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The faithful modelling of the propagation of linear
waves in a layered, periodic structure is of paramount
importance in many branches of the applied sciences.
In this paper, we present a novel numerical algorithm
for the simulation of such problems which is free of the
artificial singularities present in related approaches.
We advocate for a surface integral formulation
which is phrased in terms of impedance–impedance
operators that are immune to the Dirichlet eigenvalues
which plague the Dirichlet–Neumann operators that
appear in classical formulations. We demonstrate a
high-order spectral algorithm to simulate these latter
operators based upon a high-order perturbation of
surfaces methodology which is rapid, robust and
highly accurate. We demonstrate the validity and
utility of our approach with a sequence of numerical
simulations.

1. Introduction
The capability of simulating linear waves interacting
with a periodic, layered structure is supremely important
in many branches of science and engineering. Examples
are easy to find from acoustics (e.g. remote sensing
[1], non-destructive testing [2] and underwater acoustics
[3]), to electromagnetics (e.g. extraordinary optical
transmission [4], surface-enhanced spectroscopy [5]
and surface plasmon resonance (SPR) biosensing [6,
7]), to elastodynamics (e.g. full waveform inversion
[8] and hazard assessment [9]). In regards to the
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SPR phenomena which arise in many areas of nanophotonics [10], due to the strength of the
plasmonic effect (the field enhancement can be several orders of magnitude) and its quite
sensitive nature (the enhancement is typically only seen over a range of tens of nanometres),
such simulations must be very robust and of high accuracy for applications of interest. For this
reason, we have a particular interest in high-order spectral (HOS) algorithms [11,12] which deliver
high-fidelity solutions with great efficiency.

Engineers and scientists have used all of the classical numerical algorithms for the simulation
of this problem (e.g. finite-difference methods [13], finite-element methods [14], discontinuous
Galerkin methods [15], spectral element methods [11] and spectral methods [12,16]). But
such volumetric approaches are greatly disadvantaged with an unnecessarily large number of
unknowns for the piecewise homogeneous problems we consider here.

Surface methods can be orders of magnitude faster than the volumetric algorithms discussed
above primarily because of the greatly reduced number of degrees of freedom required to
resolve a computation, in addition to the exact enforcement of far-field boundary conditions.
Consequently, these approaches are an extremely important alternative and are becoming more
widely used by practitioners. Paramount among these interfacial methods are those based upon
integral equations (IEs) [17,18], but these face difficulties. Most have been addressed in recent
years through (i) the use of sophisticated quadrature rules to deliver HOS accuracy; (ii) the design
of preconditioned iterative solvers with suitable acceleration [19]; and (iii) new strategies to avoid
periodizing the Green function [20–27]. Consequently, they are a compelling alternative (see, for
example, the survey article of [18] for more details); however, two properties render them non-
competitive for the parametrized problems we consider compared with the methods we advocate
here. (i) For geometries specified by the real value ε (here the deviation of the interface shapes
from flat), an IE solver will return the scattering returns only for a particular value of ε. If this
value is changed, then the solver must be run again. (ii) The dense, non-symmetric positive
definite systems of linear equations which must be inverted with each simulation.

As we advocated in [28,29] a ‘high-order perturbation of surfaces’ (HOPS) approach can
effectively address these concerns. More specifically, we argued for the method of field expansions
(FEs), which trace their roots to the low-order calculations of Rayleigh [30] and Rice [31]. The
high-order version was first investigated by Bruno & Reitich [32–35] and later enhanced and
stabilized by Nicholls & Reitich [36,37] with the method of transformed field expansions (TFEs).
These formulations maintain the advantageous properties of classical IE formulations (e.g. surface
formulation and exact enforcement of far-field conditions) while avoiding the shortcomings
listed above: (i) as HOPS methods are built upon expansions in the deformation parameter,
ε, once the Taylor coefficients are known for the scattering quantities, it is simply a matter of
summing these (rather than beginning a new simulation) for any given choice of ε to recover
the returns; (ii) due to the perturbative nature of the scheme, at every Taylor order one need
only invert a single, sparse operator corresponding to the flat-interface, order-zero approximation
of the problem.

Regardless of the strategy employed, the precise formulation of the problem can strongly
influence the performance of any of these numerical methods. Of particular note, when there are
internal layers present in the structure, a wise formulation will avoid the ‘Dirichlet eigenvalues’
present for such domains. In short, if Dirichlet traces are used as data at these interfaces, ‘artificial’
singularities can be introduced which are not exhibited by the full, coupled system. More
specifically, many formulations use Dirichlet–Neumann operators (DNOs) (e.g. [38,39]) when it
is a trivial matter to explicitly compute layer thicknesses where the underlying Dirichlet problem
delivers a non-unique solution. One approach to eliminating this artificial source of singularity
is to employ a domain decomposition method (DDM), first described for Laplace’s equation by
Lions [40] and adapted to the Helmholtz problem by Després [41,42] (see the survey article of
Collino et al. [43] for more details). For this one matches ‘conjugate’ impedances (Robin data) of
the solution at layer interfaces, and, in the present context, we employ ‘impedance–impedance
operators’ (IIOs) to map one to the other as advocated by Collino et al. [43] (see also Gillman et al.
[38]). On interior layers these IIOs are unitary so that not only are their eigenvalues non-zero,
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but also they are restricted to the unit circle in the complex plane, giving, as we shall see, a very
well-conditioned algorithm.

In this contribution, we will discuss a novel, rapid, stable and HOS method for the simulation
of IIOs which arise in layered medium configurations. Furthermore, we will demonstrate these
properties through a sequence of numerical simulations compared with similar calculations for
DNOs at, and near, their Dirichlet eigenvalues. We conclude with the simulation of a triply
layered configuration which arises in the study of SPR biosensors featuring corrugated interfaces
between a dielectric and a metal [29,44]. While the TFE recursions we describe here have been
used to simulate DNOs on unbounded domains, they have not been implemented on interior
layers mainly because of the problems created by the Dirichlet eigenvalues. Furthermore, IIOs
have never been simulated using this TFE algorithm, so there are many new details contained
herein which allow one to simulate configurations which, until now, were inaccessible to HOPS
algorithms.

The rest of the paper is organized as follows. In §2, we recall the governing equations for
scattering of linear waves by a periodic layered medium in three dimensions, with a particular
discussion of transparent boundary conditions. In §3, we describe an interfacial reformulation of
these equations in terms of surface quantities and IIOs that generalizes our previous formulation
[39,45]. In §4, we begin a detailed discussion of these IIOs by explicitly computing their action on
domains with infinitesimal (flat) interfaces. In §5, we describe our stable, HOS HOPS scheme for
simulating solutions of our new formulation: the TFE method. In §6, we display our numerical
results with implementation details, with validation of our implementation provided in §6a and
results for a triply layered structure in §6b.

2. Governing equations
The Helmholtz equation governs the scattering of linear acoustic waves in a periodic layered
structure, with insonification conditions at the upper interface, and upward and downward
propagating wave conditions at positive and negative infinities [46,47]. For the latter of these,
we demand the ‘upward propagating Rayleigh expansion radiation condition’ (URC) and its
‘downward propagating’ analogue (DRC) as specified in [48] (which we make precise in §2). In
[45], we detailed a restatement of the classical governing equations in terms of DNOs, which we
revise in this contribution (see §3).

We consider a multiply layered material with M many dx × dy periodic interfaces at

z = a(m) + g(m)(x, y), g(m)(x + dx, y + dy) = g(m)(x, y), 1 ≤ m ≤ M,

separating (M + 1)-many layers which define the domains

S(0) := {(x, y, z) | z> a(1) + g(1)(x, y)},
S(m) := {(x, y, z) | a(m+1) + g(m+1)(x, y)< z< a(m) + g(m)(x, y)}, 1 ≤ m ≤ M − 1

and S(M) := {(x, y, z) | z< a(M) + g(M)(x, y)},

with (upward pointing) normals N(m) := (−∂xg(m)(x, y), −∂yg(m)(x, y), 1)T (figure 1). The (M + 1)
domains are all lossless, constant-density acoustic media with velocities c(m) (m = 0, . . . , M) and
we assume that plane-wave radiation is incident upon the structure from above

vinc(x, y, z, t) = e−iωt ei(αx+βy−γ (0)z) = e−iωtvinc(x, y, z).

In each layer, the parameter k(m) =ω/c(m) characterizes both the properties of the material and the
frequency of radiation in the structure. We denote the reduced scattered fields in S(m) by

v(m)(x, y, z) = eiωtv(m)(x, y, z, t)
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z = a(m) + g(m)

vinc = exp(iax − ig (0)z)

k(m) = w/c(m)

Figure 1. Five-layer problem configuration with layer interfaces z = a(m) + g(m)(x). (Online version in colour.)

(the full scattered fields with the periodic time dependence factored out), which, like the incident
radiation, will be quasi-periodic [47]

v(m)(x + dx, y + dy, z) = ei(αdx+βdy)v(m)(x, y, z), m = 0, . . . , M.

These reduced fields satisfy the Helmholtz equations

�v(m) + (k(m))2v(m) = 0, in S(m), 0 ≤ m ≤ M, (2.1)

which are coupled through the Dirichlet and Neumann boundary conditions

v(m−1) − v(m) = ζ (m), z = a(m) + g(m)(x, y), 1 ≤ m ≤ M (2.2a)

and

∂N(m)v
(m−1) − (τ (m))2∂N(m)v

(m) =ψ (m)

and z = a(m) + g(m)(x, y), 1 ≤ m ≤ M,

⎫⎬
⎭ (2.2b)

where τ (m) = 1 in transverse electric (TE) polarization, τ (m) = k(m−1)/k(m) in transverse magnetic
(TM) polarization and

ζ (1)(x, y) := −vinc(x, y, a(1) + g(1)(x, y)) = −ei(αx+βy−γ (0)(a(1)+g(1)(x,y)))

and ψ (1)(x, y) := −[∂N(1)v
inc(x, y, z)]z=a(1)+g(1)(x,y)

= (iγ (0) + iα(∂xg(1)) + iβ(∂yg(1))) ei(αx+βy−γ (0)(a(1)+g(1)(x,y))).

If continuity is enforced inside the structure, then ζ (m) ≡ψ (m) ≡ 0, m = 2, . . . , M. However, as we
shall see, it is no impediment to the method if we set these to any non-zero function.

Regarding the upward/downward propagating wave conditions (URC/DRC), we introduce
the planes

z = a> a(1) +
∣∣∣g(1)

∣∣∣
L∞ and z = a< a(M) −

∣∣∣g(M)
∣∣∣
L∞ ,
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define the domains S := {z> a} and S := {z< a}, and note that we can find unique quasi-periodic
solutions of the relevant Helmholtz problems on each of these domains given generic Dirichlet
data, say ξ (x, y) and μ(x, y). For this, we use the Rayleigh expansions [30], which state that

v(0)(x, y, z) =
∞∑

p=−∞

∞∑
q=−∞

ξ̂p,q eiαpx+iβqy+iγ (0)
p,q (z−a), in S

and v(M)(x, y, z) =
∞∑

p=−∞

∞∑
q=−∞

μ̂p,q eiαpx+iβqy−iγ (M)
p,q (z−a), in S,

where

ξ̂p,q = 1
dxdy

∫ dx

0

∫ dy

0
ξ (x, y) e−iαpx−iβqy dx dy,

for p, q ∈ Z, m ∈ {0, . . . , M},

αp := α +
(

2π
dx

)
p, βq := β +

(
2π
dy

)
q

and γ
(m)
p,q :=

⎧⎪⎨
⎪⎩
√

(k(m))2 − α2
p − β2

q , (p, q) ∈ U (m),

i
√
α2

p + β2
q − (k(m))2, (p, q) �∈ U (m),

and the set of propagating modes is

U (m) := {(p, q) ∈ Z |α2
p + β2

q ≤ (k(m))2}.
We note that

v(0)(x, y, a) =
∞∑

p=−∞

∞∑
q=−∞

ξ̂p,q eiαpx+iβqy = ξ (x, y)

and v(M)(x, y, a) =
∞∑

p=−∞

∞∑
q=−∞

μ̂p,q eiαpx+iβqy =μ(x, y).

With these formulae, we can compute the outward-pointing Neumann data at the artificial
boundaries

−∂zv
(0)(x, y, a) =

∞∑
p=−∞

∞∑
q=−∞

−(iγ (0)
p,q )ξ̂p,q eiαpx+iβqy =: T(0)[ξ (x, y)]

and ∂zv
(M)(x, y, a) =

∞∑
p=−∞

∞∑
q=−∞

(−iγ (M)
p,q )μ̂p,q eiαpx+iβqy =: T(M)[μ(x, y)],

which define the Fourier multipliers, {T(0), T(M)}.
With these operators, it is not difficult to see that quasi-periodic, upward propagating solutions

to the Helmholtz equation (2.1) with m = 0 equivalently solve

�v(0) + (k(0))2v(0) = 0, a(1) + g(1)(x, y)< z< a (2.3a)

and
∂zv

(0) + T(0)[v(0)] = 0, z = a. (2.3b)

Similarly, one can show that quasi-periodic, downward propagating solutions to the Helmholtz
equation (2.1) with m = M equivalently solve

�v(M) + (k(M))2v(M) = 0, a< z< a(M) + g(M)(x, y) (2.4a)

and
∂zv

(M) − T(M)[v(M)] = 0, z = a. (2.4b)
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Remark 2.1. We point out that conditions (2.3b) and (2.4b) specify solutions which satisfy the
UPC and DPC of definition 2.6 in Arens [48]. It is these two conditions which guarantee the
uniqueness of solutions on the unbounded domains {z> a} and {z< a}.

3. Boundary formulation: impedance–impedance operators
While extremely useful for many configurations of interest, our previous formulation of the
scattering problem above [39,45] in terms of surface operators suffers from the fact that interior
layer DNOs, H, do not exist at the ‘Dirichlet eigenvalues’, i.e. choices of k(m) for which (2.1) does
not have a unique solution. To fix this, we follow the lead of Kirsch & Monk [49] and Gillman et
al. [38] by pursuing IIOs which exist at all values of k(m).

To begin we consider a positive, non-zero constant η ∈ R+ and reduce our set of unknowns to
the following surface quantities:

U(m),�(x, y) := −∂N(m+1)v
(m) − iηv(m), z = a(m+1) + g(m+1), 0 ≤ m ≤ M − 1,

U(m),u(x, y) := ∂N(m)v
(m) − iηv(m), z = a(m) + g(m), 1 ≤ m ≤ M,

Ũ(m),�(x, y) := −∂N(m+1)v
(m) + iηv(m), z = a(m+1) + g(m+1), 0 ≤ m ≤ M − 1

and Ũ(m),u(x, y) := ∂N(m)v
(m) + iηv(m), z = a(m) + g(m), 1 ≤ m ≤ M.

Using the fact that, from these, one could recover the scattered field at any point with a suitable
integral formula [50], we find that our governing equations reduce to the boundary conditions
(2.2a), which we express as

U(m−1),� − Ũ(m−1),� − U(m),u + Ũ(m),u = −2iηζ (m), 1 ≤ m ≤ M (3.1a)

and U(m−1),� + Ũ(m−1),� + (τ (m))2U(m),u + (τ (m))2Ũ(m),u

= −2ψ (m), 1 ≤ m ≤ M. (3.1b)

We can further simplify by introducing IIOs, and for this we make the following definitions.

Definition 3.1. Given a sufficiently smooth deformation g(1)(x, y), the unique quasi-periodic
solution of

�v(0) + (k(0))2v(0) = 0, a(1) + g(1)(x, y)< z< a, (3.2a)

∂zv
(0) + T(0)[v(0)] = 0, z = a (3.2b)

and − ∂N(1)v
(0) − iηv(0) = U(0),�, z = a(1) + g(1)(x, y) (3.2c)

defines the IIO
Q[U(0),�] = Q(a, a(1), g(1))[U(0),�] := Ũ(0),�. (3.3)

Definition 3.2. Given sufficiently smooth deformations g(m)(x, y) and g(m+1)(x, y), for 1 ≤ m ≤
M − 1, the unique quasi-periodic solution of

�v(m) + (k(m))2v(m) = 0, a(m+1) + g(m+1)(x, y)< z< a(m) + g(m)(x, y), (3.4a)

∂N(m)v
(m) − iηv(m) = U(m),u, z = a(m) + g(m)(x, y) (3.4b)

and − ∂N(m+1)v
(m) − iηv(m) = U(m),�, z = a(m+1) + g(m+1)(x, y) (3.4c)

defines the IIO

R(m)

[(
U(m),u

U(m),�

)]
= R(m; a(m), g(m), a(m+1), g(m+1))

[(
U(m),u

U(m),�

)]

=
(

Ruu(m) Ru�(m)
R�u(m) R��(m)

)[(
U(m),u

U(m),�

)]
:=

(
Ũ(m),u

Ũ(m),�

)
. (3.5)
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Definition 3.3. Given a sufficiently smooth deformation g(M)(x, y), the unique quasi-periodic
solution of

�v(M) + (k(M))2v(M) = 0, a< z< a(M) + g(M)(x, y), (3.6a)

∂N(M)v
(M) − iηv(M) = U(M),u, z = a(M) + g(M)(x, y) (3.6b)

and ∂zv
(M) − T(M)[v(M)] = 0, z = a (3.6c)

defines the IIO

S[U(M),u] = S(a, a(M), g(M))[U(M),u] := Ũ(M),u. (3.7)

Remark 3.4. Using the approach in [39], it is possible to show that g(m) ∈ Cs+3/2+σ ([0, dx] ×
[0, dy]) for any integer s ≥ 0, and any real σ > 0 is smooth enough to define Q, R and S. In fact,
with a more subtle analysis, Lipschitz smooth will also suffice [51,52].

In terms of this notation, the boundary conditions (3.1) become

{I − Q}[U(0),�] + {−I + Ruu(1)}[U(1),u] + Ru�(1)[U(1),�] = −2iηζ (1),

− R�u(m − 1)[U(m−1),u] + {I − R��(m − 1)}[U(m−1),�]

+ {−I + Ruu(m)}[U(m),u] + Ru�(m)[U(m),�] = −2iηζ (m), 2 ≤ m ≤ M − 1,

− R�u(M − 1)[U(M−1),u] + {I − R��(M − 1)}[U(M−1),�]

+ {−I + S}[U(M),u] = −2iηζ (M)

and

{I + Q}[U(0),�] + (τ (1))2{I + Ruu(1)}[U(1),u]

+ (τ (1))2Ru�(1)[U(1),�] = −2ψ (1),

R�u(m − 1)[U(m−1),u] + {I + R��(m − 1)}[U(m−1),�] + (τ (m))2{I
+ Ruu(m)}[U(m),u] + (τ (m))2Ru�(m)[U(m),�] = −2ψ (m), 2 ≤ m ≤ M − 1,

R�u(M − 1)[U(M−1),u] + {I + R��(M − 1)}[U(M−1),�]

+ (τ (M))2{I + S}[U(M),u] = −2ψ (M).

We write this more compactly as

(L + D + U)x = Ax = b, (3.8)

where

x := (U(0),� U(1),u U(1),� · · · U(M−1),u U(M−1),� U(M),u)T,

b := −2((iη)ζ (1) ψ (1) · · · (iη)ζ (M) ψ (M))T,

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D(1) U(1) 0 0 · · · 0
L(2) D(2) U(2) 0 · · · 0

0
. . .

. . .
. . . 0 0

0 0
. . .

. . .
. . . 0

0 · · · 0 L(M − 1) D(M − 1) U(M − 1)
0 · · · 0 0 L(M) D(M)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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and

U(m) =
(

Ru�(m) 0
(τ (m))2Ru�(m) 0

)
, 1 ≤ m ≤ M − 1,

L(m) =
(

0 −R�u(m)
0 R�u(m)

)
, 2 ≤ m ≤ M,

D(1) =
(

I − Q −I + Ruu(1)
I + Q (τ (1))2(I + Ruu(1))

)
,

D(m) =
(

I − R��(m − 1) −I + Ruu(m)
I + R��(m − 1) (τ (m))2(I + Ruu(m))

)
, 2 ≤ m ≤ M − 1,

D(M) =
(

I − R��(M − 1) −I + S
I + R��(M − 1) (τ (M))2(I + S)

)
.

4. Impedance–impedance operators: infinitesimal interfaces
We can gain insight into these IIOs by studying them in the case of infinitesimal grating interfaces,
which we model by quasi-periodic solutions in the case g(m) ≡ 0. We begin with the upper layer,
where it is easy to see that the solution of (3.2a,b) is

v(0)(x, y, z) =
∞∑

p=−∞

∞∑
q=−∞

ap,q eiαpx+iβqy+iγ (0)
p,q (z−a(1)).

The boundary condition (3.2c) demands that

̂U(0),�p,q = ap,q(−iγ (0)
p,q − iη),

giving

v(0)(x, y, z) =
∞∑

p=−∞

∞∑
q=−∞

̂U(0),�p,q

(−iγ (0)
p,q − iη)

eiαpx+iβqy+iγ (0)
p,q (z−a(1)),

which is well defined since (−iγ (0)
p,q − iη) �= 0 provided that η > 0. Thus,

Q(0)[U(0),�] = −∂zv
(0)(x, y, a(1)) + iηv(0)(x, y, a(1))

=
∞∑

p=−∞

∞∑
q=−∞

(−iγ (0)
p,q + iη)

(−iγ (0)
p,q − iη)

̂U(0),�p,q eiαpx+iβqy,

which gives the order-zero Fourier multiplier

Q(0) =
(

−iγ (0)
D + iη

−iγ (0)
D − iη

)
.

In a similar manner, it can be shown that

S(0) =
(

−iγ (M)
D + iη

−iγ (M)
D − iη

)
.

We close with the inner layer case where we observe that, if we map {a(m+1) < z< a(m)} to
{−h̄(m) < z< h̄(m)} where

h̄(m) := (a(m) − a(m+1))
2

, 1 ≤ m ≤ M − 1,
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the solution of (3.4a) is

v(m)(x, y, z) =
∞∑

p=−∞

∞∑
q=−∞

⎧⎨
⎩Bp,q cosh(iγ (m)

p,q z) + Cp,q
sinh(iγ (m)

p,q z)

(iγ (m)
p,q )

⎫⎬
⎭ eiαpx+iβqy,

where

cosh(iγ (m)
p,q z) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cos(γ (m)
p,q z), (p, q) ∈ U (m) �⇒ Im{γ (m)

p,q } = 0,

1, γ
(m)
p,q = 0,

cosh(Im{γ (m)
p,q }z), (p, q) �∈ U (m) �⇒ Re{γ (m)

p,q } = 0,

and
sinh(iγ (m)

p,q z)

(iγ (m)
p,q )

:=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sin(γ (m)
p,q z)

γ
(m)
p,q

, (p, q) ∈ U (m) �⇒ Im{γ (m)
p,q } = 0,

z, γ
(m)
p,q = 0,

sinh(Im{γ (m)
p,q }z)

Im{γ (m)
p,q }

, (p, q) �∈ U (m) �⇒ Re{γ (m)
p,q } = 0.

Using the facts that

dz[cosh(iγ (m)
p,q z)] = (iγ (m)

p,q )2 sinh(iγ (m)
p,q z)

iγ (m)
p,q

and dz

⎡
⎣ sinh(iγ (m)

p,q z)

iγ (m)
p,q

⎤
⎦= cosh(iγ (m)

p,q z),

and the oddness of sinh, boundary conditions (3.4b,c) demand that

̂U(m),up,q = Bp,q(iγ (m)
p,q )2shp,q + Cp,qchp,q − (iη){Bp,qchp,q + Cp,qshp,q}

and ̂U(m),�p,q = Bp,q(iγ (m)
p,q )2shp,q − Cp,qchp,q − (iη){Bp,qchp,q − Cp,qshp,q},

where

chp,q := cosh(iγp,qh̄(m)) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

cos(γ (m)
p,q h̄(m)), (p, q) ∈ U (m),

1, γ
(m)
p,q = 0,

cosh(Im{γ (m)
p,q }h̄(m)), (p, q) �∈ U (m),

shp,q := sinh(iγ (m)
p,q h̄(m))

(iγ (m)
p,q )

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sin(γ (m)
p,q h̄(m))

γ
(m)
p,q

, (p, q) ∈ U (m),

h̄(m), γ
(m)
p,q = 0,

sinh(Im{γ (m)
p,q }h̄(m))

Im{γ (m)
p,q }

, (p, q) �∈ U (m)

or ⎛
⎝−(γ (m)

p,q )2shp,q − (iη)chp,q chp,q − (iη)shp,q

−(γ (m)
p,q )2shp,q − (iη)chp,q −chp,q + (iη)shp,q

⎞
⎠(

Bp,q

Cp,q

)
=
⎛
⎝̂U(m),up,q

̂U(m),�p,q

⎞
⎠ .

To simplify the notation, we define

a := −(γ (m)
p,q )2shp,q − (iη)chp,q and b := chp,q − (iη)shp,q,
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which delivers (
a b
a −b

)(
Bp,q

Cp,q

)
=
⎛
⎝̂U(m),up,q

̂U(m),�p,q

⎞
⎠ .

As the determinant of the matrix on the left-hand side

−2ab = −2{−(γ (m)
p,q )2shp,q − (iη)chp,q}{chp,q − (iη)shp,q}

= 2((γ (m)
p,q )2 + η2)shp,qchp,q + 2(iη)(ch2

p,q − (γ (m)
p,q )2sh2

p,q)

is never zero, we find the unique solution

(
Bp,q

Cp,q

)
= 1

2

⎛
⎜⎜⎝

1
a

1
a

1
b

−1
b

⎞
⎟⎟⎠
⎛
⎝̂U(m),up,q

̂U(m),�p,q

⎞
⎠ .

Using these, we can compute the IIO⎛
⎜⎝

̂Ũ(m),up,q

̂Ũ(m),�p,q

⎞
⎟⎠=

⎛
⎝ [∂zv + (iη)v]z=h

[−∂zv + (iη)v]z=−h

⎞
⎠=

⎛
⎝ā b̄

ā −b̄

⎞
⎠
⎛
⎝Bp,q

Cp,q

⎞
⎠

=
⎛
⎝ā b̄

ā −b̄

⎞
⎠ 1

2

⎛
⎜⎜⎝

1
a

1
a

1
b

−1
b

⎞
⎟⎟⎠
⎛
⎝̂U(m),up,q

̂U(m),�p,q

⎞
⎠= R0

⎛
⎝̂U(m),up,q

̂U(m),�p,q

⎞
⎠ ,

where

R0 = 1
2

⎛
⎜⎜⎜⎝

ā
a

+ b̄
b

ā
a

− b̄
b

ā
a

− b̄
b

ā
a

+ b̄
b

⎞
⎟⎟⎟⎠ .

It is not difficult to show that R0 is unitary, i.e. R−1
0 = R∗

0, from the fact that |ā/a| =
∣∣∣b̄/b∣∣∣= 1. Beyond

this, it can be shown that R is unitary even when g(m) �≡ 0 [38].

5. The method of transformed field expansions
We now show how a stable, high-order numerical implementation of (3.8) can deliver high-
quality simulations of layered medium configurations. For this, we need to describe a method
for simulating the IIOs, Q, R(m) and S. Up to this point, our developments have been neutral on
this topic: any of the methods we described in the Introduction, from finite differences to IEs,
could be used to approximate solutions of (3.2), (3.4) and (3.6). However, as we argued there,
volumetric methods are needlessly disadvantaged for the problems we consider here so that
surface approaches should be our focus.

Now that the issue of efficient and highly accurate enforcement of quasi-periodic boundary
conditions has been largely resolved [20–27], an implementation in terms of IEs is compelling
and we plan to investigate this in a future publication. However, we now focus upon geometries
which are parametrized by a real number, ε, and thus choose to discuss HOPS schemes, more
specifically the stable and high-order accurate TFE approach of Nicholls & Reitich [36,37,53–55].
To focus our developments and abbreviate the presentation, we consider only the operators R(m)
corresponding to inner layers. The upper and lower layer operators, Q and S, can be handled in
a similar manner. Our developments follow §5 of [39] quite closely and we direct the interested
reader there for more details.
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To begin, we recall the defining boundary value problem (3.4) for the inner layer IIO, and the
definition of the IIO itself (3.5). For brevity, we simplify the notation slightly,

�v + k2v = 0, −h̄ + �(x, y)< z< h̄ + u(x, y), (5.1a)

∂zv − (∂xu)∂xv − (∂yu)∂yv − iηv = U, z = h̄ + u(x, y) (5.1b)

and − ∂zv + (∂x�)∂xv + (∂y�)∂yv − iηv = L, z = −h̄ + �(x, y), (5.1c)

where v = v(m), k = k(m), h̄ = a(m), −h̄ = a(m+1), u = g(m), �= g(m+1), and the IIO is given by

R[U, L] =
(

R(u)[U, L]
R(�)[U, L]

)
=
(

[∂zv − (∂xu)∂xv − (∂yu)∂yv + iηv]z=h̄+u
[−∂zv + (∂x�)∂xv + (∂y�)∂yv + iηv]z=−h̄+�

)
,

where R = R(m).
Following in the footsteps of Nicholls & Reitich [37,53,55], we introduce the following changes

of variables (also known as σ -coordinates in the atmospheric sciences [56] and the C-method in
electrodynamics [57]):

x′ = x, y′ = y, z′ = −h̄

(
h̄ + u(x, y) − z

2h̄ + u(x, y) − �(x, y)

)
+ h̄

(
z + h̄ − �(x, y)

2h̄ + u(x, y) − �(x, y)

)
,

which maps the perturbed domain

S−h̄+�,h̄+u = {−h̄ + �(x, y)< z< h̄ + u(x, y)}

to the flat-interface domain S−h̄,h̄, which has height 2h̄. The function v= v(x, y, z) transforms to

w = w(x′, y′, z′) = v(x(x′, y′, z′), y(x′, y′, z′), z(x′, y′, z′)),

and it can be shown [39] that (5.1a) transforms to

div′ [A∇′w
] + B · ∇′w + k2C2w = 0, −h̄< z′ < h̄, (5.2)

where forms for A, B and C can be found in [39]; for ease of exposition, from here we drop the
primed notation. If we set u = εũ and �= δ�̃, then

A = A(ε, δ) = A0,0 + A1,0ε + A0,1δ + A2,0ε
2 + A1,1εδ + A0,2δ

2,

B = B(ε, δ) = B1,0ε + B0,1δ + B2,0ε
2 + B1,1εδ + B0,2δ

2

and C2 = C2(ε, δ) = C2
0,0 + C2

1,0ε + C2
0,1δ + C2

2,0ε
2 + C2

1,1εδ + C2
0,2δ

2,

where the An,r, Bn,r and Cn,r are given in [39]. With these, we write (5.2) as

�w + k2w = F, −h̄< z< h̄, (5.3)

where

F = div [(I − A)∇w] − B · ∇w + k2(1 − C2)w,

and if u = εũ and �= δ�̃, then F =O(ε) + O(δ).
In our first departure from [39], we find that the boundary conditions (5.1b,c) transform to

∂zw − iηw = U + J(u), z = h̄ (5.4a)

and

− ∂zw − iηw = L + J(�), z = −h̄, (5.4b)
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where

2h̄J(u) = uU − �U + (iη)uw − (iη)�w + 2h̄(∂xu)∂xw

+ u(∂xu)∂xw − �(∂xu)∂xw − 2h̄(∂xu)2∂zw

and 2h̄J(�) = uU − �U + (iη)uw − (iη)�w − 2h̄(∂xu)∂xw

− u(∂x�)∂xw + �(∂x�)∂xw + 2h̄(∂x�)2∂zw,

and J =O(ε) + O(δ) if u = εũ and �= δ�̃.
We close by noting that the IIO

(
R(u)[U, L]
R(�)[U, L]

)
=
(

[∂zv − (∂xu)∂xv − (∂yu)∂yv + iηv]z=h̄+u
[−∂zv + (∂x�)∂xv + (∂y�)∂yv + iηv]z=−h̄+�

)

transforms (upon dropping primes) to

(
R(u)[U, L]
R(�)[U, L]

)
=
(

[∂zw + iηw]z=h̄
[−∂zw + iηw]z=−h̄

)
+
(

K(u)

K(�)

)
, (5.5)

where

2h̄K(u) = −(∂xu)∂xw + (iη)uw − (iη)�w − uK(u) + �K(u)

− u(∂xu)∂xw + �(∂xu)∂xw + (∂xu)2∂zw

and 2h̄K(�) = (∂x�)∂xw + (iη)uw − (iη)�w − uK(�) + �K(�)

+ u(∂x�)∂xw − �(∂x�)∂xw − (∂x�)2∂zw,

and again, if u = εũ and �= δ�̃, then {K(u), K(�)} =O(δ) + O(ε).
We now gather our field equations in transformed coordinates

�w + k2w = F, −h̄< z< h̄, (5.6a)

∂zw − iηw = U + J(u), z = h̄ (5.6b)

and − ∂zw − iηw = L + J(�), z = −h̄, (5.6c)

cf. (5.3) and (5.4), together with the transformed equation for the IIO

⎛
⎝R(u)[U, L]

R(�)[U, L]

⎞
⎠=

⎛
⎝ [∂zw + iηw]z=h̄

[−∂zw + iηw]z=−h̄

⎞
⎠ +

⎛
⎝K(u)

K(�)

⎞
⎠ , (5.7)

cf. (5.5). At this point, we make the specification that, for ε, δ ∈ R,

u = εũ and �= δ�̃,

where the (implicit) smallness assumptions on ε and δ can be removed (up to topological
obstruction [55]). With this, we can formally expand

w = w(x, y, z; ε, δ) =
∞∑

n=0

∞∑
r=0

wn,r(x, y, z)εnδr

and R =
(

R(u)

R(�)

)
=
(

R(u)(x, y; ε, δ)
R(�)(x, y; ε, δ)

)
=

∞∑
n=0

∞∑
r=0

(
R(u)

n,r(x, y)
R(�)

n,r(x, y)

)
εnδr,
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and find that, at each perturbation order O(εnδr), we must solve

�wn,r + k2wn,r = Fn,r, −h̄< z< h̄,

∂zwn,r − iηwn,r = Un,r + J(u)
n,r , z = h̄

and − ∂zwn,r − iηwn,r = Ln,r + J(�)
n,r, z = −h̄,

where ⎛
⎝R(u)

n,r[U, L]

R(�)
n,r[U, L]

⎞
⎠=

(
[∂zwn,r + iηwn,r]z=h̄

[−∂zwn,r + iηwn,r]z=−h̄

)
+
⎛
⎝K(u)

n,r

K(�)
n,r

⎞
⎠ .

In these

Fn,r = −
2∑

ν+ρ=1

{div
[
Aν,ρ∇wn−ν,r−ρ

] + Bν,ρ · ∇wn−ν,r−ρ + k2C2
ν,ρwn−ν,r−ρ},

2h̄J(u)
n,r = ũUn−1,r − �̃Un,r−1 + (iη)ũwn−1,r − (iη)�̃wn,r−1 + 2h̄(∂xũ)∂xwn−1,r

+ ũ(∂xũ)∂xwn−2,r − �̃(∂xũ)∂xwn−1,r−1 − 2h̄(∂xũ)2∂zwn−2,r,

2h̄J(�)
n,r = ũUn−1,r − �̃Un,r−1 + (iη)ũwn−1,r − (iη)�̃wn,r−1 − 2h̄(∂xũ)∂xwn−1,r

− ũ(∂x�̃)∂xwn−1,r−1 + �̃(∂x�̃)∂xwn,r−2 + 2h̄(∂x�̃)2∂zwn,r−2,

2h̄K(u)
n,r = −(∂xũ)∂xwn−1,r + (iη)ũwn−1,r − (iη)�̃wn,r−1 − ũK(u)

n−1,r + �̃K(u)
n,r−1

− ũ(∂xũ)∂xwn−2,r + �̃(∂xũ)∂xwn−1,r−1 + (∂xũ)2∂zwn−2,r

and 2h̄K(�)
n,r = (∂x�̃)∂xwn,r−1 + (iη)ũwn−1,r − (iη)�̃wn,r−1 − ũK(�)

n−1,r + �̃K(�)
n,r−1

+ ũ(∂x�̃)∂xwn−1,r−1 − �̃(∂x�̃)∂xwn,r−2 − (∂x�̃)2∂zwn,r−2.

6. Numerical results
In this section, we describe a variety of numerical experiments we conducted with our DNO and
IIO formulations of the layered medium problems we consider here, and report on the results of
these. We began by demonstrating the validity of our algorithm by conducting experiments using
the method of manufactured solutions (MMS) [58,59]. We then showed comparisons between
TFE simulations of a three-layer configuration with the DNO formulation [45] and our new IIO
version (3.8). More specifically, we considered a configuration far from singularities of the inner-
layer DNO, H, and a structure exactly (up to machine precision) at a singularity. We concluded
with the simulation of the reflectivity map of a triply layered dielectric–metal–dielectric (DMD)
structure.

Our numerical approach to solving the layered medium problems presented in this section is to
use either the DNO formulation of the problem [45] or its IIO counterpart (3.8), with the relevant
operators (DNOs and IIOs, respectively) simulated using the TFE methodology. For brevity, we
discuss how this is accomplished for the interior layer IIO, R, described in detail in §5.

We recall from (3.4) that inputs to the IIO, given in (3.5), are the impedance data {U(m),u, U(m),�}
and the boundary deformations {g(m), g(m+1)} with half-layer thickness h̄(m) := (a(m) − a(m+1))/2.
We sought a solution of the field equations (5.6) in the form

w(Nx,Ny,Nz,N)(x, y, z; ε, δ) =
N∑

n=0

N∑
r=0

Nx/2−1∑
p=−Nx/2

Ny/2−1∑
q=−Ny/2

Nz∑
�=0

ŵp,q,�,n,r

× T�

(
2z − a(m+1) − a(m)

a(m) − a(m+1)

)
eiαpx+iβqyεnδr,
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where T� is the �th Chebyshev polynomial, and the solution of the IIO problem (5.7) of the type

R(Nx,Ny,Nz,N)(ε, δ) =
N∑

n=0

N∑
r=0

Rn,rε
nδr.

While one could pursue these joint Taylor series expansions with independent choices of ε and δ,
we have not found such an approach to be competitive in terms of operation counts. Instead, we
chose to study the special case of ε= δ, which, of course, still permits one to study the perturbed
geometry setting which we set as our goal at the outset.

An important question is how the Taylor series in ε are summed, for instance the truncation
R(Nx,Ny,Nz,N) of R. This particular approximation distils to simulating rp,q(ε) :=∑∞

n=0 rp,q,nε
n

by rN
p,q(ε) :=∑N

n=0 rp,q,nε
n. For this task, the classical analytic continuation technique of Padé

approximation [60] has been used with HOPS methods with great success [33,55] and we advocate
its use here. Padé approximation seeks to estimate the truncated Taylor series rN

p,q(ε) by the rational
function [

L
M

]
(ε) := aL(ε)

bM(ε)
=

∑L
�=0 a�ε�

1 + ∑M
m=1 bmεm

, L + M = N

and [
L
M

]
(ε) = rN

p,q(ε) + O(εL+M+1);

well-known formulae for the coefficients {a�, bm} can be found in [60]. This approximant has
remarkable properties of enhanced convergence, and we refer the interested reader to §2.2 of
Baker & Graves–Morris [60] and the insightful calculations of §8.3 of Bender & Orszag [61] for a
thorough discussion of the capabilities and limitations of Padé approximants.

(a) Validation by the method of manufactured solutions
Regarding the MMS, we focused upon the three-layer problem with layers m = 0, 1, 2 denoted, for
simplicity, by the letters {u, v, w}, respectively. Consider the quasi-periodic, outgoing solutions of
the Helmholtz equation (3.2a)

ur,s(x, y, z) := Au
r,s eiαrx+iβsy+iγ u

r,sz, r, s ∈ Z, Au
r,s ∈ C,

and their counterparts for (3.6a)

wr,s(x, y, z) := Aw
r,s eiαrx+iβsy−iγ w

r,sz, r, s ∈ Z, Aw
r,s ∈ C.

Further, consider the quasi-periodic solutions of the Helmholtz equation (3.4a)

vr,s(x, y, z) := Avr,s eiαrx+iβsy+iγ vr,sz + Bvr,s eiαrx+iβsy−iγ vr,sz, r, s ∈ Z, Avr,s, Bvr,s ∈ C.

We selected two simple sinusoidal profiles

gu(x, y) = εf u(x, y) = ε cos(2x − 3y)

and g�(x, y) = εf �(x, y) = ε sin(3x − 2y),

⎫⎬
⎭ (6.1)

and defined, for any choice of the layer half-thickness h̄, the Dirichlet and Neumann traces

ξu
r,s(x, y) := ur,s(x, y, h̄ + gu(x, y)), νu

r,s(x, y) := (−∂Nu ur,s)(x, y, h̄ + gu(x, y)),

ξw
r,s(x, y) := wr,s(x, y, −h̄ + g�(x, y)), νw

r,s(x, y) := (∂N�wr,s)(x, y, −h̄ + g�(x, y)),

ξvr,s(x, y) := vr,s(x, y, h̄ + gu(x, y)), νvr,s(x, y) := (∂Nuvr,s)(x, y, h̄ + gu(x, y))

and ζ vr,s(x, y) := vr,s(x, y, −h̄ + g�(x, y)), ψvr,s(x, y) := (−∂N�vr,s)(x, y, −h̄ + g�(x, y)).

 on July 16, 2018http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


15

rspa.royalsocietypublishing.org
Proc.R.Soc.A474:20170704

...................................................

From these, we defined, for any real η > 0, the impedances

Ur,s := νu
r,s − iηξu

r,s, Ũr,s := νu
r,s + iηξu

r,s, Wr,s := νw
r,s − iηξw

r,s,

W̃r,s := νw
r,s + iηξw

r,s, Vu
r,s := νvr,s − iηξvr,s, Ṽu

r,s := νvr,s + iηξvr,s

and V�
r,s :=ψvr,s − iηζ vr,s, Ṽ�

r,s :=ψvr,s + iηζ vr,s.

We chose the following physical parameters:

dx = 2π , dy = 2π , α = 0.1, β = 0.2, γu = 1.21,

γv = 1.97, γw = 2.23, Au
r,s = −3δ2,1, Aw

r,s = 4δ3,1

and Bvr,s = −eδ3,1, Cvr,s = πδ3,1, η≈ 1.7358

⎫⎪⎪⎬
⎪⎪⎭ (6.2)

(where δr,s is the Kronecker delta) in TM polarization, and the numerical parameters

Nx = 64, Ny = 64, Nz = 32, N = 10, a = 1/2, b = 1/2. (6.3)

To elucidate the behaviour of our scheme, we studied four choices of ε= 0.005, 0.01, 0.05, 0.1; cf.
(6.1). For this, we supplied {ξu

r,s, ξ
v
r,s, ζ

v
r,s, ξ

w
r,s} to our HOPS algorithm to simulate solutions of the

DNO formulation of the three-layer scattering problem, {νu,approx
r,s , νv,approx

r,s ,ψv,approx
r,s , νw,approx

r,s },
and computed the relative error

ErrorDNO
rel :=

∣∣∣νu
r,s − ν

u,approx
Nx,Ny,Nz,N

∣∣∣
L∞∣∣νu

r,s
∣∣
L∞

.

In a similar way, we passed {Ur,s, Vu
r,s, V�

r,s, Wr,s} to our HOPS algorithm to simulate solutions of

the IIO formulation of the three-layer scattering problem, {Ũapprox
r,s , Ṽu,approx

r,s , Ṽ�,approx
r,s , W̃approx

r,s },
and computed the relative error

ErrorIIO
rel :=

∣∣∣Ũr,s − Ũapprox
Nx,Ny,Nz,N

∣∣∣
L∞∣∣∣Ũr,s

∣∣∣
L∞

.

We note that the choice to measure the defect in these upper-layer quantities, νu
r,s and Ur,s,

was rather arbitrary. Measuring the mismatch in any of the other output quantities produced
similar results.

To begin our study, with the choice h̄ = 0.33 we carried out these simulations with our IIO
method (3.8) and report our results in figure 2a,b. We repeated this with our DNO approach [45]
and display the outcomes in figure 3a,b. We see in this generic, non-resonant, configuration that
both algorithms display a spectral rate of convergence as N is refined (up to the conditioning of
the algorithm), which improves as ε is decreased.

Before proceeding, we note that the choice of half-height h̄ = π/γv will induce a singularity in
the interior DNO, H, resulting in a lack of uniqueness. To test the performance of our methods
near this scenario, we selected

h̄ = π

γv
+ τ .

With the same choices of geometrical, (6.1), physical, (6.2), and numerical, (6.3), parameters
as before, we selected τ = 10−16 resulting in h̄ = 1.5947170830405 ≈ π/γv + 10−16. After running
simulations with the IIO method (3.8), we display our results in figure 4a,b. We revisited these
computations with our DNO approach [45] and show our results in figure 5a,b. We see in this
resonant (to machine precision) configuration, the IIO algorithm again displays a spectral rate
of convergence as N is refined (improving as ε is decreased), while the DNO approach delivers
completely unacceptable results, even with Padé approximation.
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Figure 2. Plot of relative errorwith six choices ofN = 0, 2, 4, 6, 8, 10 for a non-resonant configuration using the IIO formulation
with Taylor summation. (a) Error versus perturbation order, N. (b) Error versus perturbation size, ε. (Online version in colour.)
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formulation with Taylor summation. (a) Error versus perturbation order, N. (b) Error versus perturbation size, ε. (Online version
in colour.)
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with Taylor summation. (a) Error versus perturbation order, N. (b) Error versus perturbation size, ε. (Online version in colour.)
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Figure 6. Reflectivity map for three layers, R(λ, h), versus incident wavelength,λ, and deformation height, h. Results for gold
layer thickness 2h̄= 25, 50 nm and the double sinusoid configuration, (6.4) and (6.5), with Nx = Ny = 24, Nz = 32, [8/8]
Padé approximant. (a) 2h̄= 100 nm and (b) 2h̄= 50 nm. (Online version in colour.)

(b) Simulation of triply layered structures
In conclusion, we considered a structure similar to one constructed in the laboratory of S.–H. Oh
(Minnesota), in particular the DMD devices described in [7,44]. Such a simulation required a slight
generalization of our developments to accommodate a single lossy layer (the metal) characterized
by a permittivity with non-zero imaginary part, but this posed no significant difficulties. A two-
dimensional thin-film sensor was built which was corrugated on one side and flat on the other.
With our new code, we can investigate such structures, which feature corrugations on both sides.
While not addressing the full vector Maxwell equations, we performed these simulations in
three dimensions for the scalar Helmholtz equations. The Maxwell case is the subject of current
investigations.

For definiteness, we considered a three-layer configuration consisting of vacuum (a dielectric)
overlaying a thin layer of gold (a metal) of thickness 2h̄ on top of water (a dielectric) with interfaces
shaped by g(m) = hf (m)

f (1)(x, y) = f (2)(x, y) = 1
4

{
cos

(
2πx
dx

)
+ cos

(
2πy
dy

)}
. (6.4)
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By definition, the refractive index for vacuum is nvac = 1 and for the refractive index of water we
used the value nwater = 1.333 [7]. The refractive index of gold is the subject of ongoing research
and we chose a Lorentz model [62]. We investigated two values of the half-height, h̄ = 25, 50 nm,
and for physical and numerical parameters we selected the following:

α= 0, β = 0, γ (0) = γ vac, γ (1) = γAu, γ (2) = γwater, (6.5a)

h = 0, . . . , 200 nm, dx = dy = 650 nm (6.5b)

and Nx = Ny = 24, Nz = 32, N = 0, . . . , 16. (6.5c)

We point out the completely different qualitative character of the reflectivity maps for the
h̄ = 50 nm (figure 6a) and h̄ = 25 nm (figure 6b) cases; the region of sensitive response is vastly
enlarged in the latter case. One factor for this difference is the fact that the thin-layer configuration
allows radiation to transmit into the water as its vertical dimension is now comparable to the skin
depth of gold. A central conclusion of this contribution is that our new methodology permits very
rapid and reliable simulation of system parameters for configurations like these.
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