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Abstract In this paper the authors extend their previous work on Boundary Perturbation
methods for scattering calculations from families of diffraction gratings to three dimensions
and the full vector electromagnetic Maxwell equations. This extension is non-trivial in both
its algorithmic implementation (not only are new terms added to the recursions, but also the
full, coupled, vector Maxwell equations must be simulated) and in the size of the relevant
computer simulations. Not only do we give details of the implementation of the method, but
also provide results of numerical simulations.

Keywords Electromagnetic scattering · Boundary Perturbation methods · High-order
spectral methods · Traveling water waves

1 Introduction

The scattering of electromagnetic radiation by irregular obstacles and rough surfaces plays a
crucial role in a wide array of applications of engineering interest including remote sensing,
non-destructive testing, and radar imaging. Of particular interest to us here is the interaction
of this radiation with the surface of a traveling open-ocean wave modeled by the “water wave
equations” [5]. Such waves are known to be parametrized analytically by a height/slope pa-
rameter [10, 14] and in this work we use this fact to design a numerical scheme to compute
scattering quantities of interest for the entire family of possible solutions simultaneously
thereby constituting a highly efficient method for recovering these measurements as com-
pared to other state-of-the-art solvers which must compute with one profile at a time [15].
In this contribution we focus on the case of a perfectly conducting (PEC) family of gratings
and leave the more complicated case of dielectrics for future work.

This work generalizes the recent contribution of one of the authors [6] from the case
of the scattering of acoustic waves in two dimensions by a rough interface (governed by
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the scalar Helmholtz equation), to not only three dimensions, but also the full vector elec-
tromagnetic Maxwell equations. Each of these generalizations provides its own set of new
challenges including vast new memory and computational time requirements, and the need
to deal with the vector Helmholtz equations coupled by the surface boundary conditions. As
we shall show, the rapid execution time that can be achieved with this new method is due
to the phase extraction we perform (which greatly simplifies the boundary conditions), and
the change of independent variables which moves the boundary dependence of the problem
from the domain definition to the inhomogeneities of the governing Helmholtz equation and
boundary conditions. Finally, a Boundary Perturbation algorithm, resulting in a high-order
Fourier collocation/Chebyshev tau/Taylor method, is applied resulting in a highly accurate
and robust computational approach. This change of variables coupled to a Boundary Pertur-
bation approach (the method of “Transformed Field Expansions”—TFE) has been utilized
in a number of contexts recently, including Laplace’s equation [7], the scalar Helmholtz
equation [6, 9], and the classical water wave problem [10] with great success. As we find
later, this success is reproduced here resulting in a compelling algorithm for the scenario we
describe.

The paper is organized as follows: In Sect. 2 we recall the governing equations of vector
electromagnetics in three dimensions. In Sects. 2.1 and 2.2 we detail the phase extraction and
domain flattening changes of variables crucial to our approach, and in Sects. 2.3 and 2.4 we
outline the TFE recursions in this new vector electromagnetic setting and the generalizations
necessary to make this method applicable to families of gratings. In Sect. 3 we present
numerical results including verification of our new scheme and plots of grating efficiencies.
In Sect. 4 we make concluding remarks.

2 Governing Equations

Time-harmonic vector electromagnetic radiation (characterized by the electric and magnetic
fields E and H, respectively) in three dimensions incident upon a perfectly conducting grat-
ing shaped by the smooth function z = g(x, y) satisfies Maxwell’s equations

∇ × E = ikH z > g(x, y), (2.1a)

∇ × H = −ikE z > g(x, y), (2.1b)

div [E] = 0 z > g(x, y), (2.1c)

div [H] = 0 z > g(x, y), (2.1d)

n × E = −n × Ei z = g(x, y), (2.1e)

where the incident field is given by

Ei = Aeik·x = Aei(αx+βy−γ z), Hi = Beik·x = Bei(αx+βy−γ z),

k = (α,β,−γ ), k = |k| , B = k
|k| × A, A · k = 0.

Later it will be convenient to express vector quantities componentwise, e.g., E =
(E1,E2,E3), A = (A1,A2,A3), etc. Clearly, once the electric field E has been found, the
magnetic field can be recovered trivially from (2.1a) and thus we focus on simulating the
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former. Through well-known manipulations of (2.1) (see, e.g., [15]), the governing equation
for the electric field can be reduced to the vector Helmholtz equation

�E + k2E = 0, z > g(x, y). (2.2)

To realize a unique solution, this equation is supplemented with boundary conditions,
one of which is the “outgoing wave condition” which states that scattered waves propagate
away from the grating. For the case of a bi–periodic grating which we consider here

g(x + d1, y, z) = g(x, y, z), g(x, y + d2, z) = g(x, y, z),

this condition at infinity can be stated rigorously in the near–field (at z = a, a > |g|L∞ ) by
means of the Rayleigh expansion [6]:

∂zE − (iγD)E = 0, z = a. (2.3)

Here (iγD) is a Fourier multiplier of order one defined by

(iγD)ψ(x, y) :=
∞∑

p=−∞

∞∑

q=−∞
(iγp,q)ψ̂p,qe

i(αpx+βqy),

where,

ψ̂p,q = 1

d1d2

∫ d1

0

∫ d2

0
ψ(x, y)ei(αpx+βqy) dx dy.

In these equations

αp := α + (2π/d1)p, βq := β + (2π/d2)q,

γp,q :=
⎧
⎨

⎩

√
k2 − α2

p − β2
q (p, q) ∈ U,

i
√

α2
p + β2

q − k2 (p, q) �∈ U,

and

U := {(p, q) ∈ Z2 | k2 − α2
p − β2

q ≥ 0},
is the set of propagating modes. Finally, we have the surface boundary condition, (2.1e),
which we rewrite, to simplify our later developments, by using the normal vector

N = (−∂xg,−∂yg,1)T

resulting in:

N × E = −N × Ei = −(N × A)ei(αx+βy−γg(x,y)). (2.4)

This can be written componentwise as

− E2 − (∂yg)E3 = −{−A2 − (∂yg)A3
}
ei(αx+βy−γg(x,y)),

E1 + (∂xg)E3 = −{
A1 + (∂xg)A3

}
ei(αx+βy−γg(x,y)),

(∂yg)E1 − (∂xg)E2 = −{
(∂yg)A1 − (∂xg)A2

}
ei(αx+βy−γg(x,y)).
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Keeping only the first two (as the third is a linear combination of these), reordering, and
simplifying:

E1 = −A1ei(αx+βy−γg(x,y)) − (∂xg)
{
A3ei(αx+βy−γg(x,y)) + E3

}
, (2.5a)

E2 = −A2ei(αx+βy−γg(x,y)) − (∂yg)
{
A3ei(αx+βy−γg(x,y)) + E3

}
. (2.5b)

With (2.2), (2.3), and (2.5) we require only one more equation for a properly posed
problem. For this we use the divergence-free condition, (2.1c),

∂xE
1 + ∂yE

2 + ∂zE
3 = 0. (2.6)

Collecting all of these we find that we must solve the system of vector–valued PDE

�E + k2E = 0 g(x, y) < z < a, (2.7a)

∂zE − (iγD)E = 0 z = a, (2.7b)

ME = 	(x,y;E, g) z = g, (2.7c)

where

M :=
⎛

⎝
1 0 0
0 1 0
∂x ∂y ∂z

⎞

⎠ , (2.7d)

and

	 :=
⎛

⎜⎝
−A1ei(αx+βy−γg(x,y)) − (∂xg){A3ei(αx+βy−γg(x,y)) + E3}
−A2ei(αx+βy−γg(x,y)) − (∂yg){A3ei(αx+βy−γg(x,y)) + E3}

0

⎞

⎟⎠ . (2.7e)

We note that we have organized 	 so that it contains any E-terms which are O(g) and thus
“higher order corrections” in the boundary perturbation g.

A quantity of considerable importance in applications is the surface current given by

J̃ = n × H, at z = g,

where n := N/ |N|. Again, for later convenience, we use the normal N resulting in the
rescaled surface current

J = N × H, at z = g.

Using the fact that H = 1/(ik)∇ × E we have

J = 1

ik
N × (∇ × E), at z = g.

In Cartesian coordinates these read

J 1 = 1

ik

{
∂xE

3 − ∂zE
1 + (∂yg)

(
∂yE

1 − ∂xE
2
)}

, (2.8a)

J 2 = 1

ik

{
∂yE

3 − ∂zE
2 + (∂xg)

(
∂xE

2 − ∂yE
1
)}

, (2.8b)

J 3 = 1

ik

{
(∂xg)

(
∂xE

3 − ∂zE
1
) + (∂yg)

(
∂yE

3 − ∂zE
2
)}

. (2.8c)
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2.1 Phase Extraction

For our purposes it is convenient to extract the phase from our governing equations by
considering the rescaled quantity v as our unknown from the relationship

E = ei(αx+βy−γ z)v. (2.9)

This factorization is inspired by the well-known asymptotic result that at high frequencies
(k � 1) and in the absence of shadowing, multiple reflections, etc., the scattered surface cur-
rent oscillates with the incident radiation. This implies that in this situation (the surface curl
of) v will be slowly varying, even for large k, which is an idea we have put into practice in
[11] but do not pursue further here as we focus upon the regime k ≈ 1. For us the advantage
of the factorization (2.9) is that while the boundary data for E at z = g contains somewhat
complicated, explicit, dependence upon the boundary shape g, the factored boundary data is
much simpler and thus more amenable to our techniques.

It is not difficult to show [6] that the change of dependent variable (2.9) transforms the
governing equations (2.7) to

�v + 2i(α,β,−γ ) · ∇v = 0 g(x, y) < z < a, (2.10a)

∂zv − i(γD + γ )v = 0 z = a, (2.10b)

P v = 
(x,y) z = g, (2.10c)

where

P :=
⎛

⎝
1 0 0
0 1 0

∂x + iα ∂y + iβ ∂z − iγ

⎞

⎠ , (2.10d)

and


 :=
⎛

⎜⎝
−A1 − (∂xg){A3 + v3}
−A2 − (∂yg){A3 + v3}

0

⎞

⎟⎠ . (2.10e)

We point out that while the divergence-free condition has become somewhat more involved,
the dependence upon g in 
 is now merely linear rather than exponential. The current can
also be expressed in terms of the factored field by

J 1 = ei(αx+βy−γg(x,y))

ik

[−∂zv
1 + ∂xv

3 + (iγ )v1 + (iα)v3

− (∂yg)
(
∂xv

2 − ∂yv
1 + (iα)v2 − (iβ)v1

)]
, (2.11a)

J 2 = ei(αx+βy−γg(x,y))

ik

[
∂yv

3 − ∂zv
2 + (iβ)v3 + (iγ )v2

+ (∂xg)
(
∂xv

2 − ∂yv
1 + (iα)v2 − (iβ)v1

)]
, (2.11b)

J 3 = ei(αx+βy−γg(x,y))

ik

[
(∂yg)

(
∂yv

3 − ∂zv
2 + (iβ)v3 + (iγ )v2

)

+ (∂xg)
(−∂zv

1 + ∂xv
3 + (iγ )v1 + (iα)v3

)]
. (2.11c)
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2.2 Change of Variables

As we have seen in previous publications [6–9] a well-chosen change of variables can have
extremely beneficial effects for both the analysis and performance of Boundary Perturbation
methods. As before we make the following “domain flattening” change of variables (the
C-method in electromagnetics [2] or σ -coordinates in oceanography [13]):

x ′ = x, y ′ = y, z′ = a

(
z − g

a − g

)
. (2.12)

Considering the new dependent variable

u(x ′, y ′, z′) := v
(

x ′, y ′,
(a − g)z′

a
+ g

)
,

Equation (2.10) transforms to, upon dropping primes,

�u + 2i(α,β,−γ ) · ∇u = F(x, y, z;u, g) 0 < z < a, (2.13a)

∂zu − i(γD + γ )u = R(x, y;u, g) z = a, (2.13b)

P u = Q(x, y;u, g) z = 0, (2.13c)

where

F = ∂xFx + ∂yFy + ∂zFz + Fh, (2.13d)

Fx = 2

a
g ∂xu + a − z

a
(∂xg)∂zu − 1

a2
g2 ∂xu − a − z

a2
g (∂xg)∂zu, (2.13e)

Fy = 2

a
g ∂yu + a − z

a
(∂yg)∂zu − 1

a2
g2 ∂yu − a − z

a2
g (∂yg)∂zu, (2.13f)

Fz = a − z

a

{
(∂xg)∂xu + (∂yg)∂yu

}

− a − z

a2

{
g(∂xg)∂xu + g(∂yg)∂yu

}

− (a − z)2

a2

{
(∂xg)2∂zu + (∂yg)2∂zu

}
, (2.13g)

and

Fh = − 1

a

{
(∂xg)∂xu + (∂yg)∂yu

} + 1

a2

{
g(∂xg)∂xu + g(∂yg)∂yu

}

+ a − z

a2

{
(∂xg)2∂zu + (∂yg)2∂zu

} + 4i

a

{
α g ∂xu + β g ∂yu

}

+ 2i(a − z)

a

{
α(∂xg)∂zu + β(∂yg)∂zu

} − 2iγ

a
g ∂zu

− 2i

a2

{
α g2 ∂xu + β g2 ∂yu

}
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− 2i(a − z)

a2

{
α g(∂xg)∂zu + β g(∂yg)∂zu

}
.

Furthermore, we have

R = − 1

a
gi(γD + γ )u (2.13h)

and

Q =
⎛

⎜⎝
−A1 − (∂xg){A3 + u3}
−A2 − (∂yg){A3 + u3}

Q3

⎞

⎟⎠ , (2.13i)

where

Q3 = − 1

a
(iγ )gu3 + 1

a
g∂xu

1 + (∂xg)∂zu
1 + iα

a
gu1

+ 1

a
g∂yu

2 + (∂yg)∂zu
2 + iβ

a
gu2. (2.13j)

The surface current, (2.8), can also be expressed in the new coordinates, but in the interest
of brevity we suppress the details.

2.3 Transformed Field Expansions

Using the methods outlined in the previous work of the authors [7, 9], it can be shown
that, if the boundary deformation is written g = εf and f is sufficiently smooth, then the
transformed factored field u (and the transformed current) depend analytically upon the
parameter ε, i.e., the series

u = u(x, y, z; ε) =
∞∑

n=0

un(x, y, z)εn (2.14)

converges strongly in an appropriate function space for ε sufficiently small. Depending on
the smoothness of f this also implies analyticity of the original factored field, v, and field,
E; in particular, if f is real analytic then u, v and E are all jointly analytic with respect to
all variables.

These results suggest that a numerical procedure based upon the Boundary Perturba-
tion expansion (2.14) coupled to a high-order spectral discretization of the un (Fourier col-
location in the x and y variables, and Chebyshev tau in the z variable) should be robust
and highly accurate. For solutions of Laplace’s equation [7], the scalar Helmholtz equation
[9], and the classical water wave problem [10] this “Transformed Field Expansion” (TFE)
method has indeed displayed these properties. In this work we present this method as ap-
plied to the full vector electromagnetic Maxwell equations in three dimensions for the first
time.

While many of the details of this TFE implementation are familiar from our previous
work, there are some new considerations which we highlight below. To begin, the expansion
(2.14) is inserted into (2.13) and, equating at perturbation order n, one finds the following
problems to solve:

�un + 2i(α,β,−γ ) · ∇un = Fn(x, y, z) 0 < z < a, (2.15a)
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∂zun − i(γD + γ )un = Rn(x, y) z = a, (2.15b)

P un = Qn(x, y) z = 0, (2.15c)

where the forms for Fn and Rn are easily deduced from our previous work (see, e.g., [6, 9]).
The form for Qn requires some comment as, in our previous work, this term always corre-
sponded to a simple Dirichlet condition which is trivially implemented. Here, the first two
boundary conditions at z = 0 are, again, essentially Dirichlet conditions:

u1
n = δn,0(−A1) + δn,1(−A3(∂xf )) − (∂xf )u3

n−1,

u2
n = δn,0(−A2) + δn,1(−A3(∂yf )) − (∂yf )u3

n−1,

however, the final condition reads

(∂x + iα)u1
n + (∂y + iβ)u2

n + (∂z − iγ )u3
n = Q3

n, (2.16)

where

Q3
n = − 1

a
(iγ )f u3

n−1 + 1

a
f ∂xu

1
n−1 + (∂xf )∂zu

1
n−1 + iα

a
f u1

n−1

+ 1

a
f ∂yu

2
n−1 + (∂yf )∂zu

2
n−1 + iβ

a
f u2

n−1.

It would appear that the coupling in this last condition would entail significant complica-
tions in our numerical procedures, namely that the scalar Helmholtz solvers we devised in
[9] would be inapplicable and a new vector solver would be necessary. However, closer in-
spection reveals that if u1

n and u2
n are found from their uncoupled equations, these functions

can then be placed among the known quantities on the right-hand side of (2.16):

(∂z − iγ )u3
n = Q3

n − (∂x + iα)u1
n − (∂y + iβ)u2

n.

Thus, the only (nontrivial) modification to our previous solution procedures is the accommo-
dation of a Robin boundary condition in the solution of u3

n. All of this has been implemented
and verified by comparison to solutions of the “Field Expansions” (Variation of Boundaries)
algorithm of Bruno and Reitich [1] also designed for these biperiodic grating scattering
configurations (see Table 2).

2.4 Families of Gratings

In addition to presenting, for the first time, the specification of a TFE algorithm for the full
vector electromagnetic grating scattering problem, we can also describe a TFE algorithm
for families of gratings akin to that found in [6]. In many engineering applications, gratings
of interest are not shaped by isolated (biperiodic) functions, but rather come in families. For
example, in the study of water waves (gravity waves on the surface of an ideal fluid of depth
h which model open-ocean movements [5]) it is known that the shape, η, of traveling waves
depend analytically upon a height/slope parameter, ε:

η = η(x, y; ε) =
∞∑

n=0

ηn(x, y)εn, (2.17)
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cf. [10, 14]. The choice of ε for the name of the analyticity parameter is not accidental as
we have found that by identifying this perturbation parameter with the one which appears
in the expansion (2.14) in Sect. 2.3 yields an algorithm which has greatly advantaged com-
putational complexity over state-of-the-art scattering solvers when anything more than a
moderate sampling of grating profiles from the family is considered.

This TFE method for families of gratings simply amounts to the insertion of (2.17) into
the transformed and phase extracted vector Helmholtz equations (2.13). In this regard we
point out the crucial importance of both transformations we made: First, the phase extraction
removes all terms of the form

ei(αx+βy−γ η(x,y;ε))

which would involve the expansion of the composition of two analytic functions, the expo-
nential and η. Second, the change of independent variables (2.12) moves the shape of the
grating from the domain definition to the right–hand–side of the vector Helmholtz problem
on a separable domain. All of this permits an expansion of the transformed, phase extracted
field u into a Taylor series (cf. (2.14)) with terms at order n satisfying (2.15). Of course the
specific forms of Fn, Qn, and Rn are somewhat different, but those of the former two have
been presented in [6] while the latter are

Q1
n = δn,0(−A1) − A3(∂xηn) −

n∑

l=0

(∂xηn−l )u
3
l ,

Q2
n = δn,0(−A2) − A3(∂yηn) −

n∑

l=0

(∂yηn−l )u
3
l ,

and

Q3
n = − 1

a
(iγ )

n∑

l=0

ηn−lu
3
l + 1

a

n∑

l=0

ηn−l∂xu
1
l +

n∑

l=0

(∂xηn−l )∂zu
1
l

+ iα

a

n∑

l=0

ηn−lu
1
l + 1

a

n∑

l=0

ηn−l∂yu
2
l

+
n∑

l=0

(∂yηn−l )∂zu
2
l + iβ

a

n∑

l=0

ηn−lu
2
l .

3 Numerical Results

We now describe numerical results which not only verify the accuracy and stability of our
new algorithm for computing vector electromagnetic scattering from families of gratings,
but also display the capabilities of our new approach. We note that these latter results con-
tain the scattering information of hundreds to thousands of grating profiles, a collection of
computations which would be well beyond the scope of even state-of-the-art electromag-
netic solvers [15].
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3.1 Verification

As we stated earlier, our numerical scheme is a Fourier collocation/Chebyshev tau/Taylor
method which seeks to approximate the phase extracted, transformed field u by

u(N,N1,N2,Ny )(x, y, z; ε) :=
N∑

n=0

N1/2−1∑

p=−N1/2

N2/2−1∑

q=−N2/2

Ny∑

l=0

ûp,q,l
n Tl

(
2z − a

a

)

× exp(i[(2πp/d1)x + (2πq/d2)y])εn,

where Tl is the l-th Chebyshev polynomial. Upon insertion of this form into (2.13) we are
faced, at every perturbation order n and every wavenumber (p, q), with the solution of a
two-point boundary value problem in the z-variable via the Chebyshev tau method; for this
we use the classical scheme of Gottlieb & Orszag [3] (Chap. 10). As in our related work, the
question of the summation of the terms in the Taylor series in ε can be answered in (at least)
two ways: Taylor summation or Padé approximation. It has been our consistent experience
that Padé summation typically produces greatly enhanced numerical results (see, e.g., [7, 9])
and we again utilize this procedure in this work.

For completeness we recall the complexity estimates we made in [6] using this procedure
for computing the scattering returns from Q profiles:

O(N2N1 log(N1)N2 log(N2)Ny log(Ny) + QNN1N2).

This is to be compared with the cost of a preconditioned iterative solver applied to an integral
equation formulation accelerated, e.g., by the Fast Multipole Method [4] which is

O(QNiterN1 log(N1)N2 log(N2)),

where Niter is the number of iterations required for convergence. The cost of repeated inte-
gral equation solves will dominate that of our new approach roughly when

Q > Ny log(Ny)max

{
1,

N2

Niter

}

thus indicating the domain of utility of the method we advocate.
The terms in the expansion of the water wave surface (2.17) were computed using the

stable, high-fidelity TFE procedure outlined in [10]. For this verification we selected the
physical parameters g̃ = 1 and h = ∞ corresponding to nondimensionalized gravity waves
on deep water. Additionally, the traveling wave is periodic with respect to the cell

Cθ :=
[

2π

sin(θ)
,0

]
×

[
0,

2π

cos(θ)

]
(3.1)

and we initially choose θ = 45°, corresponding to surface waves periodic with respect to the
square

[(2π)/ sin(π/4),0] × [0, (2π)/ cos(π/4)] ≈ [8.88577,0] × [0,8.88577].
The numerical parameters were set to a = 0.1, N1 = N2 = 64, Ny = 48 and N = 30. In Ta-
ble 1 we present convergence results of our new scheme for families of gratings as compared
to an “exact” solution provided by the TFE algorithm of Sect. 2.3. For this study we observe
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Table 1 Relative error, measured in the L∞ norm (cf. (3.2)), of the new TFE method for families of profiles
as compared to the TFE method for a single profile (N1 = N2 = 64, Ny = 48, N = 30) for (α,β, γ ) =
(0,0,1.1) and A = (1,0,0)

N e1 e2 e3

0 0.012715271 1.2722346 1.2721962

1 0.00011386439 0.0030028758 0.012870532

2 1.2427435 × 10−6 7.0672938 × 10−5 0.00012321859

3 1.0389127 × 10−8 4.8027358 × 10−7 1.3570777 × 10−6

4 9.408323 × 10−11 4.5756359 × 10−9 1.1674027 × 10−8

5 5.1907967 × 10−13 3.1421886 × 10−11 8.7157665 × 10−11

6 7.1386884 × 10−15 2.9392388 × 10−13 1.0113276 × 10−12

7 2.8061017 × 10−15 9.7625387 × 10−15 1.1102099 × 10−14

8 2.8067652 × 10−15 9.762775 × 10−15 6.2440711 × 10−15

Table 2 Relative error, measured in the L∞ norm (cf. (3.2)), of the new TFE method for families of profiles
as compared to the FE method for a single profile (N1 = N2 = 64, N = 30) for (α,β, γ ) = (0,0,1.1) and
A = (1,0,0)

N e1 e2 e3

0 0.012715271 1.2722346 1.2721962

1 0.00011386439 0.0030028758 0.012870532

2 1.2427435 × 10−6 7.0672935 × 10−5 0.00012321858

3 1.0386806 × 10−8 4.8027368 × 10−7 1.3570777 × 10−6

4 9.4396691 × 10−11 4.5768494 × 10−9 1.1674296 × 10−8

5 5.6871914 × 10−12 3.1498015 × 10−11 8.7194381 × 10−11

6 5.6077646 × 10−12 3.6194502 × 10−12 7.5191228 × 10−12

7 5.6077336 × 10−12 3.5664949 × 10−12 7.1365016 × 10−12

8 5.6077109 × 10−12 3.5664951 × 10−12 7.136503 × 10−12

the rapid convergence of our new method via the error measure of the j -th component of
the current

ej := |J j,N − J j,exact|
|J j,exact| (3.2)

where

J j,N (x, y) :=
N∑

n=0

J j
n (x, y)εn,

as the perturbation order N is increased. To further verify our algorithm, we have also
computed the “exact” solution via the Field Expansions approach of Bruno and Reitich [1]
and report, in Table 2, the results of this comparison. We note the nearly identical behavior as
observed in Table 1, though the sub-optimal accuracy as compared with these FE solutions
is due to the limited resolution of both the classical TFE and our new TFE approaches in the
z-direction.
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3.2 Calculation of Efficiencies

Quantities of great engineering interest in the study of gratings are the scattering efficien-
cies [12]. Given the Rayleigh series representation of the scattered field as

E(x, y, z) =
∞∑

p=−∞

∞∑

q=−∞
Dp,qe

i(αpx+βqy+iγp,q z),

the efficiencies are defined as

ep,q := |Dp,q |2γp,q

|A|2 γ0,0

for any (p, q) ∈ U , the set of propagating frequencies. With this definition in hand it is
clear why these efficiencies are of such interest as they quantify the “energy fraction” in
each mode which propagates away from the grating. We note for future reference that, for a
lossless grating, there is a principle of conservation of energy which states that

∑

(p,q)∈U

ep,q = 1,

so that the quantity

δ =
∣∣∣∣∣1 −

∑

(p,q)∈U

ep,q

∣∣∣∣∣, (3.3)

is an “energy defect” and can be used as a diagnostic of convergence.
In Fig. 1 we plot the results of our computations for the efficiencies e0,0 and e1,1 as

a function of the wave/height parameter ε. Here the water wave is on an ocean of depth
h = ∞, gravity is scaled to g̃ = 1, and the wave is periodic with respect to the cell C45°. The
electromagnetic wave has frequency (α,β, γ ) = (0,0,1.1) and the incident radiation has
amplitude A = (1,0,0). The numerical parameters are N1 = N2 = 64, Ny = 48, and N = 30
for the simulation of both the traveling water wave and the electromagnetic scattering. The

Fig. 1 Plot of efficiencies e0,0
and e1,1 versus ε for an ocean of
depth h = ∞ and radiation
frequency (α,β, γ ) = (0,0,1.1).
The traveling ocean wave is
periodic with respect to the cell
Cθ , cf. (3.1), with θ = 45° and
the numerical parameters are
N1 = N2 = 64, Ny = 48, and
N = 30
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Fig. 2 Plot of energy defect, cf.
(3.3), versus ε for an ocean of
depth h = ∞ and radiation
frequency (α,β, γ ) = (0,0,1.1).
The traveling ocean wave is
periodic with respect to the cell
Cθ , cf. (3.1), with θ = 45° and
the numerical parameters are
N1 = N2 = 64, Ny = 48, and
N = 30

Fig. 3 Plot of efficiencies e0,0
and e1,1 versus ε for an ocean of
depth h = ∞ and radiation
frequency (α,β, γ ) = (0,0,1.1).
The traveling ocean wave is
periodic with respect to the cell
Cθ , cf. (3.1), with θ = 75° and
the numerical parameters are
N1 = N2 = 64, Ny = 48, and
N = 30

range of ε is chosen so that the energy defect δ, (3.3), is always less than 10−6; we make this
claim quite precise in Fig. 2 which displays δ for this entire range of ε. We point out that the
spacing in ε is set to �ε = 10−3 so that this plot actually displays the efficiency evaluated at
500 values of ε. While this would be prohibitively expensive for other solvers working one
profile at a time, the additional cost for our algorithm to refine this sampling by a factor, say,
of 10 or even 100 would be negligible.

In Fig. 3 we again plot the results of our computations for the efficiencies e0,0 and e1,1 as a
function of the wave/height parameter ε. Here the water wave is parametrized by h = ∞ and
g̃ = 1 while being periodic with respect to the cell C75°. Again, the electromagnetic wave
has frequency (α,β, γ ) = (0,0,1.1) and the incident radiation has amplitude A = (1,0,0).
The numerical parameters are N1 = N2 = 64, Ny = 48, and N = 30 for the simulation of
both the traveling water wave and the electromagnetic scattering; the energy defect is always
less than 10−6. Once again, the spacing in ε is set to �ε = 10−3 so that the plot shows 300
values of the efficiencies.
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Fig. 4 Plot of efficiencies e0,0
and e1,1 versus ε for an ocean of
depth h = 1/2 and radiation
frequency (α,β, γ ) = (0,0,1.1).
The traveling ocean wave is
periodic with respect to the cell
Cθ , cf. (3.1), with θ = 45° and
the numerical parameters are
N1 = N2 = 64, Ny = 48, and
N = 30

We conclude with the results depicted in Figs. 4 and 5, again focusing on the efficien-
cies e0,0 and e1,1. Now the water waves are on an ocean of depth h = 1/2 (fully within
the “shallow water” regime) with g̃ = 1. In Fig. 4 we have set θ = 45°, while in Fig. 5,
θ = 75°. For consistency we have once again set (α,β, γ ) = (0,0,1.1) and A = (1,0,0).
The numerical parameters are N1 = N2 = 64, Ny = 48, and N = 30 for the simulation of
both the traveling water wave and the electromagnetic scattering; again the energy defect is
less than 10−6. With the spacing �ε = 10−3 Fig. 4 represents 65 values of the efficiency,
while Fig. 5 depicts 55 data points.

4 Conclusion

In this paper we have outlined a new method for computing three dimensional vector elec-
tromagnetic scattering returns by crossed gratings which is particularly efficient when the
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Fig. 5 Plot of efficiencies e0,0
and e1,1 versus ε for an ocean of
depth h = 1/2 and radiation
frequency (α,β, γ ) = (0,0,1.1).
The traveling ocean wave is
periodic with respect to the cell
Cθ , cf. (3.1), with θ = 75° and
the numerical parameters are
N1 = N2 = 64, Ny = 48, and
N = 30

gratings come in parametrized families. The method is an extension of the authors’ previ-
ous work on similar calculations for the scalar Helmholtz equation in two dimensions. The
details for overcoming the algorithmic complications of not only the additional spatial di-
mension but also the vector character of the governing equations are presented. The results
of several numerical experiments to verify our scheme and display its capabilities are also
shown.

5 Dedication

I (D.P.N.) was a student of David Gottlieb in graduate school at Brown University’s Division
of Applied Mathematics, and was profoundly influenced not only by his mathematics but
also by his personal character. By the fact that nearly all of my publications feature Professor
Gottlieb’s high-order spectral methods (together with a citation to his seminal 1977 work
with S. Orszag, Numerical Analysis of Spectral Methods: Theory and Applications [3]), it
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is clear that I consider them to be both the most elegant and, quite often, the most efficient
means of solving a differential equation numerically. Though I was not supervised by David,
his ideas and influence are clearly stamped on both my thesis and the remainder of my
published work. Of equal, and perhaps greater, value for me was the example he set as
a devoted husband, father, grandfather, and friend. It was truly remarkable to see such a
distinguished academic figure so deeply rooted in his family, and it is something I will never
forget.
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