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Graphene has transformed the fields of plasmonics and photonics, and become an indispensable component for
devices operating in the terahertz to mid-infrared range. Here, for instance, graphene surface plasmons can be
excited, and their extreme interfacial confinement makes them vastly effective for sensing and detection. The rapid,
robust, and accurate numerical simulation of optical devices featuring graphene is of paramount importance and
many groups appeal to Black-Box Finite Element solvers. While accurate, these are quite computationally expen-
sive for problems with simplifying geometrical features such as multiple homogeneous layers, which can be recast
in terms of interfacial (rather than volumetric) unknowns. In either case, an important modeling consideration
is whether to treat the graphene as a material of small (but non-zero) thickness with an effective permittivity, or
as a vanishingly thin sheet of current with an effective conductivity. In this contribution we ponder the correct
relationship between the effective conductivity and permittivity of graphene, and propose a new relation which is
based upon a concrete mathematical calculation that appears to be missing in the literature. We then test our new
model both in the case in which the interface deformation is non-trivial, and when there are two layers of graphene
with non-flat interfacial deformation. © 2021 Optical Society of America

https://doi.org/10.1364/JOSAA.430088

1. INTRODUCTION

Graphene, a sheet of carbon atoms in a honeycomb lattice, has
transformed the fields of plasmonics and photonics with its
blend of remarkable mechanical, chemical, and electronic prop-
erties [1]. First isolated experimentally in 2004, resulting in the
awarding of the 2010 Nobel Prize to Geim [2] and Novelsolov
[3], graphene has become indispensable for devices operating
in the terahertz to mid-infrared range where graphene surface
plasmons (GSPs) can be excited [4]. The extreme interfacial
confinement of these GSPs renders them vastly effective for
sensing and detection. Recent work on graphene and other
two-dimensional materials can be found in [5–8] while survey
articles [9–13] describe the use of graphene in engineering
devices.

From these considerations, it is clear that the rapid, robust,
and accurate numerical simulation of optical devices featuring
graphene is of paramount importance. Most engineering groups
appeal to Black-Box Finite Element solvers such as COMSOL
Multiphysics [14], e.g., [8,15], and a general overview of
numerical methods for plasmonics problems can be found
in the survey paper of Gallinet et al. [16]. While such simula-
tions provide accurate solutions, they are typically exceedingly
computationally expensive for problems with simplifying geo-
metrical features. For instance, diffraction grating structures

with multiple homogeneous layers can be modeled with sys-
tems of differential equations featuring interfacial (rather than
volumetric) unknowns, see, e.g., [17]. It was recently shown
how such formulations can be extended to the case where two-
dimensional materials are present [18,19] and these materials
are modeled as vanishingly thin sheets of current with an effective
conductivity. This approach has been adopted by several other
groups, and we point to the surveys [20,21] and the recent work
of [11,22–25].

However, an alternative approach which fits much more
naturally into the framework of standard FEMs is to model
the graphene as a thin layer of finite (but small) thickness with
an effective permittivity. The question we entertain in this
contribution is the correct relationship between the (non-
dimensionalized) effective conductivity, σ̂ (g ), and effective
permittivity, ε(g ), of graphene. The relationship given in
[11,22] is

σ̂ (g ) =
k0dg ε

(g )

i
, (1)

where dg is the graphene layer thickness (reported in [11,22] as
0.34 nm) and k0 =ω/c 0 is the free-space wavenumber. In this
paper, we propose a new relation
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σ̂ (g ) =
k0dg E (h)

i
, (2)

where E (h) is given in Eq. (10),

lim
h→0

E (h)= E0 := ε
(g )
+

√
ε(w)

2

(√
ε(u) −

√

ε(w)
)
,

h = dg /2, and ε(u) and ε(w) are permittivities of the mounting
structure above and below, respectively, the graphene sheet.
As we shall show, this is based upon a concrete mathematical
calculation which appears to be missing in the literature. For
this, we make several simplifying assumptions to make progress
with our rather explicit calculations. More specifically, we match
these two approaches in the case of normal incidence and a flat
interface between the dielectrics which mount the graphene
sheet. We then test our results more fully in the case where the
interface deformation is non-trivial in order to assess the utility
of our formula for the effective conductivity. Such a compari-
son is of vital importance, as corrugated gratings are one of the
principal mechanisms for generating graphene surface plasmons
(GSPs) [21,26].

The organization of the paper is as follows: In Section 2, we
recall the governing equations, first for a triply layered medium
in Section 2.A and then for a doubly layered medium with an
interfacial current in Section 2.B. In Section 3, we derive a more
faithful formula for the effective conductivity in terms of the
permittivity of graphene, while in Section 3.A we report a stand-
ard Drude model for this permittivity. In Section 4, we discuss
the outcomes of our numerical simulations, with a description
of our numerical methods in Section 4.A and a full commentary
on figures which summarize our discoveries in Section 4.B,
more specifically for a single graphene sheet in Section 4.C and a
double sheet configuration in Section 4.D.

2. GOVERNING EQUATIONS

We consider the simplest possible configurations to connect the
effective permittivity of graphene and its effective conductivity:
A triply layered medium and a doubly layered structure with an
interfacial current (see Fig. 1).

We begin with the case of flat interfaces, but later in the paper
we will test the integrity of our calculations by considering the
same structures with periodically corrugated interfaces. We now
discuss each of these two models.

A. Triply Layered Medium

For the triply layered configuration, we consider y -invariant,
periodically corrugated interfaces at z= h + g (x ), g (x + d)=
g (x ), and z=−h + `(x ), `(x + d)= `(x ). These determine
three domains,

S(u) = {z> h + g (x )}, S(w) = {z<−h + `(x )},

S(v) = {−h + `(x ) < z< h + g (x )},

filled with materials of permittivities {ε(u), ε(v), ε(w)}. The
structure is illuminated by transversely polarized, monochro-
matic, plane-wave incidence of frequency ω and wavenumber
k(u) =

√
ε(u)k0,
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Fig. 1. Plot of the structure under consideration: graphene
mounted on dielectric under vacuum. Structure rescaled by the
period in the x coordinate and the maximum amplitude in the z
coordinate.

u inc(x , z)= e iαx−iγ (u)z, α = k(u) sin(θ), γ (u) = k(u) cos(θ).

It is not difficult to see that the governing equations for the
scattered transverse components of the fields in each layer,
{u, v, w}, are [27]

1u + ε(u)k2
0u = 0, in S(u), (3a)

1v + ε(v)k2
0v = 0, in S(v), (3b)

1w+ ε(w)k2
0w= 0, in S(w), (3c)

u − v = ξ, z= h + g (x ), (3d)

τ (u)∂Nu − τ (v)∂Nv = τ
(u)ν, z= h + g (x ), (3e)

v −w= 0, z=−h + `(x ), (3f)

τ (v)∂Nv − τ
(w)∂Nw= 0, z=−h + `(x ). (3g)

In these, ∂N denotes the normal derivative ∂N = N · ∇ and

τ (m) =

{
1, Transverse Electric (TE),

1/ε(m), Transverse Magnetic (TM),

where m ∈ {u, v, w}. It is understood that solutions are
quasiperiodic, and that u and w are upward and downward
propagating, respectively.

We now focus on the case of flat interfaces and normal inci-
dence (θ = 0), and recall that the Rayleigh expansions [27] give
upward/downward propagating quasiperiodic solutions to this
problem of the form

u =
∞∑

p=−∞

a p e iαp x+iγ (u)p (z−h), (4a)
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w=

∞∑
p=−∞

d p e iαp x−iγ (w)p (z+h), (4b)

v =

∞∑
p=−∞

b p

sin
(
γ (v)p (h + z)

)
sin
(

2γ (v)p h
) + c p

sin
(
γ (v)p (h − z)

)
sin
(

2γ (v)p h
)

 e iαp x ,

(4c)
whereαp = α + 2π p/d = 2π p/d and

γ (m)p =

√
ε(m)k2

0 − α
2
p =

√
ε(m)k2

0 −

(
2π p

d

)2

, m ∈ {u, v, w}.

Now, Eqs. (3d)–(3g) imply 1 −1 0 0
−G p −Hp −K p 0

0 0 1 −1
0 −K p −Hp −J p


 a p

b p

c p

d p

=


ξ̂p

τ (u)ν̂p

0
0

 ,
where

G p :=−τ
(u)iγ (u)p , J p :=−τ

(w)iγ (w)p ,

Hp := τ
(v)γ (v)p cot(γ (v)p 2h), K p :=−τ

(v)γ (v)p csc(γ (v)p 2h),

and

ξ̂p =
1

d

∫ d

0
ξ(x )e−iαp x dx , ν̂p =

1

d

∫ d

0
ν(x )e−iαp x dx .

In the flat-interface, normal incidence case, the data
will be ξ =−1 and ν = (iγ (u)) so that ξ̂p =−1δp,0 and
ν̂p = (iγ (u))δp,0, and only the specular wavenumber, p = 0,
is excited. Here, δp,q is the Kronecker delta. With this, and
multiplying the second and fourth equations by−1, we find 1 −1 0 0

G0 H0 K0 0
0 0 1 −1
0 K0 H0 J0


 a0

b0

c 0

d0

=


ξ̂0

−τ (u)ν̂0

0
0

 .

The first and third equations give

a0 = b0 + ξ̂0, c 0 = d0,

which simplify the remaining equations to(
G0 + H0 K0

K0 H0 + J0

)(
b0

d0

)
=

(
−G0ξ̂0 − τ

(u)ν̂0

0

)
.

For future use, we can solve for the Fourier coefficient of the
transmitted wave

d0 =

−K0

(
−τ (u)ν̂0 − G0ξ̂0

)
(G0 + H0) (H0 + J0)− K 2

0

. (5)

B. Doubly Layered Medium

As we demonstrated in [18], for a flat interface configuration at
z= 0, the equations for a doubly layered medium with an inter-
facial current with non-dimensional conductivity σ̂ (g ) are

u −w+ P τ (w)∂zw= ξ, z= 0, (6a)

τ (u)∂zu − τ (w)∂zw+ Sw= τ (u)ν, z= 0, (6b)

where

S =
{

ik0σ̂
(g ), TE,

0, TM,
P =

{
0, TE,

σ̂ (g )/(ik0), TM.

Appealing to the (rescaled) Rayleigh expansions

u = u(x , z)=
∞∑

p=−∞

ã p e iαp x+iγ (u)p z, (7a)

w=w(x , z)=
∞∑

p=−∞

d̃ p e iαp x−iγ (w)p z, (7b)

cf. Eq. (4), the governing equations, Eq. (6), imply(
1 −1+ P J p

−G p −J p + S

)(
ã p

d̃ p

)
=

(
ξ̂p

τ (u)ν̂p

)
.

As above, we note that only the specular wavenumber, p = 0, is
excited so that the governing equations simplify to(

1 −1+ P J0

−G0 −J0 + S

)(
ã0

d̃0

)
=

(
ξ̂0

τ (u)ν̂0

)
,

or, multiplying the second equation by−1, we have(
1 −1+ P J0

G0 J0 − S

)(
ã0

d̃0

)
=

(
ξ̂0

−τ (u)ν̂0

)
.

From this, we find that the solution for the Fourier coefficient of
the transmitted wave is

d̃0 =
−G0ξ̂0 − τ

(u)ν̂0

G0 + J0 − S − P G0 J0
. (8)

3. EFFECTIVE CURRENT

If the relationship between σ̂ (g ) and ε(g ) [e.g., Eq. (1) or Eq. (2)]
is to be consistent, then the d0 from Eq. (5) must be correctly
related to d̃0 from Eq. (8). At this point, we specialize the calcu-
lations of Section A to that of a sheet of graphene of thickness
h = dg /2 and permittivity ε(v) = ε(g ). We make our results
precise in the fundamental result of this paper.
Theorem 3.1. For d0 from Eq. (5) to be consistent with d̃0 from
Eq. (8), we must have the relation

σ̂ (g ) =
k0dg E (h)

i
, (9a)

where

E (h)=�(h) sinc
(√
ε(g )k02h

) (
ε(g ) +

√

ε(u)ε(w)
)

− B(h)

(√
ε(u)ε(w) + ε(w)

)
2

, (9b)
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B(h)=
�(h) cos

(√
ε(g )k02h

)
− 1

i
√
ε(w)k0h

, (9c)

�(h)= exp(iγ (w)h), (9d)

and

lim
h→0

E (h)= E0 = ε
(g )
+

√
ε(w)

2

(√
ε(u) −

√

ε(w)
)

.

Proof. We begin by finding the consistent relationship
between d0 and d̃0. For this, we evaluatew at z=−h in Eqs. (4)
and (7), respectively:

w(x ,−h)=
∞∑

p=−∞

d p e iαp x e−iγ (w)p (−h+h)
= d0e iαx ,

w(x ,−h)=
∞∑

p=−∞

d̃ p e iαp x e−iγ (w)p (−h)
= d̃0e iαx e iγ (w)h ,

so that

d0 = d̃0e iγ (w)h
= d̃0�.

With this, Eqs. (5) and (8) demand that

�

(
−G0ξ̂0 − τ

(u)ν̂0

G0 + J0 − S − P G0 J0

)
=�d̃0

= d0 =

−K0

(
−τ (u)ν̂0 − G0ξ̂0

)
(G0 + H0) (H0 + J0)− K 2

0

,

which demands that

�
{
(G0 + H0)(H0 + J0)− K 2

0

}
=−K0 {G0 + J0 − S − P G0 J0} .

We point out that the incident data, {ξ, ν}, cancel out in this
calculation which does not occur if one attempts to reconcile a0

with ã0.
Using the fact that

H2
0 − K 2

0 =
(
τ (g )

)2(
γ (g )

)2 {
cot2 (γ (g )2h

)
− csc2 (γ (g )2h

)}
=−(τ (g ))2(γ (g ))2

=:−02,

which is independent of h , we have

�
{
−02
+ G0 J0 + G0 H0 + H0 J0

}
=−K0 {G0 + J0 − S − P G0 J0} .

Solving for the terms involving the current, S and P , we find

S + G0 J0 P = Q + R,

where

Q := K −1
0 �

{
−02
+ G0 J0

}
,

R := (I + K −1
0 �H0)(G0 + J0).

We begin our study of these functions by noting the following
three facts. First,

K −1
0 =

1

−τ (g )γ (g ) csc
(
γ (g )2h

)
=−

(
2h
τ (g )

){
sin
(
γ (g )2h

)
γ (g )2h

}

=−

(
2h
τ (g )

)
sinc

(
γ (g )2h

)
,

where sinc(z)= sin(z)/z=O(1) as z→ 0. Next,

K −1
0 H0 =− cos

(
γ (g )2h

)
.

Finally, normal incidence (θ = 0) givesα = 0 and

γ (m) =
√

ε(m)k0.

We now focus upon Q:

Q =−
(

2h
τ (g )

)
sinc

(
γ (g )2h

)
�(h)

×

(
−
(
τ (g )

)2(
γ (g )

)2
− τ (u)γ (u)τ (w)γ (w)

)
= 2hk2

0 sinc
(√
ε(g )k02h

)
�(h)E Q,

where

E Q := τ
(g )ε(g ) +

τ (u)τ (w)

τ (g )

√

ε(u)ε(w).

Moving to R , we have

R =
(
�(h)K −1

0 H0 + 1
)
(G0 + J0)

= iγ (w)h

(
−�(h) cos

(
γ (g )2h

)
+ 1

iγ (w)h

)
×
(
τ (u)

(
−iγ (u)

)
+ τ (w)

(
−iγ (w)

))
=−hk2

0 B(h)E R ,

where

E R := τ
(u)
√

ε(u)ε(w) + τ (w)ε(w).

While B depends upon h , it is not difficult to show that B is
O(1) as h→ 0 since

B(h)=
�(h) cos

(
γ (g )2h

)
− 1

iγ (w)h

=

(
1+ iγ (w)h +O

(
h2
)) (

1+O
(
h2
))
− 1

iγ (w)h

=
i
√
ε(w)k0h +O

(
h2
)

i
√
ε(w)k0h

= 1+O(h).
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So from this, we learn that

S + G0 J0 P = 2hk2
0 E (h),

where

E (h) :=
{
�(h) sinc

(√
ε(g )2hk0

)
E Q − B(h)

E R

2

}
. (10)

We have two polarizations to consider and we note that only
{E Q, E R} depend upon this. In Transverse Electric (TE), we
find

E TE
Q = ε

(g )
+

√

ε(u)ε(w), E TE
R =
√

ε(u)ε(w) + ε(w),

while in Transverse Magnetic (TM) polarization we have

E TM
Q = 1+

ε(g )
√
ε(u)ε(w)

, E TM
R =

√
ε(w)
√
ε(u)
+ 1.

However, straightforward simplification of the previous formu-
lae yields

E TM
Q =

E TE
Q

√
ε(u)ε(w)

, E TM
R =

E TE
R

√
ε(u)ε(w)

.

Now, in TE polarization, we have P = 0 so that

σ̂ (g ) =
S

ik0
=
(2h)k0

i
E (h)=

k0dg

i
E (h), (11)

where dg = 2h . Meanwhile, in TM polarization, using S = 0,
we find

σ̂ (g ) = ik0 P =
ik0ε

(u)ε(w)(
−i
√
ε(u)k0

) (
−i
√
ε(w)k0

) (2hk2
0

)
E (h)

=
(2h)k0

i
E (h)=

k0dg

i
E (h),

and we find a single function E (h)which can be used to define a
consistent effective current that works for both polarizations.

Finally, using the fact that {�(h), B(h), sinc(γ (v)h)} =
O(1) as h→ 0, we see that the small-thickness limit of σ̂ (g ) is

σ̂
(g )
0 =

(2h)k0

i
E0 =

k0dg

i
E0, (12)

where

E0 = ε
(g )
+

√

ε(u)ε(w) −

√
ε(u)ε(w)

2
−
ε(w)

2

= ε(g ) +

√
ε(u)ε(w)

2
−
ε(w)

2

= ε(g ) +

√
ε(w)

2

(√
ε(u) −

√

ε(w)
)

.

�

A. Effective Permittivity of Graphene

Now, we turn to our central purpose: the modeling of graphene.
The faithful approximation of the electromagnetic response of

graphene is still a subject of ongoing research [21]. We employ a
simple nondimensionalized Drude model which, from [11,22],
gives the effective permittivity

ε(g ) =
i σ̂D

k0dg
=

(
i

k0dg

)(
σ0

ε0c 0

)(
4E F

π

)
1

~γ − i~ω
, (13)

where ~ is the reduced Planck’s constant, ω is the angular fre-
quency, γ is the relaxation rate, and E F is the (local) Fermi level
position. We point out that [11,22] asks for an effective current
of graphene,

σ̂ (g ) =
k0dg ε

(g )

i
,

cf. Eq. (1), which matches our asymptotic model, Eq. (2), when
ε(u) = ε(w) as E0 equals ε(g ) in this instance. We now investigate
the results of simulations with our bulk simulations of Eq. (3)
against the interfacial current model, Eq. (6), with σ̂ (g ) chosen
among the “unmodified” current, Eq. (1); the “asymptotic”
model, Eq. (12); and the “full” current, Eq. (11).

4. NUMERICAL SIMULATIONS

In this section, we compare the simulation of sheets of cor-
rugated graphene by the two approaches we outlined in the
Introduction: (i) As a thin layer of small, but non-zero, thickness
with an effective permittivity ε(g ) from Eq. (13), and (ii) as an
interfacial layer of current with effective conductivity σ̂ (g ) cho-
sen from the “unmodified” current [Eq. (1)], the “asymptotic”
model [Eq. (12)], and the “full” current [Eq. (11)].

A. Numerical Methods

The numerical algorithms we employ for our comparisons
have already been described in the literature, more specifically
[28,29] for the triply layered configuration and [30,31] in the
case of a doubly layered structure with an interfacial current. We
now briefly recall each of these and refer the interested reader to
the papers listed for complete details.

Regarding the triply layered model, the authors [28,29]
describe a high-order spectral approach applied to a transformed
field expansion (TFE) restatement of the governing equations,
Eq. (3), supplemented with Padé approximation techniques.
In summary, a change of variables is effected which maps the
perturbed geometry {z= h + g (x ), z=−h + `(x )} to the
trivial flat-interface one, {z′ = h, z′ =−h}, resulting in new
dependent variables, {ũ(x ′, z′), ṽ(x ′, z′), w̃(x ′, z′)} which
satisfy inhomogeneous versions of Eq. (3). Importantly, the inho-
mogeneities areO(g ) andO(`), which suggests that a boundary
perturbation approach, e.g., setting,

g (x )= εg̃ (x ), `(x )= ε ˜̀(x ),
{

g̃ , ˜̀
}
=O(1), ε� 1,

will be fruitful. We point out that g̃ and ˜̀ are dimensionless
so that ε has the same units as g and ` (e.g., micrometers).
Experience has demonstrated the superior performance of the
TFE method built upon the expansions

{ũ, ṽ, w̃}
(
x ′, z′; ε

)
=

∞∑
n=0

{ũn, ṽn, w̃n}
(
x ′, z′

)
εn,
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and numerical simulation of the resulting recursively defined
problems for {ũn, ṽn, w̃n}. This is accomplished via a
Fourier/Legendre Galerkin method based upon forms like

ũn(x ′, z′)=
Nx /2−1∑

p=−Nx /2

Nz∑
q=0

û p,q e iαp x ′Lq
(
z′/h

)
,

where Lq (z) is the q -th Legendre function. Based upon rig-
orous demonstration [32,33], the smallness assumption on ε
can be dropped if it is chosen to be real . This observation can
be realized in numerical simulation with the use of numerical
analytical continuation algorithms such as Padé approximation
[34] which we use here. This approach we denote the “bulk”
simulation of Eq. (3), and we treat it as an exact solution.

Regarding the doubly layered simulations with interfacial
graphene, we utilized the scheme of one of the authors [30,31].
Here a somewhat different approach is used where the volumet-
ric problem is restated in terms of interfacial quantities, namely
the surface impedances. For instance, following the approach of
Despres [35,36], one defines

U(x ) := [−∂zu + iηu]z=g (x ), Ũ(x ) := [−∂zu − iηu]z=g (x ),

W(x ) := [∂zw− iηw]z=g (x ), W̃(x ) := [∂zw+ iηw]z=g (x ),

for some η ∈R+ and rewrites the boundary conditions at
z= g (x ) in Eq. (6) in terms of these, with the understand-
ing that {u, w} satisfy the relevant Helmholtz equations and
boundary conditions. At this point, we make the Boundary
Perturbation assumption

g (x )= εg̃ (x ), g̃ =O(1), ε� 1,

and expand the impedances in Taylor series{
U , Ũ ,W, W̃

}
(x ; ε)=

∞∑
n=0

{
Un, Ũn,Wn, W̃n

}
(x )εn .

Insertion of these into the boundary conditions delivers a
recursively defined sequence of problems (as in the previously
shown TFE approach); however, these need only be enforced
at the interface, z= g (x ). The numerical method is a Fourier
collocation approach using representations of the form

U(x )=
Nx /2−1∑

p=−Nx /2

Ûp e iαp x .

As with the TFE method, we avail ourselves of the beneficial
properties of numerical analytical continuation via the Padé
approximation algorithm [34]. We make three simulations
with this approach; the first is “unmodified” [with σ̂ (g ) given
by Eq. (1)], the second is “asymptotic” [with σ̂ (g ) specified by
Eq. (12)], and the third is “full” [with σ̂ (g ) defined by Eq. (11)].

B. Numerical Results

In order to assess the performance of our effective conductivi-
ties, we study the transmission of our configurations. For this,
we recall the Rayleigh expansions, Eq. (7), and the definitions of
the efficiencies [27]

e (u)p =
γ (u)p

γ (u)

∣∣ã p

∣∣2, e (w)p =
γ (w)p

γ (u)

∣∣∣d̃ p

∣∣∣2.

From this, we can define the reflection and transmission,

R =
∑
p∈U

e (u)p , T =
∑
p∈W

e (w)p , (14)

where U and W are the propagating modes in the upper and
lower layers, respectively. As our derivation was based upon
matching the transmissions (in the flat-interface case), this is the
quantity of interest upon which we focus.

In order to most effectively study the performance of our
method, we chose a configuration where the difference between
the response of flat-interface and non-flat-interface geometries
is maximized. Such an instance can be found at a GSP where a
significant enhancement in the scattered field can be found in a
small neighborhood of the layer interfaces. In [31] [Fig. 6(b)],
we found that a particular double-layer graphene structure
generated GSPs at the energies 11 and 26 meV, which we single
out for study in the following sections.

C. Single-Layer Graphene

We began with a configuration featuring a single layer of
graphene between two dielectrics (with permittivities ε(u) and
ε(w)) mounted on the corrugated interface between the two
layers (shaped by z= g (x )= εg̃ (x )), where

ε(u) = 1, ε(w) = 11, g̃ (x )= cos(2π x/d),

d = 10, 0≤ ε≤ 0.4. (15)

We began with low-energy illumination at E = 11 meV
(corresponding to λ≈ 112.7129 µm) and display results of the
transmission in Fig. 2 as computed by simulation of the “bulk”
three-layer problem, and the two-layer configurations with
conductivities specified by the “unmodified,” “asymptotic,”
and “full” models specified previously. In addition, in Fig. 3,
we show the difference between these latter three and the bulk
simulation which we consider exact:
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Fig. 2. Transmission from a single-sheet graphene configuration,
Eq. (15), at E = 11 meV as computed by simulation of the “bulk”
three-layer configuration, Eq. (3), and the two-layer structures with
interfacial currents which are “unmodified” [with σ̂ (g ) given by
Eq. (1)], “asymptotic” [with σ̂ (g ) specified by Eq. (12)], and “full”
[with σ̂ (g ) defined by Eq. (11)].
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Fig. 3. Differences in transmission from a single-sheet graphene
configuration, Eq. (15), at E = 11 meV between a simulation of the
“bulk” three-layer configuration, Eq. (3), and the two-layer structures
with interfacial currents which are “unmodified” [with σ̂ (g ) given by
Eq. (1)], “asymptotic” [with σ̂ (g ) specified by Eq. (12)], and “full”
[with σ̂ (g ) defined by Eq. (11)].
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Fig. 4. Transmission from a single-sheet graphene configuration,
Eq. (15), at E = 26 meV as computed by simulation of the “bulk”
three-layer configuration, Eq. (3), and the two-layer structures with
interfacial currents which are “unmodified” [with σ̂ (g ) given by
Eq. (1)], “asymptotic” [with σ̂ (g ) specified by Eq. (12)], and “full”
[with σ̂ (g ) defined by Eq. (11)].

1T := |T − Tbulk| .

Remark 4.1. Here we can clearly see that, while all three models
do provide useful (at least moderately accurate) answers, the
“full” model that we advocate provides the best results for small
values of ε (0≤ ε≤ 0.025) being exact to machine precision
when ε= 0.

We repeated these experiments for the higher-energy
case of illumination at E = 26 meV (corresponding to
λ≈ 47.6862 µm) and show the outcome of our simulations
of the transmission in Fig. 4, again for “bulk,” “unmodified,”
“asymptotic,” and “full” models of the conductivity. Their
differences with the “bulk” simulation are shown in Fig. 5.

Remark 4.2. As before, all three models do give reasonable
answers, but the “full” model gives the best results for moderate
values of ε (0≤ ε≤ 0.04), being exact to machine precision
when ε= 0.
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Fig. 5. Differences in transmission from a single-sheet graphene
configuration, Eq. (15), at E = 26 meV between a simulation of the
“bulk” three-layer configuration, Eq. (3), and the two-layer structures
with interfacial currents which are “unmodified” [with σ̂ (g ) given by
Eq. (1)], “asymptotic” [with σ̂ (g ) specified by Eq. (12)], and “full”
[with σ̂ (g ) defined by Eq. (11)].

D. Double-Layer Graphene

At this point, we decided to test the utility of our new effective
conductivity outside the scope of our derivation, more spe-
cifically as applied to a configuration featuring two sheets of
graphene. We were also curious what effect the spacing between
the graphene sheets had on our results. Therefore, we decided
to investigate simulations featuring “small” (2 µm), “medium”
(5µm), and “large” (10µm) gaps.

To pursue this, we moved to a configuration featuring a
double layer of graphene with a gap of width 2h between,
mounted in three dielectrics (with permittivities ε(u), ε(v),
and ε(w)) mounted on the corrugated interfaces between
the three layers (shaped by z= h + g (x )= h + εg̃ (x ) and
z=−h + `(x )=−h + ε ˜̀(x )), where

ε(u) = 1, ε(v) = 1, ε(w) = 11,

g̃ (x )= cos(2π x/d), ˜̀(x )= cos(2π x/d),

d = 10, 0≤ ε≤ 0.1. (16)

We began with low-energy illumination at E = 11 meV
(corresponding to λ≈ 112.7129 µm) and display results of
the transmission in Figs. 6 (2h = 2 µm), 7 (2h = 5 µm), and
8 (2h = 10 µm) as computed by simulation of the “bulk”
five-layer problem, and the three-layer configurations with
conductivities specified by the “no modification,” “asymp-
totic,” and “full” models specified above. In addition, in Figs. 9
(2h = 2 µm), 10 (2h = 5 µm), and 11 (2h = 10 µm), we
show the differences between these latter three and the bulk
simulation which we consider exact.

Remark 4.3. Once again, all three models do give good
results, but the “full” model gives the best results for most values
of ε sampled (0≤ ε≤ 0.075, at least) being exact to machine
precision when ε= 0.

We concluded with high-energy illumination at
E = 26 meV (corresponding to λ≈ 47.6862 µm) and
display results of the transmission in Figs. 12 (2h = 2 µm),
13 (2h = 5 µm), and 14 (2h = 10 µm) as computed by sim-
ulation of the “bulk” five-layer problem, and the three-layer
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Fig. 6. Transmission from a double-sheet graphene configuration,
Eq. (16), with 2h = 2 µm at E = 11meV as computed by simulation
of the “bulk” five-layer configuration and the three-layer structures
with interfacial currents which are “unmodified” [with σ̂ (g ) given by
Eq. (1)], “asymptotic” [with σ̂ (g ) specified by Eq. (12)], and “full”
[with σ̂ (g ) defined by Eq. (11)].
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Fig. 7. Transmission from a double-sheet graphene configuration,
Eq. (16), with 2h = 5 µm at E = 11 meV as computed by simulation
of the “bulk” five-layer configuration and the three-layer structures
with interfacial currents which are “unmodified” [with σ̂ (g ) given by
Eq. (1)], “asymptotic” [with σ̂ (g ) specified by Eq. (12)], and “full”
[with σ̂ (g ) defined by Eq. (11)].
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Fig. 8. Transmission from a double-sheet graphene configura-
tion, Eq. (16), with 2h = 10 µm at E = 11 meV as computed by
simulation of the “bulk” five-layer configuration and the three-layer
structures with interfacial currents which are “unmodified” [with σ̂ (g )

given by Eq. (1)], “asymptotic” [with σ̂ (g ) specified by Eq. (12)], and
“full” [with σ̂ (g ) defined by Eq. (11)].
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Fig. 9. Differences in transmission from a double-sheet graphene
configuration, Eq. (16), with 2h = 2 µm at E = 11 meV between a
simulation of the “bulk” five-layer configuration and the three-layer
structures with interfacial currents which are “unmodified” [with σ̂ (g )

given by Eq. (1)], “asymptotic” [with σ̂ (g ) specified by Eq. (12)], and
“full” [with σ̂ (g ) defined by Eq. (11)].
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Fig. 10. Differences in transmission from a double-sheet graphene
configuration, Eq. (16), with 2h = 5 µm at E = 11 meV between a
simulation of the “bulk” five-layer configuration and the three-layer
structures with interfacial currents which are “unmodified” [with σ̂ (g )

given by Eq. (1)], “asymptotic” [with σ̂ (g ) specified by Eq. (12)], and
“full” [with σ̂ (g ) defined by Eq. (11)].
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Fig. 11. Differences in transmission from a double-sheet graphene
configuration, Eq. (16), with 2h = 10 µm at E = 11 meV between
a simulation of the “bulk” five-layer configuration and the three-layer
structures with interfacial currents which are “unmodified” [with σ̂ (g )

given by Eq. (1)], “asymptotic” [with σ̂ (g ) specified by Eq. (12)], and
“full” [with σ̂ (g ) defined by Eq. (11)].
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Fig. 12. Transmission from a double-sheet graphene configuration,
Eq. (16), with 2h = 2 µm at E = 26 meV as computed by simulation
of the “bulk” five-layer configuration and the three-layer structures
with interfacial currents which are “unmodified” [with σ̂ (g ) given by
Eq. (1)], “asymptotic” [with σ̂ (g ) specified by Eq. (12)], and “full”
[with σ̂ (g ) defined by Eq. (11)].
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Fig. 13. Transmission from a double-sheet graphene configuration,
Eq. (16), with 2h = 5 µm at E = 26 meV as computed by simulation
of the “bulk” five-layer configuration and the three-layer structures
with interfacial currents which are “unmodified” [with σ̂ (g ) given by
Eq. (1)], “asymptotic” [with σ̂ (g ) specified by Eq. (12)], and “full”
[with σ̂ (g ) defined by Eq. (11)].
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Fig. 14. Transmission from a double-sheet graphene configura-
tion, Eq. (16), with 2h = 10 µm at E = 26 meV as computed by
simulation of the “bulk” five-layer configuration and the three-layer
structures with interfacial currents which are “unmodified” [with σ̂ (g )

given by Eq. (1)], “asymptotic” [with σ̂ (g ) specified by Eq. (12)], and
“full” [with σ̂ (g ) defined by Eq. (11)].
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Fig. 15. Differences in transmission from a double-sheet graphene
configuration, Eq. (16), with 2h = 2 µm at E = 26 meV between a
simulation of the “bulk” five-layer configuration and the three-layer
structures with interfacial currents which are “unmodified” [with σ̂ (g )

given by Eq. (1)], “asymptotic” [with σ̂ (g ) specified by Eq. (12)], and
“full” [with σ̂ (g ) defined by Eq. (11)].
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Fig. 16. Differences in transmission from a double-sheet graphene
configuration, Eq. (16), with 2h = 5 µm at E = 26 meV between a
simulation of the “bulk” five-layer configuration and the three-layer
structures with interfacial currents which are “unmodified” [with σ̂ (g )

given by Eq. (1)], “asymptotic” [with σ̂ (g ) specified by Eq. (12)], and
“full” [with σ̂ (g ) defined by Eq. (11)].

configurations with conductivities specified by the “no modi-
fication,” “asymptotic,” and “full” models specified previously.
In addition, in Figs. 15 (2h = 2 µm), 16 (2h = 5 µm), and
17 (2h = 10 µm), we show the differences between these latter
three and the bulk simulation, which we consider exact.

Remark 4.4. Again, all three models do give passable answers,
but the “full” model gives the best results for all values of ε sam-
pled, again being exact to machine precision when ε= 0.

E. Summary

There are crucial conclusions to draw from these results. In
Figs. 3 and 5, we see that the “full” model is most accurate, and
the “asymptotic” model second, on the ranges 0≤ ε≤ 0.025
and 0≤ ε≤ 0.04, respectively. Interestingly, Figs. 9, 10, and
11 reveal the same relative performance of the models on the
much larger range 0≤ ε≤ 0.075. Finally, from Figs. 15–17,
we learn that the same ordering holds over the entire range of ε
that we studied. From this, we conclude that the “full” model we
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Fig. 17. Differences in transmission from a double-sheet graphene
configuration, Eq. (16), with 2h = 10 µm at E = 26 meV between
a simulation of the “bulk” five-layer configuration and the three-layer
structures with interfacial currents which are “unmodified” [with σ̂ (g )

given by Eq. (1)], “asymptotic” [with σ̂ (g ) specified by Eq. (12)], and
“full” [with σ̂ (g ) defined by Eq. (11)].

describe is always more accurate for ε sufficiently small, and in
some cases the range of ε can be quite large.
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