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Abstract: Recently, there has been an explosion of activity in the fields of optics and photonics
with the advent of fabrication techniques which enable the design of metamaterials which possess
properties not encountered in the natural world. In this work, we are concerned with zero
permittivity materials and a new scheme to design metamaterials for which all components of the
dielectric tensor are approximately zero. Our approach involves the alternate layering of many,
very thin, slices of two constituent metamaterials, a uniaxial layered medium and a uniaxial
nanowire array. With a simple optimization strategy we demonstrate a candidate configuration
which very nearly satisfies our design goal of zero permittivity.

© 2025 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

There has been an explosion of activity over the past twenty years in the fields of optics and
photonics with the advent of highly sophisticated fabrication techniques. These have enabled
the design and production of materials which are precisely structured on the subwavelength
scale of Angströms resulting in “metamaterials” which possess properties not encountered in the
natural world. Noteworthy among these are negative index materials [1,2], hyperbolic materials
[3–5], and zero index materials [6–13]. (Assuming zero index materials can be achieved, there
is also interest in the properties of composite materials containing them [14–16].) Zero index
materials are the object of our current study, in particular a novel and explicit methodology for
their realization in metamaterials not only at frequencies away from the plasma frequencies of
their constituitive components, but also minimizing dissipative losses.

While our current contribution focuses on materials which have very small permittivities, i.e.,
the so–called “Epsilon Near Zero” (ENZ) materials, our methodology could readily be adapted to
small permeabilities (the “Mu Near Zero” or MNZ materials) or even both (the “Epsilon and Mu
Near Zero” or EMNZ materials). The importance of all three of these is difficult to overstate as
illustrated in the recent reviews [12,13]. Interesting experimental applications of ENZ materials
include antenna design [17], broadband absorbers [18], geometry–independent tunneling [19],
and enhancement of nonlinear optical properties [11]. Additionally, it is known (and indeed we
will make use of this property) that isotropic ENZ materials are highly reflective and that EMNZ
can transmit at all angles of incidence which is desirable for some applications. Particularly
promising EMNZ materials are all–dielectric photonic crystals exhibiting certain types of Dirac
cones in their photonic band structure [20–22], though it should be noted that these materials
can be very challenging to fabricate [21]. Another class of interesting materials are the heavily
doped semiconductors discussed in, e.g., [23]. With appropriate doping levels these materials
can be designed to have some components of their effective permittivity tensor be nearly zero,
particularly in the terahertz and mid–infrared spectral ranges. They are very appealing due to
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their compatibility with microelectronic technologies so that they can be incorporated in low–cost,
mass–produced structures [23].

Another class of metamaterials garnering significant attention for these purposes are the
hyperbolic metamaterials (HMMs) [3–5]. These HMMs are highly anisotropic structures which
have a hyperbolic dispersion relation due to the fact that one principal component of the relative
permittivity or permeability tensor has the opposite sign of the other two. (In this contribution we
focus on non–magnetic materials where the permeability tensor is the identity.) More specifically,
if the permittivity tensor is

ϵ =

⎛⎜⎜⎜⎜⎝
ϵx 0 0

0 ϵy 0

0 0 ϵz

⎞⎟⎟⎟⎟⎠
, (1)

it is not difficult to construct uniaxial (ϵx = ϵy) HMMs where Re{ϵx}Re{ϵz}<0 [24]. In fact,
as outlined in [3–5] there are multiple structures which can realize this goal. The two most
prominent are repeated layers of thin films (see Fig. 1(a)) resulting in a uniaxial layered medium
(ULM), and periodically placed thin rods in a host structure (see Fig. 1(b)) giving a uniaxial
nanowire array (UNA). As detailed in the surveys [3–5] not only are such materials studied
for their high anisotropy, but also for the possibility that the components of ϵ could be made
quite small, i.e., to exhibit ENZ behavior. As we discuss below, while important and interesting,
individually these uniaxial metamaterials cannot achieve an effective dielectric constant that
has the ENZ property in all three of its diagonal components. In our work we will consider
composite systems of UMLs and UNAs, which should provide additional degrees of freedom to
achieve ENZ behavior.

Fig. 1. (a). Depiction of a multiply layered medium which is effectively modeled by a
uniaxial layered medium (ULM). (b). Depiction of an array of nanowires in a host medium
which is effectively modeled by a uniaxial nanowire array (UNA).

Section 2 below outlines the Effective Medium Theories (EMTs) we utilize and our design
goals, including presenting the novel EMT we have developed for composite uniaxial materials.
Section 3 presents our results, including both EMT and multi–layer Fresnel calculations [25] and
Section 4 lists conclusions. The Appendices are devoted to a detailed derivation of our EMT and
details of the Fresnel calculations.
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2. Effective medium theories and design goals

In this section we review two existing effective medium theories (EMTs) for uniaxial metamaterials,
present our own EMT for mixed uniaxial metamaterials, and state our design goals that the latter
permits. Regarding our approach to designing ENZ materials, we point out both the related,
but quite different, approach of Sun and Yu (which utilizes Milton’s representation) [26], and
well–known results upon which we build our current strategy. In particular, it was shown by Rytov
[27] (see the Appendix of Wood, Pendry, and Tsai [24] and Appendix 1 of Shekhar, Atkinson,
and Jacob [4]) that, in the appropriate scaling regime, if many layers of isotropic materials with
alternating permittivities ϵ (1) and ϵ (2) along the z–axis are constructed in fill fractions 0 ≤ p ≤ 1
and (1 − p) (see Fig. 1(a)), then the resulting structure is effectively uniaxial with components

ϵULM
x

(︂
p; ϵ (1), ϵ (2)

)︂
:= pϵ (1) + (1 − p)ϵ (2), ϵULM

z

(︂
p; ϵ (1), ϵ (2)

)︂
:=

ϵ (1)ϵ (2)

pϵ (2) + (1 − p)ϵ (1)
, (2)

ϵULM
y = ϵULM

x . If the materials are a metal (Re(ϵ (1))<0) and a dielectric (ϵ (2)>0) then it is easy to
see how the real part of ϵULM

x can be made zero. However, this requires (for ϵ (1) ≠ ϵ (2))

p = Re
{︃
ϵ (2)

ϵ (2) − ϵ (1)

}︃
, ϵULM

z =
ϵ (1)ϵ (2)

ϵ (1) + ϵ (2)
≠ 0, (3)

so that a true ENZ material cannot be realized since neither Im{ϵULM
x } nor ϵULM

z need be small.
In a similar fashion, an array of nanowires can also be configured to deliver an effectively

uniaxial material (a uniaxial nanowire array (UNA)). It has permittivity tensor components (see
Appendix 2 of Shekhar, Atkinson, and Jacob [4]),

ϵUNA
x

(︂
q; ϵ (3), ϵ (4)

)︂
:= ϵ (4)

(︃
(1 + q)ϵ (3) + (1 − q)ϵ (4)

(1 − q)ϵ (3) + (1 + q)ϵ (4)

)︃
, ϵUNA

z

(︂
q; ϵ (3), ϵ (4)

)︂
:= qϵ (3)+(1−q)ϵ (4),

(4)
ϵUNA
y = ϵUNA

x , where the constituent permittivities are ϵ (3) and ϵ (4), and the fill fractions are
0 ≤ q ≤ 1 and (1 − q) (see Fig. 1(b)). We also refer the interested reader to the derivation of a
related effective medium theory for nanorods embedded in a gyrotropic material [28]. Again, if
the materials are a metal (Re(ϵ (3))<0) and a dielectric (ϵ (4)>0) then it is easy to see how the real
part of ϵUNA

z can be made zero. However, this demands (for ϵ (3) ≠ ϵ (4) and ϵ (4) ≠ 0)

q = Re
{︃
ϵ (4)

ϵ (4) − ϵ (3)

}︃
, ϵUNA

x =
ϵ (3)

2ϵ (4) + ϵ (3)
≠ 0, (5)

so, again, this is not truly ENZ since neither Im{ϵUNA
z } nor ϵUNA

x need be near zero.
The focus of this paper is to investigate the possibility of layering these two types of

metamaterials, a ULM (in fill fraction 0 ≤ r ≤ 1) and a UNA (with fill fraction (1 − r)),
into another ULM metamaterial in the hopes of producing one with uniaxial character and all
components of the permittivity tensor nearly zero

ϵ̄x = ϵ̄y ≈ ϵ̄z ≈ 0. (6)

We note that this completely novel approach to designing ENZ improves upon all previous
approaches that we have mentioned in that we seek structures which have effective permittivities
which satisfy four distinct goals:

1. Re{ϵ̄x} = Re{ϵ̄y} ≈ 0,

2. Im{ϵ̄x} = Im{ϵ̄y} ≈ 0,



Research Article Vol. 33, No. 1 / 13 Jan 2025 / Optics Express 1332

3. Re{ϵ̄z} ≈ 0, and

4. Im{ϵ̄z} ≈ 0.

If this program can be completed then this amounts to an appropriate choice of the triple
(p, q, r). The reason that we pursue the particular layered ULM/UNA structure discussed here is
that, with a simple and easy–to–construct structure, we have these three (versus one for, e.g.,
a ULM or UNA) independent variables to use for optimization. However, further guidance is
required in the form of an effective medium theory for uniaxial materials which appears to be
missing from the literature. A central contribution of this work is to provide this theory (see
Appendix A for details) for layered uniaxial media resulting in the novel formulas

ϵ̄x

(︂
p, q, r; ϵULM

x , ϵUNA
x

)︂
:= rϵULM

x + (1 − r)ϵUNA
x ,

ϵ̄z

(︂
p, q, r; ϵULM

z , ϵUNA
z

)︂
:=

ϵULM
z ϵUNA

z

rϵUNA
z + (1 − r)ϵULM

z
,

(7)

for ϵ̄y = ϵ̄x, c.f. (39). Our other addition is to show how a rather simple optimization scheme can
be used to deliver structures with quite small values of both ϵ̄x and ϵ̄z simultaneously, equivalent
to the four goals listed above, which we believe are viable candidates for true ENZ materials.
It should be noted that in the ENZ regime nonlinear effects will play an enhanced role [29,30].
One could contemplate additional terms in our formula above to account for this, however, as we
currently use this simply for prediction, we leave these concerns for future work.

3. Design of ENZ metamaterials from layered ULM/UNA

From our discussion above, it is clear that one simple approach to find a candidate ENZ material
is to discover a triple (p, q, r) such that we minimize the quantity

f (p, q, r; ϵULM
x , ϵULM

z , ϵUNA
x , ϵUNA

z ) :=
|︁|︁|︁ϵ̄x (︂p, q, r; ϵULM

x , ϵUNA
x

)︂|︁|︁|︁2 + |︁|︁|︁ϵ̄z (︂p, q, r; ϵULM
z , ϵUNA

z

)︂|︁|︁|︁2 .
(8)

There are many approaches to finding a minimal value fmin at (pmin, qmin, rmin), if it exists
[31], however, as the function is quite simple, we opted for a “brute force” approach where we
discretized the cube [0, 1] × [0, 1] × [0, 1] in (p, q, r) with (Np, Nq, Nr) equally spaced points and
found the minimal value of f on this grid. We note that this delivers the optimal solution up to
precision (1/Np, 1/Nq, 1/Nr) in (p, q, r) space.

It should be noted that even achieving p, q, r such that f is quite small only indicates conditions
(relative material amounts) such that isotropic ENZ behavior might be achieved because the
underlying effective mediums are approximations. Finite–sized and multi–layered candidate
structures consistent with p, q, r need to be devised and tested with more rigorous electrodynamics
simulations.

3.1. Candidate ENZ metamaterials

To demonstrate the capabilities of our scheme for delivering an ENZ metamaterial we decided
to simplify our design parameters and search among the class of structures with one complex
(specifically metallic) and one positive real dielectric constant (i.e., ϵ (1) = ϵ (3) ∈ C and
ϵ (2) = ϵ (4) ∈ R) and we now suppress any reference to ϵ (3) and ϵ (4). We also fixed the value of
the dielectric to be a constant value representative of those found among materials common in
such structures. More specifically, we chose ϵ (2) = 2.25 which is representative for silica. It is
well known that the noble metals (e.g., silver) have permittivities which are strongly dependent
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upon illumination frequency. To accommodate this state of affairs, rather than select a single
value of ϵ (1), we chose to sweep over a wide range of possible values

−20 ≤ Re{ϵ (1)} ≤ 0, 0 ≤ Im{ϵ (1)} ≤ 5, (9)

and identified a triple (pmin, qmin, rmin) which minimizes f (p, q, r) at each. Finally, we settled
upon a discretization of the unit cube in (p, q, r) space with Np = Nq = Nr = 101 points, and an
approximation of the space of ϵ (1) by Nre = Nim = 401 equally–spaced grid points.

In Fig. 2 we display a plot of fmin in the case ϵ (2) = 2.25, and the corresponding values of pmin
(Fig. 3), qmin (Fig. 4), and rmin (Fig. 5). Here we see a broad range of values of ϵ (1) for which fmin
is quite small (on the order of 10−2). More specifically, this region is certainly contained in the
rhombus specified by the region on the plot to the left of the line from ϵ (1) = −5 to ϵ (1) = −20+2i.
This certainly contains the values of ϵ (1) for silver over a wide range of illumination frequencies.
However, we do point out that many of these values are not realized by silver or any other metal.
For this reason, in the next section we investigate structures which do correspond to values
achieved by silver at certain illumination frequencies.

Fig. 2. Results for a fixed dielectric with permittivity value ϵ (2) = 2.25: Plot of the
minimum value of the logarithm of the modulus of the effective permittivity, (ϵ̄x, ϵ̄z), of the
metamaterial, log10(f (p, q, r)), as a function of ϵ (1).

3.2. ENZ behavior

While the formulas (7) allow one to identify ENZ behavior in a specific and quantitative fashion,
this is only an effective theory and we would like to verify that a particular structure displays true
ENZ behavior. The seminal paper [8] identified several properties of ENZ materials including
one that we will identify as “diagnostic.” Consider an infinitely extended ENZ slab of thickness t,
illuminated by a transverse magnetic (TM) planewave at reference plane {z = d} with angle of
incidence θ. With a rather explicit computation [8] showed that the reflection and transmission
coefficients in this configuration are

lim
ϵ→0

R(ϵ , θ) =

{︄
−

k0teik0d

2i+k0t , θ = 0,
−e−ik0d, θ ≠ 0,

lim
ϵ→0

T(ϵ , θ) =

{︄
− eik0d

1−i(k0t)/2 , θ = 0,
0, θ ≠ 0.

(10)

In other words, no transmission occurs through an ENZ material unless the incidence direction
is identically orthogonal to the flat interface. Therefore, we treat as a diagnostic of ENZ behavior,
a “Transmission Map” (a plot of transmission versus incidence angle) that is identically zero save
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Fig. 3. Results for a fixed dielectric with permittivity value ϵ (2) = 2.25: Plot of the value of
p at the minimum, pmin, as a function of ϵ (1).

Fig. 4. Results for a fixed dielectric with permittivity value ϵ (2) = 2.25: Plot of the value of
q at the minimum, qmin, as a function of ϵ (1).

Fig. 5. Results for a fixed dielectric with permittivity value ϵ (2) = 2.25: Plot of the value of
r at the minimum, rmin, as a function of ϵ (1).
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at θ = 0 which has a finite spike. We point out that this particular transmission behavior, as noted
in [8], represents an angular filter which is relevant in some applications. Some experimentally
realized ENZ materials, based only on a ULM (see, e.g., [9–11]) alone, cannot act as such
filters as they permit non–negligible transmission at all angles of incidence. We chose selective
transmission as a measure of likely isotropic ENZ behavior in practice. Other measures, e.g.
phase changes, could also be devised. For actual finite–sized, multi–layered materials “true”
isotropic ENZ behavior may be difficult to completely validate but at least performance consistent
with ENZ materials might be achieved.

To identify a realistic structure amenable to our approach we considered a silver/silica
combination for which we chose, as before, ϵ (2) = 2.25 and ϵ (1) from the values reported in Johnson
and Christy [32] for silver over a range of illumination wavelengths 187.9 nm ≤ λj ≤ 1937.0 nm.
Note that silver/silica ENZ materials have been experimentally realized, e.g., Refs. [9] and [11].

We had in mind a device of total thickness ttotal = 1200 nm with M = 10 layer pairs (each pair
of thickness tpair = 120 nm) so we restricted the range 0.2 ≤ r ≤ 0.8 resulting in layers that were
at least 24 nm thick, since thinner layers may be both difficult to fabricate and less homogeneous.
We further restricted 0.2 ≤ p, q ≤ 0.8 so that these layers are also not unreasonably thin, and
minimized f for each λj. The minimal value of f , fmin = 0.0356373, occurred at λ = 471.4 nm
(where ϵAg = −8.22866 + 0.2869i), with

pmin = 0.687654, qmin = 0.214277, rmin = 0.499289. (11)

To examine the practicality of producing such a structure we approximate pmin ≈ papprox = 0.688,
qmin ≈ qapprox = 0.214, and rmin ≈ rapprox = 0.499, which delivers effective medium layers with
thicknesses

tULM = rmin × 120 nm ≈ 59.88 nm, tUNA = (1 − rmin) × 120 nm ≈ 60.12 nm. (12)

(We have verified that the abrupt truncation of significant figures in p, q and r, carried out for
convenience of material design, does not significantly affect the transmission properties.) Within
each ULM layer we have fill fractions

tULM,Ag = pmin × rmin × 120 nm ≈ 41.1974 nm, tULM,SiO2 = (1 − pmin) × rmin × 120 nm ≈ 18.6826 nm,
(13)

so that if the ULM layers consist of, say, four layer pairs then each is roughly 12 − 4.5 nm.
For a UNA layer, q gives the ratio of areas of the nanowires in a unit cell to the area of the
unit cell, q = a/A = L(πd2/4)/A, where L is the number of nanowires (of diameter d) in the
unit cell. Shekhar, Atkinson, and Jacob [4] list L = 3 for a hexagonal lattice and so, with this,
d =

√︁
4Aq/(3π). If we select A = 50× 50 nm2 and qmin = 0.2 we realize a rod diameter of d = 15

nm.
Having identified these values we considered a structure with M = 10 flat ULM/UNA layer

pairs with compositions specified by (pmin, qmin, rmin) given above (Fig. 6 shows a schematic for
M = 5). With a simple Fresnel solver (see Appendix B) we simulated the planewave scattering of
TM waves by this structure at angle of incidence θ from the normal to compute the Transmission
Map defined above. We conducted this diagnostic and in Fig. 7 we display the Transmission
Map. This figure features three curves:

• In blue (“Multilayer”), the output of our Fresnel solver with M = 10 layers of ULM (with
permittivity components (ϵULM

x , ϵULM
z )) and M = 10 layers of UNA (with permittivity

components (ϵUNA
x , ϵUNA

z )).

• In green (“EMT”), the output of our Fresnel solver with one layer of effective material
(with permittivity components (ϵ̄x, ϵ̄z)).
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• In red (“ENZ”), the output of our Fresnel solver with one layer of (approximate) “true”
ENZ with ϵ = ϵx = ϵz = 10−6.

Here the red curve is our “goal” while the green curve was our guide and the blue curve is what
we can actually realize. While the blue/green curves do not overlay the red one due to dissipation
(strictly positive imaginary part of the permittivity of silver), the shape and characteristics are
quite similar and we view this as a viable candidate for an ENZ. The final test of the feasibility of
our approach would be a “full wave” simulation where each of the effective ULM and effective
UNA layers would be replaced with actual metal/dielectric structures. While such a construction
for the UNA layers is beyond the scope of our current numerical implementation, we replaced
each of the effective ULM layers with N = 4 silver/silica layer pairs and conducted the same
numerical experiment outlined above. The results are depicted in Fig. 8 where the “Multilayer”
and “EMT” curves are the same, and our new simulation is labelled “FW” (cyan). We note that,
while this new curve is somewhat less peaked than our “Multilayer” simulation due to its effective
nature, we are encouraged by the nearly ENZ behavior which this more realistic structure exhibits.

To further illustrate the capabilities of our approach we reconsidered the calculation above
with silver replaced by gold. Thus, we considered a gold/silica structure for which ϵ (2) = 2.25
and ϵ (1) was chosen from the values reported in Johnson and Christy [32] for gold over a range
of illumination wavelengths 187.9 nm ≤ λj ≤ 1937.0 nm. As before, the device was of total
thickness ttotal = 1200 nm with M = 10 layer pairs (each pair of thickness tpair = 120 nm). Once
again, we restricted the ranges 0.2 ≤ p, q, r ≤ 0.8 and minimized f for each λj. The minimal
value of f , fmin = 0.655371, occurred at λ = 616.8 nm (where ϵAu = −10.6619 + 1.37424i), with

pmin = 0.799034, qmin = 0.2, rmin = 0.335083. (14)

Fig. 6. Depiction of multiply layered medium composed of ULM and UNA bilayers.

Again, having identified these values we considered a structure with M = 10 flat ULM/UNA
layer pairs with compositions specified by (pmin, qmin, rmin) given above (see Fig. 6). With
our Fresnel solver (see Appendix B) we simulated the planewave scattering of TM waves by
this structure at angle of incidence θ from the normal to compute the Transmission Map. We
conducted this diagnostic and in Fig. 9 we display our results with the “Multilayer,” “EMT,”
and “ENZ” curves. Once again, while the blue/green curves do not overlay the red one due to
dissipation, the shape and characteristics are quite similar and we view this as another candidate
for an ENZ.

Once again, we also conducted our (approximate) “full wave” simulation where each of the
effective ULM layers was replaced with N = 4 gold/silica layer pairs. The results are shown
in Fig. 10 where the “Multilayer” and “EMT” curves are the same, and our new simulation is
labelled “FW” (cyan). In this case the new curve is less peaked but taller than our “Multilayer”
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Fig. 7. Plot of the Transmission Map as a function of angle of incidence, θ, at λ = 471.4
nm for the silver/silica (ϵ (2) = 2.25) multilayered structure we have constructed (blue), the
bulk metamaterial configuration (green), and an idealized ENZ material (red; ϵ = 10−6).

Fig. 8. Plot of the Transmission Map as a function of angle of incidence, θ, at λ = 471.4
nm for the silver/silica (ϵ (2) = 2.25) multilayered structure we have constructed (blue), the
full–wave simulation (cyan), and an idealized ENZ material (red; ϵ = 10−6).

simulation due to its effective nature. However, as before, we note the nearly ENZ behavior
which this more realistic structure exhibits. We note that the normal incidence transmission from
the full wave result (the cyan “FW” curve) in Fig. 10 is actually above those for an ideal ENZ
which is a somewhat surprising and perhaps an accidental finite–size effect.

Fig. 9. Plot of the Transmission Map as a function of angle of incidence, θ, at λ = 616.8
nm for the gold/silica (ϵ (2) = 2.25) multilayered structure we have constructed (blue), the
bulk metamaterial configuration (green), and an idealized ENZ material (red; ϵ = 10−6).
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Fig. 10. Plot of the Transmission Map as a function of angle of incidence, θ, at λ = 616.8
nm for the gold/silica (ϵ (2) = 2.25) multilayered structure we have constructed (blue), the
full–wave simulation (cyan), and an idealized ENZ material (red; ϵ = 10−6).

4. Conclusions

In this paper, we have demonstrated a new scheme for building an ENZ material as a multiple
layering of two uniaxial metamaterials: a uniaxial layered medium (ULM) and a uniaxial
nanowire array (UNA). To guide our strategy we have devised a novel Effective Medium Theory
which generalizes the classical result to layered uniaxial materials. Through a straightforward
minimization scheme we devised candidate silver/silica and gold/silica structures and evaluated
their performance in delivering transmission only at normal incidence (a property of true
ENZ materials) at a particular operating wavelength. We were able to demonstrate promising
results with our new design procedure. However we stress that there is considerable room for
improvement in order to suggest practical devices that could be used to efficiently filter light or
generate enhanced nonlinear optical responses.

Appendix A: effective medium theory for layered uniaxial materials

In this section, we derive an effective medium theory (EMT) for layers of uniaxial materials. Our
presentation is quite similar in spirit to that of Wood, Pendry, and Tsai [24], however, rather than
computing the eigenvalues of the transmission operator, we focus on powers of this matrix. We
found this strategy to be far less cumbersome while delivering the same result.

A1. Governing equations

We consider a multilayer grating structure composed of flat layers of different uniaxial materials
with varying thicknesses. To be more precise, uniaxial materials occupy each of the (M+1)–many
domains

S0 := {z>g1}; SM := {z<gM}; Sm := {gm+1<z<gm}, 1 ≤ m ≤ M − 1; (15)

where the (flat) interface locations are given by {z = gm}
M
m=1. This structure is illuminated by

incident radiation of frequency ω and angle θ in the uppermost (vacuum) layer, S0, of the form

vinc = e−iωt+iαx−iγz, α = k0 sin(θ), γ = k0 cos(θ), k0 = ω/c0, (16)
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and c0 is the speed of light in the vacuum. Factoring out time dependence of the form exp(−iωt)
we define the (reduced) scattered fields

vm = vm(x, z), in Sm for 0 ≤ m ≤ M, (17)

and seek α-quasiperiodic, outgoing (upward/downward propagating) solutions of the following
system of Helmholtz equations [25,33]

div [Am∇vm] + k2
0vm = 0, in Sm, 0 ≤ m ≤ M, (18a)

v0 − v1 = −eiγg1eiαx, at z = g1, (18b)
τ0∂zv0 − τ1∂zv1 = τ0(iγ)eiγg1eiαx, at z = g1, (18c)
vm − vm+1 = 0, at z = gm, 1 ≤ m ≤ M − 1, (18d)
τm∂zvm − τm+1∂zvm+1 = 0, at z = gm, 1 ≤ m ≤ M − 1, (18e)

where

Am =
⎛⎜⎝
1/ϵm,z 0

0 1/ϵm,x

⎞⎟⎠ , τm =

{︄
1, Transverse Electric (TE),
1/ϵm,x, Transverse Magnetic (TM),

0 ≤ m ≤ M. (19)

Rather than solve these Fresnel equations directly (which would yield the scattered fields) we
pursue a simplified configuration (with a single layer) whose governing equations are “effectively”
the same. More specifically, we study operators which have the effect of transmitting scattered
fields (which satisfy the relevant Helmholtz equation) from one layer interface, say {z = gm},
to the next one down, in this case {z = gm+1}. Our goal is to “equate” a sequence of these
Transmission Operators (TOs) for the multiply layered structure to the TO of a single layer
configuration.

A2. Transmission operators

To derive our EMT we recall the TO of a uniaxial material layer of thickness h, which maps
Dirichlet and Neumann data at the upper interface of the layer {z = gm = h} to the same data at
the lower interface {z = gm+1 = 0}, is

T : ⎛⎜⎝
v(x, h)

τ∂zv(x, h)
⎞⎟⎠ → ⎛⎜⎝

v(x, 0)

τ∂zv(x, 0)
⎞⎟⎠ , τ =

{︄
1, Transverse Electric (TE),
1/ϵx, Transverse Magnetic (TM),

(20)

(see [33]). We now seek to equate the action of an M–layer structure of thickness H =
∑︁M

m=1 hm
with a single uniaxial layer of the same thickness, H, with effective parameters {ϵ̄x, ϵ̄z}. To do
this we enforce the equality of the TOs

T̄(ϵ̄x, ϵ̄z) ≈
M∏︂

m=1
T(m), (21)

and send H → 0 (which implies that the hm tend to zero as well).
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First, in each homogeneous layer of thickness h we can express [33]

v(x, z) =
{︃
A cos(γ(z − h)) +

B
τγ

sin(γ(z − h))
}︃

eiαx, (22)

where
α2

ϵz
+
γ2

ϵx
= k2

0 =⇒ γ2 = ϵxk2
0 −
ϵx
ϵz
α2, (23)

implying that
τ∂zv(x, z) = {−τγA sin(γ(z − h)) + B cos(γ(z − h))} eiαx. (24)

With these it is easy to see that
v(x, h) = Aeiαx, (25a)

τ∂zv(x, h) = Beiαx, (25b)

v(x, 0) =
{︃
A cos(γh) −

B
τγ

sin(γh)
}︃

eiαx, (25c)

τ∂zv(x, 0) = {τγA sin(γh) + B cos(γh)} eiαx, (25d)

so that the TO is given by

T
⎡⎢⎢⎢⎢⎣⎛⎜⎝

A

B
⎞⎟⎠ eiαx

⎤⎥⎥⎥⎥⎦ = ⎛⎜⎝
cos(γh) − sin(γh)/(τγ)

τγ sin(γh) cos(γh)
⎞⎟⎠ ⎛⎜⎝

A

B
⎞⎟⎠ eiαx. (26)

Now, the TO for the M–layer structure is clearly

TM =

M∏︂
m=1

T(m). (27)

However, we choose not to form this product as it is not only wildly complicated, but also
unnecessary. Instead, we keep in mind that we consider H small, so that the hm are even smaller,
and we may approximate

T = ⎛⎜⎝
cos(γh) − sin(γh)/(τγ)

τγ sin(γh) cos(γh)
⎞⎟⎠ = ⎛⎜⎝

1 0

0 1
⎞⎟⎠+⎛⎜⎝

0 −1/τ

τγ2 0
⎞⎟⎠ h+O(h2) = I+T1h+O(h2). (28)

It is not difficult to see that, due to the leading identity operator,

TM = I +
M∑︂

m=1
T1(m)hm + O(h2

max), T1(m) =
⎛⎜⎝

0 −1/τm
τmγ

2
m 0

⎞⎟⎠ , hmax := max
1≤m≤M

hm. (29)

If we now fix upon transverse magnetic polarization (so that τm = 1/ϵm,x) and use the definitions
of γ2

m, we further discover that

TM = I + ⎛⎜⎝
0 −

∑︁M
m=1 hmϵm,x

Hk2
0 − α

2 ∑︁M
m=1 hm/ϵm,z 0

⎞⎟⎠ + O(H2). (30)
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A3. Effective bulk layer

From the developments of the previous section, the TO of the effective bulk layer is clearly

T̄ = ⎛⎜⎝
cos(γ̄H) − sin(γ̄H)/(τ̄γ̄)

τ̄γ̄ sin(γ̄H) cos(γ̄H)

⎞⎟⎠ , (31)

c.f. (26), and, again using the smallness assumption for H and focusing on TM polarization, we
discover

T̄ = I + ⎛⎜⎝
0 −1/τ̄

τ̄γ̄2 0
⎞⎟⎠H + O(H2) = I + ⎛⎜⎝

0 −ϵ̄x

k2
0 − α

2/ϵ̄z 0
⎞⎟⎠H + O(H2). (32)

If we now equate (30) and (32) up to order H we find

−

M∑︂
m=1

hmϵm,x = −ϵ̄xH, (33a)

Hk2
0 − α

2
M∑︂

m=1
hm/ϵm,z = k2

0H − (α2/ϵ̄z)H, (33b)

which gives,

Hϵ̄x =
M∑︂

m=1
hmϵm,x,

H
ϵ̄z
=

M∑︂
m=1

hm

ϵm,z
. (34)

We note that in the case of homogeneous materials (ϵm,x = ϵm,z = ϵm) this reduces to

Hϵ̄x =
M∑︂

m=1
hmϵm,

H
ϵ̄z
=

M∑︂
m=1

hm

ϵm
, (35)

which matches the result of Wood, Pendry, and Tsai [24]. We further point out that if

M = 2, h1 = rH, ϵ1,x = ϵ
ULM
x , ϵ1,z = ϵ

ULM
z , h2 = (1 − r)H, ϵ2,x = ϵ

UNA
x , ϵ2,z = ϵ

UNA
z ,

(36)
then (34) gives

Hϵ̄x = rHϵULM
x + (1 − r)HϵUNA

x ,
H
ϵ̄z
=

rH
ϵULM
x

+
(1 − r)H
ϵUNA
z

, (37)

which, upon cancelling the common factors of H, delivers

ϵ̄x = rϵULM
x + (1 − r)ϵUNA

x ,
1
ϵ̄z
=

r
ϵULM
z

+
(1 − r)
ϵUNA
z

. (38)

Combining the right hand side of the latter equation and taking the reciprocal gives

ϵ̄x = rϵULM
x + (1 − r)ϵUNA

x , ϵ̄z =
ϵULM
z ϵUNA

z

rϵUNA
z + (1 − r)ϵULM

z
. (39)
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Appendix B: Fresnel solver

To complete the discussion of our numerical simulations, we briefly outline our Fresnel solver
which, in infinite precision, delivers the exact solution of the uniaxial homogeneous–layer,
flat–interface problem. We note that this solver trivially generalizes the classical solution
procedure for the isotropic homogeneous–layer, flat–interface problem discussed in Chapter 5 of
the text of Yeh [25]. Our approach gives a solution to the governing Eqs. (18), beginning with
the fact that the α–quasiperiodic solutions of the Helmholtz equations, (18a), are

vm(x, z) =
{︂
Dme−iγm(z−gm) + Umeiγm(z−gm+1)

}︂
eiαx, 0 ≤ m ≤ M, (40)

where

α =
√
ϵ0k0 sin(θ), γm =

√︄
ϵm,x

(︃
k2

0 −
α2

ϵm,z

)︃
. (41)

The upward/downward propagating conditions demand that D0 = UM = 0, while the interfacial
boundary conditions, (18b–18e), give a linear system of (2M) equations for the (2M) unknowns,
{U1, D2, U2, . . . , DM−1, UM−1, DM}. More specifically, these governing equations are

AV⃗ = R⃗, (42)

where

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 −Γ1 0 · · · 0

τ0,zγ0 τ1,zγ1 −τ1,zγ1Γ1 0 · · · 0
. . . . . .

· · · Γm−1 1 −1 Γm · · ·

· · · −τm−1,zγm−1Γm−1 τm−1,zγm−1 τmγm τmγmΓm · · ·

. . . . . .

0 · · · 0 ΓM−1 1 −1

0 · · · 0 −τM−1,zγM−1ΓM−1 τM−1,zγM−1 τM,zγM

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(43)
and

Γm := eiγmhm , hm := gm−1 − gm, (44)
and

V⃗ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

U1

D2

U2
...

DM−1

UM−1

DM

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, R⃗ = e−iγ0g1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1

τ0,zγ0

0
...

0

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (45)

Once the V⃗ has been recovered the scattered solution can be computed anywhere as can useful
quantities of interest, such as the reflection and transmission coefficients,

R = U1e−iγ0g1 , T = DMeiγM+1gM . (46)
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Therefore, in considering the scattering returns from a structure with (M + 1)–many homoge-
neous uniaxial layers (uncluding the unbounded upper and lower regions) with permittivities
{ϵm,x, ϵm,z}, 0 ≤ m ≤ M and interfaces located at z = gm, 1 ≤ m ≤ M, we simply solve (42) using
Gaussian elimination and produce, e.g., the reflection and transmission coefficients from the
formulas (46).
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