonstrate the advantageous convergence properties of our new algorithm.
Concluding remarks are given in Section 5.

2. Governing equations

The free-surface Euler equations constitute a model for the evolution of a large body of water (e.g., an ocean or lake), as-
sumed to be an ideal fluid, under the influence of gravity (effects of capillarity can easily be incorporated if desired). For a
precise statement, consider the domain
Sh;g :¼ fðx; yÞ 2 Rd�1 � Rj � h < y < gðx; tÞg;
where h is the mean depth of fluid, d ¼ 2;3 is the problem dimension, and g is the shape of the free-surface deformation from
the rest state y ¼ 0. The equations of motion (Euler equations) are [4]
Du ¼ 0 in Sh;g; ð1aÞ
@yu ¼ 0 at y ¼ �h; ð1bÞ
@tg� @yuþrxg � rxu ¼ 0 at y ¼ g; ð1cÞ

@tuþ ~ggþ 1
2
ruj j2 ¼ 0 at y ¼ g; ð1dÞ
where u is the velocity potential (the velocity is given by~u ¼ ru) and ~g is the gravitational constant. In the lateral direction
we specify the classical periodic boundary conditions,
uðxþ c; y; tÞ ¼ uðx; y; tÞ; gðxþ c; tÞ ¼ gðx; tÞ; 8 c 2 C;
where C is a lattice in Rd�1. This lattice C generates a conjugate lattice C0 of wavenumbers (e.g., if C ¼ LZ�MZ then
C0 ¼ ð2p=LÞZ� ð2p=MÞZ) thus providing a convenient and compact prescription of the Fourier series of a function, e.g.
f ðxÞ ¼
X
k2C0

f̂ keik�x;
where f̂ k is the kth Fourier coefficient of f.
Zakharov [5] restated the problem (1) as a Hamiltonian system with the surface quantities gðx; tÞ and nðx; tÞ :¼uðx;gðx; tÞ; tÞ

as the canonical variables. Craig and Sulem [1] made this characterization much more explicit with the introduction of the
Dirichlet–Neumann operator (DNO). To define the DNO, consider the rather generic elliptic problem inspired by (1)
Dv ¼ 0 in Sh;g ; ð2aÞ
vðx; gðxÞÞ ¼ nðxÞ; ð2bÞ
@yvðx;�hÞ ¼ 0; ð2cÞ
vðxþ c; yÞ ¼ vðx; yÞ 8 c 2 C: ð2dÞ
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Provided that g is sufficiently smooth (2) will have a unique solution whose normal derivative, mðxÞ, can be computed at the
surface y ¼ g. This mapping of the Dirichlet data n to Neumann data m is precisely the DNO which we denote
GðgÞ½n� :¼ ½rv�y¼g � N ¼ @yvðx; gðxÞÞ � rxg � rxvðx; gðxÞÞ; ð3Þ
where N ¼ ð1;�rxgÞT is an exterior normal. Given this definition of the DNO, a straightforward application of the chain rule
transforms (1) to
@tg ¼ GðgÞ½n�; ð4aÞ
@tn ¼ �~gg� 1

2 1þ jrxgj2
� � jrxnj2 � ðGðgÞ½n�Þ2 � 2 rxn � rxgð ÞGðgÞ½n� þ jrxnj2jrxgj2 � rxn � rxgð Þ2

h i
; ð4bÞ
c.f. [1].
Of course there are many interesting open questions regarding the theory and application of the model (4). One of these is

the stability theory of periodic traveling wave solutions which has motivated the current contribution. To see how functional
variations of the DNO arise in this context let us write (4) abstractly as
@tu ¼ FðuÞ; ð5Þ
where u ¼ ðg; nÞT , and consider a periodic traveling wave solution uðx; tÞ ¼ �uðx� ctÞ. One can investigate the dynamic stabil-
ity of these traveling waves by considering the evolution of a small perturbation ~u:
uðx; tÞ ¼ �uðx� ctÞ þ d~uðx; tÞ; d� 1:
Upon insertion of this form into (5) we see that this perturbation satisfies the evolution equation
@t ~u ¼ duFð�uÞ½~u� þ OðdÞ: ð6Þ

Here, duF denotes the first functional variation of F ‘‘in the direction” of ~u, evaluated at the equilibrium point �u. If we ignore
the OðdÞ contributions (a linear stability analysis) and postulate that solutions have the form
~uðx; tÞ ¼ ektwðxÞ

(a spectral stability analysis), then we can deduce stability properties of these traveling waves from the eigenproblem
duFð�uÞ½w� ¼ kw:
We do not pursue this idea further in this paper, but we do point out that for our system (4), the first functional variation of
the DNO is a crucial element of duF which must be faithfully simulated for a meaningful study of stability. The point of our
paper is to provide an algorithm for exactly this purpose.

3. Boundary Perturbations

Having restated the Euler equations (1) in terms of surface variables (4) via the specification of Zakharov [5] and Craig and
Sulem [1], a critical numerical concern is the robust computation of the DNO. Moreover, given that the first variation of the
DNO arises in a number of important contexts (e.g., Newton’s method, spectral stability analysis), the accurate simulation of
this operator is also of crucial importance. As we stated in Section 1, if the surface deformation is not too large then a per-
turbative method is natural and, as we shall see, can deliver highly accurate solutions in a robust fashion. In this section we
consider two such algorithms, the ‘‘Operator Expansions” (OE) and ‘‘Transformed Field Expansions” (TFE) methods, which are
amenable to the approximation of the both the DNO and its variation.

Before beginning, we note that the theorems of Calderón [28], Coifman and Meyer [29], Craig et al. [30], and Nicholls and
Reitich [23] demonstrate that the DNO is analytic with respect to Boundary Perturbations so that the expansion
GðgÞ½n� ¼ Gðef Þ½n� ¼
X1
n¼0

Gnðf Þ½n�en ð7Þ
converges strongly. Similarly, the authors showed in their previous work [27] that the first functional variation of the DNO
Gð1ÞðgÞ½n�fwg :¼ dgGðgÞ½n�fwg :¼ lim
s!0

1
s
ðGðg þ swÞ½n� � GðgÞ½n�Þ
is also analytic with respect to g, i.e.
Gð1ÞðgÞ½n�fwg ¼ Gð1Þðef Þ½n�fwg ¼
X1
n¼0

Gð1Þn ðf Þ½n�fwgen: ð8Þ
If we can find convenient formulas for the Gn and Gð1Þn (provided by the OE and TFE recursions) then highly accurate approx-
imations of the DNO and its first variation can be given by, respectively
GNðef Þ½n� :¼
XN

n¼0

Gnðf Þ½n�en; ð9Þ
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and
Gð1;NÞðef Þ½n�fwg :¼
XN

n¼0

Gð1Þn ðf Þ½n�fwgen: ð10Þ
One popular Boundary Perturbation approach to the approximation of the Gn in the expansion of the DNO, Eq. (7), is the
method of Operator Expansions (OE) due to Milder [10–12] and Craig and Sulem [1]. As this method has been fully elucidated
in a number of publications (see the previous references and [24] for instance) we omit the details here and refer the inter-
ested reader to Appendix A. Included also in this appendix is the extension of this OE method to the computation of the first
variation of DNO.

3.1. Transformed Field Expansions

The method of ‘‘Transformed Field Expansions” (TFE) follows a rather different philosophy than the OE method. We begin
with a change of variables
x0 ¼ x; y0 ¼ h
y� gðxÞ
hþ gðxÞ

� �
; ð11Þ
which transforms the domain Sh;g to Sh;0. Furthermore, the transformed field quantity
uðx0; y0Þ :¼ v x0;
y0ðhþ gðx0ÞÞ

h
þ gðx0Þ

� �
;

satisfies, upon dropping primes,
Du ¼ Fðx; y; g;uÞ in Sh;0; ð12aÞ

uðx;0Þ ¼ nðxÞ; ð12bÞ

@yuðx;�hÞ ¼ 0; ð12cÞ

uðxþ c; yÞ ¼ uðx; yÞ 8 c 2 C; ð12dÞ
where
F ¼ divx½Fx� þ @yFy þ Fh; ð12eÞ
and the x-derivative, y-derivative, and homogeneous parts of F are given by:
Fx ¼ �
2
h

grxu� 1

h2 g2rxuþ hþ y
h
rxg@yuþ hþ y

h2 grxg@yu; ð12fÞ

Fy ¼
hþ y

h
rxg � rxuþ hþ y

h2 grxg � rxu� ðhþ yÞ2

h2 rxgj j2@yu; ð12gÞ
and
Fh ¼
1
h
rxg � rxuþ 1

h2 grxg � rxu� hþ y

h2 jrxgj2@yu: ð12hÞ
Additionally, the DNO transforms to
GðgÞ½n� ¼ @yuðx; 0Þ þ Hðx; g;uÞ; ð13aÞ
where
H ¼ �1
h

gGðgÞ½n� � rxg � rxuðx;0Þ � 1
h

grxg � rxuðx; 0Þ þ rxgj j2@yuðx;0Þ; ð13bÞ
c.f. [23]. The important fact about this particular gathering of terms is that F and H are OðgÞ.
In this new set of variables the first variation of the DNO can be easily computed, though we also need to introduce the

first variation of the (transformed) field u as well:
uð1Þðx; y; gÞfwg :¼ dguðx; y; gÞfwg :¼ lim
s!0

1
s
ðuðx; y; g þ swÞ � uðx; y; gÞÞ:
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With a straightforward application of the product rule to (12) we find the following elliptic problem
Duð1Þ ¼ Fð1Þðx; y; g;w;u;uð1ÞÞ in Sh;0; ð14aÞ
uð1Þðx;0Þ ¼ 0; ð14bÞ
@yuð1Þðx;�hÞ ¼ 0; ð14cÞ
uð1Þðxþ c; yÞ ¼ uð1Þðx; yÞ 8 c 2 C; ð14dÞ
where
Fð1Þ ¼ divx½Fð1Þx � þ @yFð1Þy þ Fð1Þh ; ð14eÞ

Fð1Þx ¼ �
2
h

wrxu� 2
h

grxuð1Þ � 2

h2 gwrxu� 1

h2 g2rxuð1Þ þ hþ y
h
rxw@yuþ hþ y

h
rxg@yuð1Þ þ hþ y

h2 wrxg@yu

þ hþ y

h2 grxw@yuþ hþ y

h2 grxg@yuð1Þ; ð14fÞ

Fð1Þy ¼
hþ y

h
rxw � rxuþ hþ y

h
rxg � rxuð1Þ þ hþ y

h2 wrxg � rxuþ hþ y

h2 grxw � rxuþ hþ y

h2 grxg � rxuð1Þ

� 2ðhþ yÞ2

h2 rxw � rxg@yu� ðhþ yÞ2

h2 jrxgj2@yuð1Þ; ð14gÞ
and
Fð1Þh ¼
1
h
rxw � rxuþ 1

h
rxg � rxuð1Þ þ 1

h2 wrxg � rxuþ 1

h2 grxw � rxuþ 1

h2 grxg � rxuð1Þ

� 2ðhþ yÞ
h2 rxw � rxg@yu� hþ y

h2 rxgj j2@yuð1Þ: ð14hÞ
Next, the variation of the DNO satisfies the formula
Gð1ÞðgÞ½n�fwg ¼ @yuð1Þðx; 0Þ þ Hð1ÞðxÞ; ð15aÞ
where
Hð1Þ ¼ �1
h

wGðgÞ½n� � 1
h

gGð1ÞðgÞ½n�fwg �rxw � rxuðx;0Þ � rxg � rxuð1Þðx;0Þ � 1
h

wrxg � rxuðx;0Þ

� 1
h

grxw � rxuðx;0Þ � 1
h

grxg � rxuð1Þðx;0Þ þ 2rxw � rxg@yuðx; 0Þ þ jrxgj2@yuð1Þðx; 0Þ; ð15bÞ
c.f. [27].
With (12)–(15) in hand the TFE method now instructs us to make the following Taylor series expansions for the field and

DNO
uðx; y; eÞ ¼
X1
n¼0

unðx; yÞen; Gðef Þ½n� ¼
X1
n¼0

Gnðf Þ½n�en; ð16Þ
and their first variations
uð1Þðx; y; eÞ ¼
X1
n¼0

uð1Þn ðx; yÞen; Gð1Þðef Þ½n� ¼
X1
n¼0

Gð1Þn ðf Þ½n�en; ð17Þ
both of which can be shown to converge strongly in appropriate function spaces [23,25,27].
Upon insertion of (16) into (12), we find that the un must satisfy
Dun ¼ Fnðx; yÞ in Sh;0; ð18aÞ
unðx;0Þ ¼ dn;0nðxÞ; ð18bÞ
@yunðx;�hÞ ¼ 0; ð18cÞ
unðxþ c; yÞ ¼ unðx; yÞ 8 c 2 C; ð18dÞ
where dn;m is the Kronecker delta,
Fn ¼ divx½Fx;n� þ @yFy;n þ Fh;n; ð18eÞ
Fx;n ¼ �
2
h

frxun�1 �
1

h2 f 2rxun�2 þ
hþ y

h
rxf@yun�1 þ

hþ y

h2 frxf@yun�2; ð18fÞ
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Fy;n ¼
hþ y

h
rxf � rxun�1 þ

hþ y

h2 frxf � rxun�2 �
ðhþ yÞ2

h2 jrxf j2@yun�2; ð18gÞ
and
Fh;n ¼
1
h
rxf � rxun�1 þ

1

h2 frxf � rxun�2 �
hþ y

h2 jrxf j2@yun�2: ð18hÞ
In these and future formulas any function with a negative index should be replaced by zero. Furthermore, the expansion of G
inserted into (13) yields
Gnðf Þ½n� ¼ @yunðx;0Þ þ HnðxÞ; ð19aÞ
where
Hn ¼ �
1
h

fGn�1ðf Þ½n� � rxf � rxun�1ðx;0Þ �
1
h

frxf � rxun�2ðx;0Þ þ jrxf j2@yun�2ðx;0Þ; ð19bÞ
see [23].
Finally, by putting (17) into (14), we discover that
Duð1Þn ¼ Fð1Þn ðx; yÞ in Sh;0; ð20aÞ
uð1Þn ðx;0Þ ¼ 0; ð20bÞ
@yuð1Þn ðx;�hÞ ¼ 0; ð20cÞ
uð1Þn ðxþ c; yÞ ¼ uð1Þn ðx; yÞ 8 c 2 C; ð20dÞ
where
Fð1Þn ¼ divx½Fð1Þx;n� þ @yFð1Þy;n þ Fð1Þh;n; ð20eÞ
and
Fð1Þx;n ¼ �
2
h

wrxun �
2
h

frxuð1Þn�1 �
2

h2 wfrxun�1 �
1

h2 f 2rxuð1Þn�2 þ
hþ y

h
rxw@yun þ

hþ y
h
rxf@yuð1Þn�1

þ hþ y

h2 wrxf@yun�1 þ
hþ y

h2 frxw@yun�1 þ
hþ y

h2 frxf@yuð1Þn�2; ð20fÞ

Fð1Þy;n ¼
hþ y

h
rxw � rxun þ

hþ y
h
rxf � rxuð1Þn�1 þ

hþ y

h2 wrxf � rxun�1 þ
hþ y

h2 frxw � rxun�1 þ
hþ y

h2 frxf � rxuð1Þn�2

� 2ðhþ yÞ2

h2 rxw � rxf@yun�1 �
ðhþ yÞ2

h2 jrxf j2@yuð1Þn�2; ð20gÞ
and
Fð1Þh;n ¼
1
h
rxw � rxun þ

1
h
rxf � rxuð1Þn�1 þ

1

h2 wrxf � rxun�1 þ
1

h2 frxw � rxun�1 þ
1

h2 frxf � rxuð1Þn�2

� 2ðhþ yÞ
h2 rxw � rxf@yun�1 �

hþ y

h2 jrxf j2@yuð1Þn�2: ð20hÞ
In a similar fashion, the Gð1Þn can be computed via
Gð1Þn ðf Þ½n�fwg ¼ @yuð1Þn ðx;0Þ þ Hð1Þn ðxÞ; ð21aÞ
where
Hð1Þn ¼ �
1
h

wGnðf Þ½n� �
1
h

fGð1Þn�1ðf Þ½n�fwg �rxw � rxunðx;0Þ � rxf � rxuð1Þn�1ðx;0Þ �
1
h

wrxf � rxun�1ðx;0Þ

� 1
h

frxw � rxun�1ðx;0Þ �
1
h

frxf � rxuð1Þn�2ðx;0Þ þ 2rxw � rxf@yun�1ðx;0Þ þ jrxf j2@yuð1Þn�2ðx; 0Þ; ð21bÞ
see [27].

4. Numerical results

We are now in a position to compare the computational capabilities of the Operator Expansion (OE) recursions (28) to
their Transformed Field Expansions (TFE) counterparts (21) for the simulation of the first variation of the Dirichlet–Neumann
operator (DNO). For the numerical implementation of each method we follow the high-order/spectral philosophy of Craig
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and Sulem [1] and Nicholls and Reitich [24]. These numerical simulations are then compared with a specially constructed
exact solution which provides, for given Dirichlet data, the corresponding Neumann data. We test these numerical methods
for a variety of surface deformations, g, and variation directions, w, with differing smoothness properties. As we shall see,
while the OE method works well within its domain of applicability (small and regular deformations requiring only a small
number of terms in the Taylor series of the variation of the DNO), the computation of higher order terms is unreliable. By
contrast, our new TFE recursions can be robustly computed for any perturbation order leading to high-fidelity solutions
for any choice of deformation or direction.

4.1. Numerical method

As we mentioned above, we will follow a high-order/spectral philosophy to approximate the first variation of the DNO by
both the OE and TFE methods. As we remarked in (10), we will approximate this variation, Gð1Þ, by the truncated Taylor series
Gð1;NÞðef Þ½n�fwg :¼
XN

n¼0

Gð1Þn ðf Þ½n�fwgen:
For simplicity we will focus on the d ¼ 2 dimensional problem and further set the periodicity of our profiles to be L ¼ 2p. In
this case the OE method simulates each of the Gð1Þn by the truncated Fourier series
Gð1Þn ðxÞ � Gð1Þn;Nx
:¼

XNx=2�1

k¼�Nx=2

bGð1Þn ðkÞeikx:
In (28) it is necessary to compute not only classical derivatives, e.g. D, but also Fourier multipliers such as jDjm. Both are eas-
ily accomplished via the Discrete Fourier Transform (DFT) algorithm, accelerated by the Fast Fourier Transform (FFT), as all of
these operators can be applied pointwise to the Fourier coefficients of the relevant functions. Products appearing in (28) are
accomplished via the (inverse) DFT and pointwise multiplication in physical space.

The specification for the TFE method is somewhat more involved as a discretization in the vertical, y, direction is required
for both the field and its first variation. Thus, we approximate u and uð1Þ by
un;Nx ;Ny ðx; yÞ :¼
XNy

l¼0

XNx=2�1

k¼�Nx=2

ûnðk; lÞTl
2yþ h

h

� �
eikx; ð22aÞ
uð1Þn;Nx ;Ny
ðx; yÞ :¼

XNy

l¼0

XNx=2�1

k¼�Nx=2

ûð1Þn ðk; lÞTl
2yþ h

h

� �
eikx; ð22bÞ
where Tl is the lth Chebyshev polynomial, and, again,
Gð1Þn ðxÞ � Gð1Þn;Nx
:¼

XNx=2�1

k¼�Nx=2

bGð1Þn ðkÞeikx:
Upon insertion of (22) into (20) we realize that a two-point boundary value problem must be solved (c.f. [24]) which we
accomplish with a Chebyshev tau approach [31,32]. After this is accomplished then all other derivatives and multiplications
are completed with the standard approach of DFT/DCT (Discrete Chebyshev transform) coupled to pointwise multiplication
on either the Fourier/Chebyshev or physical side. As with the computation of DNO, the operation counts are
OðNx logðNxÞNÞ; OðNx logðNxÞNy logðNyÞNÞ;
for the OE and TFE methods, respectively. While disadvantaged in terms of computational complexity versus the OE algo-
rithm, the TFE method is mandated for profiles too large and/or too rough for the OE formulation (see Figs. 1–11).

To test our numerical simulations we take advantage of the fact that it is very easy to build a class of exact solutions for
the DNO problem, and thus the first variation of the DNO. As was described in [24], consider the function
ukðx; yÞ :¼ coshðjkjðyþ hÞÞeikx; k 2 Z:
This function satisfies (2a), (2c) and (2d), and if we now choose a boundary deformation gðxÞ we can specify Dirichlet data
nkðxÞ :¼ coshðjkjðg þ hÞÞeikx;
which has the exact Neumann data:
mkðxÞ :¼ ð@yuk � ð@xgÞ@xukÞy¼gðxÞ ¼ fjkj sinhðjkjðg þ hÞÞ � ð@xgÞðikÞ coshð kj jðg þ hÞÞgeikx:
With this fnk; mkg pair it is now easy to test the convergence of simulations of the DNO. For the first variation of the DNO we
have that
mð1Þk fwg :¼ lim
s!0

1
s
ðmkðx; g þ swÞ � mkðx; gÞÞ
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Fig. 1. Plot of relative L2 error for the OE and TFE methods in the computation of the first variation of the DNO with smooth deformation, (23a), and smooth
direction, (24a). The numerical parameters were Nx ¼ 256; Ny ¼ 64; N ¼ 40, and e ¼ 0:3.
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Fig. 2. Plot of relative L2 error for the OE and TFE methods in the computation of the first variation of the DNO with smooth deformation, (23a), and rough
direction, (24b). The numerical parameters were Nx ¼ 256; Ny ¼ 64; N ¼ 40, and e ¼ 0:3.
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which is easily computed as
mð1Þk fwg ¼ fjkj
2 coshðjkjðg þ hÞÞw� ð@xwÞðikÞ coshðjkjðg þ hÞÞ � ð@xgÞðikÞjkj sinhðjkjðg þ hÞÞwgeikx:
It would seem that we are ready to proceed to the testing of our new algorithms save for a subtle observation: For this exam-
ple the Dirichlet data does depend explicitly upon g. Thus, to be careful we write the relationship
GðgÞ½nkðx; gÞ� ¼ mkðx; gÞ;
differentiating with respect to g we find
Gð1ÞðgÞ½nkðx; gÞ�fwg þ GðgÞ½nð1Þðx; gÞfwg� ¼ mð1Þk ðx; gÞfwg:
Thus, to complete our study we need
nð1Þk fwg ¼ jkj sinhðjkjðg þ hÞÞweikx;
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Fig. 3. Plot of relative L2 error for the OE and TFE methods in the computation of the first variation of the DNO with smooth deformation, (23a), and
Lipschitz direction, (24c). The numerical parameters were Nx ¼ 256; Ny ¼ 64; N ¼ 40, and e ¼ 0:3.
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Fig. 4. Plot of relative L2 error for the OE and TFE methods in the computation of the first variation of the DNO with rough deformation, (23b), and smooth
direction, (24a). The numerical parameters were Nx ¼ 256; Ny ¼ 64; N ¼ 40, and e ¼ 0:3.
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and thus
Gð1ÞðgÞ½nkðx; gÞ�fwg ¼ mð1Þk ðx; gÞfwg � GðgÞ½nð1Þðx; gÞfwg�
is our exact solution.

4.2. Results

Before presenting our results we state the families of profiles, g ¼ ef , and variation directions, w, employed in our numer-
ical studies. As we shall see, the performance of both the OE and TFE methods depend upon the smoothness of the underlying
profiles. For this reason we have selected three profiles
fsðxÞ ¼ sinðxÞ; ð23aÞ
frðxÞ ¼ Ax4ð2p� xÞ4 þ B; ð23bÞ

fLðxÞ ¼
� 2

p

� �
xþ 1 x 2 ½0;pÞ;

2
p

� �
x� 3 x 2 ½p;2pÞ;

(
ð23cÞ
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Fig. 5. Plot of relative L2 error for the OE and TFE methods in the computation of the first variation of the DNO with rough deformation, (23b), and rough
direction, (24b). The numerical parameters were Nx ¼ 256; Ny ¼ 64; N ¼ 40, and e ¼ 0:3.
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Fig. 6. Plot of relative L2 error for the OE and TFE methods in the computation of the first variation of the DNO with rough deformation, (23b), and Lipschitz
direction, (24c). The numerical parameters were Nx ¼ 256; Ny ¼ 64; N ¼ 40, and e ¼ 0:3.
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belonging to three quite different function spaces. The first, fs, is ‘‘smooth” (in fact analytic), the second, fr , is C4 (‘‘rough”),
while the third, fL, is Lipschitz. In a similar fashion we have chosen three directions
wsðxÞ ¼ � sinð2xÞ; ð24aÞ
wrðxÞ ¼ A0x3ð2p� xÞ3 þ B0; ð24bÞ

wLðxÞ ¼
3
2

� 2
p

� �
xþ 1

2 x 2 ½0;p=2Þ;
2
p

� �
x� 3

2 x 2 ½p=2;pÞ;
� 2

p

� �
xþ 5

2 x 2 ½p;3p=2Þ;
2
p

� �
x� 7

2 x 2 ½3p=2;2pÞ:

8>>><>>>: ð24cÞ
Again, these correspond to ‘‘smooth,” ‘‘rough” ðC3Þ, and Lipschitz profiles. The constants A;A0;B;B0 are chosen so that the func-
tions have zero mean and Oð1Þ amplitude and slope.

At this point we display results of OE and TFE simulations of the DNO and its first variation using the truncated Taylor
series (9) and (10) via (26), (19), (28), and (21). In all of these runs we set Nx ¼ 256;Ny ¼ 64 (for the TFE method), and
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Fig. 7. Plot of relative L2 error for the OE and TFE methods in the computation of the first variation of the DNO with Lipschitz deformation, (23c), and
smooth direction, (24a). The numerical parameters were Nx ¼ 256; Ny ¼ 64; N ¼ 40, and e ¼ 0:3.
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Fig. 8. Plot of relative L2 error for the OE and TFE methods in the computation of the first variation of the DNO with Lipschitz deformation, (23c), and rough
direction, (24b). The numerical parameters were Nx ¼ 256; Ny ¼ 64; N ¼ 40, and e ¼ 0:3.
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N ¼ 40, and to minimize the effects of aliasing the Fourier representations of all profiles f and directions w were truncated
beyond wavenumber 20. Furthermore, the common perturbation value of e ¼ 0:3 was utilized for all simulations.

In Fig. 1 we see that, for a smooth deformation fs and a smooth direction ws, both the OE and TFE methods deliver reliable
results through the first six perturbation orders. However, beyond the seventh order the performance of the OE recursions
deteriorate while the TFE method continues to improve (all the way to nearly machine precision by N ¼ 23). In Figs. 2 and 3
we see similar behavior for the case of the smooth deformation, fs, and rough, wr , and Lipschitz, wL, directions, respectively.
Again, the OE methodology gives excellent results through four and six perturbation orders respectively before diverging,
while the TFE recursions continue to improve as the perturbation orders increase (again giving nearly machine precision
for some N � 22;23).

In Figs. 4–6 we repeat these experiments with the C4 deformation, fr , and smooth, C3, and Lipschitz directions, respec-
tively. We notice very similar behavior to that observed in the smooth deformation case. Excellent convergence of both algo-
rithms though three perturbation orders followed by divergence of the OE method compared with persistent convergence of
the TFE recursions eventually approaching machine precision.

Finally, in Figs. 7–9 we conduct the same experiments with the Lipschitz deformation, fL, and smooth, C3, and Lipschitz
directions, respectively. The computational properties of the OE and TFE algorithms are much the same in this case save that
the divergence of OE occurs for a slightly larger value of n.
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Fig. 10. Plot of relative L2 error for the OE and TFE methods in the computation of the first variation of the DNO with smooth deformation, (23a), and
smooth direction, (24a). The numerical parameters were Nx ¼ 256; Ny ¼ 64; N ¼ 40, and e ¼ 0:1.
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Fig. 9. Plot of relative L2 error for the OE and TFE methods in the computation of the first variation of the DNO with Lipschitz deformation, (23c), and
Lipschitz direction, (24c). The numerical parameters were Nx ¼ 256; Ny ¼ 64; N ¼ 40, and e ¼ 0:3.
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Remark 1. Regarding the choice of the vertical discretization parameter Ny, for all of the results presented here Ny ¼ 64 was
sufficient to resolve the solution in the vertical direction and thus we retained this value for consistency. However, if the
depth of the fluid were increased drastically this value would no longer suffice and a larger one must be selected. One
method for avoiding this issue (which we do not pursue in this paper) is to introduce an ‘‘Artificial Boundary” to the problem
(see, e.g., [33]) at y ¼ a below the lowest point of the traveling wave, but well above the bottom of the fluid. One of the
authors in collaboration with F. Reitich (Nicholls and Reitich [33]) showed how this could be accomplished with an exact
boundary condition at y ¼ a. In this way the problem domain can be significantly reduced allowing a moderate choice of Ny

irrespective of fluid depth.

Remark 2. The rate of convergence of these Boundary Perturbation methods generally depend upon the size and/or smooth-
ness of the problem domain. Such smoothness effects are evident in Figs. 1–9, though the smoothness of the boundary plays
a stronger role than that of the direction as the latter only appears linearly while the former in a very nonlinear fashion. To
investigate the role of deformation size as well as roughness we consider the convergence experiments described above in
two ‘‘extreme” cases: Very smooth and small perturbation, and very rough and large perturbation. The results of this exper-
iment for a smooth deformation, a smooth direction, and a rather small value of e ¼ 0:1 appear in Fig. 10. Here we see that
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Fig. 11. Plot of relative L2 error for the OE and TFE methods in the computation of the first variation of the DNO with Lipschitz deformation, (23c), and
Lipschitz direction, (24c). The numerical parameters were Nx ¼ 256; Ny ¼ 64; N ¼ 40, and e ¼ 0:9.
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the relative errors realized by the OE algorithm are far smaller (roughly 10�8) than those seen at e ¼ 0:3 (about 10�5, see
Fig. 1). The outcome in the case of a Lipschitz deformation, a Lipschitz direction, and a large value of e ¼ 0:9 are depicted
in Fig. 11. In this case we see that the relative errors delivered by the OE algorithm are significantly larger (roughly 10�2) than
those seen at e ¼ 0:3 (about 10�5, see Fig. 9).
5. Conclusions

In this paper we have presented a novel, stable, and highly accurate method for the simulation of the first variation of the
Dirichlet–Neumann operator. We compared the numerical properties of this Transformed Field Expansions method with an-
other popular Boundary Perturbation approach, the method of Operator Expansions, for a variety of boundary shapes and
variation directions. While the details of these experiments vary as the shape or direction is changed, the general conclusions
are the same. The classical Operator Expansions method gives accurate answers for a certain number of perturbation orders,
before divergence sets in. By contrast, our new Transformed Field Expansions method delivers errors which are never worse
than those produced by Operator Expansions, while significantly improving on this method for higher perturbation orders. In
fact, provided that enough perturbation orders are retained, machine accuracy can always be attained with our new method.
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Appendix A. Operator Expansions

In this appendix we give a brief overview of the derivation of the Operator Expansions (OE) method for computing the Gn

and Gð1Þn in the expansions of the DNO and its first variation (see (7) and (8)). Consider the functions
vkðx; yÞ ¼ coshðjkjðyþ hÞÞeik�x; k 2 C0;
which satisfy Eqs. (2a), (2c) and (2d) of the elliptic problem which defines the DNO. From the definition of the DNO, (3), we
have
Gðef Þ½coshðjkjðef þ hÞÞeik�x� ¼ ð@y � erxf � rxÞðcoshðjkjðyþ hÞÞeik�xÞy¼ef : ð25Þ
Expanding the DNO, G, and the exponentials in the equation above in a power series in e, we obtain expressions for the Gn. In
the case n ¼ 0 we recover
G0½eik�x� ¼ jkj tanhðhjkjÞeik�x ¼ jDj tanhðhjDjÞeik�x;
using the Fourier multiplier notation D :¼ ð1=iÞrx. As generic L2 functions can be uniquely expressed in terms of their Fourier
series we identify
G0½n� ¼
X
k2C0
jkj tanhðhjkjÞn̂keik�x ¼ jDj tanhðhjDjÞn:
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This can be extended to higher orders resulting in the following formulas (c.f. [1,6]). For odd numbered terms n ¼ 2j� 1 > 0,
we have:
G2j�1ðf Þ ¼
1

ð2j� 1Þ! D � f 2j�1DjDj2ðj�1Þ �
Xj�1

s¼0

1
ð2ðj� sÞ � 1Þ! G2sðf Þ½f 2ðj�sÞ�1jDj2ðj�s�1ÞG0�

�
Xj�2

s¼0

1
ð2ðj� s� 1ÞÞ! G2sþ1ðf Þ½f 2ðj�s�1ÞjDj2ðj�s�1Þ�:
For even numbered terms n ¼ 2j > 0:
G2jðf Þ ¼
1
ð2jÞ! D � f 2jDjDj2ðj�1ÞG0 �

Xj�1

s¼0

1
ð2ðj� sÞÞ! G2sðf Þ½f 2ðj�sÞjDj2ðj�sÞ� �

Xj�1

s¼0

1
ð2ðj� sÞ � 1Þ! G2sþ1ðf Þ½f 2ðj�sÞ�1jDj2ðj�s�1ÞG0�:
Self-adjointness properties of the DNO, e.g.,
G� ¼ G; G�n ¼ Gn; jDj� ¼ jDj;
allow us write these as
G0 ¼ jDj tanhðhjDjÞ; ð26aÞ

G2j�1ðf Þ ¼
1

ð2j� 1Þ! Dj j2ðj�1ÞD � f 2j�1D�
Xj�1

s¼0

1
ð2ðj� sÞ � 1Þ! G0jDj2ðj�s�1Þf 2ðj�sÞ�1G2sðf Þ

�
Xj�2

s¼0

1
ð2ðj� s� 1ÞÞ! jDj

2ðj�s�1Þf 2ðj�s�1ÞG2sþ1ðf Þ; ð26bÞ

G2jðf Þ ¼
1
ð2jÞ! G0jDj2ðj�1ÞD � f 2jD�

Xj�1

s¼0

1
ð2ðj� sÞÞ! jDj

2ðj�sÞf 2ðj�sÞG2sðf Þ

�
Xj�1

s¼0

1
ð2ðj� sÞ � 1Þ! G0jDj2ðj�s�1Þf 2ðj�sÞ�1G2sþ1ðf Þ: ð26cÞ
To find the first variation of the DNO from this OE philosophy we formally differentiate the expansion
GðgÞ ¼
X1
n¼0

GnðgÞ;
c.f. (7), with respect to g which yields
Gð1ÞðgÞfwg ¼ dgGðgÞfwg ¼
X1
n¼0

ðdgGnÞðgÞfwg: ð27Þ
If we now set g ¼ ef then, from [27], we obtain
Gð1Þðef Þfwg ¼
X1
n¼0

Gð1Þn ðf Þfwgen:
Comparing this with (27) we identify
Gð1Þn ðf Þ ¼ ðdgGnþ1Þðf Þ
upon noting that, due to the variation,
ðdgGnÞðef Þ ¼ ðdgGnÞðf Þen�1:
Thus, for j P 1,
Gð1Þ2j�2ðf Þfwg ¼ ðdgG2j�1Þðf Þfwg ¼
1

ð2ðj� 1ÞÞ! jDj
2ðj�1ÞD � f 2ðj�1ÞwD�

Xj�1

s¼0

1
ð2ðj� s� 1ÞÞ! G0jDj2ðj�s�1Þf 2ðj�s�1ÞwG2sðf Þ

�
Xj�1

s¼0

1
ð2ðj� sÞ � 1Þ! G0jDj2ðj�s�1Þf 2ðj�sÞ�1Gð1Þ2s ðf Þ �

Xj�2

s¼0

1
ð2ðj� s� 1Þ � 1Þ! jDj

2ðj�s�1Þf 2ðj�s�1Þ�1wG2sþ1ðf Þ

�
Xj�2

s¼0

1
ð2ðj� s� 1ÞÞ! jDj

2ðj�s�1Þf 2ðj�s�1ÞGð1Þ2sþ1ðf Þ; ð28aÞ
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and, for j P 1,
Gð1Þ2j�1ðf Þfwg ¼ ðdgG2jÞðf Þfwg ¼
1

ð2j� 1Þ! G0jDj2ðj�1ÞD � f 2j�1wD�
Xj�1

s¼0

1
ð2ðj� sÞ � 1Þ! jDj

2ðj�sÞf 2ðj�sÞ�1wG2sðf Þ

�
Xj�1

s¼0

1
ð2ðj� sÞÞ! jDj

2ðj�sÞf 2ðj�sÞGð1Þ2s ðf Þ �
Xj�1

s¼0

1
ð2ðj� s� 1ÞÞ! G0jDj2ðj�s�1Þf 2ðj�s�1ÞwG2sþ1ðf Þ

�
Xj�1

s¼0

1
ð2ðj� sÞ � 1Þ! G0jDj2ðj�s�1Þf 2ðj�sÞ�1Gð1Þ2sþ1ðf Þ: ð28bÞ
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