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Abstract. The plasmonics of graphene and other two-dimensional materials has at-
tracted enormous amounts of attention in the scientific literature over the past decade.
Both the possibility of exciting plasmons in the terahertz to midinfrared regime, and
the active tunability of graphene via electrical gating or chemical doping has generated
a great deal of excitement among engineers seeking sensing devices which operate in
this regime. Consequently there is significant demand for robust and highly accurate
computational capabilities which can incorporate such materials. Standard volumetric
approaches can answer this demand, but require vast computational resources in ex-
change. Here we describe an algorithm which addresses this issue in two ways, first,
we model the graphene layer with a surface current which is applicable to a wide class
of two-dimensional materials. In addition, we reformulate the governing volumetric
equations in terms of surface quantities using Dirichlet-Neumann Operators. These
surface equations can be numerically simulated in an efficient, stable, and accurate
fashion using a novel High-Order Perturbation of Envelopes methodology. We uti-
lize an implementation of this algorithm to study absorbance spectra of TM polarized
plane-waves scattered by a periodic grid of graphene ribbons.

AMS subject classifications: 78A45, 65N35, 78B22, 35J05, 41A58
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1 Introduction

The discovery of graphene and other two-dimensional materials has been truly trans-
formative to the fields of photonics and plasmonics. The mechanical, chemical, and
electronic properties of these single atom thick materials are remarkable. While several
materials such as black phosphorous [25] and hexagonal Boron Nitride (hBN) [23] have
shown promise for use in devices, the most well-studied is graphene [10, 13, 14, 16, 37].
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Graphene is a single layer of carbon atoms in a honeycomb lattice which was first isolated
experimentally in 2004 [28] resulting in the 2010 Nobel Prize in Physics to Geim [14] and
Novoselov [37]. Graphene plasmons have become important for devices operating in
the terahertz to mid-infrared regime [24] where such phenomena are supported. For a
complete discussion of graphene including modeling, device design, and particular ap-
plications, we refer the interested reader to the survey article of Bludov, Ferriera, Peres,
and Vasilevskiy [4] and the text of Goncalves and Peres [18].

In light of all of this there is an understandable desire amongst scientists and engi-
neers to simulate structures featuring two-dimensional materials numerically. A most
natural approach is to solve the volumetric Maxwell equations either in the time or fre-
quency domain where the graphene is modeled with an effective permittivity supported
in a thin layer, or as a surface current with an effective conductivity at the interface be-
tween two layers. In either case commercial black-box Finite Element Method (FEM)
software such as COMSOL MultiphysicsTM [7] is typically utilized, however, these simu-
lations are quite costly due to their low-order accuracy and volumetric character.

In our recent contribution [34] we described an approach which overcomes both of
these limitations by not only restating the frequency domain governing equations in
terms of interfacial unknowns, but also describing a High-Order Spectral (HOS) algo-
rithm which recovers solutions with remarkable accuracy (typically machine precision)
with a very modest number of unknowns. A subtlety of our approach is that, in order to
close the system of equations, surface integral operators must be introduced which con-
nect interface traces of the scattered fields (Dirichlet data) to their surface normal deriva-
tives (Neumann data). Such Dirichlet-Neumann Operators (DNOs) have been widely
used and studied in the simulation of linear wave scattering, e.g., for enforcing far-field
boundary conditions transparently [2, 3, 8, 9, 15, 19, 21, 22, 35] and interfacial formulations
of scattering problems [27, 29, 32, 34, 36].

One way to generate plasmonic responses in photonic devices is to introduce period-
icity to the structure in question. This can be done in a number of ways, and in our ear-
lier work we focused upon two-dimensional materials deposited on periodic, corrugated
grating structures. Here the height/slope of the grating shape was viewed as a pertur-
bation parameter and the resulting High-Order Perturbation of Shapes (HOPS) scheme
sought high order corrections to the trivially computed flat-interface, solid graphene con-
figuration. While such devices are important, it is much easier (and more common) to cre-
ate a structure with flat interfaces upon which periodically spaced ribbons of graphene
are mounted. In this contribution we model this design by multiplying the (constant) cur-
rent function by an envelope function which transitions between one (where the graphene
is deposited) to zero (where graphene is absent). Our numerical procedure views this
envelope function as a perturbation of the identity function, and we term our scheme a
High-Order Perturbation of Envelopes (HOPE) algorithm.

With this approach we will not only rigorously demonstrate that the scattered fields
depend analytically upon this envelope perturbation parameter, but also show that a nu-
merical scheme can be built upon the resulting recursions. The algorithm is both robust
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and accurate, and extremely rapid in its execution. We note that due to the flat interfaces
present in this geometry, the DNOs are reduced to simple Fourier multipliers which can
be easily computed in Fourier space. This is in stark contrast to the case of corrugated
interfaces considered in [34] where a stable and accurate HOPS scheme for their compu-
tation is non-trivial to design and implement.

The rest of the paper is organized as follows: In Section 2 we recall the governing
equations of our model [34] for the response of a two-dimensional material mounted
between two dielectrics. In Section 3 we describe our surface formulation of these equa-
tions, specializing to the patterned, flat-interface configuration in Section 3.1. We pre-
scribe our HOPE methodology in Section 3.2. We state and prove our analyticity results
in Section 4. We conclude with numerical results in Section 5, with a discussion of imple-
mentation issues in Section 5.1 and simulation of absorbance spectra in Section 5.2.

2 Governing equations

Following [34], the structure we consider is displayed in Fig. 1, a doubly layered, y-
invariant medium with periodic interface shaped by z= g(x), g(x+d)= g(x). This inter-
face separates two domains filled with dielectrics of permittivities ǫu in Su := {z> g(x)}
and ǫw in Sw :={z<g(x)}, respectively. This is illuminated with plane-wave radiation of
incidence angle θ, frequency ω, and wavenumber ku =

√
ǫuω/c0,

vinc = ei(−ωt+αx−γuz), α= ku sin(θ), γu= ku cos(θ).

x

z

z = g(x)

vinc = exp(−iγuz)

Su

Sw

Figure 1: Plot of two-layer structure with periodic interface.
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As we detailed in [34], if we choose as unknowns, {u(x,z),w(x,z)}, the laterally
quasiperiodic transverse components of either the electric or magnetic fields, then the
governing equations in this two-layer configuration are

u−w+Aτw∂Nw= ξ, z= g(x), (2.1a)

τu∂Nu−τw∂Nw+Bw=τuν, z= g(x), (2.1b)

where ∂N =N ·∇, N=(−∂xg,1)T , for m∈{u,w},

τm =

{
1, TE,

1/ǫm, TM,
A=

{
0, TE,

|N| σ̂/(ik0), TM,
B=

{
(ik0)σ̂/|N|, TE,

0, TM,

and
ξ(x)=− vinc

∣∣
z=g(x)

, ν(x)=− ∂Nvinc
∣∣
z=g(x)

.

Of particular note is σ̂ = σ/(ǫ0c0), the dimensionless surface current which models the
effects of the graphene (or other two-dimensional material) deposited at the interface
between the two layers.

3 Surface formulation

Following [29,34] we now reformulate the problem (2.1) in terms of surface integral oper-
ators, in this case Dirichlet-Neumann Operators (DNOs). For this we define the Dirichlet
traces

U(x) :=u(x,g(x)), W(x) :=w(x,g(x)),

and the outward pointing Neumann traces

Ũ(x) :=−(∂Nu)(x,g(x)), W̃(x) :=(∂Nw)(x,g(x)).

In terms of these (2.1) read

U−W+AτwW̃= ξ, (3.1a)

−τuŨ−τwW̃+BW=τuν. (3.1b)

These specify two equations for four unknowns which would be problematic save that U
and Ũ are connected, as are W and W̃. We formalize this with the following definitions
[33].

Definition 3.1. Given the unique upward propagating solution [1] to

∆u+k2
uu=0, z> g(x), (3.2)

subject to the Dirichlet condition, u(x,g(x)) = U(x), the Neumann data, Ũ(x), can be
computed. The DNO G is defined by

G(g) :U→ Ũ.
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Definition 3.2. Given the unique downward propagating solution [1] to

∆w+k2
ww=0, z< g(x), (3.3)

subject to the Dirichlet condition, w(x,g(x)) =W(x), the Neumann data, W̃(x), can be
computed. The DNO J is defined by

J(g) :W →W̃.

Negating the second equation, (3.1) can now be written as

(
I −I+Aτw J

τuG τw J−B

)(
U
W

)
=

(
ξ

−τuν

)
. (3.4)

3.1 The patterned, flat-interface configuration

The configurations of interest to engineers [4, 18] often feature flat layer interfaces with
patterned graphene sandwiched in between. For this we use the modeling assumptions

g(x)≡0, σ̂≈ σ̂DrudeX(x;δ),

where σ̂Drude is a (dimensionless) Drude model for the graphene [4, 18],

σ̂Drude =
σ0

ǫ0c0

(
4EF

π

)
1

h̄γ̃−ih̄ω
, (3.5)

where σ0 =πe2/(2h) is the universal AC conductivity of graphene [18], e> 0 is the ele-
mentary charge, h is Planck’s constant, h̄=h/(2π), EF is the (local) Fermi level position,
and γ̃ is the relaxation rate. (Γ= h̄γ̃ is another frequently used notation.)

Also, X(x;δ) is a d-periodic (in x) envelope function which we use to model the pat-
terning. For this we permit the envelope to be varied with a parameter δ, e.g.,

X(x;δ)=X0+δX1(x), (3.6)

where,

X1(x)=





√
1−4

(
x−d/2

w

)2
, d/2−w/2< x<d/2+w/2,

0, else,

and w is the ribbon width; see Fig. 2. This profile was specified in [4] to model not only
the patterning but also edge effects.

With these assumptions, and denoting G0=G(0) and J0= J(0), we consider the mod-
ification of (3.4), (

I −I+AX(x;δ)τw J0

τuG0 τw J0−BX(x;δ)

)(
U
W

)
=

(
ξ

−τuν

)
. (3.7)
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Figure 2: Plot of the current envelope function, X(x)=X0+X1(x).

Remark 3.1. Importantly, in the flat-interface case, g(x)≡ 0, the DNOs can be explicitly
specified in terms of Fourier multipliers. Considering the upper layer DNO, G0, we recall
the Rayleigh expansions [43, 50]

u(x,z)=
∞

∑
p=−∞

Ûpeiαpx+iγu,pz, (3.8)

where

αp=α+(2π/d)p, γm,p=





√
k2

m−α2
p, p∈Um,

i
√

α2
p−k2

m, p 6∈Um ,
m∈{u,w}, (3.9a)

and the propagating modes are

Um :=
{

p∈Z | α2
p≤ k2

m

}
, (3.9b)

which gives the exact solution of (3.2) with Dirichlet data u(x,0)=U(x). From this the
Neumann data can readily be shown to be

Ũ(x)=−∂zu(x,0)=
∞

∑
p=−∞

−iγu,pÛpeiαpx,

which gives

G0[U]=
∞

∑
p=−∞

−iγu,pÛpeiαpx =:−iγu,DU,

defining the order-one Fourier multiplier, γu,D. In analogous fashion, based on the Rayleigh
expansion solution of (3.3),

w(x,z)=
∞

∑
p=−∞

Ŵpeiαpx−iγw,pz, (3.10)
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one can demonstrate that

J0[W]=
∞

∑
p=−∞

−iγw,pŴpeiαpx =:−iγw,DW.

3.2 A high-order perturbation of envelopes method

As we shall see, (3.7) is straightforward to solve provided that X(x)≡X0∈R. In this case
the equations are diagonalized by the Fourier transform and the solution can be found
wavenumber-by-wavenumber. We build upon this observation by considering envelope
functions of the form (3.6) and proceeding with (regular) perturbation theory. As we are
considering deformations of the envelope parameter δ, we term such a scheme a “High-
Order Perturbation of Envelopes” (HOPE) method to contrast with “High-Order Pertur-
bation of Surfaces” (HOPS) algorithms where the height/slope of the interface shape is
the perturbation parameter [30, 31, 38].

For this HOPE approach we posit expansions

{U,W}={U,W}(x;δ)=
∞

∑
ℓ=0

{Uℓ,Wℓ}(x)δℓ, (3.11)

and derive recursive formulas for the {Uℓ,Wℓ}. It is not difficult to see that, at order ℓ≥0,
one must solve

(
I −I+AX0τw J0

τuG0 τw J0−BX0

)(
Uℓ

Wℓ

)
=δℓ,0

(
ξ

−τuν

)
+

(−AX1(x)τw J0Wℓ−1

BX1(x)Wℓ−1

)
, (3.12)

where δℓ,q is the Kronecker delta, and W−1 ≡ 0. We will presently show that (3.11) con-
verge strongly in appropriate Sobolev spaces. Importantly, these recursions also result in
a numerical algorithm that delivers HOS accuracy.

Remark 3.2. As we have pointed out that the operators G0 and J0 are diagonalized by the
Fourier transform, we can state the condition of “non-resonance” which we require for
uniqueness of solutions. As we shall see, in Transverse Electric (TE) polarization (A= 0
and τm=1) we will require that the determinant function

∆TE
p :=(̂G0)p+(̂J0)p−BX0

=−iγu,p−iγw,p−ik0σ̂DrudeX0, (3.13)

satisfies, for some µ>0, min−∞<p<∞

{∣∣∆TE
p

∣∣}>µ. In Transverse Magnetic (TM) polariza-
tion (B=0) it must be that the determinant function

∆TM
p :=τu (̂G0)p+τw (̂J0)p−τuτw AX0(̂G0)p (̂J0)p

=−τuiγu,p−τwiγw,p+τuτw

(
σ̂Drude

ik0

)
X0γu,pγw,p, (3.14)
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satisfies, for some µ>0, min−∞<p<∞

{∣∣∆TM
p

∣∣}>µ.
For our Drude model of surface current, (3.5), there are non-zero real and imaginary

parts of σ̂Drude which preclude either ∆TE
p or ∆TM

p becoming zero. However, in TM po-

larization it is well-known that the denominator ∆TM
p can be close to zero which admits

the possibility of a Surface Plasmon Resonance (SPR). To study this possibility in the
present context we focus on the wavenumber p=1 (which will be evanescent and has the
strongest response). Defining

q :=α1=α+(2π/d), κm :=γm,1/i=
√

q2−ǫmk2
0, m∈{u,w},

we note that

τu (̂G0)1=−τu(iγu,1)=τuκu, τw (̂J0)1=τw(−iγw,1)=τwκw.

Recalling that σ̂=σ/(ǫ0c0)=σk0/(ǫ0ω) we find

∆TM
p =τwκw+τuκu+τuκu

iσ

ǫ0ω
τwκw

=τuτwκuκw

{
1

τuκu
+

1

τwκw
+

iσ

ǫ0ω

}

=τuτwκuκw

{
ǫu

κu
+

ǫw

κw
+

iσ

ǫ0ω

}
,

so that the condition for a GSP is

ǫu

κu
+

ǫw

κw
+

iσ

ǫ0ω
≈0,

which matches Bludov, Ferriera, Peres, and Vasilevskiy [4].

4 Analyticity

Before describing our theoretical results we pause to specify the function spaces we will
require. For any s∈R we recall the classical L2-based Sobolev norm

‖U‖2
Hs :=

∞

∑
p=−∞

〈p〉2s
∣∣Ûp

∣∣2 , 〈p〉2 :=1+|p|2 , Ûp :=
1

d

∫ d

0
U(x)eiαpx dx,

which gives rise to the Sobolev space

Hs([0,d]) :=
{

U(x)∈L2([0,d]) | ‖U‖s <∞
}

.

With this definition it is a simple matter to prove the following lemma.
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Lemma 4.1. For any s∈R there exist constants CG,CJ >0 such that

‖G0U‖Hs ≤CG‖U‖Hs+1 , ‖J0W‖Hs ≤CJ‖W‖Hs+1 ,

for any U,W∈Hs+1.

We also recall, for any integer s≥ 0, the space of s-times continuously differentiable
functions with the Hölder norm

| f |Cs = max
0≤ℓ≤s

∣∣∣∂ℓx f
∣∣∣

L∞
.

For later reference we recall the classical result.

Lemma 4.2. For any integer s≥0 there exists a constant K=K(s) such that

‖ f U‖Hs ≤K | f |Cs ‖U‖Hs .

We now begin the rigorous analysis of the expansions (3.11) and, for this, we appeal
to the general theory of analyticity of solutions of linear systems of equations. For a
particular description of the procedure, we follow the developments found in [33] for the
solution of

A(δ)V(δ)=R(δ), (4.1)

which is (3.1) of [33] with ε replaced by δ. In [33], given expansions

A(δ)=
∞

∑
ℓ=0

Aℓδ
ℓ, R(δ)=

∞

∑
ℓ=0

Rℓδ
ℓ, (4.2)

we seek a solution of the form

V(δ)=
∞

∑
ℓ=0

Vℓδ
ℓ, (4.3)

which satisfies

Vℓ=A−1
0

[
Rℓ−

ℓ−1

∑
q=0

Aℓ−qVq

]
, ℓ≥0.

We restate the main result here for completeness.

Theorem 4.1 (Nicholls [33]). Given two Banach spaces Y and Z, suppose that:

(H1) Rℓ∈Z for all ℓ≥0, and there exist constants CR>0, BR>0 such that

‖Rℓ‖Z ≤CRBℓ
R, ℓ≥0.

(H2) Aℓ :Y→Z for all ℓ≥0, and there exists constants CA >0, BA>0 such that

‖Aℓ‖Y→Z ≤CABℓ
A, ℓ≥0.



1584 D. P. Nicholls / Commun. Comput. Phys., 26 (2019), pp. 1575-1596

(H3) A−1
0 : Z→Y, and there exists a constant Ce>0 such that

∥∥∥A−1
0

∥∥∥
Z→Y

≤Ce.

Then Eq. (4.1) has a unique solution (4.3), and there exist constants CV >0 and BV >0 such that

‖Vℓ‖Y ≤CV Bℓ
V , ℓ≥0,

for any

CV ≥2CeCR, BV ≥max{BR,2BA,4CeCABA},

which implies that, for any 0≤ρ<1, (4.3) converges for all δ such that BVδ<ρ, i.e., δ<ρ/BV .

From (3.7) it is easy to identify

A=

(
I −I+AX(x;δ)τw J0

τuG0 τw J0−BX(x;δ)

)
, V=

(
U
W

)
, R=

(
ξ

−τuν

)
.

All that remains is to find the forms (4.2), and establish Hypotheses (H1), (H2), and (H3).
As we shall shortly see, the analysis depends strongly upon the polarization (TE/TM) of
our fields so we break our developments into these two cases.

4.1 Transverse electric polarization

In Transverse Electric polarization A≡0 and τm =1, and we see that (3.7) becomes

(
I −I

G0 J0−BX(x;δ)

)(
U
W

)
=

(
ξ
−ν

)
, (4.4)

so that

A0=

(
I −I

G0 J0−BX0

)
; A1=

(
0 0
0 −BX1(x)

)
; Aℓ≡

(
0 0
0 0

)
, ℓ≥2,

and

R0=

(
ξ
−ν

)
; Rℓ≡

(
0
0

)
, ℓ≥1.

As we shall see in the next lemma, the natural spaces in which to work for TE polarization
are, for real s≥0,

Y=Hs+1×Hs+1, Z=Hs+1×Hs,

so that ∥∥∥y
∥∥∥

2

Y
=
∥∥∥y

1

∥∥∥
2

Hs+1
+
∥∥∥y

2

∥∥∥
2

Hs+1
, ‖z‖2

Z=‖z1‖2
Hs+1+‖z2‖2

Hs .
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Hypothesis (H1): With these definitions it is a simple matter to show that

‖R0‖2
Z =‖ξ‖2

Hs+1+‖ν‖2
Hs <∞,

given that
ξ=−eiαx, ν= iγueiαx,

so that ξ,ν∈Ht for any t∈R. Thus Hypothesis (H1) is established with any choices of CR

and BR such that CRBR=‖R0‖Z.

Hypothesis (H2): Considering generic U,W∈Hs+1 we study

∥∥∥∥A0

(
U
W

)∥∥∥∥
2

Z

=‖U−W‖2
Hs+1+‖G0U+ J0W−BX0W‖2

Hs

≤‖U‖2
Hs+1+‖W‖2

Hs+1+C2
G‖U‖2

Hs+1+C2
J ‖W‖2

Hs+1

+|ik0σ̂Drude|2 |X0|2‖W‖2
Hs

≤C0

(
‖U‖2

Hs+1+‖W‖2
Hs+1

)

=C0

∥∥∥∥
(

U
W

)∥∥∥∥
2

Y

,

where we have used Lemma 4.1, and we have the desired mapping property of A0. We
turn to A1 and find

∥∥∥∥A1

(
U
W

)∥∥∥∥
2

Z

=‖−BX1(x)W‖2
Hs ≤|ik0σ̂Drude|2 K2 |X1|2Cs ‖W‖2

Hs ≤C1 |X1|2Cs ‖W‖2
Hs ,

where we have used the Algebra property, Lemma 4.2, which mandates integer s ≥ 0.
Thus, we are done with Hypothesis (H2) if we choose CA=max{C0,C1} and BA= |X1|Cs .

Hypothesis (H3): The crux of the matter, as always in regular perturbation theory, is the
invertibility of the linearized operator A0 and its mapping properties. For this we prove
the following result.

Lemma 4.3. Given s∈R if Q∈Hs+1 and R∈Hs then there exists a unique solution of

(
I −I

G0 J0−BX0

)(
U
W

)
=

(
Q
R

)
, (4.5)

satisfying

‖U‖Hs+1 ≤Ce{‖Q‖Hs+1+‖R‖Hs},

‖W‖Hs+1 ≤Ce{‖Q‖Hs+1+‖R‖Hs},

for some universal constant Ce>0.
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Proof. Upon expressing

U(x)=
∞

∑
p=−∞

Ûpeiαpx, W(x)=
∞

∑
p=−∞

Ŵpeiαpx,

we find that (4.5) demands

(
1 −1

−iγu,p −iγw,p−BX0

)(
Ûp

Ŵp

)
=

(
Q̂p

R̂p

)
.

The exact solution is easily seen to be

Ûp=
(iγw,p+BX0)Q̂p+ R̂p

−iγw,p−BX0−iγu,p
=

(iγw,p+BX0)Q̂p+ R̂p

∆TE
p

,

Ŵp=
iγu,pQ̂p+ R̂p

−iγw,p−BX0−iγu,p
=

iγu,pQ̂p+ R̂p

∆TE
p

.

Since we are “nonresonant” (see Remark 3.2) we find

‖U‖2
Hs+1 =

∞

∑
p=−∞

〈p〉2(s+1)
∣∣Ûp

∣∣2≤
∞

∑
p=−∞

〈p〉2(s+1)
{

CQ

∣∣Q̂p

∣∣2+CR〈p〉−2
∣∣R̂p

∣∣2
}

,

which delivers

‖U‖Hs+1 ≤Ce{‖Q‖Hs+1+‖R‖Hs}.

A similar computation delivers the same result for W and we are done.

Having established Hypotheses (H1), (H2), and (H3) we can invoke Theorem 4.1 to
deduce.

Theorem 4.2. Given an integer s≥0, if X1∈Cs([0,d]) there exists a unique solution pair, (3.11),
of the TE problem (4.4) satisfying

‖Uℓ‖Hs+1 ≤CUDℓ, ‖Wℓ‖Hs+1 ≤CW Dℓ, ∀ ℓ≥0, (4.6)

for any D>C |X1|Cs where CU and CW are universal constants.

4.2 Transverse magnetic polarization

Meanwhile, in Transverse Magnetic polarization B≡0 and we see that (3.7) becomes

(
I −I+AXτw J0

τuG0 τw J0

)(
U
W

)
=

(
ξ

−τuν

)
, (4.7)
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so that

A0=

(
I −I+AX0τw J0

τuG0 τw J0

)
; A1=

(
0 AX1(x)τw J0

0 0

)
; Aℓ≡

(
0 0
0 0

)
, ℓ≥2,

and,

R0=

(
ξ

−τuν

)
; Rℓ≡

(
0
0

)
, ℓ≥1.

It will become clear presently that the natural spaces for TM polarization are, for real
s≥0,

Y=Hs+1×Hs+1, Z=Hs×Hs,

so that ∥∥∥y
∥∥∥

2

Y
=
∥∥∥y

1

∥∥∥
2

Hs+1
+
∥∥∥y

2

∥∥∥
2

Hs+1
, ‖z‖2

Z =‖z1‖2
Hs+‖z2‖2

Hs .

Hypothesis (H1): Akin to the TE case

‖R0‖2
Z =‖ξ‖2

Hs+‖τuν‖2
Hs <∞,

and Hypothesis (H1) is established with any choices of CR and BR such that CRBR =
‖R0‖Z.

Hypothesis (H2): Once again, considering generic U,W∈Hs+1 we consider

∥∥∥∥A0

(
U
W

)∥∥∥∥
2

Z

=‖U−W+AX0τw J0W‖2
Hs+‖τuG0U+τw J0W‖2

Hs

≤‖U‖2
Hs+‖W‖2

Hs+|τu|2C2
G‖U‖2

Hs+1

+

{∣∣∣∣
σ̂Drude

ik0

∣∣∣∣
2

|X0|2+1

}
|τw|2 C2

J ‖W‖2
Hs+1

≤C0

(
‖U‖2

Hs+1+‖W‖2
Hs+1

)

=C0

∥∥∥∥
(

U
W

)∥∥∥∥
2

Y

,

again using Lemma 4.1, and we have the required mapping property of A0. We now
consider A1

∥∥∥∥A1

(
U
W

)∥∥∥∥
2

Z

=‖AX1(x)τw J0W‖2
Hs

≤
∣∣∣∣
σ̂Drude

ik0

∣∣∣∣
2

K2 |X1|2Cs |τw|2‖W‖2
Hs+1

≤C1 |X1|2Cs ‖W‖2
Hs+1 ,
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where we have used Lemma 4.2. Thus, we are done with Hypothesis (H2) if we choose
CA=max{C0,C1} and BA= |X1|Cs .

Hypothesis (H3): We now study the invertibility of the operator A0.

Lemma 4.4. Given s∈R if Q∈Hs, R∈Hs, and X0 6=0 then there exists a unique solution of
(

I −I+AX0τw J0

τuG0 τw J0

)(
U
W

)
=

(
Q
R

)
, (4.8)

satisfying

‖U‖Hs+1 ≤Ce{‖Q‖Hs+‖R‖Hs},

‖W‖Hs+1 ≤Ce{‖Q‖Hs+‖R‖Hs−1},

for some universal constant Ce>0.

Proof. With

U(x)=
∞

∑
p=−∞

Ûpeiαpx, W(x)=
∞

∑
p=−∞

Ŵpeiαpx,

we find that (4.8) requires

(
1 −1−AX0τwiγw,p

−τuiγu,p −τwiγw,p

)(
Ûp

Ŵp

)
=

(
Q̂p

R̂p

)
.

The exact solution is easily seen to be

Ûp=
−τwiγw,pQ̂p+[1+X0(σ̂Drude/(ik0))]τwiγw,pR̂p

−τuiγu,p−τwiγw,p+τuτw(σ̂Drude/(ik0))X0γu,pγw,p

=
−τwiγw,pQ̂p+[1+X0(σ̂Drude/(ik0))]τwiγw,pR̂p

∆TM
p

,

Ŵp=
τuiγu,pQ̂p+ R̂p

−τuiγu,p−τwiγw,p+τuτw(σ̂Drude/(ik0))X0γu,pγw,p

=
τuiγu,pQ̂p+ R̂p

∆TM
p

.

Once again, as we are “nonresonant” (Remark 3.2) we find

‖U‖2
Hs+1 =

∞

∑
p=−∞

〈p〉2(s+1)
∣∣Ûp

∣∣2≤
∞

∑
p=−∞

〈p〉2(s+1)
{

CQ〈p〉−2
∣∣Q̂p

∣∣2+CR〈p〉−2
∣∣R̂p

∣∣2
}

,

which gives
‖U‖Hs+1 ≤Ce{‖Q‖Hs+‖R‖Hs}.

An analogous computation gives the result for W and we are done.
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Having established Hypotheses (H1), (H2), and (H3) we can invoke Theorem 4.1 to
deduce the desired result.

Theorem 4.3. Given an integer s≥0, if X0 6=0 and X1∈Cs([0,d]) there exists a unique solution
pair, (3.11), of the TM problem (4.7) satisfying

‖Uℓ‖Hs+1 ≤CUDℓ, ‖Wℓ‖Hs+1 ≤CW Dℓ, ∀ ℓ≥0, (4.9)

for any D>C |X1|Cs where CU and CW are universal constants.

Remark 4.1. Interestingly, the TM result above depends strongly upon the assumption
X0 6=0 while the TE theorem is insensitive to such considerations. From a technical per-
spective, in TE polarization, if we choose Y = Hs+1×Hs+1 then A0 maps this to Z =
Hs+1×Hs irregardless of X0 and its invertibility properties (Lemma 4.3) are fixed.

In TM polarization, if Y = Hs+1×Hs+1 then X0 6= 0 mandates Z = Hs×Hs and the
induction argument works as discussed above. However, if X0 = 0 then, with the same
choice of Y, we must select Z=Hs+1×Hs and there is an issue as one must estimate the
term ‖J0Wℓ−1‖Hs+1 which cannot be controlled if Wℓ−1∈Hs+1.

Of course the issue is the singular nature of the perturbation which the term AX0τw J0

represents in the TM operator A. By contrast, the term BX0 term in the TE operator A is
regular and requires no special treatment.

Remark 4.2. An interesting and important question to ponder is the dependence of all
of these constants, {CR,BR,CA,BA,Ce} upon polarization, which then gives insight into
the quantities {CU ,CW,D}. As we have seen, the constants {CR,BR} depend solely upon
{ξ,ν} which only differ by a factor of τu from TE to TM polarization. In a similar way,
CA is only changed by τu as polarization is switched, while we select BA = |X1|Cs in each
instance. The only meaningful change comes in consideration of Ce where the reciprocal
of ∆TE

p or ∆TM
p must be controlled. In this way we see how the constants in our analyticity

results depend upon the presence of a plasmonic response which is predicted by a (near)
zero of this determinant function.

5 Numerical results

We now discuss how the recursions outlined above can be implemented in a HOS scheme
for simulating the surface scattered fields {U,W}. After describing the implementation
we use our algorithm to simulate absorbance spectra of TM polarized plane waves inci-
dent upon a periodic grid of graphene ribbons as described in [12].

5.1 Implementation

A numerical implementation of our recursions is rather straightforward. To begin, we
must truncate the HOPE expansions (3.11) after a finite number, L, of Taylor orders
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{U,W}≈{UL,WL} :=
L

∑
ℓ=0

{Uℓ,Wℓ}(x)δℓ,

which satisfy, in either TE or TM polarization, (3.12) up to perturbation order L. For
this, in consideration of the quasiperiodic boundary conditions and our HOS philosophy
[17, 48, 49], we utilize the finite Fourier representations

{Uℓ,Wℓ}≈{UNx

ℓ
,WNx

ℓ
} :=

Nx/2−1

∑
p=−Nx/2

{Ûℓ,p,Ŵℓ,p}eiαpx, 0≤ ℓ≤ L,

delivering

{U,W}≈{UL,Nx ,WL,Nx}=
L

∑
ℓ=0

Nx/2−1

∑
p=−Nx/2

{Ûℓ,p,Ŵℓ,p}eiαpx, (5.1)

and, with a collocation approach, we simply demand that (3.12) be true at the equally-
spaced gridpoints xj =(d/Nx)j, 0≤ j≤Nx−1.

Due to the fact that the operators {G0, J0} are Fourier multipliers, they can be readily
applied in Fourier space after a Discrete Fourier Transform (DFT) which we accelerate by
the Fast Fourier Transform (FFT) algorithm. Finally, we evaluate multiplication by the
function X1(x) on the physical side, pointwise at the equally-spaced gridpoints xj.

As with all perturbation schemes it is important to specify how the Taylor series in
(5.1) are to be summed. On the one hand, “direct” Taylor summation seems natural,
however, this method is limited to the disk of analyticity centered at the origin. How-
ever, it has been our experience that the actual domain of analyticity is much larger and
may include the entire real axis (despite poles on the imaginary axis and elsewhere in
the complex plane far from the real axis) [39]. One way to access this extended region
of analyticity is the classical technique of Padé approximation [5] which has been used
successfully for enhancing HOPS schemes in the past [38–40]. Padé approximation seeks
to estimate the truncated Taylor series f (δ)=∑

L
ℓ=0 fℓδ

ℓ by the rational function

[
M

N

]
(δ) :=

aM(δ)

bN(δ)
=

∑
M
m=0 amδm

∑
N
n=0bnδn

, M+N= L,

and [
M

N

]
(δ)= f (δ)+O(δM+N+1);

well-known formulas for the coefficients {am,bn} can be found in [5]. These Padé approx-
imants have stunning properties of enhanced convergence, and we point the interested
reader to § 2.2 of [5] and the calculations in § 8.3 of [6] for a complete discussion.
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5.2 Absorbance spectra

With an implementation of our algorithm we can now address questions of importance
to practitioners. As a specific example, we consider the work of Goncalves, Dias, Bludov,
and Peres [12] who studied the scattering of linear waves by arrays of graphene ribbons
mounted between dielectric layers. More specifically we refer the reader to Figure 4
of [12] which shows the results of their investigations into the effect of the ribbon period
on the frequency of a Graphene Surface Plasmon (GSP) excited by the configuration.

To generate this figure [12] focused upon TM polarization, set the physical parameters

ǫu =3, ǫw =4, EF =0.4 eV, Γ=3.7 meV, (5.2)

and studied normal incidence so that θ=α=0. The lateral period (which they denoted L)
of the structure was varied among d=1,2,4,8 (in microns) while the width of the graphene
in each period cell was set to d/2.

In the study of diffraction gratings, quantities of great physical interest are the effi-
ciencies. Recalling the Rayleigh expansions, (3.8) and (3.10), and the definitions, (3.9),
these are given by

eu,p :=
γu,p

∣∣Ûp

∣∣2

γu,0
, ew,p :=

γw,p

∣∣Ŵp

∣∣2

γu,0
.

With these we can define the reflectance, transmittance, and absorbance respectively as

R := ∑
p∈Uu

eu,p, T := ∑
p∈Uw

ew,p, A :=1−R−T;

we note that all-dielectric structures possess a principle of conservation of which man-
dates A=0. However, as graphene has noteworthy metallic properties, an indicator of a
plasmonic response is given by a significant deviation of A from zero. Figure 4 of [12] is a
plot of precisely this quantity, versus a range of illumination frequencies, for the four val-
ues of d mentioned above. In particular, we note significant peaks in A, the “absorbance
spectra,” of magnitude 0.35 in the vicinities of ν= 2,4,6,8 THz for the values d= 8,4,2,1
microns, respectively.

With an implementation of our new recursions we attempted to recreate this plot.
Our results, with the same physical parameters and numerical values Nx=128 and L=16,
are displayed in Fig. 3 for δ= 1. It is noteworthy that Padé approximation was required
to achieve these results as Taylor summation diverged. We point out the remarkable
qualitative agreement between the two figures and take this as evidence for the accuracy
and utility of our approach.

Of course it is always useful to have additional validation, and for this we pondered
the question of simply approximating the governing equations (3.7) with δ = 1 using a
collocation approach [17, 48, 49]: Expand the

{U,W}≈{UNx ,WNx}=
Nx/2−1

∑
p=−Nx/2

{Ûp,Ŵp}eiαp x,
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Figure 3: Plot of HOPE simulation of the absorbance spectra for normally incident plane-wave illumination of a
periodic array of graphene ribbons with periodicity d mounted between two dielectrics. The physical parameters
are specified in (5.2) and the numerical parameters were Nx =128 and L=16.
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Figure 4: Plot of collocation simulation of the absorbance spectra for normally incident plane-wave illumination
of a periodic array of graphene ribbons with periodicity d mounted between two dielectrics. The physical
parameters are specified in (5.2) and the numerical parameter was Nx =128.

and demand that (3.7) be true at the gridpoints xj = (d/Nx)j, 0≤ j ≤ Nx−1. We imple-
mented this algorithm and achieved the results displayed in Fig. 4. Interestingly, the
difference between these collocation results and our HOPE computations is negligible.
The maximum difference among all values of ν chosen when d=4 microns is 9.58×10−3.
Importantly, with non-optimized MATLABTM [26] implementations of each algorithm,
our new HOPE approach is nearly ten times faster than the collocation approach. For
this reason we find our new algorithm to be quite compelling, though we intend to study
this issue in a variety of settings in a forthcoming publication.
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Dedication

I first came to know Jie Shen through his tetralogy on Spectral-Galerkin methods appear-
ing exclusively in the SIAM Journal on Scientific Computing. The four-part series broke
new ground on HOS methods for second and fourth order elliptic partial differential
equations featuring Legendre polynomials [44] and Chebyshev polynomials [45], in po-
lar/cylindrical geometries [46] and their spherical counterparts [47]. His “compact sup-
port on the spectral side” approach to HOS methods was simultaneously ingenious and
yet entirely natural, a hallmark of much of Jie’s work. Since this work he has, among
many other things, collected the state-of-the-art in the field of HOS methods in the ency-
clopedic texts [48] (joint with T. Tang) and [49] (joint with T. Tang and L.-L. Wang). These
carefully and beautifully written books are an invaluable resource for students and re-
searchers alike, and I instruct all of my graduate students and post-doctoral fellows to
read each of these with close attention.

Despite having never been introduced, I invited Jie out of the blue to give a seminar
at Notre Dame in the early 2000s where I was on the faculty. I was delighted when he
enthusiastically accepted. I was expecting his mathematical rigor, modeling skill, and
attention to the subtle details of algorithm implementation, but was struck by his cu-
riosity, breadth of physical intuition, and, most of all, his generosity, both professional
and personal. By the end of the first day of the visit we had already embarked upon a
project to investigate the details of my recently (with F. Reitich) developed Transformed
Field Expansions (TFE) approach to scattering of linear (e.g., acoustic or electromagnetic)
waves by an irregularly shaped, two-dimensional bounded obstacle. In short order this
led to our first joint paper [41] which was naturally followed on by the highly non-trivial
extension to irregularly shaped, bounded obstacles in three dimensions [11] (joint with Q.
Fang).

Despite the analytical rigor which had already been attached to the TFE recursions in
joint work with F. Reitich [38–40], a proper numerical analysis had yet to be performed. I
realized that I could not ask for a better collaborator on such a project and I consider [42]
to be seminal work in the field of HOPS schemes and certainly one of my best papers.
This was followed by a joint paper [20] on scattering by layered media which would
introduce me to another excellent collaborator, his Ph.D. student Y. He.

Jie was neither my Ph.D. advisor nor my post-doctoral supervisor, yet he has been a
mentor and a guide to me during my career. It is a testament to his generosity that he
has helped someone so wholly unconnected to himself. For me he has always been an
oracle for queries and a sounding board for ideas whose opinion I hold in high esteem. I
sincerely wish him all the best on the occasion of his sixtieth birthday!
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