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NUMERICAL SIMULATION OF GRATING STRUCTURES
INCORPORATING TWO-DIMENSIONAL MATERIALS: A

HIGH-ORDER PERTURBATION OF SURFACES FRAMEWORK∗
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Abstract. The plasmonics of two-dimensional materials, such as graphene, has become an
important field of study for devices operating in the terahertz to midinfrared regime where such
phenomena are supported. The semimetallic character of these materials permits electrostatic bias-
ing which allows one to tune their electrical properties, unlike the noble metals (e.g., gold, silver)
which also support plasmons. In the literature there are two principal approaches to modeling two-
dimensional materials: With a thin layer of finite thickness featuring an effective permittivity, or
with a surface current. We follow this latter approach to not only derive governing equations which
are valid in the case of curved interfaces, but also reformulate these volumetric equations in terms
of surface quantities using Dirichlet–Neumann operators. Such operators have been used extensively
in the numerical simulation of electromagnetics problems, and we use them to restate the governing
equations at layer interfaces. Beyond this, we show that these surface equations can be numerically
simulated in an efficient, stable, and accurate fashion using a High-Order Perturbation of Surfaces
methodology. We present detailed numerical results which not only validate our simulation using the
Method of Manufactured Solutions and by comparison to results in the literature, but also describe
Surface Plasmon Resonances at the “wavy” (corrugated) interface of a dielectric-graphene-dielectric
structure.
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1. Introduction. In the past decade the fields of plasmonics and photonics have
been transformed with the introduction of “two-dimensional materials” into photonic
devices. These single atom thick layered materials have remarkable mechanical, chem-
ical, and electronic properties, and while several materials, such as black phosphorous
[35] and hexagonal Boron Nitride (hBN) [33], have shown promise in practice, the
most well-studied is graphene [25, 23, 22, 24, 58]. Graphene is a single layer of carbon
atoms in a honeycomb lattice which was first isolated experimentally in 2004 [59]
resulting in the 2010 Nobel Prize in Physics to Geim [24] and Novoselov [58]. The
literature on the manufacture, modeling, and commercialization of graphene based
devices is in the thousands [16] and up-to-date survey papers are difficult to identify
(see the references above up to 2011). As further evidence of this, note that Nature
maintains a specific web page for the latest publications in the field [1].

Graphene plasmonics has become an important field of study for devices operat-
ing in the terahertz to midinfrared regime [34] where such phenomena are supported.
A vast number of applications for these materials are being found in communications,
military capabilities, medical sciences, and biological sensing [68, 21, 66]. Graphene’s
semimetallic character permits electrostatic biasing which allows one to tune its elec-
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20 DAVID P. NICHOLLS

trical properties, unlike the noble metals (e.g., gold, silver) which also support plas-
mons. With this in mind it is clear why graphene and other two-dimensional materials
have garnered so much attention.

While extensive work has been conducted by the scientific and engineering com-
munities on devices containing graphene, black phosphorous, and hBN, little has been
done in the applied mathematics literature. However, we do point out the recent work
of Auditore et al. [4], and Angelis et al. [2] which are not only focused on two impor-
tant and interesting applications, but are also mathematically careful.

To place our current contribution in proper context, we note that in the literature
there are two principal approaches to modeling two-dimensional materials: With a
thin layer of finite thickness (perhaps only a few Angstroms) featuring an effective
permittivity, or with a surface current. This latter approach is used in [4, 2] and we
follow their lead in not only this, but also a careful and rigorous approach. In partic-
ular, we derive governing equations which are valid in the case of curved interfaces.
Furthermore, we reformulate these volumetric equations in terms of surface quantities
using Dirichlet–Neumann Operators (DNOs) which map Dirichlet data to Neumann
data. Such operators have been used extensively in the numerical simulation of elec-
tromagnetics problems, both for the enforcement of far-field conditions transparently
[27, 32, 17, 6, 18, 7, 26, 48, 28] and the restatement of the governing equation at layer
interfaces [45, 38, 49, 47]. We follow this latter approach in restating the governing
equations with surface currents in terms of DNOs.

Beyond this, we show that these surface equations can be numerically simulated
in an efficient, stable, and accurate fashion using a High-Order Perturbation of Sur-
faces (HOPS) methodology. The latter is required as the relevant DNOs are highly
nontrivial to compute for a corrugated interface, but there are many options includ-
ing Bruno and Reitich’s Method of Field Expansions (FE) [10, 11, 12], the Method of
Operator Expansions (OE) due to Milder [39, 40, 41, 42], and the Transformed Field
Expansions (TFE) devised by Nicholls and Reitich [51, 54, 55]. Among these highly
accurate and efficient methods, we focus upon the extremely rapid FE approach and
the stabilized TFE method. We refer the interested reader to [51, 52, 54, 55, 69] for
an extensive set of detailed computations which compare and contrast the behavior
of these three algorithms.

The rest of the paper is organized as follows: In section 2 we discuss our model
of a two-dimensional material between two dielectrics (though nothing in the for-
mulation prevents either being a metal), specializing to two-dimensional problems in
section 2.1, discussing the modeling of the two-dimensional material in section 2.2,
and describing the equations for Transverse Electric (TE) and Transverse Magnetic
(TM) polarizations in sections 2.3 and 2.4, respectively. In section 3 we outline our
surface formulation of these equations, with details for the TE and TM equations in
sections 3.1 and 3.2, respectively. We present the conditions for a Surface Plasmon
Resonance (SPR) in these configurations in section 4. In section 5 we define the
DNOs required for our surface formulation, and in sections 5.1 and 5.2 we discuss
the FE and TFE methods for their computation. With these we describe our full
HOPS methodology in section 6. To conclude, we present our numerical results in
section 7, with validation by the Method of Manufactured Solutions in section 7.1 and
by comparison with results in the literature in section 7.2. We present new results on
SPRs induced at a “wavy” (corrugated) interface of a dielectric-graphene-dielectric
structure in section 7.3. There are three appendices which discuss the derivation of
Helmholtz equations in our models (Appendix A), the details of our surface conduc-
tivity model of graphene (Appendix B), and a vanishing layer thickness approach to
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NUMERICAL SIMULATION OF TWO-DIMENSIONAL MATERIALS 21

x
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z = g(x)

vinc = exp(−iγuz)

Su

Sw

Fig. 1. Plot of two-layer structure with periodic interface.

modeling two-dimensional materials which validates our models in sections 3.1 and
3.2 (Appendix C).

2. The model. The configuration we consider is depicted in Figure 1: A doubly
layered medium with interface specified by the doubly periodic grating shape

(2.1) z = g(x, y), g(x+ dx, y + dy) = g(x, y),

giving two domains

(2.2) Su = {z > g(x, y)}, Sw = {z < g(x, y)},

with permittivities {ε(u), ε(w)} and indices of refraction {n(u), n(w)}, respectively. The
two-dimensional material is modeled by a vanishingly thin medium at z = g(x, y).
The structure is illuminated from above with monochromatic plane-wave radiation of
frequency ω and wavenumber k(u) = n(u)ω/c0 = ω/c(u) (c0 is the speed of light). The
forms of these are

Ei = Aeiαx+iβy−iγ
(u)z, Hi = Beiαx+iβy−iγ

(u)z,

where α2 + β2 + (γ(u))2 = (k(u))2 in order to be a solution. The reduced (total)
electric and magnetic fields satisfy the time-harmonic Maxwell equations [60, 71]

curl[E] = iωµ0H,(2.3a)
curl[H] = −iωε0εE,(2.3b)
div [E] = 0,(2.3c)
div [H] = 0,(2.3d)

where

ε := ε′ + i
σ

ωε0
,

ε′ is the relative permittivity, and σ is the (bulk) conductivity. The incident ra-
diation generates reflected and transmitted fields ({E(u),H(u)} and {E(w),H(w)},
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22 DAVID P. NICHOLLS

respectively) so that

E =

{
E(u) + Ei, z > g(x, y),
E(w), z < g(x, y),

H =

{
H(u) + Hi, z > g(x, y),
H(w), z < g(x, y).

Regarding boundary conditions we demand quasiperiodicity:

E(x+dx, y+dy, z) = eiαdx+iβdyE(x, y, z), H(x+dx, y+dy, z) = eiαdx+iβdyH(x, y, z),

and that the fields be “outgoing.” Finally, at the material interface with normal
vector N (not necessarily normalized), we enforce the continuity of the tangential
components of the electric field

N
|N|
×E = 0,

which implies that

(2.4) N×
[
E(u) −E(w)

]
= −N×Ei,

while noting that the jumps in the tangential components of the magnetic field are
given by the surface current, js,

N
|N|
×H = js,

which delivers

(2.5) N×
[
H(u) −H(w)

]
= −N×Hi + |N| js.

In many situations this surface current is set to zero; however, we follow [4, 2] and
use it as a device to simulate the presence of a two-dimensional material.

2.1. Two-dimensional periodic gratings. We now assume that the grating
shape is y-invariant and d-periodic in x so that

z = g(x), g(x+ d) = g(x),

giving rise to a normal

N =
(
−∂xg 0 1

)T
and (longitudinal and transverse) tangents

T` =
(
1 0 ∂xg

)T
, Tt =

(
0 1 0

)T
.

We also align the incident radiation with the grooves of the grating. For instance, for
TE polarization we have

Ei = Aeiαx−iγ
uz, A =

(
0 A 0

)T
,

while for TM polarization we choose

Hi = Beiαx−iγ
uz, B =

(
0 B 0

)T
.
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NUMERICAL SIMULATION OF TWO-DIMENSIONAL MATERIALS 23

2.2. Surface current model of the two-dimensional material. At this
point we turn to the question of incorporating the two-dimensional material into our
model and, following the work of many others (e.g., [4, 2]), use the surface current
σ(g) for this purpose. For this we use Ohm’s Law, J = σ(g)E, and take a tangential
surface component

js = σ(g)
(

E(w) ·T
T ·T

)
T,

where js is measured in Amperes per meter and σ(g) is the surface conductivity
measured in Siemens. In this equation we use a tangential component of the electric
field which, due to tangential continuity (cf. (2.4)), equals both

(E(u) + Ei) ·T and E(w) ·T.

We choose the latter as it is more convenient for our formulation.

2.3. Transverse electric (TE) polarization. In TE polarization we seek so-
lutions for which the electric field has only a transverse component

E(x, z) =
(
0 v(x, z) 0

)T = v(x, z)Tt.

It is a straightforward computation (see Appendix A) to realize that, in the bulk, v
must satisfy the Helmholtz equation

∆v + εk2
0v = 0,

where k2
0 = ω2ε0µ0.

Regarding boundary conditions we begin by noting that, since N×Tt = −T`,

N×E = (−v)T`, N×H =
(
− 1
iωµ0

∂Nv

)
Tt.

Now, defining u, ui, and w by the decomposition

v(x, z) =

{
u(x, z) + ui(x, z), z > g(x),
w(x, z), z < g(x),

we begin by enforcing the continuity of the tangential component of the electric field
at the interface z = g(x), (2.4),

0 = N×E = (−v)T` at z = g(x),

which implies u+ ui − w = 0 or

u− w = −ui at z = g(x).

Next, we enforce the jump in a tangential component of the magnetic field (2.5).
As the tangential component of N ×H is in the transverse tangential direction, Tt,
we choose

E(w) ·Tt

Tt ·Tt
= w.
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24 DAVID P. NICHOLLS

Thus we have

|N|σ(g)wTt = |N|σ(g)
(

E(w) ·Tt

Tt ·Tt

)
Tt = |N| js = N×H =

(
− 1
iωµ0

∂Nv

)
Tt,

and we find

∂Nu−
{
∂N − |N| (iωµ0)σ(g)

}
w = −∂Nui, at z = g(x).

Considering a dimensionless surface current, σ̂(g) = σ(g)/(ε0c0), and using this and
the fact that ω = c0k0, this equation simplifies to

∂Nu− {∂N − |N| ρ}w = −∂Nui at z = g(x),

where

ρ = ρ(ω) := iωµ0σ
(g)(ω) = ik0σ̂

(g).

We gather these results and state that we seek quasiperiodic, outgoing solutions
of

∆u+ ε(u)k2
0u = 0, z > g(x),(2.6a)

∆w + ε(w)k2
0w = 0, z < g(x),(2.6b)

u− w = ζ at z = g(x),(2.6c)
∂Nu− {∂N − |N| ρ}w = ψ(x) at z = g(x),(2.6d)

where

(2.6e) ζ(x) := −
[
ui
]
z=g(x) , ψ(x) := −

[
∂Nu

i
]
z=g(x) .

2.4. Transverse magnetic (TM) polarization. In TM polarization we look
for solutions for which the magnetic field has only a transverse component

H(x, z) =
(
0 v(x, z) 0

)T = v(x, z)Tt.

As before, an elementary calculation (see Appendix A) shows that v satisfies the
Helmholtz equation

div
[

1
ε
∇v
]

+ k2
0v = 0.

Regarding boundary conditions we begin by noting that

N×H = (−v)T`, N×E =
(

1
iωε0ε

∂Nv

)
Tt.

Again, defining u, ui, and w by the decomposition

v(x, z) =

{
u(x, z) + ui(x, z), z > g(x),
w(x, z), z < g(x),
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NUMERICAL SIMULATION OF TWO-DIMENSIONAL MATERIALS 25

we begin by enforcing the continuity of the tangential component of the electric field
at the interface z = g(x), (2.4),

0 = N×E =
(

1
iωε0ε

∂Nv

)
Tt at z = g(x),

which implies (1/ε(u))∂Nu+ (1/ε(u))∂Nui − (1/ε(w))∂Nw = 0 or

∂Nu− τ2∂Nw = −∂Nui at z = g(x),

where

τ2 :=
ε(u)

ε(w) .

Once again, we enforce the jump in a tangential component of the magnetic field
(2.5). As the tangential component of N×H is in the longitudinal tangential direction,
T`, we need

E(w) ·T`

T` ·T`
=

1
iωε0ε(w)

(∂Nw)
|T`|2

=
1

iωε0ε(w)

(∂Nw)
|N|2

.

Thus we have

|N| σ(g)

iωε0ε(w)

(∂Nw)
|N|2

T` = |N|σ(g)
(

E(w) ·T`

T` ·T`

)
T` = |N| js = N×H = (−v)T`,

and we find

|N| (iωε0)u−
[
−σ

(g)

ε(w) ∂N + |N| (iωε0)
]
w = − |N| (iωε0)ui at z = g(x).

Dividing by (iωε0) and again using the facts that ω = c0k0 and σ(g) = ε0c0σ̂
(g), this

simplifies to

|N|u− [|N| − η∂N ]w = − |N|ui at z = g(x)

where

η = η(ω) :=
σ(g)

iωε0ε(w) =
σ̂(g)

ik0ε(w) .

We gather these results and state that we seek quasiperiodic, outgoing solutions
of

∆u+ ε(u)k2
0u = 0, z > g(x),(2.7a)

∆w + ε(w)k2
0w = 0, z < g(x),(2.7b)

|N|u− [|N| − η∂N ]w = |N| ζ at z = g(x),(2.7c)

∂Nu− τ2∂Nw = ψ at z = g(x),(2.7d)

where ζ and ψ are defined in (2.6e).
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26 DAVID P. NICHOLLS

3. Surface formulation via Dirichlet–Neumann operators. We now seek
to equivalently reformulate the governing equations of TE, (2.6), and TM, (2.7),
polarization in terms of boundary unknowns and operators. For this we introduce the
Dirichlet traces

U(x) := u(x, g(x)), W (x) := w(x, g(x)),

and their outward pointing Neumann counterparts

Ũ(x) := −(∂Nu)(x, g(x)), W̃ (x) := (∂Nw)(x, g(x)).

Of great importance to our formulation will be the DNOs which map the former to
the latter. To be more precise, given the unique α-quasiperiodic,

u(x+ d, z) = eiαdu(x, z),

the upward-propagating [60, 3] solution to the elliptic boundary value problem

∆u+ ε(u)k2
0u = 0, z > g(x),(3.1a)

u(x, g(x)) = U(x), z = g(x),(3.1b)

the DNO is defined as the map

(3.2) G(g) : U(x)→ Ũ(x).

In a similar manner, given the unique α-quasiperiodic, downward-propagating solution
to the elliptic boundary value problem

∆w + ε(w)k2
0w = 0, z < g(x),(3.3a)

w(x, g(x)) = W (x), z = g(x),(3.3b)

the DNO is defined as

(3.4) J(g) : W (x)→ W̃ (x).

In the case of a flat interface, g ≡ 0, it is easy to find G and J from the Rayleigh
expansions [60, 71]

(3.5) u(x, z) =
∞∑

p=−∞
ûpe

iαpx+iγ(u)
p z, w(x, z) =

∞∑
p=−∞

ŵpe
iαpx−iγ(w)

p z,

where, for m ∈ {u,w},

αp := α+
(

2π
d

)
p, γ(m)

p :=


√
ε(m)k2

0 − α2
p, p ∈ U (m),

i
√
α2
p − ε(m)k2

0, p 6∈ U (m),

and

U (m) :=
{
p ∈ Z | α2

p < ε(m)k2
0

}
are the propagating modes. From these expansions we see that

(3.6) G(0)U =
∞∑

p=−∞
(−iγ(u)

p )Ûpeiαpx, J(0)W =
∞∑

p=−∞
(−iγ(w)

p )Ŵpe
iαpx.
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NUMERICAL SIMULATION OF TWO-DIMENSIONAL MATERIALS 27

3.1. TE polarization. In terms of these DNOs, the TE equations, (2.6), can
be shown to be equivalent to the boundary equations

U −W = ζ,

− Ũ − W̃ + |N| ρW = ψ.

Using the DNOs defined above, (3.2) and (3.4), we can rewrite the equations above
as

U −W = ζ,

−G[U ]− J [W ] + |N| ρW = ψ.

We rearrange this to read

(3.7)
(
I −I
G J − |N| ρI

)(
U
W

)
=
(
ζ
−ψ

)
,

which can be compared with (C.2) in Appendix C, obtained by a vanishing layer
thickness argument.

3.2. TM polarization. On the other hand, the TM equations, (2.7), are equiv-
alent to the boundary equations

|N|U − |N|W + ηW̃ = |N| ζ,
− Ũ − τ2W̃ = ψ,

which we can rewrite as

|N|U − |N|W + ηJ [W ] = |N| ζ,
−G[U ]− τ2J [W ] = ψ.

We rearrange this to read

(3.8)
(
|N| − |N|+ ηJ
G τ2J

)(
U
W

)
=
(
|N| ζ
−ψ

)
,

which can again be compared with the vanishing layer thickness result (C.3) in Ap-
pendix C.

4. Surface Plasmon Resonances. We are now in a position to search for the
surface waves which deliver field enhancements at the interface of the three materials.
For noble metals these are induced by a classical SPR and we seek an analogue of
this condition in the present context. Following [49] the condition for an SPR is the
singularity of the linearized operator (flat interface) in the governing equations. More
specifically, for a TE SPR we require that

MTE :=
(

I −I
G(0) J(0)− ρI

)
be singular, while for a TM SPR we demand that

MTM :=
(

I −I + ηJ(0)
G(0) τ2J(0)

)D
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be noninvertible. Using the periodicity of the solutions

U(x) =
∞∑

p=−∞
Ûpe

iαpx, W (x) =
∞∑

p=−∞
Ŵpe

iαpx

and the forms (3.6), we find that we must consider singularities of the operators

M̂TE
p :=

(
1 −1

(−iγ(u)
p ) (−iγ(w)

p )− ρ

)
and

M̂TM
p :=

(
1 −1 + η(−iγ(w)

p )
(−iγ(u)

p ) τ2(−iγ(w)
p )

)
.

We measure this singularity with the determinant functions(
∆̃TE

)
p

= (−iγ(u)
p ) + (−iγ(w)

p )− ρ,(
∆̃TM

)
p

= (−iγ(u)
p ) + τ2(−iγ(w)

p )− η(−iγ(u)
p )(−iγ(w)

p ).

A little manipulation delivers two alternative determinant functions with the same
zeros,

∆TE
p = γ(u)

p + γ(w)
p + ωµ0σ

(g) = γ(u)
p + γ(w)

p + k0σ̂
(g),(4.1a)

∆TM
p =

ε(u)

γ
(u)
p

+
ε(w)

γ
(w)
p

+
σ(g)

ωε0
=
ε(u)

γ
(u)
p

+
ε(w)

γ
(w)
p

+
σ̂(g)

k0
.(4.1b)

We now consider the case of graphene and the model of the induced surface current
specified in Appendix B. We plot the functions ∆TE

p and ∆TM
p for p = 0, 1, 2, 3, 4 (with

d = 0.600 microns) and values of the chemical potential µ = 0.3 (Figures 2(a) and
2(b)), µ = 0.4 (Figures 3(a) and 3(b)), µ = 0.5 (Figures 4(a) and 4(b)), showing
not only the possibility of resonance in TM polarization for λ sufficiently large (the
terahertz and infrared regime), but also the lack of evidence for resonance in TE
polarization (as with classical SPRs [62]). We note that there appears to be no
possibility of a zero for p = 0 in either polarization meaning that plasmons cannot be
excited by a flat dielectric-graphene-dielectric (DGD) structure. However, for p 6= 0
there are near-zeros indicating the possibility of launching a surface plasmon from
a corrugated DGD structure. We will soon focus on the near-zeros associated with
p = 1, as these responses will be the strongest, which occur at

λSPR,0.3 ≈ 18.81 microns, λSPR,0.4 ≈ 16.29 microns,
λSPR,0.5 ≈ 14.58 microns.(4.2)

5. Numerical simulation of the DNOs. In order to perform a numerical sim-
ulation of (3.7) and (3.8), one specification remains to be made: How to approximate
the DNOs G and J . There is a large literature on the efficient, stable, and accurate
numerical computation of DNOs. We follow the HOPS philosophy pursued in a long
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Fig. 2. Plot of ∆p in (a) TE and (b) TM configurations for µ = 0.3.

0 5 10 15 20 25
10

-1

10
0

10
1

10
2

p=0

p=1

p=2

p=3

p=4

0 5 10 15 20 25
10

-6

10
-4

10
-2

10
0

10
2

p=0

p=1

p=2

p=3

p=4

Fig. 3. Plot of ∆p in (a) TE and (b) TM configurations for µ = 0.4.

line of research [51, 52, 53] (regarding Laplace’s equation), [54, 55, 56, 43, 37, 29, 45]
(regarding the Helmholtz equation), and [50, 46] (regarding the Maxwell equations);
see also [57, 49]. In brief, the approach begins with the assumption that the shape of
the interface deformation g(x) satisfies

g(x) = εf(x), ε� 1,

with f sufficiently smooth (for a rigorous proof in the case of C2 profiles, see [51, 55],
while Lipschitz interfaces are considered in [30]). We point out that the smallness
assumption on ε can be removed by analytic continuation, rigorously justified in
[53, 31] and numerically implemented via Padé summation [11, 52, 55]. With this
assumption the DNOs can be shown to depend analytically upon the deformation size
ε so that

G = G(εf) =
∞∑
n=0

Gn(f)εn, J = J(εf) =
∞∑
n=0

Jn(f)εn.

The question now becomes: Can useful forms for the {Gn, Jn} can be derived? We
briefly describe two approaches here: The FE due to Bruno and Reitich [10, 11, 12],
and the TFE devised by Nicholls and Reitich [51, 55].
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Fig. 4. Plot of ∆p in (a) TE and (b) TM configurations for µ = 0.5.

5.1. Field expansions. The FE in the current context begins with the suppo-
sition (verified a posteriori) that the scattered fields also depend analytically upon ε.
Focusing upon the field in the upper layer, {z > g(x)}, this implies that

u = u(x, z; ε) =
∞∑
n=0

un(x, z)εn.

Upon insertion of this into (3.1) one finds that the un must be α-quasiperiodic,
upward-propagating solutions of the elliptic boundary value problem

∆un + ε(u)k2
0un = 0, z > 0,(5.1a)

un(x, 0) = δn,0U(x)−
n−1∑
`=0

f(x)n−`

(n− `)!
∂n−`z v`(x, 0), z = 0,(5.1b)

where δn,` is the Kronecker delta function. The classical Rayleigh expansions [60, 71]
(cf. (3.5)) provide solutions

un(x, z) =
∞∑

p=−∞
ûn,pe

iαpx+iγ(u)
p z,

and the ûn,p are determined recursively from the boundary conditions, (5.1b), begin-
ning, at order zero, with the Fresnel coefficients

û0,p = Ûp.

From this the DNO, (3.2), can be computed from

G = −∂Nu(x, εf) =
∞∑
n=0

∞∑
p=−∞

(−iγ(u)
p + ε(∂xf)iαp)ûn,peiαpxeiγ

(u)
p εfεn,

expanding the exponential exp(iγ(u)
p εf) in a power series in ε, and equating like powers

of ε. Similar considerations hold for the DNO J save that the alternate Rayleigh
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expansion (cf. (3.5))

wn(x, z) =
∞∑

p=−∞
ŵn,pe

iαpx−iγ(w)
p z

must be used.

5.2. Transformed field expansions. The TFE method proceeds in exactly the
same manner as the FE approach save that a “domain–flattening” change of variables
is affected before the expansion in ε is made. This change of variables is well known
in the literature and goes by the name σ-coordinates in the atmospheric sciences [61],
and the C-Method in the theory of gratings [15]. The change of variables essentially
amounts to

x′ = x, z′ = z − g(x),

which not only maps the deformed interface shape {z = g(x)} to the trivial shape
{z′ = 0}, but also results in a greatly stabilized sequence of recursions. For complete
details together with numerical validation, please see, e.g., [55]. The downside of this
approach is the slightly elevated computational cost due to the fact that this change
of variables introduces inhomogeneities into the governing equations, e.g.,

∆′u′ + ε(u)k2
0u
′ = F (x′, z′), z′ > 0,

u′(x′, 0) = U(x′), z′ = 0.

This means that the Rayleigh expansions cannot be used directly and a volumetric
discretization is required [52, 55]. However, the greatly enhanced stability and ap-
plicability (large and rough deformations can be readily simulated) oftentimes make
this extra cost worthwhile.

6. A High-Order Perturbation of Surfaces method. In light of the de-
velopments in the previous section regarding the computation of DNOs we can now
describe a rapid, highly accurate, and stable algorithm to compute solutions to the
surface TE, (3.7), and TM, (3.8), equations. In the interest of brevity we describe
our approach for the TE polarization alone as the TM version is quite similar.

Again, making the HOPS assumption g(x) = εf(x), we suppose not only that the
DNO depend analytically upon ε but also that the surface fields do as well, so that

U = U(x; ε) =
∞∑
n=0

Un(x)εn, W = W (x; ε) =
∞∑
n=0

Wn(x)εn.

Upon insertion of these into (3.7), equating at like orders delivers, at order zero,

(6.1)
(
I −I
G0 J0 − ρI

)(
U0
W0

)
=
(
ζ0
−ψ0

)
.

At higher orders we find

(6.2)
(
I −I
G0 J0 − ρI

)(
Un
Wn

)
=
(
ζn
Rn

)
,

where

Rn = −ψn −
n−1∑
`=0

(Gn−`[U`] + Jn−`[W`]− ρ |N |n−`W`)

D
ow

nl
oa

de
d 

04
/0

4/
18

 to
 1

31
.1

93
.1

78
.1

39
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

32 DAVID P. NICHOLLS

and

|N | = |N | (x; ε) =
∞∑
n=0

|N |n (x)εn.

Appealing to our simple formulas for G0 = G(0) and J0 = J(0), (3.6), and using
the Fourier expansions

Un(x) =
∞∑

p=−∞
Ûn,pe

iαpx, Wn(x) =
∞∑

p=−∞
Ŵn,pe

iαpx,

we realize that both (6.1) and (6.2) can be solved very rapidly by the Fast Fourier
Transform (FFT) algorithm [52, 55]. Once these {Ûn,p, Ŵn,p} are recovered we can
form, for instance, approximations of the surface fields

UN (x; ε) :=
N∑
n=0

∞∑
p=−∞

Ûn,pe
iαpxεn, WN (x; ε) :=

N∑
n=0

∞∑
p=−∞

Ŵn,pe
iαpxεn.

We note that one may choose among several methods to sum the truncated Taylor
series (in n) which appear above. In addition to direct (Taylor) summation, the clas-
sical numerical analytic continuation method of Padé approximation [5] has been very
successful when applied to HOPS algorithms [11, 53, 55, 57]. The Padé approximant
has remarkable properties; among these are that, for a wide class of functions, not
only is the convergence faster at points of analyticity, but also it may converge for
points outside the disk of convergence. We refer the reader to section 2.2 of Baker and
Graves-Morris [5] and section 8.3 of Bender and Orszag [8] for a complete discussion
of the capabilities and limitations of Padé approximants.

7. Numerical results. Now that we have a mathematical framework in place,
together with a computational algorithm to simulate solutions, we would like to ap-
proximate a configuration of interest to engineers. With the recent explosion of at-
tention to graphene and its use in nano-optical devices, there are many from which to
choose. Based upon the work of the group of T. Low at the University of Minnesota,
we select a geometry inspired by one of the devices they have studied.

It is well known not only that the optical response of graphene is typically outside
the visible region, but also that the effect for a uniform flat layer can be quite weak.
However, the Low group has shown that with periodic patterning this effect can be
made much more dramatic [34, 70, 14, 20, 64]; furthermore, with sufficient chemical
or electrical gating, free carriers can be induced with ease, thereby changing the value
of the chemical potential, µ (see Appendix B), quite drastically.

In [14] the Low group investigated the possibility of plasmonic excitation with
strips of graphene deposited on a solid dielectric substrate, overlaid with an electrolyte
gating superstrate. With this basic configuration (there are other features which must
be added; see [14] for full details) their group was able to construct a device which
could manipulate the phase shift of reflected light based upon the periodicity of the
striping, and the chemical potential, µ, generated by the electrolyte.

Their geometry features only flat interfaces in the layers of the structure so a
method such as ours is unnecessary (the authors resorted to a full Finite Element
simulation). However, it is easy to imagine how our computational capability can
easily be brought to bear upon slightly different configurations to illuminate other
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NUMERICAL SIMULATION OF TWO-DIMENSIONAL MATERIALS 33

interesting behavior. More specifically, we note that the patterning and periodicity
of the strip deposition is what generates the strong response noted by Low. We
mimic this mechanism by retaining a solid layer of graphene, but perturbing the
geometry in the same manner that classical SPRs are generated by a corrugated
interface [62, 36, 19] in TM polarization.

With this in mind we consider a doubly layered structure (e.g., depicted in Fig-
ure 1) where dielectrics occupy the layers Su and Sw (cf. (2.2)) separated by a non-
trivial interface shaped by z = g(x) = εf(x), (2.1). At this interface we place a layer
of graphene and study the reflectivity map induced by plane-wave illumination in TM
polarization as the size, ε, of g is varied.

7.1. Validation by the method of manufactured solutions. Before pro-
ceeding to our numerical simulations, we validate our code using the Method of
Manufactured Solutions (MMS) [13, 63, 65]. To summarize the MMS, when solv-
ing a system of partial differential equations subject to boundary conditions for an
unknown, v, say

Pv = 0 in Ω,(7.1a)
Bv = 0 at ∂Ω,(7.1b)

it is typically just as easy to implement an algorithm to solve the “inhomogeneous”
version of the above,

Pv = F in Ω,(7.2a)
Bv = J at ∂Ω.(7.2b)

In order to test a code, one begins with the “manufactured solution,” ṽ, and sets

Fṽ := P ṽ, Jṽ := Bṽ.

Now, given this pair {Fṽ,Jṽ} we have an exact solution to (7.2) against which we can
compare our numerically simulated solution. While this provides no guarantee of a
correct implementation, with a careful choice of ṽ, e.g., one which displays the same
qualitative behavior as solutions of (7.1), the approach can give great confidence in
the accuracy of a scheme.

For the implementation in question we consider the α-quasiperiodic, outgoing
solutions of the Helmholtz equation, (3.1),

ur(x, z) = Arue
iαrx+iγ(u)

r z, r ∈ Z, Aru ∈ C,

and the counterpart for (3.3),

wr(x, z) = Arwe
iαrx−iγ(w)

r z, r ∈ Z, Arw ∈ C.

For the interface shape we select the periodic and analytic function

f(x) = ecos(x),

and from these we can compute, e.g., the exact surface current

νex(x) := [∂Nur − ∂Nwr]z=εf(x) .
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Fig. 5. Relative error (7.4) versus perturbation order for configuration (7.3) with (a) ε = d/100
and (b) ε = d/5; FE and TFE schemes with Taylor and Padé summation.

We make the physical parameter choices

(7.3a) r = 2, Aru = −3, Arw = 4, ρ = −2 + i, η = 3− 2i, d = 2π

and numerical parameter choices

(7.3b) Nx = 32, Nz = 16, a = 0.5, b = 0.5, N = 16

and compute approximations to νex by the FE and TFE algorithms delivering νFE

and νTFE, respectively. (The parameters a and b specify locations of artificial bound-
aries in the TFE formulation, while Nz gives the spatial discretization in the vertical
direction; please see [55, 44] for full details.) We measure the relative error

(7.4) ErrorFE
rel =

∣∣νex − νFE
Nx,N

∣∣
L∞

|νex|L∞
, ErrorTFE

rel =

∣∣νex − νTFE
Nx,Nz,N

∣∣
L∞

|νex|L∞

and display our results in Figure 5(a) for ε = d/100. Here we see the precipitous
(spectral) convergence of our method to the true solution down to machine precision
(up to the conditioning of our algorithms [53]) by ten perturbation orders. We revisit
this calculation in the vastly more challenging case ε = d/5 with the modifications
that Nx = 256, Nz = 64, and a = b = 2. The results are displayed in Figure 5(b) and
show the extremely beneficial effects of not only the stabilized TFE approach [52],
but also Padé summation [53].

7.2. Validation by comparison to results in the literature. As a second
validation of our method we revisit a simulation appearing in the literature with our
own algorithm. For this we choose the survey paper of Bludov et al. [9], in particular
the calculations presented in section 9 (“Scattering of ER from corrugated graphene”)
and section 9.4 (“A nontrivial example I: sine profile”) where they study scattering by
a one-dimensional, sinusoidally perturbed graphene sheet in TM polarization. More
specifically, they study an interface profile (where the graphene exists) shaped by

g(x) = ε sin(2πx/d),

where we have used the notation of the present contribution. Beyond this, they make
the physical parameter choices

d = 10 microns, ε(u) = 1, ε(w) = 11, α = 0,
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NUMERICAL SIMULATION OF TWO-DIMENSIONAL MATERIALS 35

and use a Drude model for the graphene

σD = σ0

(
4EF
π

)
1

~γ − i~ω
, σ0 =

πe2

2h
,

where e < 0 is the electron charge, γ is the relaxation rate, and EF > 0 is the (local)
Fermi level position. In [9] the authors chose values EF = 0.45 eV and ~γ =: Γ =
2.6 meV.

With these values the authors plotted curves of (specular) reflectance, transmis-
sion, and absorbance,

R0 = |û0|2 , T0 = (γ(w)/γ(u)) |ŵ0|2 , A0 = 1−R0 − T0,

respectively, versus energy of the incident radiation, E = hc0/λ, for four choices of
the interface height

ε = d/100, d/25, d/15, d/10.

We reproduced these with our new HOPS methodology and display the results in
Figures 6(a), 6(b), and 6(c). We point out the remarkable qualitative agreement,
including the SPR excited around 11 meV as predicted in [9].
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Fig. 6. (a) Specular reflectance, R0, (b) specular transmission, T0, and (c) specular absorbance,
A0, versus energy for four choices of the interface height, ε = d/100, d/25, d/15, d/10 with d =
10 microns. HOPS method with Nx = 128, Nz = 32, and N = 8.D
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7.3. Wavy nanosheets. Having verified the accuracy and validity of our code in
the previous sections, we use it to simulate the configuration outlined at the beginning
of section 7. We recall that this is a contiguous, corrugated layer of graphene shaped
by z = g(x), sandwiched between two semi-infinite dielectric layers. To specify a
particular configuration we select f(x) = cos(2πx/d) (d = 0.600 microns), vacuum
(n(u) = 1) above the layer of graphene, and alumina (n(w) = 1.76) below.

To simulate the electric gating, which can be induced in graphene layers, we vary
the chemical potential µ. Many values appear in the literature for this constant, but
those between 0.1 eV and 0.5 eV are commonplace [4, 34, 70, 14, 20, 64, 2]. For the
purpose of our simulations, we study three values within this range (µ = 0.3, 0.4, 0.5)
and show how, in TM configuration, the strongest plasmonic response (associated to
wavenumber p = 1) can be moved quite significantly with variation of the chemical
potential; cf. (4.2).

To measure this we study the Reflectivity Map which we define in terms of the
Rayleigh expansions for the reflected and transmitted fields (cf. (3.5)),

u(x, z) =
∞∑

p=−∞
ûpe

iαpx+iγ(u)
p z, w(x, z) =

∞∑
p=−∞

ŵpe
iαpx−iγ(w)

p z,

respectively. In terms of these the efficiencies are defined as

e(u)
p :=

(
γ

(u)
p

γ(u)

)
|ûp|2 , e(w)

p :=

(
γ

(w)
p

γ(u)

)
|ŵp|2 ,

and the Reflectivity Map is defined by

(7.5) R(λ, ε) :=
∑

p∈U(u)

e(u)
p .

We begin with the value µ = 0.3 eV and display results of our simulation of the
normalized Reflectivity Map, R(λ, ε)/R(λ, 0), in Figure 7(a), together with the final
slice of this at ε = d/10 in Figure 7(b). Due to the very strong and extremely confined
plasmonic response, in order to make Figures 7(a), 8(a), and 9(a) more readable we
actually plot min{R(λ, ε)/R(λ, 0), 2}. In this simulation we have chosen

Nx = 96, Nz = 48, a = 1, b = 1, N = 20,

which differs, in the supremum norm, from the Reflectivity Map computed with Nx =
64, Nz = 32, and N = 16 by 10−6. We note the dramatic shift that one can realize
by introducing a corrugation into the graphene layer. Here we see that the SPR has
moved from roughly 18.81 microns to 20.1 microns; cf. (4.2).

We revisit this simulation (with the same numerical parameters) in the case µ =
0.4 eV, and in Figure 8(a) show R(λ, ε)/R(λ, 0). Again, we display the final slice of
this at ε = d/10 in Figure 8(b). As before, there is a sizable shift in the location of
the SPR with a corrugation in the graphene layer. Now the SPR has moved from
roughly 16.29 microns to 17.4 microns; cf. (4.2).

Finally, we consider the case µ = 0.5 eV (again, with the same numerical pa-
rameters). In Figure 9(a) we display R(λ, ε)/R(λ, 0) and in Figure 9(b) we show the
final slice of this at ε = d/10. As before, there is a huge shift in the location of the
SPR with a corrugation in the graphene layer. Now the SPR has moved from roughly
14.58 microns to 15.5 microns; cf. (4.2).
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Fig. 7. (a) Contour plot of the Reflectivity Map and (b) its final slice for µ = 0.3.
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Fig. 8. (a) Contour plot of the Reflectivity Map and (b) its final slice for µ = 0.4.

Before closing, we highlight the fact that with a fixed geometry (fixed value of ε),
the location of the SPR can be moved conveniently and quickly by changing µ. For
instance, by fixing ε = d/10 the SPR can be moved among

λSPR,0.3(d/10) ≈ 20.1 microns, λSPR,0.4(d/10) ≈ 17.4 microns,
λSPR,0.5(d/10) ≈ 15.5 microns,

as µ is varied.

Appendix A. Derivation of Helmholtz equations. In this appendix we
provide details of the derivation of the governing Helmholtz equations which appear
in TM polarization (the TE case is analogous). We remember that

H(x, z) =
(
0 v(x, z) 0

)T = v(x, z)Tt,

from which we can compute

curl[H(x, z)] =
(
−∂zv(x, z) 0 ∂xv(x, z)

)T
.
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Fig. 9. (a) Contour plot of the Reflectivity Map and (b) its final slice for µ = 0.5.

From (2.3b) we find that

E(x, z) = − 1
iωε0ε

curl[H(x, z)] = − 1
iωε0ε

(
−∂zv(x, z) 0 ∂xv(x, z)

)T
=:
(
Ex(x, z) 0 Ez(x, z)

)T
,

and we can compute

curl[E(x, z)] =
(
0 (∂zEx(x, z)− ∂xEz(x, z)) 0

)T = div
[

1
iωε0ε

∇v
]

Tt.

Now (2.3a) demands that

iωµ0v(x, z)Tt = iωµ0H(x, z) = curl[E(x, z)] = div
[

1
iωε0ε

∇v(x, z)
]

Tt,

which implies, since ε jumps from Su to Sw, that

div
[

1
ε
∇v
]

+ k2
0v = 0,

where k2
0 = ω2ε0µ0.

Appendix B. The surface conductivity of graphene. We now describe one
popular approach to modeling the surface conductivity induced at a graphene layer.
We follow the lead of [4, 2] who utilize the approximation of Stauber, Peres, and Neto
[67]. To begin we define the dimensionless function σ̂(g) = σ̂

(g)
r + iσ̂

(g)
i where

σ̂(g)
r := παη`

{
tanh((Ω + 2)/κ) + tanh((Ω− 2)/κ)

2

}
,

σ̂
(g)
i :=

4α
Ω

(
1− 2µ2

9t2

)
+ α log

∣∣∣∣Ω− 2
Ω + 2

∣∣∣∣ ,
1 ≤ η` ≤ 5 is a dimensionless loss parameter (which we set to one), and the dimen-
sionless constants Ω (scaled frequency), α (fine structure constant), and κ (scaled
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chemical potential) are defined by

Ω :=
~ω
µ
, α :=

e2

4πε0~c0
, κ :=

4kBT
µ

.

In these

t = 2.7 [eV] hopping parameter,

~ = 6.582119514× 10−16 [eV s] reduced Planck’s constant,

kB = 8.6173324× 10−5 [eV/K] Boltzmann constant,
ω [rad/s] angular frequency,
T [K] temperature,
µ [eV] chemical potential.

From this the conductivity (measured in Siemens) is defined by

σ(g) = ε0c0σ̂
(g),

where ε0 is the permittivity of free space, and c0 is the speed of light. In this work we
view the temporal angular frequency (ω), temperature (T ), and chemical potential (µ)
as parameters to be varied, though we fix T = 300 K. Finally, we choose to measure
lengths in microns and it is helpful to remember that for light of wavelength λ, the
temporal angular frequency is given by ω = (2πc0)/λ [rad/s].

B.1. The effective permittivity of graphene. To close, we formulate an
“effective permittivity” for graphene based upon our model above which can be used
in a nonvanishing layer approximation of a graphene layer. We recall that the complex
permittivity of a layer is defined by

ε := ε′ + i
Σ
ωε0

,

where Σ is the conductivity in the bulk (measured in [S/m]). In [4, 2] they approximate
this quantity by dividing σ by the thickness of the graphene layer, dg, reported in [4]
as 0.34 nm. With these considerations we define the effective permittivity of graphene
by

ε(g) :=
iσ(g)/dg
ωε0

.

Using the facts that ω = c0k0 and σ(g) = ε0c0σ̂
(g) we simplify this to

ε(g) =
iσ̂(g)

k0dg
.

Appendix C. Vanishing thickness approximation of a finite graphene
layer. In this section we consider an alternative derivation of the governing equations
(3.7) and (3.8) by modeling the two-dimensional material as a layer with effective
permittivity, ε(v), of finite thickness, d = dg, which we subsequently send to zero.

If the two-dimensional material occupies the domain

Sv = {g(x)− dg/2 < z < g(x) + dg/2},
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we seek α-quasiperiodic solutions of

∆v + k2
0ε

(v)v = 0, g(x)− dg/2 < z < g(x) + dg/2,
v(x, g(x) + dg/2) = V u(x),

v(x, g(x)− dg/2) = V `(x).

Defining the outward pointing Neumann data

Ṽ u(x) = (∂Nv)(x, g(x) + dg/2), Ṽ `(x) = −(∂Nv)(x, g(x)− dg/2),

and the DNO [45] (
H K
K H

)
:
(
V u

V `

)
→
(
Ṽ u

Ṽ `

)
,

it is not difficult to write the governing equations in this scenario [45] as

U − V u = ζ,

GU + µ2HV u + µ2KV ` = −ψ,
V ` −W = 0,

KV u +HV ` + ν2JW = 0,

where

µ2 =

{
1, TE,
ε(u)/ε(v), TM,

ν2 =

{
1, TE,
ε(v)/ε(w), TM.

We have simplified by assuming continuity at the lower interface. Our goal is to write
a system of two equations for {U,W} by eliminating the appearance of {V u, V `}. To
accomplish this we consider the final two equations above to give

V ` = W,

V u = K−1 [−HV ` − ν2JW
]

= −
[
K−1H + ν2K−1J

]
W,

where we used V ` = W in the latter step. Inserting these into the first two equations
above yields

U +K−1HW + ν2K−1JW = ζ,

GU + µ2H
[
−K−1H − ν2K−1J

]
W + µ2KW = −ψ,

or

(C.1)
(
I (K−1H + ν2K−1J)
G µ2(K −HK−1H)− µ2ν2HK−1J

)(
U
W

)
=
(
ζ
−ψ

)
.

We now study some of these operators in the flat-interface case and note that they
are probably still true (essentially) for a sufficiently small deformation. To begin, we
recall [45] that

H = (iγ(v)
D ) coth(iγ(v)

D dg) = (iγ(v)
D )

(
1

iγ
(v)
D dg

+ . . .

)
∼ 1
dg
I,

K = −(iγD)csch(iγ(v)
D dg) = −(iγ(v)

D )

(
1

iγ
(v)
D dg

+ . . .

)
∼ − 1

dg
I,
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so that

HK−1 = K−1H = − 1

iγ
(v)
D

sinh(iγ(v)
D dg)(iγ

(v)
D ) coth(iγ(v)

D dg) = − cosh(iγ(v)
D dg) ∼ −I,

K−1 = − 1

iγ
(v)
D

sinh(iγ(v)
D dg) = − 1

iγ
(v)
D

(
iγ

(v)
D dg + . . .

)
∼ −dgI,

while, using the identities

csch2z − coth2 z = −1, −(γ(v)
p )2 = α2

p − (k(v))2,

we have

K −HK−1H = K−1 (K2 −KHK−1H
)

= K−1 (K2 −H2)
= K−1(iγ(v)

D )2(−I)

= −K−1
(
−(γ(v)

D )2
)

=
1

iγ
(v)
D

sinh(iγ(v)
D dg)

{
α2
D − (k(v))2

}
=
(
dg +O(d3

g)
){
α2
D − ε(v)k2

0

}
.

Using the relation ε(v) = iσ̂(g)/(k0dg) from Appendix B for the effective permittivity
of the two-dimensional material, we find

K −HK−1H =
(
dg +O(d3

g)
){

α2
D −

(
iσ̂(g)

k0dg

)
k2
0

}
= −iσ̂(g)k0 +O(dg)
= −ρ+O(dg).

From this we learn that

ν2K−1J ∼

{
−dgJ ∼ 0, TE,
(−η/dg)(−dgJ) = ηJ, TM,

and

µ2ν2HK−1J = −τ2J =

{
−J, TE,
−(ε(u)/ε(w))J, TM,

and

µ2 (K −HK−1H
)
∼

{
−ρ, TE,
0, TM.

Thus, in the TE configuration, as dg → 0, the governing equations (C.1) become

(C.2)
(
I −I
G J − ρI

)(
U
W

)
=
(
ζ
−ψ

)
,
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while in the TM configuration we have

(C.3)
(
I −I + ηJ
G τ2J

)(
U
W

)
=
(
ζ
−ψ

)
.

We point out that these match (3.7) and (3.8) exactly for g ≡ 0.
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