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Graphene is now a crucial component of many device designs in electronics and optics. Just like the noble met-
als, this single layer of carbon atoms in a honeycomb lattice can support surface plasmons, which are central to
several sensing technologies in the mid-infrared regime. As with classical metal plasmons, periodic corrugations
in the graphene sheet itself can be used to launch these surface waves; however, as graphene plasmons are tightly
confined, the role of unwanted surface roughness, even at a nanometer scale, cannot be ignored. In this work, we
revisit our previous numerical experiments on metal plasmons launched by vanishingly small grating structures,
with the addition of graphene to the structure. These simulations are conducted with a recently devised, rapid,
and robust high-order spectral scheme of the authors, and with it we carefully demonstrate how the plasmonic
response of a perfectly flat sheet of graphene can be significantly altered with even a tiny corrugation (on the order
of merely 5 nm). With these results, we demonstrate the primary importance of fabrication techniques that produce
interfaces whose deviations from flat are on the order of angstroms. © 2021 Optical Society of America

https://doi.org/10.1364/JOSAA.404896

1. INTRODUCTION

Graphene, a single-atom-thick sheet of carbon, has benefited
many applications in electronics and optics [1]. Analogous to
noble metals, graphene can also sustain charge density fluctu-
ations called plasmons [2], which can dramatically enhance
light–matter interactions. Graphene plasmons typically reside
in the mid-infrared spectral range (2–30µm in wavelength) and
can exhibit much shorter wavelengths (hence higher momenta)
compared with free-space light at a given frequency. Due to
their tightly confined evanescent fields, graphene plasmons are
very effective for sensing, spectroscopy, and photodetection.
We direct the interested reader to recent work on graphene and
other two-dimensional materials [3–6] and surveys [7–12] for
more details about the theory and uses of graphene in optical
devices.

After initial observations of graphene plasmons in the mid-
infrared via scattering near-field optical microscopy [13,14],
researchers have explored practical schemes to launch and detect
graphene plasmons via far-field techniques. As with the excita-
tion of conventional metal plasmons, periodic modulation of
graphene itself or the surrounding dielectric environment can
be employed. Since graphene plasmons are tightly confined,
the role of unwanted surface roughness, even at a nanometer
scale, cannot be ignored. In this work, we revisit our previous
numerical experiments on noble metal plasmons launched by
vanishingly small grating structures [15] with the addition of

graphene to the structure. For this, we use the recently devised
code of Nicholls [16] and quantify how nanometric gratings
influence the efficiency of launching graphene plasmons.

Our numerical scheme is, by no means, the only alternative
for this investigation. For instance, the finite element simula-
tions in [17] investigated the excitation of graphene plasmons
by a point source, while [18] describes a finite element method
coupled to an adaptive mesh refinement strategy to capture
the field in a small neighborhood of the graphene sheet. We
also note finite element simulations of edge effects [19] and the
epsilon near zero (ENZ) effect [20]. Please see the survey paper
[21] for a complete discussion of approaches that have been
utilized in the engineering literature.

As we demonstrate with careful numerical experiments, the
plasmonic response of a perfectly flat sheet of graphene can be
significantly altered with even a tiny deterministic sinusoidal
corrugation on the order of merely 5 nm. In fact, there can be
quite a noticeable effect when even a minuscule 1 nm deforma-
tion is affected. With these observations, we demonstrate quite
conclusively the supreme importance of using sophisticated
fabrication techniques that produce interfaces whose deviations
from flat, be they deterministic or random, are on the order of
angstroms.

The rest of the paper is organized as follows. The governing
equations are briefly reviewed in Section 2 together with
our model for the graphene in Section 2.A, and the surface
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formulation that we utilize in Section 2.B. Our numerical
method is briefly described in Section 3, while we present the
results of our numerical simulations in Section 4. Concluding
remarks are given in Section 5. Finally, we discuss the dispersion
relation of graphene plasmons in terms of our formulation in
Appendix A.

2. GOVERNING EQUATIONS

We consider the simplest configuration to study the limits of
corrugation size in the excitation of graphene surface plasmon
resonances (GSPRs): a y -invariant, laterally periodic, doubly-
layered medium with an infinitesimally thin layer of graphene at
the interface. This interface is periodic and shaped by

z= g (x ), g (x + d)= g (x )

(Fig. 1), with permittivity (refractive index) ε(u) (n(u)) in
{z> g (x )} and ε(w) (n(w)) in {z< g (x )}.

We further specify that the structure be illuminated from
above by transversely aligned monochromatic plane-wave radia-
tion of frequencyω and wavenumber k(u) = n(u)ω/c 0 =ω/c (u)

(c 0 is the speed of light), e.g., in transverse magnetic (TM)
polarization:

Hinc
=
(

0 1 0
)T

exp(iαx − iγ (u)z),

α = k(u) sin(θ), γ (u) = k(u) cos(θ).

The reduced electric and magnetic fields satisfy the time–
harmonic Maxwell equations, and the incident radiation
generates reflected and transmitted fields above and below the
interface. It is well known [22,23] that the full fields can be
recovered from the transverse (y ) component of the field, e.g., in
TM polarization:

v(x , z)=
{

u(x , z), z> g (x ),
w(x , z), z< g (x ),

which is quasiperiodic:

u(x + d , z)= e iαd u(x , z), w(x + d , z)= e iαdw(x , z).
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Fig. 1. Depiction of the structures under consideration: graphene
mounted on vacuum, ion gel, or silica under vacuum. Structure
rescaled by the period in the x coordinate and the maximum amplitude
in the z coordinate.

Across the interface, the tangential component of the electric
field is continuous, while the presence of the graphene sheet
gives a jump in the tangential component of the magnetic field
equal to the surface current (see [16] and references therein). As
in [16], we model this current as proportional to the tangential
component of the surface electric field with proportionality
constantσ (g ).

As we have shown in [16], these considerations lead us to
solve, in TM polarization, the system of equations

1u + ε(u)k2
0u = 0, z> g (x ), (1a)

1w+ ε(w)k2
0w= 0, z< g (x ), (1b)

|N|u −
{
|N| −

σ̂ (g )

ik0ε(w)
∂N

}
w= |N|ξ, z= g (x ), (1c)

1

ε(u)
∂Nu −

1

ε(w)
∂Nw=

1

ε(u)
ν, z= g (x ), (1d)

where we have reduced the time–harmonic Maxwell equations
to Helmholtz equations for the transverse components of the
magnetic field, and σ̂ (g ) = σ (g )/(ε0c 0) is the non-dimensional
current. In these,

ξ =−(u inc)z=g , ν =−(∂Nu inc)z=g ,

N=
(
−∂x g 0 1

)T
, ∂N =N · ∇. (1e)

A. Graphene Model

For the layer of graphene, we use the Drude model for the cur-
rent presented in [24]:

σ̂ (g ) =
σ (g )

ε0c 0
, σ (g ) = σ0

(
4E F /π

0 − i~ω

)
, σ0 := πε0c 0α;

here α is the fine-structure constant, E F is the (local) Fermi
level position, and 0 := ~γ , where ~ is the reduced Planck’s
constant, and γ is the relaxation rate. In our simulations, we
used

E F = 0.45 eV, 0 = 2.6× 10−3 eV.

B. Surface Formulation

To further specify our approach to simulating solutions of this
two-layer, graphene structure, we state our surface formulation
first presented in [16]. To begin, we define the Dirichlet traces

U(x ) := u(x , g (x )), W(x ) :=w(x , g (x )),

the (exterior pointing) Neumann traces

Ũ(x ) :=−(∂Nu)(x , g (x )), W̃(x ) := (∂Nw)(x , g (x )),

and the Dirichlet–Neumann operators (DNOs)

G(g ) :U(x )→ Ũ(x ), J (g ) :W(x )→ W̃(x ),
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which encode the fact that u and w solve their respective
Helmholtz problems, Eqs. (1a) and (1b). In terms of these, we
write Eq. (1) as

|N|U −
{
|N| −

σ̂ (g )

ik0ε(w)
J
}

W = |N|ξ,

−
1

ε(u)
G[U ] −

1

ε(w)
J [W] =

1

ε(u)
ν,

or, equivalently (after negating the second equation),

AV=R, (2a)

where [25]

A :=

(
|N| −|N| + σ̂ (g )

ik0ε(w)
J

1
ε(u)

G 1
ε(w)

J

)
,

V=
(

U
W

)
, R=

(
|N|ξ
−

1
ε(u)
ν

)
. (2b)

We use this surface formulation for a number of reasons.
Primarily, it is due to the fact that it reduces the volumetric state-
ment of the problem, Eq. (1), to a surface formulation, Eq. (2),
which enables an enormous saving of memory and execution
time in the numerical scheme that we briefly outline below. In
addition, it gives us access to the theoretical tools developed in
[25], which may be of interest.

Before outlining our numerical scheme, we recall the classical
dispersion relation for graphene surface plasmons:

ε(u)

κ (u)
+
ε(w)

κ (w)
+

i σ̂ (g )

k0
= 0,

cf. Eq. (6). For a full derivation in our modern formulation,
please see Appendix A, which also describes the base case upon
which our scheme is built.

3. NUMERICAL METHOD

We now briefly describe the numerical procedure outlined in
our previous work [16]. Our governing equations, Eq. (2), for
the surface unknowns {U ,W} are AV=R. At this point, we
take a perturbative point of view by assuming that the interfa-
cial boundary, g (x ), is a small deviation from the (trivial) flat
configuration, which we make precise as

g (x )= ε f (x ), ε� 1.

It is of great importance that the restriction of ε small can be
lifted provided that ε is real [26]. With this assumption, it can be
shown that not only do the operator A and function R depend
analytically upon ε, so that

{A,R} = {A,R}(ε)=
∞∑

n=0

{An,Rn}ε
n,

but also that a unique solution of the form

V= V(ε)=
∞∑

n=0

Vnε
n

satisfies Eq. (2) [25]. Furthermore, the solution is given by

V0 = A−1
0 R0 (3)

at order n = 0, and

Vn = A−1
0

{
Rn −

n−1∑
`=0

An−`V`

}
(4)

for n > 0. Importantly, the order-zero operator

A0 :=

(
I −I + σ̂ (g )

ik0ε(w)
J (0)

1
ε(u)

G(0) 1
ε(w)

J (0)

)
corresponds to the flat-interface configuration that can be solved
with a classical formula [23] quite rapidly by the fast Fourier
transform (FFT) algorithm [27].

Our scheme is a high-order spectral (HOS) approach [27,28]
that approximates

{U(x , z),W(x , z)} ≈ {U Nx ,N(x , z),W Nx ,N(x , z)}

:=

N∑
n=0

Nx /2−1∑
p=−Nx /2

{Ûn,p , Ŵn,p}e iαp xεn .

(5)

The unknowns {Ûn,p , Ŵn,p} are determined by enforcing
Eqs. (3) and (4) at the collocation points x j = 2π j/d for
j = 0, . . . , Nx − 1. The nonlinearities on the right-hand sides
of Eqs. (3) and (4) are formed by straightforward pointwise
multiplication, while the operators A−1

0 can be implemented
efficiently by the FFT, as this operator is diagonalized by the
Fourier transform. The terms G` and J` in the expansion of the
DNOs are evaluated by the transformed field expansions (TFEs)
method as outlined in [16].

As we noted in [16], a crucial decision must be made in
selecting a method to sum the truncated Taylor series (in n) that
appears in Eq. (5). In addition, to direct (Taylor) summation,
the analytic continuation method of Padé approximation [29]
has been very successful when applied to HOPS algorithms
[16]. This approximant has notable properties, among which
are that, for a wide class of functions, not only is the conver-
gence faster at points of analyticity, but also it may converge for
points outside the disk of convergence. We refer the reader to
Section 2.B of [29] and Section 8.3 of Bender and Orszag [30]
for a complete discussion.

4. SIMULATION RESULTS

To study the question of the detectable limits of corrugations
in graphene sheets, we investigated three configurations. The
geometry of each is the same, but we assemble them out of
different materials. In all cases, we illuminated the structure
through vacuum above the layer interface that contained the
(infinitesimally) thin graphene sheet. Below this, we mounted
the structure on one of three dielectrics inspired by vacuum, ion
gel, or silica. More specifically, we considered the following three
configurations.
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1. Vacuum overlaying graphene mounted on vacuum (VGV)
with ε(u) = ε(w) = 1.

2. Vacuum overlaying graphene mounted on a dielectric
with permittivity ε(w) = 3, which approximates an ion gel
(VGIg) [31].

3. Vacuum overlaying graphene mounted on a dielectric with
permittivity ε(w) = 4 meant to simulate silica (VGS) [31].

Each of these has the same geometrical parameters:

d = 0.530 µm, z= ε f (x )= ε cos(2π x/d),

ε= εmax = d/100= 0.005.

We now discuss our results on the dispersion relations,1 from
Eq. (A1), and any enhancements that corrugations in the
graphene sheet provided.

To make these enhancements precise, we recall that in a flat-
interface configuration, the reflected and transmitted fields will
have the forms

u(x , z)= Re iαx+iγ (u)z, w(x , z)= Te iαx−iγ (w)z,

respectively. From these, we define the (specular) efficiencies

B = |R |2, C =
(
γ (w)

γ (u)

)
|T|2.

There is a principle of conservation of energy that states that if
ε(u), ε(w) ∈R+ andσ (g ) ≡ 0, then, in TM polarization,

B +
(
ε(u)

ε(w)

)
C = 1.

So, we define the absorbance

A := 1− B −
(
ε(u)

ε(w)

)
C

as the energy lost to the structure (which is zero for two
dielectrics in the absence of graphene). When graphene is
introduced, then A> 0, even in the flat configuration; however,
as we will now show, it can be the case that A(λ, ε)� A(λ, 0)
even for quite small ε, on the order of just a couple nanometers!
To quantify this, we study the “absorbance map”:

a(λ, ε) :=
A(λ, ε)
A(λ, 0)

.

A. Vacuum–Graphene–Vacuum Configuration

We began with the vacuum–graphene–vacuum (VGV) configu-
ration and studied first the dispersion relation, Eq. (A1). More
specifically, in Figs. 2 and 3, we display log Re{1} versus (q , ν)
and (d , λ), respectively.

These plots indicate the approximate locations of GSPRs in
either (q , ν) or (d , λ) space, which informed our subsequent
choices of simulation parameters. With these, we generated the
complete plot of the absorbance map for all values 0≤ ε≤ εmax

in Fig. 4, and for the final slice at ε= εmax in Fig. 5.
Here we saw a very modest 1.2% enhancement in the

absorbance (versus the flat-interface configuration) with

2 4 6 8 10 12

10

20

30

40

50

60

70

-5

-4

-3

-2

-1

0

1

Fig. 2. Plot of the level sets of the natural logarithm of the absolute
value of the real part of the dispersion relation,1 from Eq. (A1), for the
VGV configuration, ε(w) = 1. Graphene parameter choices are E F =

0.45 eV and0 = 2.6× 10−3 eV. Contour plots versus q (wavenumber
of surface wave) and ν (illumination frequency).
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Fig. 3. Plot of the level sets of the natural logarithm of the absolute
value of the real part of the dispersion relation, 1 from Eq. (A1), for
the VGV configuration, ε(w) = 1. Graphene parameter choices are
E F = 0.45 eV and0 = 2.6× 10−3 eV. Contour plots versus d (period
of surface wave) and λ (illumination wavelength).

Fig. 4. Complete plot of the absorbance map for the VGV
configuration: contour plot of the relative absorbance a(λ, ε)=
A(λ, ε)/A(λ, 0) versus λ (illumination wavelength) and ε (amplitude
of the graphene sheet deformation). Graphene parameter choices are
E F = 0.45 eV and0 = 2.6× 10−3 eV.
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Fig. 5. Slices of the absorbance map for the VGV configuration:
plot of the relative absorbance a(λ, ε̄)= A(λ, ε̄)/A(λ, 0) versus λ
(illumination wavelength), where ε̄= 1, 5 nm are particular choices of
the amplitude of the graphene sheet deformation. Graphene parameter
choices are E F = 0.45 eV and0 = 2.6× 10−3 eV.
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Fig. 6. Plot of the level sets of the natural logarithm of the absolute
value of the real part of the dispersion relation,1 from Eq. (A1), for the
VGIg configuration, ε(w) = 3. Graphene parameter choices are E F =

0.45 eV and0 = 2.6× 10−3 eV. Contour plots versus q (wavenumber
of surface wave) and ν (illumination frequency).

the introduction of a periodic corrugation of amplitude
εmax = 5 nm. We further studied the limits of exciting a GSPR
by examining the slice of this absorbance map at ε= 1 nm
(Fig. 5). In this, we observed a 0.05% enhancement.

B. Vacuum–Graphene–Ion Gel Configuration

We next proceeded to the vacuum–graphene–ion gel (VGIg) set
up and examined the dispersion relation, Eq. (A1). In particular,
in Figs. 6 and 7, we display log Re{1} versus (q , ν) and (d , λ),
respectively. As before, these plots indicate the approximate
locations of GSPRs in either (q , ν) or (d , λ) space, which
informed our choices of simulation parameters. With these, we
generated the complete plot of the absorbance map for all values
0≤ ε≤ εmax in Fig. 8, and for the final slice at ε= εmax in Fig. 9.

Here we saw a large 50% enhancement in the absorbance
(versus the flat-interface configuration) with the introduction
of a periodic corrugation of amplitude merely εmax = 5 nm.
We further studied the limits of exciting a GSPR by examining
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Fig. 7. Plot of the level sets of the natural logarithm of the absolute
value of the real part of the dispersion relation, 1 from Eq. (A1), for
the VGIg configuration, ε(w) = 3. Graphene parameter choices are
E F = 0.45 eV and0 = 2.6× 10−3 eV. Contour plots versus d (period
of surface wave) and λ (illumination wavelength).

Fig. 8. Complete plot of the absorbance map for the VGIg
configuration: contour plot of the relative absorbance a(λ, ε)=
A(λ, ε)/A(λ, 0) versus λ (illumination wavelength) and ε (amplitude
of the graphene sheet deformation). Graphene parameter choices are
E F = 0.45 eV and0 = 2.6× 10−3 eV.

the slice of this absorbance map at ε= 1 nm (Fig. 9). In this, we
observed a remarkable 2% enhancement.

C. Vacuum–Graphene–Silica Configuration

We concluded with the vacuum–graphene–silica (VGS) con-
figuration and studied the dispersion relation, Eq. (A1). In
fact, in Figs. 10 and 11, we display log Re{1} versus (q , ν)
and (d , λ), respectively. Once again, these plots indicate the
approximate locations of GSPRs in either (q , ν) or (d , λ)
space, which decided our choices of simulation parameters.
With these, we generated the complete plot of the absorbance
map for all values 0≤ ε≤ εmax in Fig. 12, and for the final
slice at ε= εmax in Fig. 13. Here we saw an enormous 60%
enhancement in the absorbance (versus the flat-interface con-
figuration) with the introduction of a periodic corrugation of
amplitude only εmax = 5 nm. We further studied the limits of
exciting a GSPR by examining the slice of this absorbance map
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Fig. 9. Slices of the absorbance map for the VGIg configuration:
plot of the relative absorbance a(λ, ε̄)= A(λ, ε̄)/A(λ, 0) versus λ
(illumination wavelength), where ε̄= 1, 5 nm are particular choices of
the amplitude of the graphene sheet deformation. Graphene parameter
choices are E F = 0.45 eV and0 = 2.6× 10−3 eV.

2 4 6 8 10 12

10

20

30

40

50

60

70

-4

-3

-2

-1

0

1

2

Fig. 10. Plot of the level sets of the natural logarithm of the absolute
value of the real part of the dispersion relation, 1 from Eq. (A1),
for the VGS configuration, ε(w) = 4. Graphene parameter choices
are E F = 0.45 eV and 0 = 2.6× 10−3 eV. Contour plots versus q
(wavenumber of surface wave) and ν (illumination frequency).

at ε= 1 nm (Fig. 13). In this, we observe an impressive 2.3%
enhancement.

To close, in Fig. 14, we display a plot of the scaled modulus of
the scattered field atλ= 15.8 µm:

|U(x , z; ε̄)|
|U(x , z; 0)|

.

Here we see the significant enhancement of the field at the
graphene sheet. In addition, in Fig. 15, we show the scaled
reflectance map:

b(λ, ε) :=
B(λ, ε)
B(λ, 0)

,

which indicates how much energy is reflected back into the
upper layer. It also gives an indication of the magnitude of the
scattered field displayed in Fig. 14.
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Fig. 11. Plot of the level sets of the natural logarithm of the abso-
lute value of the real part of the dispersion relation, 1 from Eq. (A1),
for the VGS configuration, ε(w) = 4. Graphene parameter choices are
E F = 0.45 eV and0 = 2.6× 10−3 eV. Contour plots versus d (period
of surface wave) and λ (illumination wavelength).

Fig. 12. Complete plot of the absorbance map for the
VGS configuration: contour plot of the relative absorbance
a(λ, ε)= A(λ, ε)/A(λ, 0) versus λ (illumination wavelength)
and ε (amplitude of the graphene sheet deformation). Graphene
parameter choices are E F = 0.45 eV and0 = 2.6× 10−3 eV.
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Fig. 13. Slices of the absorbance map for the VGS configuration:
plot of the relative absorbance a(λ, ε̄)= A(λ, ε̄)/A(λ, 0) versus λ
(illumination wavelength), where ε̄= 1, 5 nm are particular choices of
the amplitude of the graphene sheet deformation. Graphene parameter
choices are E F = 0.45 eV and0 = 2.6× 10−3 eV.
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Fig. 14. Plot of the scaled modulus of the scattered field for the VGS
configuration at λ= 15.8 µm near the GSPR. Graphene parameter
choices are E F = 0.45 eV and0 = 2.6× 10−3 eV.

Fig. 15. Complete plot of the reflectance map for the VGS
configuration: contour plot of the relative reflection b(λ, ε)=
B(λ, ε)/B(λ, 0) versus λ (illumination wavelength) and ε (amplitude
of the graphene sheet deformation). Graphene parameter choices are
E F = 0.45 eV and0 = 2.6× 10−3 eV.

5. CONCLUSION

In this paper, we have revisited our previous numerical experi-
ments on metal plasmons launched by vanishingly small grating
structures [15] in the presence of graphene. These simulations
were generated by our rapid and robust HOS scheme [16],
and with it we conclusively demonstrated how the plasmonic
response of a perfectly flat sheet of graphene can be signifi-
cantly altered with even a tiny corrugation. With this, we have
concluded that it is of extraordinary importance to utilize fabri-
cation techniques producing interfaces whose deviations from
flat are on the order of angstroms [32,33].

Beyond the simple device geometries used in this work,
our method can be used for a wide range of van der Waals
heterostructures [34] as well as graphene-on-a-mirror con-
figurations, which can support acoustic graphene plasmons
[5,6,35–37] or image polaritons in other two-dimensional
materials [38,39].

APPENDIX A: DISPERSION RELATION FOR
GRAPHENE SURFACE PLASMONS

In this appendix, we derive the dispersion relation for graphene
surface plasmons in our modern formulation. For this, it is help-
ful to have the flat-interface (g ≡ 0) DNOs at hand [16]:

G(0)U =
∞∑

p=−∞

(−iγ (u)p )Ûp e iαp x ,

J (0)W =
∞∑

p=−∞

(−iγ (w)p )Ŵp e iαp x ,

where, for m ∈ {u, w},

αp := α +

(
2π

d

)
p, γ (m)p :=

√
ε(m)k2

0 − α
2
p , Im{γ (m)p } ≥ 0.

Following the literature [31], we seek solutions to Eq. (1) of
the form

u(x , z)= e iq x−κ(u)z, z> g (x ),

w(x , z)= e iq x+κ(w)z, z< g (x ).

To solve the Helmholtz equations, Eqs. (1a) and (1b), we require

κ (m) =

√
q 2 − ε(m)k2

0, m ∈ {u, w},

so that we can identify q = α1 and κ (m) = iγ (m)1 . To capture the
behavior we seek, we require that

q ∈R, κ (u) ∈R+, κ (w) ∈R+,

so that solutions are laterally periodic, and decay away from the
interface. We note that

ν =
c 0

λ
, ω= 2πν =

2πc 0

λ
= c 0k0,

E = ~ω=
2π~c 0

λ
, k0 =

ω

c 0
=

2π

λ
, d =

2π

q
.

To satisfy the boundary conditions, Eqs. (1c) and (1d), these
solutions must satisfy the dispersion relation

1(d , λ)=1(q , ω)=
ε(u)

κ (u)
+
ε(w)

κ (w)
+

i σ̂ (g )

k0
= 0. (A1)

We note that for κ (m) to be real, we require

q 2 > ε(m)k2
0 ⇒

2π

d
>
√

ε(m)
2π

λ
⇒ d <

λ
√
ε(m)

.

We rewrite the dispersion relation, Eq. (A1), as

ε(u)

κ (u)
+
ε(w)

κ (w)
=

Im{σ̂ (g )}

k0
− i

Re{σ̂ (g )}

k0
,

so that if ε(u), ε(w) ∈R+, it is necessary that

Im{σ̂ (g )}> 0.
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