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NUMERICAL SOLUTION OF DIFFRACTION PROBLEMS: A
HIGH-ORDER PERTURBATION OF SURFACES AND
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Abstract. The rapid and robust simulation of linear waves interacting with layered periodic
media is a crucial capability in many areas of scientific and engineering interest. High-order pertur-
bation of surfaces (HOPS) algorithms are interfacial methods which recursively estimate scattering
quantities via perturbation in the interface shape heights/slopes. For a single incidence wavelength
such methods are the most efficient available in the parameterized setting we consider here. In the
current contribution we generalize one of these HOPS schemes by incorporating a further expansion
in the wavelength about a base configuration which constitutes an “asymptotic waveform evaluation”
(AWE). We not only provide a detailed specification of the algorithm, but also verify the scheme
and point out its benefits and shortcomings. With numerical experiments we show the remarkable
efficiency, fidelity, and high-order accuracy one can achieve with an implementation of this algorithm.
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1. Introduction. The rapid and robust simulation of linear waves interacting
with layered periodic media (a diffraction or scattering problem) is a crucial capability
in many areas of scientific and engineering interest. Examples abound in areas such
as geophysics [VO09, BR09], oceanography [BL82], materials science [God92], imag-
ing [NW01], and nanoplasmonics [Rae88, Mai07, EB12]. For this latter topic, one
can investigate topics as diverse as extraordinary optical transmission [ELG98], sur-
face enhanced spectroscopy [Mos85], and surface plasmon resonance (SPR) biosensing
[Hom08, ILW11] and [LJJ12, JJJ13, RJOM13, NRJO14]. Regardless of the physical
problem, in each it is necessary to approximate the scattering returns of such models
in a fast, highly accurate, and reliable fashion.

While all of the classical numerical algorithms have been utilized for simulation
of this problem, we have recently argued [AN14, Nic16, Nic15, NOJR16] that such
volumetric approaches (such as finite differences and finite/spectral element methods)
are greatly disadvantaged with an unnecessarily large number of unknowns for the
layered media problems we consider here. Interfacial methods based upon integral
equations (IEs) [CK98] are a natural candidate but, as we have pointed out [AN14,
Nic16, Nic15, NOJR16], these also face difficulties. Most of these have been addressed
in recent years through (i) the use of sophisticated quadrature rules to deliver high-
order spectral accuracy, (ii) the design of preconditioned iterative solvers with suitable
acceleration [GR87], and (iii) new strategies to avoid periodizing the Green function
[BG11, CB15, LKB15]. Consequently, they are a compelling alternative (see, e.g.,
the survey article of [RT04] for more details); however, two properties render them
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DIFFRACTION PROBLEMS: A HOPS/AWE METHOD 145

noncompetitive for the parameterized problems we consider as compared with the
methods we advocate here:

1. For configurations parameterized by the real value ε (for us the height/slope
of the irregular interface), an IE solver will return the scattering returns only
for a particular value of ε. If this value is changed then the solver must be
run again.

2. The dense, nonsymmetric positive definite systems of linear equations which
must be inverted with each simulation.

As we advocated in [Nic16, Nic15, NOJR16] a “high-order perturbation of sur-
faces” (HOPS) approach can effectively address these concerns. More specifically, in
[Nic15, NOJR16] we argued for the method of field expansions (FE) which trace their
roots to the low-order calculations of Rayleigh [Ray07] and Rice [Ric51]. Their high-
order incarnation was first introduced by Bruno and Reitich [BR93a, BR93b, BR93c]
and later enhanced and stabilized by the author and Reitich [NR04a, NR04b, NR08],
and the author and Malcolm [MN11]. These formulations are particularly compelling
as they maintain the advantageous properties of classical IE formulations (e.g., sur-
face formulation and exact enforcement of far-field and quasi-periodicity conditions)
while avoiding the shortcomings listed above:

1. Since the methods are built upon expansions in the boundary parameter,
ε, once the Taylor coefficients are known for the scattering quantities, it is
simply a matter of summing these (rather than beginning a new simulation)
for any given choice of ε to recover the returns.

2. Due to the perturbative nature of the scheme, at every perturbation order one
need only invert a single, sparse operator corresponding to the flat-interface,
order-zero approximation of the problem.

For a single incidence wavelength such methods are the most efficient available
in the parameterized setting we consider here. We now discuss a generalization of
the HOPS approach of Bruno and Reitich which incorporates a further expansion in
the wavelength about a base configuration that constitutes an “asymptotic waveform
evaluation” (AWE) [PR90, KSN96, RDCB98, SLL01]. We will not only provide a
detailed specification of the algorithm, but also verify the scheme and point out its
benefits and shortcomings. With numerical experiments we shall show the remarkable
efficiency, fidelity, and high-order accuracy one can achieve with an implementation of
this algorithm. In this initial contribution we will defer several natural generalizations
to focus upon the idea of the algorithm rather than solving all possible problems. In
section 6 we discuss several of these future directions including three-dimensional ge-
ometries and vectorial scattering (section 6.1), frequency-dependent materials (section
6.2), and the occurrence of Rayleigh singularities [Ray07] (section 6.3). We note that
these singularities are commonly referred to as “Wood’s anomalies,” but we encourage
the interested reader to find the fascinating article of Maystre in Chapter 1 of [EB12]
which argues that this term is, in fact, a misnomer. Beyond this we note that nothing
about our algorithm limits the configuration to two layers and, up to notational com-
plications, the developments of [MN11, Nic12, NRJO14, AN14, Nic15, Nic16] could
be extended, which we intend to complete in a forthcoming publication.

The paper is organized as follows: In section 2 we briefly recall the equations which
govern the propagation of linear waves in a two-dimensional periodic structure, and
in section 2.1 we recall the Rayleigh expansions. In section 3 we recall the FE method
for numerically approximating solutions to these governing equations, together with
the Taylor expansions necessary to specify an implementation (in section 3.1). In
section 4 we describe in some detail our new HOPS/AWE algorithm, including forms
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146 DAVID P. NICHOLLS

x

z

z = g(x)

vinc = exp(−iγuz)

Su

Sw

Fig. 1. Plot of two–layer structure with periodic interface.

for the Taylor terms required of the algorithm in sections 4.1 and 4.2. In section 5 we
present detailed numerical results (see sections 5.1–5.5) to validate our implementation
versus exact solutions, the previously tested FE recursions, and a boundary IE (BIE)
simulation [CB15]. These illustrate the accuracy and computational efficiency of our
new method, the latter of which we make precise in section 5.6. In section 6 we give
concluding remarks and discuss future directions.

2. The governing equations. The geometry we consider is displayed in
Figure 1: a y-invariant, doubly layered structure. Dielectrics occupy both domains,
one (with refractive index nu) fills the region above the graph z = g(x),

Su := {z > g(x)} ,

while the other (with index of refraction nw) fills

Sw := {z < g(x)} .

The superscripts are chosen to conform to the notation of previous work by the author
[NOJR16, NT16, Nic12]. The grating is d-periodic so that g(x + d) = g(x). The
structure is illuminated from above by monochromatic plane-wave incident radiation
of frequency ω and wavenumber ku = nuω/c0 = ω/cu (c0 is the speed of light), aligned
with the grooves. We consider the reduced incident fields

Einc(x, z) = Aeiαx−iγ
uz, Hinc(x, z) = Beiαx−iγ

uz,

α = ku sin(θ), γu = ku cos(θ),

where time dependence of the form exp(−iωt) has been factored out. The reduced
electric and magnetic fields {E,H}, like the reduced scattered fields, are α-quasi-
periodic due to the incident radiation [Pet80]. To close the problem, we specify
that the scattered radiation is “outgoing” (upward propagating in Su and downward
propagating in Sw).

It is well-known (see, e.g., Petit [Pet80]) that in this two-dimensional setting, the
time-harmonic Maxwell equations decouple into two scalar Helmholtz problems which
govern the transverse electric (TE) and transverse magnetic (TM) polarizations. We
define the invariant (y) directions of the scattered (electric or magnetic) fields by
{u(x, z), w(x, z)} in Su and Sw, respectively, and the incident radiation in the upper
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DIFFRACTION PROBLEMS: A HOPS/AWE METHOD 147

layer by uinc(x, z). For all three we factor out the phase factor exp(iαx) leaving
functions d-periodic in the x direction.

In light of all of this, we are led to seek outgoing, d-periodic solutions of

∆u+ (2iα)∂xu+ (γu)
2
u = 0, z > g(x),(1a)

∆w + (2iα)∂xw + (γw)
2
w = 0, z < g(x),(1b)

u− w = ζ, z = g(x),(1c)

∂Nu− (iα)(∂xg)u− τ2 {∂Nw − (iα)(∂xg)w} = ψ, z = g(x),(1d)

where the Dirichlet and Neumann data are

ζ(x) := −e−iγ
ug(x), ψ(x) := (iγu + iα(∂xg)) e−iγ

ug(x).

In these N = (−∂xg, 1)T and

τ2 =

{
1, TE,

(ku/kw)2 = (nu/nw)2, TM,

where γw = kw cos(θ). For various reasons the case of TM polarization is of extraor-
dinary importance (e.g., the classical study of SPRs [Rae88]) and thus we concentrate
our attention on the TM case from here.

2.1. The Rayleigh expansions. The Rayleigh expansions, which can be de-
rived from separation of variables [Pet80], are the periodic, outgoing solutions of (1a)
and (1b). More specifically, they express the fields as

(2) u(x, z) =

∞∑
p=−∞

âpe
ip̃xeiγ

u
p z, w(x, z) =

∞∑
p=−∞

d̂pe
ip̃xe−iγ

w
p z,

where, for p ∈ Z and q ∈ {u,w},

p̃ :=

(
2π

d

)
p, αp := α+ p̃, γqp :=


√

(kq)
2 − α2

p, p ∈ Uq,

i
√
α2
p − (kq)

2
, p 6∈ Uq,

and

Uq =
{
p ∈ Z | α2

p < (kq)
2
}
,

which are the “propagating modes” in the upper and lower layers. Notice that âp
and d̂p are the upward and downward propagating Rayleigh amplitudes. Quantities
of great interest are the efficiencies

eup = (γup /γ
u) |âp|2 , ewp = (γwp /γ

u)
∣∣∣d̂p∣∣∣2 ,

which give the “reflectivity map”

(3) R :=
∑
p∈Uu

eup .
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148 DAVID P. NICHOLLS

3. Field expansions. Before we discuss our new algorithm, we review the classi-
cal HOPS methodology due to Bruno and Reitich, the “FE method” [BR93a, BR93b,
BR93c]. Our viewpoint is that the FE algorithm is a perturbative approach to en-

forcing the boundary conditions (1c) and (1d) with the {âp, d̂p} from the Rayleigh
expansions (2) as unknowns.

For this we define

(4) a(x) := u(x, 0) =

∞∑
p=−∞

âpe
ip̃x, d(x) := w(x, 0) =

∞∑
p=−∞

d̂pe
ip̃x,

which are the “flat interface” field traces. We recall the definition of a Fourier multi-
plier, m(D),

m(D)ξ(x) :=

∞∑
p=−∞

m(p)ξ̂pe
ip̃x,

where ξ̂p is the pth Fourier coefficient of ξ(x). With this we can define the Fourier
multipliers

(5) U := iγuD, W := iγwD, A := iαD,

where the final operator is simply classical differentiation of a α-quasi-periodic func-
tion. Now, follow [Nic15, NOJR16] and define the Dirichlet trace operators

Du : a→ u(x, g(x)), Dw : d→ w(x, g(x)),

and their Neumann counterparts

N u : a→ (∂zu− (∂xg)∂xu) (x, g(x)), Nw : d→ (∂zw − (∂xg)∂xw) (x, g(x)).

These operators map, respectively, the function pair (a, d) to the upper and lower
Dirichlet and Neumann traces. It can be shown [Nic15, NOJR16] that these operators
have the form

(6a) Du = exp(gU), Dw = exp(−gW ),

and

N u = exp(gU)U − (∂xg) exp(gU)A,

Nw = − exp(−gW )W − (∂xg) exp(−gW )A.(6b)

To clarify, we note that the meaning of Du is given by

Du[ξ] =

∞∑
p=−∞

exp(g(x)iγup )ξ̂pe
ip̃x.

In terms of these, the Dirichlet boundary condition, (1c), becomes

(7) Du [a]−Dw [d] = ζ,

while the Neumann condition, (1d), becomes

(8) N u [a]− (iα)(∂xg)Du [a]− τ2 {Nw [d]− (iα)(∂xg)Dw [d]} = ψ.
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DIFFRACTION PROBLEMS: A HOPS/AWE METHOD 149

We state our governing equations, the boundary conditions (7) and (8), abstractly as

(9) Mv = b,

where

M =

(
Du −Dw

N u − (iα)(∂xg)Du −τ2 {Nw − (iα)(∂xg)Dw}

)
, v =

(
a
d

)
, b =

(
ζ
ψ

)
.

3.1. Taylor expansions. The FE methodology considers interface deformations
of the form g(x) = εf(x) (f = O(1)) and notes that, for f sufficiently smooth (Lips-
chitz) and ε sufficiently small, the linear operator M and inhomogeneity b are both
analytic in ε [NR01, NR03]. Furthermore, an analytic solution v can be shown to
exist so that the following Taylor expansions are convergent:

{M,v,b}(εf) =

∞∑
n=0

{Mn(f),vn(f),bn(f)}εn.

The FE approach recovers vn using regular perturbation theory. To see this we write
(9) as ( ∞∑

n=0

Mnε
n

)( ∞∑
`=0

v`ε
`

)
=

∞∑
n=0

bnε
n,

and, equating at each perturbation order, we find

(10) M0vn = bn −
n−1∑
`=0

Mn−`v`.

At order zero we recover the flat-interface solution, giving the Fresnel coefficients,
while higher-order corrections, vn, can be computed by appealing to (10). Of great
importance is the fact that one only need invert the same linear operator, M0 at
every perturbation order. All that remains is a specification of the terms {Mn,bn}.

Regarding the Dirichlet trace operators, upon defining

Fn(x) := f(x)n/n!,

it has been shown that [Nic15, NOJR16]

Dun = FnU
n, Dwn = Fn(−W )n.

For their Neumann counterparts we have

N u
n = FnU

n+1 − (∂xf)Fn−1U
n−1A, Nw

n = Fn(−W )n+1 − (∂xf)Fn−1(−W )n−1A.

Finally, for the surface data, bn, it is easy to show that

ζn = −Fn (−iγu)
n

and

ψn = Fn (iγu) (−iγu)
n
eiαx + (∂xf)Fn−1 (iα) (−iγu)

n−1
,

where F−1(x) ≡ 0 and F0(x) ≡ 1. To clarify, we note that the meaning of Dun is given
by

Dun[ξ] =
f(x)n

n!

∞∑
p=−∞

(iγup )nξ̂pe
ip̃x.
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4. A HOPS/AWE approach. To describe our new HOPS/AWE method we
recall the governing equations, (7)–(8),

Du [a]−Dw [d] = ζ,

N u [a]− (iα)(∂xg)Du [a]− τ2 {Nw [d]− (iα)(∂xg)Dw [d]} = ψ,

which we wrote compactly as Mv = b; c.f. (9). We now make two smallness assump-
tions:

1. Boundary perturbation: g(x) = εf(x), ε ∈ R, ε� 1.
2. Frequency perturbation: ω = (1 + δ)ω = ω + δω, δ ∈ R, δ � 1.

(We suspect that more careful analysis will reveal that neither ε nor δ need be in-
finitesimal for our method to be applicable.) We note that the latter of these has a
number of consequences:

ku = ω/cu = (1 + δ)ω/cu =: (1 + δ)ku = ku + δku,

kw = ω/cw = (1 + δ)ω/cw =: (1 + δ)kw = kw + δkw,

α = ku sin(θ) = (1 + δ)ku sin(θ) =: α+ δα,

γu = ku cos(θ) = (1 + δ)ku cos(θ) =: γu + δγu,

γw = kw cos(θ) = (1 + δ)kw cos(θ) =: γw + δγw.

These in turn imply

αp = α+ (2π/d)p = α+ δα+ (2π/d)p =: αp + δα.

Akin to the FE method outlined above, we will assume for the moment the joint
analyticity of the operator M and inhomogeneity b with respect to both boundary
and frequency deviations. With these we postulate that the joint analyticity of v can
be established so that the following Taylor series can be shown to be convergent:

{M,v,b}(εf, ω + δω) =

∞∑
n=0

∞∑
m=0

{Mn,m(f, ω),vn,m(f, ω),bn,m(f, ω)}εnδm.

It is a goal of future research to make this mathematically precise. Our new HOPS/
AWE algorithm finds the vn,m at each perturbation order using regular perturbation
theory. Now we write (9) as( ∞∑

n=0

∞∑
m=0

Mn,mε
nδm

)( ∞∑
`=0

∞∑
r=0

v`,rε
`δr

)
=

∞∑
n=0

∞∑
m=0

bn,mε
nδm,

and, equating at each perturbation order, we find

M0,0vn,m = bn,m −
n−1∑
`=0

Mn−`,0v`,m −
m−1∑
r=0

M0,m−rvn,r(11)

−
n−1∑
`=0

m−1∑
r=0

Mn−`,m−rv`,r.

As before, the key is to discover forms for the {Mn,m,bn,m} and we now begin this
process.
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4.1. Expansions of γu
p , γw

p , U , and W in frequency. The first step in our
development is to derive the Taylor series expansion for γqp , q ∈ {u,w},

(12) γqp = γqp(δ) =

∞∑
m=0

γqp,mδ
m.

We begin by using the fundamental relationship

α2
p + (γqp)2 = (kq)2,

which implies( ∞∑
m=0

γqp,mδ
m

)( ∞∑
r=0

γqp,rδ
r

)
= (1 + δ)

2
(kq)2 −

(
αp + δα

)2
.

This delivers
∞∑
m=0

δm
m∑
r=0

γqp,m−rγ
q
p,r =

{
(ku)2 − (αp)

2
}

+ 2δ
{

(kq)2 − α αp
}

+ δ2
{

(kq)2 − (α)2
}

= (γu
p
)2 + 2δ

{
(kq)2 − α αp

}
+ δ2(γq)2,

so that at order O(δ0) we require

(13) γqp,0 = ±γq
p
,

while at order O(δ1) we need

(14) γqp,1 =
2((kq)2 − α αp)

2γqp,0
, γqp,0 6= 0.

Here we now see that it is crucial for the validity of expansion (12) that γq
p
6= 0 for

all p. We now make this assumption, and report upon the case γq
p

= 0 for some p in

section 6.3. Continuing our development to O(δ2) we further set

(15) γqp,2 =
(γq)2 − (γqp,1)2

2γqp,0
, γqp,0 6= 0,

and for O(δm), m > 2, we demand

(16) γqp,m =
−
∑m−1
r=1 γqp,m−rγ

q
p,r

2γqp,0
, γqp,0 6= 0.

To close, recall the definitions of U , W , and A:

U = iγuD, W = iγwD, A = iαD;

c.f. (5). In light of our expansions for γu(δ) and γw(δ), we expand

(17) {U,W,A} = {U,W,A} (δ) =

∞∑
m=0

{Um,Wm, Am} δm,

and it is a simple matter to show that

Um = iγuD,m, Wm = iγwD,m, Am =


iαD, m = 0,

iα, m = 1,

0, m > 1.
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4.2. Expansion of the Dirichlet and Neumann trace operators. We are
now in a position to find expressions for the Taylor series terms {Mn,m,bn,m} which
require the forms {Dun,m,Dwn,m,N u

n,m,Nw
n,m} from

{Du,Dw,N u,Nw} = {Du,Dw,N u,Nw} (ε, δ)(18)

=

∞∑
n=0

∞∑
m=0

{
Dun,m,Dwn,m,N u

n,m,Nw
n,m

}
εnδm.

It is clear from the formulas (6a)–(6b), if appropriate forms can be found for

Eu := exp(gU) = exp(εfU(ω + δω)) =

∞∑
n=0

∞∑
m=0

Eun,mεnδm,(19a)

Ew := exp(−gW ) = exp(−εfW (ω + δω)) =

∞∑
n=0

∞∑
m=0

Ewn,mεnδm(19b)

then

Dun,m = Eun,m, Dwn,m = Ewn,m,

while a little more work delivers

N u
n,m =

m∑
r=0

Eun,m−rUr − (∂xf)Eun−1,mA0 − (∂xf)Eun−1,m−1A1,

Nw
n,m = −

m∑
r=0

Ewn,m−rWr − (∂xf)Ewn−1,mA0 − (∂xf)Ewn−1,m−1A1.

In order to find the Taylor series terms for Eu we insert the expansion

U = U(δ) =

∞∑
m=0

Umδ
m

into (19a), and since

Eu(0, δ) = exp(0 U(δ)) = I,

we have

(20) Eu0,m =

{
I, m = 0,

0, m > 0.

Next,

Eu(ε, 0) = exp(εfU(0)) =

∞∑
n=0

FnU(0)n,

so that

Eun,0 = FnU(0)n.D
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Finally, we follow the technique of Pourahmadi [Pou84] (see also the works of Roberts
[Rob83] and Marchant and Roberts [MR87]) who uses the fact that

∂εEu = fEuU,

to equate

∞∑
n=0

∞∑
m=0

Eun+1,m(n+ 1)εnδm = f

( ∞∑
n=0

∞∑
m=0

Eun,mεnδm
)( ∞∑

m=0

Umδ
m

)
.

Upon equating at like orders we have

Eun+1,m =
f

n+ 1

m∑
r=0

Eun,m−rUr.

So, to discover the coefficient at order (n + 1,m), one only needs (n, 0), . . . , (n,m).
For instance, we have Eu0,m from (20) which gives Eu1,m and one can proceed to recover
all of the Eun,m. Clearly, the same procedure can be used to deduce that

Ew0,m =

{
I, m = 0,

0, m > 0,

Ewn,0 = Fn(−W (0))n,

Ewn+1,m = − f

n+ 1

m∑
r=0

Ewn,m−rWr.

5. Numerical results. We are now in a position to test a numerical implemen-
tation of this algorithm and demonstrate its advantageous computational complexity.
For this we compare our novel HOPS/AWE method to the carefully studied and val-
idated classical FE scheme of Bruno and Reitich [BR93a, BR93b, BR93c] outlined in
section 3. Both the FE and our new HOPS/AWE schemes are high–order spectral
approaches, where nonlinearities are approximated with convolutions implemented
via the fast Fourier transform (FFT) algorithm [GO77, CHQZ88].

To demonstrate the convergence of our algorithm we take several steps as we feel
it helps illuminate not only the accuracy of our new scheme, but also its range of
validity. To begin we consider convergence of partial sums of the Taylor series for γup
given in (12), and then move to approximation of the operator U by the partial sums
of its Taylor series (17). We then proceed to study the convergence of partial Taylor
sums of the Dirichlet and Neumann trace operators from (18). To close, of course, we
consider computations of the full reflectivity map (3) from (10) or (11).

5.1. Approximation of γu
p . To begin our demonstrations we recall that the

frequency perturbation assumption

ω = ω(δ) = ω(1 + δ)

led to the Taylor expansion of the quantity

γup = γup (δ) =

∞∑
m=0

γum,pδ
m;
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c.f. (12). Our numerical approximation will be to truncate this Taylor series after a
finite number of terms,

(21) γup (δ) ≈ γu,Mp (δ) :=

M∑
m=0

γum,pδ
m

with forms for the γum,p given in (13)–(16).
As we noted before, the expansion (12) ceases to be valid when γu

p
= 0 for any

p which we term a “Rayleigh singularity” (commonly called a Wood’s anomaly), and
we now quantify what this means for our computations. Since

α2
p + (γu

p
)2 = (ku)2,

a singularity occurs when α2
p = (ku)2 for any integer p (notice that this cannot occur

for p = 0). To simplify matters we assume that

α = 0, d = 2π,

and recall that ku = ω/cu = nuω/c0 (where c0 is the speed of light which we choose
to be unity). In this case αp = p so that the Rayleigh singularity condition becomes,
if nu = 1 (vacuum),

p2 = (ku)2 = ω2/(cu)2 = (nu)2ω2 = ω2.

Thus “resonance” occurs at integer values of the frequency ω. To maximize the radius
of convergence of our algorithm in our tests we define

ωq := q +
1

2
, q = 0, 1, 2, 3, . . .

and choose (
q +

1

2

)
− σ

2
< ω(δ) <

(
q +

1

2

)
+
σ

2

to sample at a fraction 0 < σ < 1 of the “allowable” frequencies implying, after some
simplification, that

− σ

2q + 1
< δ <

σ

2q + 1
.

In Figure 2 we display results of the comparison between a numerical implemen-
tation of the approximation γu,Mp (c.f. (21)), versus an exact computation of γup . More
specifically, we compute

(22) Error :=
max{−Nx/2≤p≤Nx/2−1}

∣∣γu,Mp − γup
∣∣

max{−Nx/2≤p≤Nx/2−1}
∣∣γup ∣∣

for parameter choices

q = 1, σ = 0.99, nu = 1, Nx = 32, M = 4, 8, 16, 32, 64D
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Fig. 2. Relative maximum norm error, (22), versus frequency ω in approximation of γup by

γu,Mp (−Nx/2 ≤ p ≤ Nx/2 − 1) for various perturbation orders M . Parameter choices are q = 1,
σ = 0.99, nu = 1, Nx = 32, and M = 4, 8, 16, 32, 64.

5.2. Approximation of U . We now repeat the computations from the previous
section for the operator U = U(δ), the Fourier multiplier which has iγup (δ) as its
symbol. As before, we will use the analyticity of U as a function of δ to approximate
its action, beginning with

U = U(δ) =

∞∑
m=0

Umδ

(c.f. (17)); we will simulate U by truncating this series

(23) U(δ) ≈ UM (δ) :=

M∑
m=0

Umδ.

In section 4.1 we saw that the symbol of the Fourier multiplier Um is given by iγup,m
so we may simply use the formulas (13)–(16) together with the FFT to approximate
the action of Um and thus UM .

Figure 3 shows the outcomes of the comparison between a numerical implemen-
tation of the approximation UM (c.f. (23)), versus an exact computation of U . More
precisely, we compute (at Nx collocation points on [0, 2π])

(24) Error :=

∣∣UM [ξ]− U [ξ]
∣∣
L∞

|U [ξ]|L∞

for

ξ(x) = ecos(x) + iesin(x),
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Fig. 3. Relative supremum norm error, (24), versus frequency ω in approximation of U by UM

for various perturbation orders M . Parameter choices are q = 1, σ = 0.99, nu = 1, Nx = 32, and
M = 4, 8, 16, 32, 64.

and parameter choices

q = 1, σ = 0.99, nu = 1, Nx = 32, M = 4, 8, 16, 32, 64.

5.3. Approximation of the trace operators. Next, we consider the Dirichlet
trace operator Du = Du(ε, δ) and its Neumann counterpartN u = N u(ε, δ). In section
3 we saw that (c.f. (6)),

Du = exp(gU), N u = exp(gU)U − (∂xg) exp(gU)A,

and, in section 4.2, we posited the expansions

{Du,N u} = {Du,N u} (ε, δ) =

∞∑
n=0

∞∑
m=0

{
Dun,m,N u

n,m

}
εnδm

(c.f. (18)), and recovered expressions for the HOPS/AWE terms {Dun,m,N u
n,m}. As

we have done in the previous two sections we simulate {Du,N u} by the truncated
Taylor series

(25) {Du,N u} ≈
{
Du,N,M ,N u,N,M

}
(ε, δ) :=

N∑
n=0

M∑
m=0

{
Dun,m,N u

n,m

}
εnδm.

Figure 4 shows the outcomes of the comparison between a numerical implemen-
tation of the approximation Du,N,M (c.f. (25)), versus an exact computation of Du.
More precisely we compute (at Nx collocation points on [0, 2π])

(26) Error :=

∣∣Du,N,M (εmaxf)[ξ]−Du(εmaxf)[ξ]
∣∣
L∞

|Du(εmaxf)[ξ]|L∞
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Fig. 4. Relative supremum norm error, (26), versus frequency ω in approximation of Du by
Du,N,M for various perturbation orders N = M . Parameter choices are q = 1, σ = 0.99, nu = 1,
Nx = 32, and M = 4, 8, 16, 32, 64.

for

ξ(x) = ecos(x) + iesin(x), f(x) = cos(x), εmax = 0.2,

and parameter choices

q = 1, σ = 0.99, nu = 1, Nx = 32, M = 4, 8, 16, 32, 64.

Figure 5 shows the outcomes of the comparison between a numerical implemen-
tation of the approximation N u,N,M (c.f. (25)), versus an exact computation of N u.
More precisely we compute (at Nx collocation points on [0, 2π])

(27) Error :=

∣∣N u,N,M (εmaxf)[ξ]−N u(εmaxf)[ξ]
∣∣
L∞

|N u(εmaxf)[ξ]|L∞

for

ξ(x) = ecos(x) + iesin(x), f(x) = cos(x), εmax = 0.2,

and parameter choices

q = 1, σ = 0.99, nu = 1, Nx = 32, M = N = 4, 8, 16, 32, 64.
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Fig. 5. Relative supremum norm error, (27), versus frequency ω in approximation of Nu by
Nu,N,M for various perturbation orders N = M . Parameter choices are q = 1, σ = 0.99, nu = 1,
Nx = 32, and M = 4, 8, 16, 32, 64.

5.4. Approximation of the reflectivity map. To close, we consider our origi-
nal object of study, the reflectivity mapR = R(ε, λ), (3). Using both the FE recursions
and their HOPS/AWE counterparts, we compute

RN,Nx

FE ≈ R, RN,M,Nx

HOPS/AWE ≈ R,

and display, in Figure 6, the error

(28) Error :=
∣∣∣RN,Nx

FE −RN,M,Nx

HOPS/AWE

∣∣∣
L∞

for

f(x) = cos(x), εmax = 0.2,

and parameter choices

q = 1, σ = 0.75, nu = 1, nw = 1.1, Nx = 32, M = N = 4, 8, 16, 32, 64.

We point out that σ = 0.75 was chosen in order to avoid the Rayleigh singularities
coming from both the top and bottom layers.

To close this section we show the kind of simulations which our new HOPS/AWE
method can produce with very high fidelity and quite modest computational effort.
We revisit the calculations above in the cases q = 1, 2, 3, 4, 5, 6 with the following
frequency and wavelength ranges (σ = 0.99):
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Fig. 6. Relative supremum norm difference, (28), between FE and HOPS/AWE algorithms
versus wavelength λ in computation of the reflectivity map, R(εmax, λ) for various perturbation
orders N = M . Parameter choices are q = 1, σ = 0.75, nu = 1, nw = 1.1, Nx = 32, and
M = 4, 8, 16, 32, 64.

q = 1 : ω ∈ [1.005, 1.995] =⇒ λ ∈ [3.14947, 6.25193],

q = 2 : ω ∈ [2.005, 2.995] =⇒ λ ∈ [2.09789, 3.13376],

q = 3 : ω ∈ [3.005, 3.995] =⇒ λ ∈ [1.57276, 2.09091],

q = 4 : ω ∈ [4.005, 4.995] =⇒ λ ∈ [1.25789, 1.56884],

q = 5 : ω ∈ [5.005, 5.995] =⇒ λ ∈ [1.04807, 1.25538],

q = 6 : ω ∈ [6.005, 6.995] =⇒ λ ∈ [0.89824, 1.04633].

Once again we select

f(x) = cos(x), εmax = 0.2,

and parameter choices

nu = 1, nw = 1.1, Nx = 32, M = N = 4.

In Figure 7(a) we plot the six “subsets” of the reflectivity map, R, all together on one
set of axes. In Figure 7(b) we insert blue lines at the edges of the subsets showing
how the entire approximation was built one piece at a time.

5.5. A rough interface. Finally, we consider the reflectivity map R = R(ε, λ),
(3), generated by a grating with a rough interface. In this setting we further validate
our algorithm by making a comparison with the BIE solver for quasi-periodic gratings
of Cho and Barnett [CB15] (see also the related work in [BG11, LKB15]). We mention
that we are greatly indebted to both Barnett and Cho for not only providing us with an
implementation [Bar16] of the algorithm in MATLAB [MAT10], but also for extensive
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Fig. 7. (a) The reflectivity map, R(ε, λ), computed with six invocations of our new HOPS/AWE
algorithm. Computed with N = M = 4 and a granularity of Nε = Nδ = 101 per invocation.
Parameter choices are σ = 0.99, nu = 1, nw = 1.1, and Nx = 32. (b) Blue lines included to
indicate boundaries between the six runs.

assistance with its use. Now, using both the HOPS/AWE recursions and this BIE
methodology we compute

RNx

BIE ≈ R, RN,M,Nx

HOPS/AWE ≈ R,

and display, in Figure 8, the error

(29) Error :=
∣∣∣RNx

BIE −R
N,M,Nx

HOPS/AWE

∣∣∣
L∞

for

f(x) = fL,P (x) :=

P∑
p=1

8

π2(2p− 1)2
cos(2πpx), P = 10, εmax = 0.01, d = 1,

and parameter choices

q = 1, σ = 0.75, nu = 1, nw = 1.1, Nx = 32, M = N = 4, 8, 16, 32, 64.

(Here we have changed the period from 2π to 1 and the polarization from TM to TE
to facilitate the BIE simulation.) The profile fL,P consists of the first P -many terms
in a Fourier expansion of the Lipschitz profile

FL(x) =

{
−4x+ 1, 0 ≤ x ≤ 1/2,

−3 + 4x, 1/2 ≤ x ≤ 1.

Again, σ = 0.75 was chosen in order to avoid the Rayleigh singularities coming from
both the top and bottom layers. In regards to Figure 8 we chose a discretization in the
BIE algorithm (Nx = 32 quadrature points on the interface and along the fictitious
boundaries; see [CB15] for more details) which had accuracy of approximately 10−12.

5.6. Computational complexity. Of course the true motivation for this en-
tire algorithm is the very advantageous computational complexity the HOPS/AWE
approach has for computing quantities such as the reflectivity map, R = R(ε, λ),
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Fig. 8. Relative supremum norm difference, (29), between HOPS/AWE and BIE algorithms
versus wavelength λ in computation of the reflectivity map, R(εmax, λ) for various perturbation
orders N = M . Parameter choices are q = 1, σ = 0.75, nu = 1, nw = 1.1, Nx = 32, and
M = 4, 8, 16, 32, 64.

versus all other methods, even the highly efficient FE method. To summarize our
conclusions on this front we begin by fixing the problem of computing R for Nε many
values of ε and Nδ many values of λ. Using any surface numerical method requires
the use of a number of discretization points which we denote Nx. Finally, for the
FE approach we will retain N perturbation orders in ε, while our new HOPS/AWE
algorithm mandates the additional consideration of M Taylor orders in δ.

A careful study of the FE recursions (10) reveals that, for a single value of λ,
forming the right-hand side at order n has cost

O(nNx log(Nx)).

Inverting the operator M0 has complexity O(Nx log(Nx)) so that the full cost of
computing the {an,p, dn,p} is therefore

O(N2Nx log(Nx)).

Once these are recovered, the cost of summing the series in ε is minimal, provided
that it is done in an efficient manner (e.g., by Horner’s rule [BF97, AH01]) so that
the full cost of computing the reflectivity map by the FE method is

O(NδN
2Nx log(Nx)).

Consideration of the HOPS/AWE recursions (11) shows that the computational
complexity in forming the right-hand side at order (n,m) has cost

O(nmNx log(Nx)).
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As before, inverting the operator M0,0 has complexity O(Nx log(Nx)) so that the full
cost of computing the {an,m,p, dn,m,p} is therefore

O(N2M2Nx log(Nx)).

Again, once these coefficients are recovered, the cost of summing the series in (ε, δ) is
minimal, provided that it is done in an efficient manner (e.g., by Horner’s rule [BF97,
AH01]) so that the full cost of computing the reflectivity map by the HOPS/AWE
method is

O(N2M2Nx log(Nx)).

Thus, once M2 � Nδ our new algorithm becomes prohibitively more efficient. Un-
surprisingly this was a crucial consideration in the computations of section 5.4 as we
often found M = N = 4 to be sufficient to produce the entire reflectivity map, while
desiring a sampling of 100, 1000, or even 10,000 values in both the ε and λ variables.

6. Conclusion and future directions. In this paper we have described in some
detail a novel, high-order spectral [GO77, CHQZ88] boundary/wavenumber pertur-
bation method which, for problems akin to that of computing the reflectivity map,
possesses optimal computational complexity and execution time. This HOPS/AWE
algorithm has been shown to be both highly accurate and robust. However, it is
clear that it can be extended and enhanced in a number of directions. In this con-
cluding section we comment on some of these avenues which we intend to explore in
forthcoming publications.

6.1. Three dimensions and vectorial scattering. To begin, it is trivial to
see how our scheme could be extended to the three–dimensional problem of scattering
of scalar waves by a two–dimensional periodic grating shaped by, e.g.,

z = g(x, y), g(x+ d1, y + d2) = g(x, y).

In short, every relevant formula from section 3 and section 4 would simply be modified
by replacing occurrences of (αx) by (αx+ βy) [MN11].

By contrast, two generalizations of interest to the author which are genuinely
nontrivial are to the cases of vectorial scattering arising in electromagnetics [Jac75]
and linear elastodynamics [Ach73], giving rise to Maxwell’s and Navier’s equations,
respectively. In these situations (vector) Helmholtz equations (1a) and (1b) again
govern the frequency-domain scattering while straightforward generalizations of quasi-
periodicity and the outgoing wave condition are again relevant. The new complications
come from the interfacial boundary conditions which are no longer as simple as (1c)–
(1d). However, we have recently shown in the setting of Maxwell’s equations [Nic15]
how these conditions can be phrased in terms of trace operators akin to Du, Dw,
N u, and Nw resulting in equations much like (7)–(8). By expanding these operators
(and those relevant to linear elastodynamics) in power series in ε and δ, it is easy to
imagine how our HOPS/AWE approach could be readily extended to these important
models.

6.2. Simulation of frequency-dependent materials. In this contribution we
have focused exclusively upon materials whose index of refraction n (speed c) is both
real and independent of ω. While the generalization to the setting where these con-
stants take on imaginary values (e.g., for modeling the propagation of electromagnetic
waves in a metal [Rae88, Mai07, EB12]) is straightforward, it will be interesting to
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investigate the case where n = n(ω). Here we envision an index of refraction which
can be expressed as a convergent Taylor series

n = n(ω) = n(ω + δω) =

∞∑
m=0

nm(ω)δm

in some disk |δ| < R. In this case the dependence of {Du,Dw,N u,Nw} upon δ
will be more complicated and subtle; however, one can imagine that if the terms
{Dun,m,Dwn,m,N u

n,m,Nw
n,m} can be discovered, then a novel HOPS/AWE algorithm

could be built.

6.3. Rayleigh singularity. To close, we reconsider the fundamental obstruction
to the convergence of our algorithm: The Rayleigh singularities (Wood’s anomalies)

γu
p

= 0 or γw
p

= 0 for p 6= 0.

At this point it is unclear how to proceed in this setting to build a full HOPS/AWE
algorithm, however, there is something we can say which may be the foundation for
future developments. We now revisit the Taylor series expansion for γup of section 4.1
in the case γu

p
= 0. As expansion (12) is no longer valid (γup is not analytic in δ in

this case) we seek a new form of “Puiseux type”

(30) γup = γup (δ) =

∞∑
m=0

γup,mδ
m+1/2 = δ1/2

∞∑
m=0

γup,mδ
m

inspired by the fact that γup is the solution of a quadratic equation. Inserting this
form into the relationship

α2
p + (γup )2 = (ku)2,

we find

δ

( ∞∑
m=0

γup,mδ
m

)( ∞∑
r=0

γup,rδ
r

)
= (1 + δ)

2
(ku)2 −

(
αp + δα

)2
.

This delivers

δ

∞∑
m=0

δm
m∑
r=0

γup,m−rγ
u
p,r =

{
(ku)2 − (αp)

2
}

+ 2δ
{

(ku)2 − α αp
}

+ δ2
{

(ku)2 − (α)2
}

= 2δ
{

(ku)2 − α αp
}

+ δ2(γu)2,

where we have used that

(ku)2 − (αp)
2 = (γu

p
)2 = 0.

Canceling a factor of δ, we find at order O(δ0)

γup,0 = ±
√

2((ku)2 − α αp),D
ow
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which we point out can never be zero. To see that this is true recall that γu
p

= 0

implies (αp)
2 = (ku)2 so

γup,0 = ±
√

2((ku)2 − α αp) = ±
√

2((αp)
2 − α αp) = ±

√
2αp

√
αp − α 6= 0

since p 6= 0.
At order O(δ1) we require

γup,1 =
(γu)2

2γup,0
, γup,0 6= 0.

For O(δm), m > 1, we demand

γup,m =
−
∑m−1
r=1 γup,m−rγ

u
p,r

2γup,0
, γup,0 6= 0.

We now revisit the calculations of section 5.1 and produce the analogue of Figure 2
for the parameter choices

q = 3/2, σ = 0.99, nu = 1, Nx = 32, M = 4, 8, 16, 32, 64

in the case δ > 0. This delivers Figure 9 which displays the remarkable convergence
and stability our Puiseux series can deliver. Given the Puiseux series (30) it is clear
how one would approximate the operator U ; however, how the trace operators, e.g.,
Du, would depend upon δ (the composition of an analytic function with a singular
one) is unclear to the author.

ω

2 2.2 2.4 2.6 2.8

E
r
r
o
r

10
-15

10
-10

10
-5

Error versus ω

M = 4

M = 8

M = 16

M = 32

M = 64

Fig. 9. Relative supremum norm error, (22), versus frequency ω in approximation of γup by

γu,Mp (Nx/2 ≤ p ≤ Nx/2 − 1) for various perturbation orders M . Parameter choices are q = 3/2,
σ = 0.99, nu = 1, Nx = 32, and M = 4, 8, 16, 32, 64
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