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Abstract
The scattering of electromagnetic radiation by a layered periodic diffraction grating is an
importantmodel in engineering and the sciences. The numerical simulation of this experiment
has been widely explored in the literature and we advocate for a novel interfacial method
which is perturbative in nature.More specifically, we extend a recently developedHigh-Order
Perturbation of Surfaces/Asymptotic Waveform Evaluation algorithm to utilize a stabilized
numerical scheme which also suggests a rigorous convergence result. An implementation of
this algorithm is described, validated, and utilized in a sequence of challenging and physically
relevant numerical experiments.

Keywords High-order perturbation of surfaces methods · Asymptotic waveform
evaluation · High-order spectral methods · Helmholtz equation · Layered media

Mathematics Subject Classification 65N35 · 78A45 · 78B22

1 Introduction

The scattering of linear waves by a periodic layered structure is a central model in many
problems of scientific and engineering interest. Examples arise in areas such as geophysics
[6, 61], imaging [42], materials science [25], nanoplasmonics [24, 39, 55], and oceanog-
raphy [8]. In the particular case of nanoplasmonics, there are many important topics such
as extraordinary optical transmission [23], surface enhanced spectroscopy [40], and surface
plasmon resonance (SPR) biosensing [28, 30, 33, 41].

Due to their technological importance, the numerical simulation of these diffraction grat-
ings has generated a huge amount of interest including the application of all of the classical
approaches, e.g., Finite Differences [37], Finite Elements [31], Discontinuous Galerkin [27],
Spectral Elements [22], and Spectral Methods [7, 26, 59]. For general geometries these spec-
ify extremely useful and accurate tools (e.g., COMSOL Multiphysics [19]) for engineers
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and scientists alike. However, for structures with simplifying features, such as homogeneous
layering, these can be needlessly expensive due to the unnecessary discretization of layer
interiors. To address this, a whole class of interfacial methods have been developed of which
Boundary Integral/Boundary Element Methods (BIM/BEM) are the most widely used [18,
36, 58]. These posit unknowns at the layer interfaces thereby reducing the number of degrees
of freedom by an order of magnitude. While these schemes require particular care in their
implementation (e.g., the design of special quadrature rules to achieve high-order accuracy,
sophisticated algorithms to rapidly sum the quasi-periodized Green function, and appropriate
preconditioning strategies for the iterative solution of the Non-Symmetric Positive Definite
linear system of equations) there are well-known implementations that deliver results of
surpassing accuracy and stability, see, e.g., [10–12].

In this paper we focus upon a very particular Quantity of Interest (QoI) in the study of
diffraction gratings, the Reflectivity Map, which is representative of a group of performance
metrics for which we develop a special class of interfacial numerical algorithms. The Reflec-
tivity Map, R, measures the response (reflected energy) of a periodically corrugated grating
structure as a function of illumination frequency, ω, and corrugation amplitude, h. For each
of the algorithms listed above, the response at any given (ω, h) pair requires a new simulation
restarted from scratch. A High-Order Perturbation of Surfaces (HOPS) method [50, 51] takes
a perturbative view towards the geometric dependence of R on h = ε by seeking the terms
in the expansion about ε = 0,

R = R(ε) =
∞∑

n=0

Rnε
n .

With this one can realize an enormous savings in computational effort by conducting a new
computation only for each choice ofω and simply summing the formula above for any desired
value of ε. We point out that we have demonstrated in [49, 52], for a closely related problem
concerning Laplace’s equation, that the domain of analyticity in ε is not merely a small disk
centered at the origin in the complex plane, but rather a neighborhood of the entire real
axis. Therefore, provided one utilizes a suitable method of (numerical) analytic continuation
(e.g., Padé approximation [3]), one can simulate configurations with interface deformations
of arbitrary size (see, e.g., [29, 49]). We suspect that the analogous result can be discovered
for the Helmholtz equation which is relevant here and we intend to verify this in future work.

Taking this philosophy to its natural conclusion, in [44] we considered ω = (1 + δ)ω =
ω + δω and performed a joint expansion of this map about (ε = 0, ω = ω)

R = R(ε, δ) =
∞∑

n=0

∞∑

m=0

Rn,mεnδm .

It seems that a single computation, recovering all of the Rn,m , should be sufficient to discover
the entire Reflectivity Map. In fact, as demonstrated by Kirsch [35], the situation is not so
simple as these expansions are not valid for all values of (ε, δ) and it was found in [44] that
the Rayleigh singularities (often called the Wood anomalies) enforced finite-size domains of
convergence in δ. However, the results were so encouraging that we now undertake a more
in-depth investigation featuring a new formulation in terms of Dirichlet–Neumann Operators
computed via an application of the stable, accurate, and rapid Transformed Field Expansions
(TFE) algorithm [51] appropriate for a joint perturbation expansion.Not only does this deliver
an implementation with greatly enhanced stability properties [51], but it also describes an
algorithm that can be rigorously justified to be convergent aswe recently demonstrated in [34].
In this contribution we focus upon the scalar two-dimensional problem of electromagnetic
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waves in TransverseMagnetic polarization where current computing power may be sufficient
to produce an adequate estimation of R using any of the methods we have discussed, in a
reasonable amount of time. However, none of our developments are specific to this two-
dimensional scalar case and apply equally well to the full three-dimensional vector Maxwell
equations where the computational challenges can be prohibitive for established methods.

The paper is organized as follows. In Sect. 2 we summarize the equations which govern
the propagation of linear electromagnetic waves in a two-dimensional periodic structure. In
Sect. 2.1 we discuss the Transparent Boundary Conditions we utilize to enforce the outgoing
wave conditions rigorously, while in Sect. 2.2 we define the object of our study, the Reflec-
tivity Map. In Sect. 3 we restate our governing equations in terms of interfacial quantities via
a Non-Overlapping Domain Decomposition phrased in terms of Dirichlet–Neumann Oper-
ators (DNOs). We discuss our HOPS/AWE approach in Sect. 4 and our novel approach to
computing the DNOs in Sect. 5 (supplemented with a discussion of expansions of the surface
data in Sect. 5.1). In Sect. 6 we present our numerical results with a description of implemen-
tation details in Sect. 6.1, our Fourier–Chebyshev method in Sect. 6.2, and our use of Padé
approximation in Sect. 6.3. We comment on issues of the bounded domains of analyticity in
our expansions in Sect. 6.4. In Sect. 6.5 we validate our code with the Method of Manufac-
tured Solutions, while in Sect. 6.6 we present results of multiple numerical simulations of
the Reflectivity Map which we conducted. In Sect. 6.7 we discuss the superior computational
complexity our algorithm enjoys for computing objects like the ReflectivityMap. Concluding
remarks are given in Sect. 7.

2 The Governing Equations

In this paper we consider a y-invariant, doubly layered structure with a periodic interface
separating the two materials; see Fig. 1. The d-periodic interface shape is specified by the
graph of the function z = g(x), g(x + d) = g(x). A dielectric (with refractive index nu)
occupies the domain above the interface

S(u) := {z > g(x)},
while a material of refractive index nw is in the lower layer

S(w) := {z < g(x)}.
The superscripts are chosen to conform to the notation of the authors in previous work [43,
46]. The structure is illuminated from above bymonochromatic plane-wave incident radiation
of frequency ω and wavenumber ku = nuω/c0 = ω/cu (c0 is the speed of light) aligned
with the grooves

Ei (x, z, t) = Ae−iωt+iαx−iγ u z, Hi (x, z, t) = Be−iωt+iαx−iγ u z,

α := ku sin(θ), γ u := ku cos(θ).

We consider the reduced incident fields

Ei (x, z) = eiωtEi (x, z, t), Hi (x, z) = eiωtHi (x, z, t),

where the time dependence exp(−iωt) has been factored out. As Bao & Li [4] point out
in their survey text, due to considerations of solution uniqueness, the reduced electric and
magnetic fields {E,H} areα-quasiperiodic like the incident radiation. To close the problemwe
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Fig. 1 A two-layer structure with a periodic interface, z = g(x), separating two material layers, S(u) and
S(w), illuminated by plane-wave incidence

specify that the scattered radiation is “outgoing,” upward propagating in S(u) and downward
propagating in S(w).

It is well known (see, e.g., Petit [4, 53]) that in this two-dimensional setting, the time-
harmonicMaxwell equations decouple into two scalar Helmholtz problems which govern the
TransverseElectric (TE) andTransverseMagnetic (TM)polarizations.Wedefine the invariant
(y) direction of the scattered (electric or magnetic) field by ũ = ũ(x, z) and w̃ = w̃(x, z) in
S(u) and S(w), respectively. The incident radiation in the upper field is defined as ũi (x, z).

Following our previous work [44] we further factor out the phase exp(iαx) from the fields
ũ and w̃

u(x, z) = e−iαx ũ(x, z), w(x, z) = e−iαx w̃(x, z),

which, we note, are d-periodic. In light of all of this, we are led to seek outgoing, d-periodic
solutions of

Δu + 2iα∂xu + (γ u)2u = 0, z > g(x), (1a)

Δw + 2iα∂xw + (γ w)2w = 0, z < g(x), (1b)

u − w = ζ, z = g(x), (1c)

∂Nu − iα(∂x g)u − τ 2 [∂Nw − iα(∂x g)w] = ψ, z = g(x), (1d)

where N := (−∂x g, 1)T . The Dirichlet and Neumann data are

ζ(x) := −e−iγ u g(x), (1e)

ψ(x) := (iγ u + iα(∂x g))e
−iγ u g(x), (1f)
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and

τ 2 =
{
1, TE,

(ku/kw)2 = (nu/nw)2, TM,

where kw = nwω/c0 = ω/cw and γ w = kw cos(θ). Due to its importance in the classical
study of SPRs we will focus on TM polarization [55].

2.1 Transparent Boundary Conditions

The Upward Propagating Condition (UPC) and Downward Propagating Condition (DPC)
[1] rigorously enforce the outgoing wave conditions which we mentioned earlier. Following
Bao & Li [4], we now demonstrate how these can be stated in terms of Transparent Boundary
Conditions which also truncate the bi-infinite problem domain to one of finite size. For this
we choose values a and b such that

a > |g|L∞ , −b < − |g|L∞ ,

and define the artificial boundaries {z = a} and {z = −b}. In {z > a} theRayleigh expansions
[53] tell us that upward propagating solutions of (1a) are

u(x, z) =
∞∑

p=−∞
âpe

i p̃x+iγ u
p z, (2)

where, for p ∈ Z and q ∈ {u, w},
p̃ := 2π p

d
, αp := α + p̃, γ

q
p :=

√
(kq)2 − α2

p, Im
{
γ
q
p
} ≥ 0. (3)

In a similar fashion, downward propagating solutions of (1b) in {z < −b} can be expressed
as

w(x, z) =
∞∑

p=−∞
d̂pe

i p̃x−iγ w
p z .

With these we can define the Transparent Boundary Conditions in the following way:
Focusing on the UPC (the DPC is similar) we rewrite (2) as

u(x, z) =
∞∑

p=−∞

(
âpe

iγ u
p a

)
ei p̃x+iγ u

p (z−a) =
∞∑

p=−∞
ξ̂pe

i p̃x+iγ u
p (z−a),

and note that,

u(x, a) =
∞∑

p=−∞
ξ̂pe

i p̃x =: ξ(x),

and

∂zu(x, a) =
∞∑

p=−∞
(iγ u

p )ξ̂pe
i p̃x =: T u[ξ(x)],

which defines the order-one Fourier multiplier T u . From this we state that upward-
propagating solutions of (1a) satisfy the Transparent Boundary Condition at z = a

∂zu(x, a) − T u[u(x, a)] = 0, z = a. (4)
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We note that a similar calculation leads to the Transparent Boundary Condition at z = −b

∂zw(x,−b) − Tw[w(x,−b)] = 0, z = −b, (5)

where

Tw[ψ(x)] :=
∞∑

p=−∞
(−iγ w

p )ψ̂pe
i p̃x .

We also point out that solutions which satisfy (4) and (5) equivalently satisfy the UPC and
DPC, respectively [1].

With these we now state the full set of governing equations as

Δu + 2iα∂xu + (γ u)2u = 0, z > g(x), (6a)

Δw + 2iα∂xw + (γ w)2w = 0, z < g(x), (6b)

u − w = ζ, z = g(x), (6c)

∂Nu − iα(∂x g)u − τ 2 [∂Nw − iα(∂x g)w] = ψ, z = g(x), (6d)

∂zu(x, a) − T u[u(x, a)] = 0, z = a, (6e)

∂zw(x,−b) − Tw[w(x,−b)] = 0, z = −b, (6f)

u(x + d, z) = u(x, z), (6g)

w(x + d, z) = w(x, z). (6h)

2.2 The Reflectivity Map

Building upon the developments in the previous section we can now define our QoI, the
Reflectivity Map. Regarding the solution (2) we note the very different character of the
solution for wavenumbers p in the set

Uu :=
{
p ∈ Z | α2

p < (ku)2
}

,

and those that are not. From our choice of the branch of the square root, components of
u(x, z) corresponding to p ∈ Uu propagate away from the layer interface, while those not in
this set decay exponentially from z = g(x). The latter are called evanescent waves while the
former are propagating (defining the set of propagating modes Uu) and carry energy away
from the grating. With this in mind one defines the efficiencies [53]

eup := (γ u
p /γ u)

∣∣âp
∣∣2 , p ∈ Uu,

and the Reflectivity Map

R :=
∑

p∈Uu

eup. (7)

Similar quantities can be defined in the lower layer [53], and with these the principle of
conservation of energy can be stated for structures composed entirely of dielectrics

∑

p∈Uu

eup + τ 2
∑

p∈Uw

ew
p = 1.
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In this situation a useful diagnostic of convergence for a numerical scheme (which we will
utilize later) is the “energy defect”

D := 1 −
∑

p∈Uu

eup − τ 2
∑

p∈Uw

ew
p , (8)

which should be zero for a purely dielectric structure.

3 A Non-Overlapping Domain DecompositionMethod

We now restate our governing equations (6) in terms of surface quantities via a Non-
Overlapping Domain Decomposition Method [20, 21, 38]. In particular, if we define

U (x) := u(x, g(x)), Ũ (x) := −∂Nu(x, g(x)),

W (x) := w(x, g(x)), W̃ (x) := ∂Nw(x, g(x)),

where u is a d-periodic solution of (6a) and (6e), and w is a d-periodic solution of (6b) and
(6f). In terms of these our full governing equations (6) are equivalent to the pair of boundary
conditions, (6c) & (6d),

U − W = ζ, −Ũ − (iα)(∂x g)U − τ 2
[
W̃ − (iα)(∂x g)W

]
= ψ.

This set of two equations for four unknowns can be closed by noting that the pairs {U , Ũ }
and {W , W̃ } are connected, e.g., by DNOs

G : U → Ũ , J : W → W̃ .

These are well-defined operators for sufficiently smooth g (e.g., g ∈ C2 [51]) thus we focus
on this interfacial reformulation of our governing equations

AV = R, (9)

where

A =
(

I −I
G + (∂x g)(iα) τ 2 J − τ 2(∂x g)(iα)

)
, V =

(
U
W

)
, R =

(
ζ

−ψ

)
, (10)

c.f., [43].

4 A High-Order Perturbation of Surfaces/Asymptotic Waveform
Evaluation (HOPS/AWE)

At this point there aremany approaches to simulate (9) numerically.We take up a perturbative
approach under two assumptions:

1. Boundary Perturbation: g(x) = ε f (x), ε ∈ R,
2. Frequency Perturbation: ω = (1 + δ)ω = ω + δω, δ ∈ R.

As we stated in the Introduction, we believe that real values of ε which are arbitrarily large
can be simulated [29, 48, 49, 52] while the values of δ are only limited by the Rayleigh
singularities [35, 45]. The second assumption has the following important consequences

kq = ω/cq = (1 + δ)ω/cq =: (1 + δ)kq = kq + δkq , q ∈ {u, w},
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α = ku sin(θ) = (1 + δ)ku sin(θ) =: (1 + δ)α = α + δα,

γ q = kq cos(θ) = (1 + δ)kq cos(θ) =: (1 + δ)γ q = γ q + δγ q , q ∈ {u, w}.
This, in turn, delivers

αp = α + p̃ = α + δα + p̃ =: α p + δα.

In [34] we established that the joint analyticity of the operator A and function R with
respect to ε and δ induce a jointly analytic solution, V, of (9). Thus, we can expand

{A,V,R}(ε, δ) =
∞∑

n=0

∞∑

m=0

{An,m,Vn,m,Rn,m}εnδm, (11)

and a straightforward calculation reveals that, at each perturbation order (n,m), we must
solve

A0,0Vn,m = Rn,m −
n−1∑

�=0

An−�,0V�,m −
m−1∑

r=0

A0,m−rVn,r

−
n−1∑

�=0

m−1∑

r=0

An−�,m−rV�,r , (12)

c.f., [44]. At this point all that remains to be specified are the forms for the An,m and Rn,m ,
and a method to invert A0,0.

A brief inspection of the formulas for A and R, (10), reveals that

A0,0 =
(

I −I
G0,0 τ 2 J0,0

)
, (13a)

An,m =
(

0 0
Gn,m τ 2 Jn,m

)

+ δn,1
{
1 + δm,1

}
(∂x f )(iα)

(
0 0
1 −τ 2

)
, n �= 0 or m �= 0, (13b)

Rn,m =
(

ζn,m

−ψn,m

)
, (13c)

where δn,m is the Kronecker delta function. The forms for ζn,m and ψn,m , which depend
upon the incident radiation (e.g., we will investigate both a non-physical illumination to
validate our code, see Sect. 6.5, and plane-wave incidence, see Sect. 6.6) can typically be
stated explicitly. By contrast, formulas for the (n,m)-th corrections of the Taylor expansions
of the DNOs, G and J , must be simulated numerically. For this we advocate the Method of
Transformed Field Expansions (TFE) [51] which we review in the following section.

5 Simulation of Dirichlet–Neumann Operators

As we mentioned in the previous section, the only remaining specification for our algorithm
is the computation of the (n,m)-th term in the Taylor expansion of the DNOs, G and J . For
brevity we restrict our attention to the DNO in the upper layer, {g(x) < z < a}, and note
that the considerations for the lower layer are largely the same. For a complete discussion of
HOPS methods (without frequency expansion) for simulating DNOs in this setting of linear
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scattering we refer the interested reader to [50, 51]. For a related treatment of this problem
by the HOPS/AWE approach, which does not utilize DNOs or the TFE approach, we point
out the previous work of the author [44].

We recall the precise definition of the upper layer DNO [45]: Given an integer s ≥ 0 and
any θ > 0, if g ∈ Cs+3/2+θ the unique d-periodic solution of

Δu + 2iα∂xu + (γ u)2u = 0, g(x) < z < a, (14a)

u(x, g(x)) = U (x), z = g(x), (14b)

∂zu(x, a) − T u[u(x, a)] = 0, z = a, (14c)

defines the Upper Layer Dirichlet–Neumann Operator

G(g) : U → Ũ := −(∂Nu)(x, g(x)). (15)

To simulate the DNO numerically we appeal to the TFE method [47, 51] which begins
with a domain-flattening change of variables (the σ -coordinates of oceanography [54] and
the C-method of the dynamical theory of gratings [16, 17])

x ′ = x, z′ = a

(
z − g(x)

a − g(x)

)
.

With this we can rewrite the DNO problem, (14), in terms of the transformed field

u′(x ′, z′) := u

(
x ′,

(
a − g(x ′)

a

)
z′ + g(x ′)

)
,

as (upon dropping primes)

Δu + 2iα∂xu + (γ u)2u = F(x, z), 0 < z < a, (16a)

u(x, 0) = U (x), z = 0, (16b)

∂zu(x, a) − T u[u(x, a)] = J (x), z = a, (16c)

and (15) as

G(g)[U ] = −∂zu(x, 0) + H(x). (17)

The forms for {F, J , H} have been derived and reported in [51] and, for brevity, we do not
repeat them here.

Following our HOPS/AWE philosophy we assume the joint boundary/frequency pertur-
bation

g(x) = ε f (x), ω = ω + δω,

and study the effect of this on (16) and (17). These become

Δu + 2iα∂xu + (γ u)2u = F̃(x, z), 0 < z < a, (18a)

u(x, 0) = U (x), z = 0, (18b)

∂zu(x, a) − T u
0 [u(x, a)] = J̃ (x), z = a, (18c)

and

G(ε f )[U ] = −∂zu(x, 0) + H̃(x). (19)
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In these

T u
0 [ξ(x)] :=

∞∑

p=−∞
(iγ u

p
)ξ̂pe

i p̃x ,

and

F̃ = −εdiv [A1( f )∇u] − ε2div [A2( f )∇u] − εB1( f )∇u − ε2B2( f )∇u

− 2iαδ∂xu − δ2(γ u)2u − 2δ(γ u)2u

− 2iεS1( f )α∂xu − 2iεS1( f )αδ∂xu − εS1( f )δ
2(γ u)2u

− 2εS1( f )δ(γ
u)2u − εS1( f )(γ

u)2u

− 2iε2S2( f )α∂xu − 2iε2S2( f )αδ∂xu − ε2S2( f )δ
2(γ u)2u

− 2ε2S2( f )δ(γ
u)2u − ε2S2( f )(γ

u)2u, (20)

and

J̃ = −1

a
(ε f (x))T u [u(x, a)] + (T u − T u

0 ) [u(x, a)] , (21)

and

H̃ = ε(∂x f )∂xu(x, 0) + ε
f

a
G(ε f )[U ] − ε2

f (∂x f )

a
∂xu(x, 0) − ε2(∂x f )

2∂zu(x, 0).(22)

It is not difficult to see that the forms for the A j , Bj , and S j are

A0 =
(
1 0
0 1

)
,

A1( f ) = 1

a

( −2 f −(a − z)(∂x f )
−(a − z)(∂x f ) 0

)
,

A2( f ) = 1

a2

(
f 2 (a − z) f (∂x f )

(a − z) f (∂x f ) (a − z)2(∂x f )2

)
,

and

B1( f ) = 1

a

(
∂x f
0

)
, B2( f ) = 1

a2

( − f (∂x f )
−(a − z)(∂x f )2

)
,

and

S0 = 1, S1( f ) = −2

a
f , S2( f ) = 1

a2
f 2.

At this point we posit the expansions

u(x, z; ε, δ) =
∞∑

n=0

∞∑

m=0

un,m(x, z)εnδm, G(ε, δ) =
∞∑

n=0

∞∑

m=0

Gn,mεnδm,

and, upon insertion into (18) and (19), we find

Δun,m + 2iα∂xun,m + (γ u)2un,m = F̃n,m(x, z), 0 < z < a, (23a)

un,m(x, 0) = δn,0δm,0U (x), z = 0, (23b)

∂zun,m(x, a) − T u
0 [un,m(x, a)] = J̃n,m(x), z = a, (23c)
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and

Gn,m( f ) = −∂zun,m(x, 0) + H̃n,m(x). (24)

The formulas for F̃n,m , J̃n,m and H̃n,m can be readily derived from (20), (21), and (22) above
(see [34]).

Remark 1 In [34] we used the recursions (23) and (24) to establish the joint analyticity of
the DNO with respect to both interfacial and frequency deformations.

5.1 Joint Expansion of Surface Data

In order to specify forms for the surface data, {ζn,m, ψn,m}, we require some results from
[44]. First we recall the Taylor series expansion of the quantity γ

q
p , (3), with respect to δ

away from a Rayleigh singularity (Wood anomaly) γ q
p

= 0.

Lemma 1 [44] The quantity γ
q
p has Taylor series expansion

γ
q
p (δ) =

∞∑

m=0

γ
q
p,mδm, q ∈ {u, w},

where

γ
q
p,0 = ±γ q

p
,

which we assume to be non-zero, giving rise to

γ
q
p,1 = 2((kq)2 − α α p)

2γ q
p,0

, γ
q
p,2 = (γ q)2 − (γ

q
p,1)

2

2γ q
p,0

,

γ
q
p,m = −∑m−1

r=1 γ
q
p,m−rγ

q
p,r

2γ q
p,0

, m > 2.

Remark 2 As we noted in [44] we must be away from a Rayleigh singularity, γ q
p

= 0, for

all p in order for our expansion to be valid. See the final section of [44] for a discussion of
the behavior of the function γ

q
p (δ) in the neighborhood of a Rayleigh singularity.

Next we require the expansion of the composition of the exponential function with the
product of a function of ε and a function of δ jointly in ε and δ.

Lemma 2 [44] Let E(g, V ) := exp(g(x)V (δ)) for a function g(x) and an analytic function

V = V (δ) =
∞∑

m=0

Vmδm .

The composite function E(g, V ) = E(ε f , V (δ)) is jointly analytic and has the Taylor series
expansion

E(ε, δ) =
∞∑

n=0

∞∑

m=0

En,mεnδm,
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where

En,m =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, n = m = 0,

0, n = 0,m > 0,

(V0)n
f n

n! , n > 0,m = 0,
f

n+1

∑m
r=0 En,m−r Vr , n,m > 0.

Remark 3 We note that this latter lemma can be effectively used to compute the expansions
of the functions

e±iγ q
p (δ)ε f = Ep(ε f ,±iγ q

p (δ)) = Eq,±
p (ε, δ) =

∞∑

n=0

∞∑

m=0

Eq,±
p,n,mεnδm, q ∈ {u, w},

which we presently require.

Using this lemma we find Taylor expansions for the data generated by plane-wave
incidence (1e) and (1f). More specifically, for

ζ =
∞∑

n=0

∞∑

m=0

ζn,mεnδm, ψ =
∞∑

n=0

∞∑

m=0

ψn,mεnδm,

we have

ζn,m = −Eu,−
0,n,m,

ψn,m =
m∑

r=0

(iγ u
p,m−r )Eu,−

0,n,r + (∂x f )(iα)Eu,−
0,n−1,m + (∂x f )(iα)Eu,−

0,n−1,m−1.

6 Numerical Results

Weare now in a position to test a numerical implementation of ourmethod and demonstrate its
advantageous computational complexity. Regarding the algorithm, our HOPS/AWE scheme
is a High-Order Spectral method [7, 26, 59] in the same spirit as our related TFE algorithm
[51], where nonlinearities are approximated with convolutions implemented via the fast
Fourier transform (FFT) algorithm. To test its validity we compare simulations from our
implementation of this HOPS/AWE method to exact solutions constructed from the Method
of Manufactured Solutions.

6.1 Implementation

As we mentioned above, our formulation of the scattering problem is

A(ε, δ)V(ε, δ) = R(ε, δ),

c.f. (9), and our HOPS/AWE approach asks for the joint expansion of the {A,V,R} in Taylor
series, c.f. (11), where the {Vn,m} satisfy equation (12). In our approximation we begin by
truncating the Taylor series

{A,V,R}(ε, δ) ≈ {AN ,M ,VN ,M ,RN ,M }(ε, δ)
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:=
N∑

n=0

M∑

m=0

{An,m,Vn,m,Rn,m}εnδm, (25)

and all that remains is to specify (i.) how the formsAn,m andRn,m in (13) are simulated, and
(ii.) how the operator A0,0 is to be inverted.

For the latterwe note thatA0,0 is diagonalized by the Fourier transform so thatA0,0Vn,m =
Rn,m can be expressed as

∞∑

p=−∞
Â0,0(p)V̂n,m(p)ei p̃x =

∞∑

p=−∞
R̂n,m(p)ei p̃x ,

which implies

V̂n,m(p) = [
Â0,0(p)

]−1
R̂n,m(p).

It is not difficult to see [43] that

Â0,0(p) =
(

1 −1
(−iγ u

p ) τ 2(−iγ w
p )

)
,

c.f. (13), implying that

[
Â0,0(p)

]−1 = 1

Δp

(
τ 2(−iγ w

p ) 1
(iγ u

p ) 1

)
, Δp := −(iγ u

p + τ 2(iγ w
p )).

Remark 4 From these formulas it becomes obvious that the operatorA0,0 is always invertible
and our algorithm is well-defined. Recalling that we assume a dielectric in the upper layer
(so that the incident radiation propagates) we have that γ u

p is either real and positive or purely
imaginary (with positive imaginary part). If a dielectric fills the lower layer then we have
the same state of affairs for γ w

p so that, given that τ 2 will be positive and real, Δp �= 0.
Alternatively, if a metal fills the lower layer then γ w

p will be complex with positive imaginary
part. While it is less obvious, this ensures that, once again, Δp �= 0.

Regarding the forms An,m and Rn,m , these boil down to the simulation of the terms Gn,m

and Jn,m in Taylor series approximations of the DNOs, G and J . There is a large literature
on the simulation of these operators in the case of a boundary perturbation alone (see, e.g.,
[48]), however, a novelty of our current work is the approximation of these DNOs jointly in
interface and frequency deformation from the recursions found in Sect. 5. As we presently
describe, the method is very similar to that presented in [48] save that additional elliptic
solves are required.

6.2 A Fourier/Chebyshev Collocation Discretization

Focusing on the upper layer DNO, G, we begin by approximating

u(x, z; ε, δ) ≈ uN ,M (x, z; ε, δ) :=
N∑

n=0

M∑

m=0

un,m(x, z)εnδm .
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Each of these un,m(x, z) are then simulated by a Fourier–Chebyshev approach which posits
the form

un,m(x, z) ≈ uNx ,Nz
n,m (x, z) :=

Nx/2−1∑

p=−Nx /2

Nz∑

�=0

ûn,m,p,�e
i p̃x T�

(
2z − a

a

)
,

where T� is the �-th Cheybshev polynomial. The unknowns, ûn,m,p,� are recovered from (23)
by the collocation approach [7, 15, 26, 59, 60]. With this we can simulate the upper layer
DNO from (24), giving

G(x; ε, δ) ≈ GN ,M (x; ε, δ) :=
N∑

n=0

M∑

m=0

Gn,m(x)εnδm,

where

Gn,m(x) ≈ GNx
n,m(x) :=

Nx/2−1∑

p=−Nx /2

Ĝn,m,pe
i p̃x , (26)

and the Ĝn,m,p are recovered from the ûn,m,p,�.

6.3 Padé Approximation

We conclude our discussion of implementation with consideration of how the Taylor series
in (ε, δ) are summed. For example, regarding the DNO, G, the approximation of Ĝ p(ε, δ)

by

ĜN ,M
p (ε, δ) :=

N∑

n=0

M∑

m=0

Ĝn,m,pε
nδm,

c.f. (26). The technique of Padé approximation [3] has been used with HOPS methods to
great advantage in the past [9, 49] and we advocate its use here. Classically, this approach
seeks to estimate the truncated Taylor series of a single variable

QN (ρ) :=
N∑

n=0

Qnρ
n ≈ Q(ρ),

by the rational function

[L/M](ρ) := aL(ρ)

bM (ρ)
=

∑L
�=0 a�ρ

�

1 + ∑M
m=1 bmρm

, L + M = N ,

and

[L/M](ρ) = QN (ρ) + O(ρL+M+1);
well-known formulas for the coefficients {a�, bm} can be found in [3]. Padé approximation
enjoys greatly enhanced convergence properties and we refer the interested reader to § 2.2
of Baker & Graves–Morris [3] and the insightful calculations of § 8.3 of Bender & Orszag
[5] for a thorough discussion of the capabilities and limitations of Padé approximants.
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In the current context of functions analytic with respect to two perturbation variables we
utilize the polar coordinates

ε = ρ cos(θ), δ = ρ sin(θ),

and write the function

Ĝ p(ε, δ) =
∞∑

n=0

∞∑

m=0

Ĝn,m,pε
nδm

=
∞∑

n=0

∞∑

m=0

(
Ĝn,m,p cos

n(θ) sinm(θ)
)

ρn+m .

Setting � = n + m and s = m we can write this as

Ĝ p(ε, δ) =
∞∑

�=0

{
�∑

s=0

Ĝ�−s,s,p cos
�−s(θ) sins(θ)

}
ρ� =:

∞∑

�=0

G̃�,p(θ)ρ�.

We then chose particular values of θ = θ j between 0 and 2π and used classical Padé
approximation on the resulting {G̃�,p(θ j )} as a function of ρ alone.

6.4 The Domain of Analyticity

In [34] we rigorously demonstrated the joint analyticity of the fields, {u, w}, DNOs, {G, J },
and solutions, {U ,W }, with respect to both boundary, ε, and frequency perturbations, δ. As
we have mentioned on several occasions, the implicit smallness assumption on ε may be
safely dropped upon consideration of our previous work [29, 48, 49, 52]. However, it is clear
that no such extension exists for δ as we have already seen how the expansion for γ

q
p (δ) fails

at a Rayleigh Singularity, γ q
p

= 0, c.f. Lemma 1. Therefore the permissible values of δ must

be constrained by this.
To guide our computations we explore this restriction on δ in more detail. For instance,

in the upper layer, Rayleigh singularities occur when α2
p = (ku)2 which implies

ω = ± c0
nu

{
α + 2π p

d

}
, for any p ∈ Z. (27)

In the interest of maximizing our choice of δ we select a “mid-point” value of ω which is as
far away as possible from consecutive Rayleigh singularities

ωq := c0
nu

{
α + 2π(q + 1/2)

d

}
. (28)

About this value the nearest singularities are

ω−
q := c0

nu

{
α + 2πq

d

}
= ωq − πc0

nud
,

ω+
q := c0

nu

{
α + 2π(q + 1)

d

}
= ωq + πc0

nud
,

so to maximize our range of ω we choose, for some filling fraction 0 < σ < 1,

ωq − σ
(πc0
nud

)
< ω < ωq + σ

(πc0
nud

)
. (29)
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To express this in terms of δ we recall that ω = (1 + δ)ωq which gives

−σ

(
πc0

ωqn
ud

)
< δ < σ

(
πc0

ωqn
ud

)
.

Simplifying gives

−
(

σ

(αd/π) + 2q + 1

)
< δ <

(
σ

(αd/π) + 2q + 1

)
. (30)

6.5 Validation by theMethod of Manufactured Solutions

To validate our scheme we utilized the Method of Manufactured Solutions [14, 56, 57]. To
summarize, consider the general system of partial differential equations subject to generic
boundary conditions

Pv = 0, in Ω,

Bv = 0, at ∂Ω.

It is typically easy to implement a numerical algorithm to solve the nonhomogeneous version
of this set of equations

Pv = F, in Ω,

Bv = J , at ∂Ω.

To test an implementation we began with the “manufactured solution,” ṽ, and set

Fv := P ṽ, Jv := J ṽ.

Thus, given the pair {Fv,Jv} we had an exact solution of the nonhomogeneous problem,
namely ṽ.While this does not prove an implementation to be correct, if the function ṽ is chosen
to imitate the behavior of anticipated solutions (e.g., satisfying the boundary conditions
exactly) then this gives us confidence in our algorithm.

We considered the periodic, outgoing solutions of the Helmholtz equation (6a)

ur (x, z) := Are
ir̃ x+iγ u

r z, r ∈ Z, Ar ∈ C,

and their counterparts for (6b)

wr (x, z) := Bre
ir̃ x−iγ w

r z, r ∈ Z, Br ∈ C.

We selected the simple sinusoidal profile

g(x) = ε f (x) = ε

(
cos(4x)

4

)
, (31)

and defined the Dirichlet and Neumann traces

Ur (x) := ur (x, g(x)), Ũr (x) := −∂Nur (x, g(x)), (32a)

Wr (x) := wr (x, g(x)), W̃r (x) := ∂Nwr (x, g(x)). (32b)

From these we defined the two-layer data to be provided to our algorithm

ζr := Ur − Wr , ψr := −Ũr − τ 2W̃r . (32c)
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We chose the following physical parameters

d = 2π, α = 0, εu = 1, εw = 1.1, r = 4, Ar = 5, Br = 3, (33)

in TM polarization, and the numerical parameters

Nx = 32, Nz = 32, a = 1, b = −1. (34)

With a rescaling of the frequency (e.g., via a change of the time variable, t ′ = t/c0) we
arrange for c0 = 1 and considered the base frequency

ω1 = 3/2,

and filling fraction σ = 0.99.
To illuminate the behavior of our scheme we studied four choices of the numerical

parameter

N = M = 4, 8, 12, 16,

and the physical quantities

ε = 10−2, 10−4, 10−6, 10−8,

in (31). For this we supplied the “exact” input data, {ζr , ψr }, from (32) to our HOPS/AWE
algorithm to simulate solutions of the two-layer problem giving {U approx

r ,W approx
r }. We

compared this with the “exact” solutions {U exact
r ,W exact

r } and computed the relative error

Errorrel :=
∣∣U exact

r −U approx
r

∣∣
L∞∣∣U exact

r

∣∣
L∞

.

We point out that measuring the defect in the upper-layer Dirichlet data was arbitrary and we
noticed similar behavior for the lower-layer analogue.

We report our results of these simulations in Figs. 2 and 3.More specifically, Fig. 2 displays
both the rapid and stable decay of the relative error for fixed N and M , and how this rate
of decay improves as (ε, δ) decrease. Figure3 shows both how the error shrinks as (ε, δ)

become smaller, and that this rate is enhanced as both N and M are increased.
To demonstrate that ourHOPS/AWEalgorithm can address a larger contrast in permittivity

between the two layers, we revisited these calculations under identical circumstances save
that we increased εw from 1.1 to 10.1, resulting in the following set of physical parameters

d = 2π, α = 0, εu = 1, εw = 10.1, r = 4, Ar = 5, Br = 3. (35)

In Figs. 4 and 5 we see that we achieve comparable results with this larger value of εw which
induces far more propagating modes than the smaller permittivty value from before.

To further explore the capabilities and limitations of our numerical scheme we conducted
simulations for boundary deformations of large size and low smoothness following the guid-
ance of our previous work in [48] on HOPS algorithms. For this we considered the first
frequency/wavelength range in (29), q = 1, TM polarization, and two-dimensional domains
whose upper/lower boundaries are shaped by the profiles

fs(x) = cos(4x)

4
, (36a)

fr (x) = (
2 × 10−4) x4

(
2π − x4

) − c0, (36b)

fL(x) =
{

−2x/π + 1, 0 ≤ x ≤ π,

2x/π − 3, π ≤ x ≤ 2π,
(36c)
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Fig. 2 Plot of relative error with fixed N = M = 4 and four choices of ε = 10−2, 10−4, 10−6, 10−8 with
Taylor summation. Physical parameters were (33) and numerical discretization was (34)

where fs , fr , and fL represent boundaries which are smooth (C∞), rough (finite smoothness,
C4), and Lipschitz, respectively. Following [48], the constant c0 in (36b) is chosen so that
(like fs and fL ) fr has zero mean. As shown in [48] the Fourier series representations of fr
and fL are

fr (x) =
∞∑

k=1

96
(
2k2π2 − 21

)

125k8
cos(kx), (37a)

fL(x) =
∞∑

k=1

8

π2(2k − 1)2
cos

(
(2k − 1)x

)
, (37b)

respectively. To minimize the effect of aliasing errors we approximated fr and fL by the
truncated Fourier series

fr ,P (x) =
P∑

k=1

96
(
2k2π2 − 21

)

125k8
cos(kx), (38a)

fL,P (x) =
P/2∑

k=1

8

π2(2k − 1)2
cos

(
(2k − 1)x

)
. (38b)
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Fig. 3 Plot of relative error with four choices of N = M = 4, 8, 12, 16 and four choices of ε =
10−2, 10−4, 10−6, 10−8 with Taylor summation. Physical parameters were (33) and numerical discretization
was (34)

If P � Nx/2 then the effects of aliasing are minimal and we chose P = 120 for all of our
simulations.

In order to test the capabilities of our algorithm we performed simulations with these
profiles for large values of ε and report our findings for the maximum value which produced
reliable results. For the smooth profile, we selected

εmax = 2.0, a = 4, b = −4,

α = 0, σ = 0.99, nu = 1, nw ∈ {1.1, 10.1},
Nx = 256, Nz = 128, N = M = 20, (39)

and for the rough and Lipschitz profiles, we chose

εmax = 2.0, a = 4, b = −4,

α = 0, σ = 0.99, nu = 1, nw ∈ {1.1, 10.1},
Nx = 1024, Nz = 128, N = M = 20. (40)

We report the results of these simulations in Figs. 6, 7, and 8. Here we notice how, with a
modest number of perturbation orders (N = M = 20) we can very accurately simulate the
upper layer Dirichlet data (with relative errors at most 10−5) with a quite reasonable number
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Fig. 4 Plot of relative error with fixed N = M = 4 and four choices of ε = 10−2, 10−4, 10−6, 10−8 with
Taylor summation. Physical parameters were (35) and numerical discretization was (34)

of unknowns, Nx = 256 ( fs) or Nx = 1024 ( fr ,P and fL,P ) and Nz = 128. As the period
in this case is 2π we see how our algorithm can handle profiles of slope above 30% whose
smoothness is nearly the minimum required for our analyticity results, merely Lipschitz.

6.6 Simulations of the Reflectivity Maps

In Sect. 2.2 we defined the Reflectivity Map R = R(ε, δ), c.f. (7). Using our novel
HOPS/AWE approach we computed

RN ,M,Nx ,Nz
HOPS/AWE ≈ R,

for a range of ε and δ. As in our previous work [44], we show the kind of simulations this
HOPS/AWEmethod can produce with modest computational effort. For this we selected ωq ,
c.f. (28), for 1 ≤ q ≤ 6 and simulated R in the following frequency/wavelength ranges

q = 1 : ω ∈ [1.005, 1.995] �⇒ λ ∈ [3.14947, 6.25193],
q = 2 : ω ∈ [2.005, 2.995] �⇒ λ ∈ [2.09789, 3.13376],
q = 3 : ω ∈ [3.005, 3.995] �⇒ λ ∈ [1.57276, 2.09091],
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Fig. 5 Plot of relative error with four choices of N = M = 4, 8, 12, 16 and four choices of ε =
10−2, 10−4, 10−6, 10−8 with Taylor summation. Physical parameters were (35) and numerical discretization
was (34)

Fig. 6 The relative error for fs computed with our HOPS/AWE algorithm with Padé summation. We set
N = M = 20 with a granularity of Nε = Nδ = 100 per invocation. Parameter choices were α = 0, σ = 0.99,
nu = 1, (Left) nw = 1.1 (Right) nw = 10.1, Nx = 256, and Nz = 128
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Fig. 7 The relative error for fr ,P computed with our HOPS/AWE algorithm with Padé summation. We set
N = M = 20 with a granularity of Nε = Nδ = 100 per invocation. Parameter choices were α = 0, σ = 0.99,
nu = 1, (Left) nw = 1.1 (Right) nw = 10.1, Nx = 1024, and Nz = 128

Fig. 8 The relative error for fL,P computed with our HOPS/AWE algorithm with Padé summation. We set
N = M = 20 with a granularity of Nε = Nδ = 100 per invocation. Parameter choices were α = 0, σ = 0.99,
nu = 1, (Left) nw = 1.1 (Right) nw = 10.1, Nx = 1024, and Nz = 128

q = 4 : ω ∈ [4.005, 4.995] �⇒ λ ∈ [1.25789, 1.56884],
q = 5 : ω ∈ [5.005, 5.995] �⇒ λ ∈ [1.04807, 1.25538],
q = 6 : ω ∈ [6.005, 6.995] �⇒ λ ∈ [0.89824, 1.04633],

c.f. (30). In addition, we selected

g(x) = ε f (x), f (x) = cos(x), εmax = 0.2,

with the parameters

α = 0, σ = 0.99, nu = 1, nw = 1.1, Nx = Nz = 32, N = M = 16.

In Fig. 9a we plot all six of these subsets of the ReflectivityMap on one set of coordinate axes,
and in Fig. 9b we plot the energy defect, D, (8), to verify the accuracy of our expansions.
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Fig. 9 The Reflectivity Map, R(ε, δ), and energy defect, D(ε, δ), for cos(x) computed with our HOPS/AWE
algorithm with Taylor summation. We set N = M = 16 with a granularity of Nε = Nδ = 100 per invocation.
Parameter choices were α = 0, σ = 0.99, nu = 1, nw = 1.1, and Nx = Nz = 32

Fig. 10 The Reflectivity Map, R(ε, δ), where f (x) = cos(4x) for silver (left) and gold (right) with Padé
summation. We set N = M = 15 with a granularity of Nε = Nδ = 100 per invocation. Parameter choices
were α = 0, σ = 0.99, nu = 1, nw = nAg (left) and nw = nAu (right), Nx = Nz = 32, and the periodicity
of the grating was selected as d = 2π

We then changed the lower index of refraction nw to match representative values of silver
and gold as reported by Johnson & Christy [32], in particular

nAg = 0.05 + 2.275i, nAu = 1.48 + 1.883i .

Using the same frequency and wavelength ranges, we studied

f (x) = cos(4x), εmax = 0.2,

with the parameters

α = 0, σ = 0.99, nu = 1, Nx = Nz = 32, N = M = 15.

In Fig. 10a we plot six different subsets of the reflectivity map where the lower index of
refraction is selected to model the optical constant of silver. In Fig. 10b we plot six different
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Fig. 11 The Reflectivity Map, R(ε, δ) and energy defect, D(ε, δ), for fs computed with our HOPS/AWE
algorithm with Padé summation. We set N = M = 20 with a granularity of Nε = Nδ = 100 per invocation.
Parameter choices were α = 0, σ = 0.99, nu = 1, nw = 1.1, Nx = 256, and Nz = 128

Fig. 12 The Reflectivity Map, R(ε, δ) and energy defect, D(ε, δ), for fr ,P computed with our HOPS/AWE
algorithm with Padé summation. We set N = M = 20 with a granularity of Nε = Nδ = 100 per invocation.
Parameter choices were α = 0, σ = 0.99, nu = 1, nw = 1.1, Nx = 1024, and Nz = 128

subsets of the Reflectivity Map where the lower index of refraction is changed to the optical
constant for gold.

We now turn to simulations featuring our large smooth, rough, and Lipschitz profiles
defined in (36) and approximated by (38) (with P = 120 in this contribution). As before, we
worked in the first frequency/wavelength range, q = 1, in TM polarization with parameter
choices (39) for the smooth interface and (40) for the rough and Lipschitz surfaces. We
report the results of these simulations in Figs. 11, 12 and 13 for the smooth, rough, and
Lipschitz profiles, respectively. More specifically, Fig. 11 displays the reflectivity map and
energy defect for the smooth profile, while Figs. 12 and 13 make the same comparison for
the rough and Lipschitz profiles.

We conclude with computations of the same configuration but with increased granularity,
Nε = Nδ = 1000 per invocation. In the next section we discuss the advantageous computa-
tional complexity our HOPS/AWE algorithm enjoys in this situation of large Nε and Nδ . We
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Fig. 13 The Reflectivity Map, R(ε, δ) and energy defect, D(ε, δ), for fL,P computed with our HOPS/AWE
algorithm with Padé summation. We set N = M = 20 with a granularity of Nε = Nδ = 100 per invocation.
Parameter choices were α = 0, σ = 0.99, nu = 1, nw = 1.1, Nx = 1024, and Nz = 128

Fig. 14 The Reflectivity Map, R(ε, δ), and energy defect, D(ε, δ), for cos(x) computed with our HOPS/AWE
algorithmwith Taylor summation.We set N = M = 16with a granularity of Nε = Nδ = 1000 per invocation.
Parameter choices were α = 0.01, σ = 0.99, nu = 1, nw = 1.1, and Nx = Nz = 32

selected

f (x) = cos(x), εmax = 0.2,

with the parameters

α = 0.01, σ = 0.99, nu = 1, nw = 1.1, Nx = Nz = 32, N = M = 16.

In Fig. 14a we plot six different subsets of the Reflectivity Map on a single coordinate axis,
and in Fig. 14b we plot the energy defect, (8), to demonstrate the accuracy of our scheme
with a nonzero value of α.
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6.7 Computational Complexity

One of the primary motivations for our HOPS/AWE algorithm is its superior computational
complexity for problems within its domain of applicability. In comparison with classical BIE
methods, for instance, the HOPS/AWE approach has several advantages for computing QoIs
like the Reflectivity Map, R = R(ε, δ). To demonstrate this we begin by fixing the problem
of computing R for Nε many values of ε and Nδ many values of δ.

We recall from Sect. 6.2 that our HOPS/AWE algorithm requires Nx × Nz unknowns at
every perturbation order, (n,m), corresponding to the Nx equally-spaced gridpoints in the
lateral direction and the Nz collocation points in the vertical dimension. A careful study of
the HOPS/AWE recursions (12) reveals that the computational complexity of forming the
right-hand side at order (n,m) (the most costly step) is

O(nmNx log(Nx )Nz log(Nz)).

Inverting the operator A0,0 has complexity O(Nx log(Nx )Nz log(Nz)) so the full cost of
computing the {Un,m,Wn,m}, {0 ≤ n ≤ N , 0 ≤ m ≤ M}, is

O(N 2M2Nx log(Nx )Nz log(Nz)).

Once these coefficients are recovered, the cost of summing the series in (ε, δ) is minimal,
provided it is done in an efficient manner (e.g., by Horner’s rule [2, 13]). Our algorithm then
requires an additional O(NεNδ) steps to sum over every value of (ε, δ), therefore the full
cost of computing the Reflectivity Map by our HOPS/AWE method is

O(N 2M2Nx log(Nx )Nz log(Nz) + NεNδ).

In contrast, for a single (ε, δ) pair, a BIM solver with Nx lateral gridpoints requires
time proportional to O(N 3

x ) for Gaussian elimination to solve the resulting dense system of
Nx equations in Nx unknowns [2, 13, 18]. Applying this Nε × Nδ times results in a total
computational complexity of

O(N 3
x NεNδ).

Thus, once Nε and Nδ become large, e.g.,

NεNδ >
N 2M2Nx log(Nx )Nz log(Nz)

N 3
x

,

our new algorithm becomes far more efficient.

7 Conclusions

In this paper we have described a novel, High-Order Spectral [15, 26] High-Order Pertur-
bation of Surfaces (HOPS)/Asymptotic Waveform Evaluation (AWE) method [44] which
employs a perturbation approach to address the geometric and frequency deviations from
a base configuration. For quantities which depend upon both of these variables, such as
the Reflectivity Map, this method enjoys extremely favorable computational complexity as
compared with standard numerical methods such as Finite Differences, Finite Elements, and
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even Integral Equations. Our HOPS/AWE algorithm has been shown to be rapid, robust, and
highly accurate.
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