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The detection of ocean bathymetry is one of the most important and difficult problems in oceanography.
On the theoretical side it is a classical inverse problem which features severe ill-posedness found in
similar problems from a wide array of applied sciences. From a practical standpoint, standard procedures
based upon “Underwater Acoustics” are quite dangerous and expensive as the desired surface is separated
from measuring devices by (at least) the entire ocean layer providing a very hostile and unpredictable
sampling environment. In this research we take a rather different approach to this inverse problem as we
rely upon nonlinear features of the governing fluid mechanical equations to detect information about the
ocean bathymetry. This is also in contrast to similar methods in the literature which rely solely upon the
variations in the dispersion relation. Using a formulation of the water wave problem due to Zakharov, and
Craig and Sulem, and the analyticity of the “Dirichlet–Neumann operator” we find surprisingly convenient
formulas involving the ocean bathymetry. Of course, these formulas are ill-conditioned and nonlinear,
however, we have found that application of standard techniques from the theory of inverse problems
allow us to predict the shape of bottom topography with excellent precision.

© 2008 Elsevier Masson SAS. All rights reserved.
1. Introduction

The detection of ocean bathymetry is one of the most impor-
tant problems in oceanography for a number of reasons with, per-
haps, the most obvious being the safe navigation of watercraft in
nearshore regions. Furthermore, this problem is one of oceanogra-
phy’s most difficult for both theoretical and practical reasons. On
the theoretical side it is a classical inverse problem which features
all of the ill-posedness found in similar problems from a wide ar-
ray of applied sciences (see, e.g., [6]). From a practical standpoint,
the oftentimes easy step of simply making measurements is quite
dangerous and expensive as the desired surface is separated from
measuring devices by (at least) the entire ocean layer providing a
very hostile and unpredictable sampling environment.

Of course, for a problem of such fundamental importance there
is a vast literature on approaches to finding approximations of the
ocean floor. The most mature and widely used technology is based
upon the generation and subsequent detection of acoustic waves
which propagate down to the ocean floor and reflect back up to
the surface. For a brief sample of recent progress within this enor-
mous field of “Underwater Acoustics” see [5,22] and the references
cited therein.

In this research we take a rather different approach to this in-
verse problem as we rely upon nonlinear features of the governing
fluid mechanical equations to detect information about the ocean
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bathymetry. This is very much in the spirit of [12,18] who use
the nonlinear properties of ocean waves to find the bottom shape.
Piotrowski and Dugan’s [18] method is one among many in the lit-
erature which use linear variations in the dispersion relation for
shoaling gravity waves as a function of depth to deduce informa-
tion about the shape of the ocean floor. Grilli [12] has expanded
upon these types of methods by taking into account nonlinear
contributions to the dispersion relation and achieved remarkable
success.

Unlike the methods outlined above we do not rely solely upon
the dispersion relation for our method, rather, we take as our
starting point the entire dynamic water wave problem and re-
tain fully nonlinear dependence upon the bottom variation. We
consider a surface-variable formulation of the governing Euler
equations for free-surface water waves due to Zakharov [23] and
Craig and Sulem [10] which features, quite explicitly, the un-
known bottom topography. Making an ansatz of standing-wave
input data and a judicious (and rigorously justified [17]) truncation
of a crucial nonlinear operator (the “Dirichlet–Neumann operator”
or DNO), we find surprisingly convenient formulas involving the
ocean bathymetry. Of course, these formulas are ill-conditioned
and nonlinear, however, we have found that application of rather
standard techniques from the theory of inverse problems allow us
to predict the shape of bottom topography with excellent preci-
sion.

The organization of the paper is as follows: In Section 2 we re-
call the governing equations of the free-surface motion of an ideal
fluid under the effects of gravity (the “water wave problem”). In
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Section 2.1 we outline the role of the Dirichlet–Neumann opera-
tor (DNO) in a surface formulation of the water wave problem,
and in Section 2.2 we describe the depth-inversion formula due to
W. Craig [7] which forms the basis for our family of techniques. In
Section 2.3 we outline the “Field Expansions” method for approxi-
mating DNO which is utilized in the later design of our algorithms.
In Section 3 we devise higher-order generalizations of Craig’s for-
mula which we test with a battery of numerical simulations in
Section 4. In Section 5 we give some concluding remarks.

2. Governing equations

As we mentioned above, we will use as our starting point the
Euler equations of ideal fluid flow [16] to model the motion of
our body of water above the unknown topography. We define the
domain of our problem to be

Sh,ζ,η := {−h + ζ(x) < y < η(x, t)
}
,

where h is the reference depth, ζ is the variation of the bottom
from this value, and η measures the perturbation of the free sur-
face of the fluid from its quiescent state at y = 0. With these
assumptions our data must come from the near-shore zone with
an identifiable reference depth (which we assume can be found
by, e.g., appealing to the dispersion relation) but not in the region
of shoaling waves; we seek to identify ζ(x).

Within this domain the well-known equations of motion for an
ideal fluid under the effects of gravity [16] are

�ϕ = 0 in Sh,ζ,η, (1a)

∂yϕ − ∇xζ · ∇xϕ = 0 at y = −h + ζ, (1b)

∂tη − ∂yϕ + ∇xη · ∇xϕ = 0 at y = η, (1c)

∂tϕ + 1

2
|∇ϕ|2 + gη = 0 at y = η, (1d)

where ϕ is the velocity potential, the velocity is given by u = ∇ϕ ,
and g is the gravitational constant.

In an influential paper on stability of water waves, V. Za-
kharov [23] pointed out that the water wave problem (1a)–(1d)
can be restated as a Hamiltonian system in terms of surface quan-
tities, η(x, t) and ξ(x, t) := ϕ(x, η(x, t), t). While this formulation
is somewhat implicit in its dependence upon η and ξ , Craig and
Sulem [10] restated it in a completely explicit way by using the
Dirichlet–Neumann operator (DNO). We define this DNO by con-
sidering the elliptic problem motivated by (1a)–(1d)

�v = 0 in Sh,ζ,η, (2a)

v(x, η(x)) = ξ(x), (2b)

∂y v − ∇xζ · ∇x v = 0 at y = −h + ζ. (2c)

If η and ζ are sufficiently smooth then (2a)–(2c) admits a unique
solution and we can compute the normal derivative of the solu-
tion at the surface y = η. The DNO carries out this procedure by
mapping the Dirichlet data, ξ , to the Neumann data

G(η, ζ )[ξ ] := [∇v]y=η · N = ∂y v
(
x, η(x)

) − ∇xη · ∇x v
(
x, η(x)

)
.

In terms of this operator the Euler equations can now be writ-
ten [10]

∂tη = G(η, ζ )[ξ ], (3a)

∂tξ = −gη − 1

2(1 + |∇xη|2)
[|∇xξ |2 − (

G(η, ζ )[ξ ])2

− 2G(η, ζ )[ξ ]∇xξ · ∇xη + |∇xξ |2|∇xη|2 − (∇xξ · ∇xη)2]. (3b)
2.1. The Dirichlet–Neumann operator

Before proceeding, we review some of the key properties of
the DNO. First, its dependence upon the Dirichlet data, ξ , is linear
while the η and ζ variations are genuinely nonlinear. Of particular
relevance to us is the analyticity result of Nicholls and Taber [17]
(see Theorem 2.1) which implies the strong convergence of the fol-
lowing expansion:

G(η, ζ )[ξ ] = G(ε f , δb)[ξ ] =
∞∑

n=0

∞∑
m=0

Gn,m( f ,b)[ξ ]εnδm (4)

for η(x) = ε f (x) and ζ(x) = δb(x) sufficiently small.

Theorem 2.1. Given any integer s � 0, if f ,b ∈ C s+2 and ξ ∈ Hs+3/2

then Gn,m[ξ ] ∈ Hs+1/2 and∥∥Gn,m[ξ ]∥∥Hs+1/2 � K‖ξ‖Hs+3/2 Dn Em

for constants K , D, E > 0.

We note that the Gn,m[·] inherit the property of linearity in ξ ,
while being homogeneous of order n and m in η and ζ , respec-
tively. This is by no means the only result on analyticity of DNO
with respect to boundary variations and we refer the interested
reader to [17] for a complete literature review.

2.2. The Craig formula

In theory, given full information about η(x, t) and ξ(x, t) one
should be able to use (3a)–(3b) to determine ζ(x). Clearly this
is an ominous prospect so we make a number of simplifying as-
sumptions to reduce our problem to one which is more amenable
to analysis. To start, we consider only linear surface waves, i.e. if
η = O(ε) and ξ = O(ε) then we truncate O(ε2) terms in (3a)–
(3b) to realize:

∂tη = G(0, ζ )[ξ ], (5a)

∂tξ = −gη. (5b)

Given this simplification, these equations can be written in terms
of a single equation for η:

∂2
t η = −gG(0, ζ )[η]. (6)

Notice that while surface quantities have been linearized, we re-
tain, for the moment, fully nonlinear dependence on the bottom
deformation ζ .

Next, to provide some workable data for our method we as-
sume that we can identify standing, periodic waves on the surface
of the fluid, i.e.

η(x, t) = eiωt η̄(x) (7)

with frequency ω and envelope η̄(x) which satisfies

η̄(x + γ ) = η̄(x), ∀γ ∈ Γ,

for some period lattice Γ . This is by no means the only “data”
that one could collect, however, it gives rise to a straightforward
inverse problem and, furthermore, is the type of data which can
be recovered from wave–tank measurements (e.g., the facility of
D. Henderson at Penn State University [15]). Insertion of (7) into
(6) results in the eigenvalue problem

−ω2η̄(x) = −gG(0, ζ )
[
η̄(x)

]
.

Using the expansion (4), we rewrite this as

−ω2η̄(x) = −gG0,0
[
η̄(x)

] − gG0,1(ζ )
[
η̄(x)

] − gG(2)(0, ζ )
[
η̄(x)

]
, (8)
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where

G(2)(0, ζ )[ξ ] :=
∞∑

m=2

G0,m(0, ζ )[ξ ]

and, as we shall see in Section 2.3 (Lemma 2.4),

G0,1(ζ ) = −A(D)ζ A(D)

where A(D) is a pseudodifferential operator which will be speci-
fied in (21). By ignoring terms of order O(ζ 2) we can approximate
(8) by

−ω2η̄(x) = −gG0,0
[
η̄(x)

] + g A(D)
[
ζ A(D)

[
η̄(x)

]];
upon solving for ζ we recover the first-order formula of Craig [7]:

ζ = A(D)−1[(G0,0 − ω2/g)η̄]
A(D)[η̄(x)] . (9)

Remark 2.2. In this, and subsequent formulas, we specify in (9) a
division which turns out to be one of several ill-conditioned op-
erations which must be performed. To see this we point out that
A(D)[η̄] may, of course, be exactly or nearly zero at one or many
points. Naturally, the numerator will also be zero or nearly zero
at corresponding points, however, the amplification of errors in
the numerator at such points is clearly undesirable. To ameliorate
these errors we implement a “careful divide” which we now de-
scribe for the generic division:

q(x) = n(x)/d(x). (10)

To begin, we interpret (10) as

d(x)q(x) = n(x), (11)

which is equivalent as long as x �= 0, and, if d(x̄) = 0 we will
naturally need n(x̄) = 0 leaving q(x̄) not uniquely defined. As our
method will be a Fourier collocation scheme we are interested in
solving:

d(x j)q(x j) = n(x j), (12)

at all of the Nx collocation points x j . We rewrite (12) as

D	q = 	n, D ∈ RNx×Nx , 	q ∈ RNx , 	n ∈ RNx ,

where D = diag{d j}. If the determinant of D is non-zero then we
recover the classical division (10) using the inverse of D . How-
ever, since det(D) may be zero (or very small) we find 	q using the
Singular Value Decomposition (SVD) of D coupled with a spectral
cut-off regularization [6]. Using this method, at points of singular-
ity the (approximate) solution vector 	q is simply set to zero which
may or may not give good accuracy.

We implemented this scheme and had some success but found
that a slight variant worked better. Assuming that d, q, and n all
have one derivative, we differentiate (11) to realize:[

d′(x) + d(x)
d

dx

]
q(x) = n′(x). (13)

We now evaluate (13) at the collocation points x j and perform the
“safe divide” outlined above with the SVD. To completely specify
this method we approximate the derivative with a second–order
accurate finite difference scheme which also provides desirable nu-
merical smoothing to our methods [6].

Remark 2.3. We point out that formulas (8) and (9) do not depend
upon the periodicity of the envelope η̄(x) (though the operators
which appear are easier to apply and invert in this case). If other
boundary conditions are relevant to the application at hand, then
these formulas can still be utilized, however, one must devise nu-
merical methods to handle the resulting operators.
2.3. Field expansions

Our goal in this research is to test the utility of (9) and its gen-
eralizations. For this, it is clear that we need convenient formulas
for the Taylor coefficients of the DNO, G0,m in (4). Several methods
have been developed for this purpose including those based upon
“Operator Expansions” (OE) due to Smith [21], and Craig, Guyenne,
Nicholls, and Sulem [8,13,14]. In this section we present an alter-
native, and we believe more straightforward, approach based upon
the “Field Expansions” (FE) approach of Rayleigh [19], Rice [20],
and Bruno and Reitich [1–3].

To begin we set ζ(x) = δb(x) and, since we do not consider top
variations for the moment, η(x) ≡ 0. The results of Nicholls and
Taber [17] imply that, if b(x) is sufficiently smooth, then

v = v(x, y; δ) =
∞∑

m=0

vm(x, y)δm,

which, upon insertion into (2a)–(2c), gives rise to the sequence of
problems

�vm = 0 in Sh,0,0, (14a)

vm(x,0) = δm,0ξ(x), (14b)

∂y vm(x,−h) = Hm(x), (14c)

where

Hm(x) = −
m−1∑
l=0

Bm−l∂
m−l+1
y vl(x,−h)

+ (∇xb) ·
m−1∑
l=0

Bm−l−1∇x∂
m−l−1
y vl(x,−h), (14d)

and

Bl(x) := b(x)l

l! .

If these vm can be recovered, then computing the terms G0,m in
the expansion of the DNO is straightforward as (for η ≡ 0)

G(0, ζ )[ξ ] = ∂y v(x,0),

so that

G0,m(b)[ξ ] = ∂y vm(x,0), (15)

and we suppress the η dependence for simplicity.

2.3.1. Order zero
At order m = 0 it is easy to show that

v0(x, y) =
∑
p∈Γ ′

cosh(|p|(y + h))

cosh(|p|h)
ξ̂peip·x, (16)

where Γ ′ is the conjugate lattice of wavenumbers, and ξ̂p are the
Fourier coefficients of ξ(x). From this and (15) we recover the clas-
sical result:

G0,0[ξ ] = ∂y v0,0(x,0) =
∑
p∈Γ ′

|p| tanh
(
h|p|)ξ̂peip·x

=: |D| tanh
(
h|D|)ξ (17)

which defines the Fourier multiplier G0,0 = |D| tanh(h|D|).
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2.3.2. Higher orders
For orders m � 1, the solution of (14a) is

vm(x, y) =
∑
p∈Γ ′

(
α

(m)
p cosh

(|p|y
) + β

(m)
p sinh

(|p|y
))

eip·x,

while (14b) implies that α
(1)
p = 0, so that

vm(x, y) =
∑
p∈Γ ′

β
(m)
p sinh

(|p|y
)
eip·x. (18)

Finally, (14c) mandates that∑
p∈Γ ′

|p| cosh
(
h|p|)β(m)

p eip·x

= ∂y vm(x,−h) = Hm(x)

= −
m−1∑
l=0

Bm−l∂
m−l+1
y vl(x,−h)

+ (∇xb) ·
m−1∑
l=0

Bm−l−1∇x∂
m−l−1
y vl(x,−h)

= −Bm∂m+1
y v0(x,−h) + (∇xb) · Bm−1∇x v0(x,−h)

−
m−1∑
l=1

Bm−l∂
m−l+1
y vl(x,−h)

+ (∇xb) ·
m−1∑
l=1

Bm−l−1∇x∂
m−l−1
y vl(x,−h), (19)

where we have separated the v0 terms as they are fundamentally
different from the vm (m � 1). In fact, from (16),

∂ l
y v0(x,−h) =

[ ∑
p∈Γ ′

|p|l
{

(dl
z cosh)(|p|(y + h))

cosh(h|p|)
}
ξ̂peip·x

]
y=−h

=: Φl(D)ξ

where

Φl(D) =
{

|D|l sech(h|D|), l even,

0, l odd,

while (for m � 1), from (18),

∂ l
y vm(x,−h) =

[ ∑
p∈Γ ′

|p|l{(dl
z sinh

)(|p|y
)}

β
(m)
p eip·x

]
y=−h

=: Ψl(D)β(m)

where

Ψl(D) =
{−|D|l sinh(h|D|), l even,

|D|l cosh(h|D|), l odd.

Returning to (19) we find that

|D| cosh
(
h|D|)β(m) = −BmΦm+1(D)ξ + (∇xb) · Bm−1∇xΦm−1(D)ξ

−
m−1∑
l=1

Bm−lΨm−l+1(D)β(l)

+ (∇xb) ·
m−1∑
l=1

Bm−l−1∇xΨm−l−1(D)β(l).

Recalling that ∇x = −iD and noting that

Φ j+2(D) = |D|2Φ j(D), Ψ j+2(D) = |D|2Ψ j(D), j � 0,

we have that
|D| cosh(h|D|)β(m) = −[Bm|D|2 + (Db) · Bm−1 D]Φm−1(D)ξ

−
m−1∑
l=1

[Bm−l|D|2 + (Db) · Bm−l−1 D]Ψm−l−1(D)β(l).

Finally, with |D|2 = D2 and the product rule, which implies that

Bk|D|2 f + (Db) · Bk−1 D f = D · Bk D f ,

we have

|D| cosh
(
h|D|)β(m) = −D · Bm DΦm−1(D)ξ

−
m−1∑
l=1

D · Bm−l DΨm−l−1(D)β(l). (20)

Using (15) we compute the m-th term in the DNO to be:

G0,m[ξ ] = ∂y v0,m(x,0) = |D|β(m).

Lemma 2.4. If we define the Fourier multiplier

A(D) := sech
(
h|D|)D, (21)

then the FE recursions give, at order one,

|D| cosh
(
h|D|)β(1) = −D · bD sech

(
h|D|)ξ

= −D · b A(D)ξ

and

G0,1[ξ ] = − sech
(
h|D|)D · bD sech

(
h|D|)ξ = −A(D) · b A(D)ξ. (22)

Lemma 2.5. The FE recursions give, at order two,

|D| cosh
(
h|D|)β(2) = −D · bD

(− sinh
(
h|D|))β(1)

= −D · bD sinh
(
h|D|)|D|−1 sech

(
h|D|)D · b A(D)ξ

= −D · b sgn(D)D · tanh
(
h|D|)b A(D)ξ,

and

G0,2[ξ ] = −A(D) · b sgn(D)D · tanh
(
h|D|)b A(D)ξ. (23)

In this final lemma we point out that at every order the DNO
has a particular form.

Lemma 2.6. The FE recursions give, at order m,

|D| cosh
(
h|D|)β(m) = −D · Bm DΦm−1(D)ξ

−
m−1∑
l=1

D · Bm−l DΨm−l−1(D)β(l)

= −D · bQ m,

which defines the operator Q m, and thus

G0,m[ξ ] = − sech
(
h|D|)D · bQ m = −A(D) · bQ m. (24)

For every m one can factor the operator A(D) and the multi-
plication by b to the left of the m-th term in the expansion of the
DNO. This fact allows us to generalize one of the methods of Sec-
tion 3 to arbitrarily high order. Before proceeding we note that the
formulas given in Lemmas 2.4, 2.5, and 2.6 were also derived by
Craig, Guyenne, Nicholls, and Sulem [8] via the Operator Expan-
sions formalism.
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3. Higher order algorithms

As we shall see in Section 4, the Craig formula presented in Sec-
tion 2.2, see (9), provides a fast and easy-to-implement method for
recovering bottom topography from surface wave measurements
which makes no assumptions of long wavelength or shallow depth.
However, as the method is based upon the truncation of the DNO
after the linear term there is an implicit assumption of smallness
in the bathymetry amplitude. In an effort to relax this restric-
tion we now derive a variety of higher-order (in bottom pertur-
bation magnitude) schemes to improve upon the formula of Craig.
At this point we specialize to the case of two-dimensional water
waves (one-dimensional bottom topography) as this makes our al-
gorithms somewhat easier to implement. This can already be seen
with the Craig formula, (9), containing (somewhat implicitly) the
inversion of a divergence operator, A(D), which requires the de-
velopment of a certain amount of standard technology; we will
save the generalization to three dimensions for future work.

3.1. Second order methods

Returning to (8), the natural way to include higher order infor-
mation about the bottom perturbation is to truncate the DNO after
the second order term, G0,2, and make the approximation:

−ω2η̄(x) = −gG0,0
[
η̄(x)

] − gG0,1(ζ )
[
η̄(x)

] − gG0,2(ζ )
[
η̄(x)

]
.

Using our formulas for G0,1, (22), and G0,2, (23), we find

−ω2η̄(x) = −gG0,0η̄(x) + g Aζ Aη̄(x)

+ g Aζ
(
sgn(D) tanh

(
h|D|)D

)
ζ Aη̄(x).

Note that in two dimensions

sgn(D) tanh
(
h|D|)D = |D| tanh

(
h|D|) = G0,0,

so that, simplifying,

Aζ Aη̄(x) + Aζ G0,0ζ Aη̄(x) =
(

G0,0 − ω2

g

)
η̄(x) =: R(η̄;ω, g). (25)

Naturally, with the complicated quadratic dependence upon ζ

there is no convenient, closed-form solution for our unknown.
However, there are several iterative approaches which immediately
present themselves, supplemented with the solution of the Craig
formula as an initial guess.

3.1.1. Left factorization
Beginning with (25), one could factor the operator A and the

multiplication by ζ on the left-hand side so that

Aζ [Aη̄ + G0,0ζ Aη̄] = R.

Defining the linear (in ζ ) function

ψ(ζ ) := Aη̄ + G0,0ζ Aη̄ (26)

we can now solve

ζ = A−1 R

ψ(ζ )
.

Since ζ appears on both sides we set up an iteration scheme

ζn+1 = A−1 R

ψ(ζn)
(27)

which we denote the “Second Order Left Factorization” (2L)
method.
3.1.2. Right factorization
In a similar fashion, starting with (25), we factor the operator

A and the multiplication by ζ on the right-hand side so that

[A + Aζ G0,0]ζ Aη̄ = R.

Defining the operator

Ã(ζ ) := A + Aζ G0,0,

we can now solve

ζ = Ã−1(ζ )R

Aη̄
.

Again, we set up an iteration scheme

ζn+1 = Ã−1(ζn)R

Aη̄
, (28)

which we denote the “Second Order Right Factorization” (2R)
method.

3.1.3. Picard iteration
Finally, starting with (25) we can set up a Picard iteration in

the following way:

Aζ Aη̄ = R − Aζ G0,0ζ Aη̄,

and

ζ = A−1(R − Aζ G0,0ζ Aη̄)

Aη̄
.

We now have the iteration scheme

ζn+1 = A−1(R − AζnG0,0ζn Aη̄)

Aη̄
, (29)

which we call the “Second Order Picard” (2P) method.

3.2. Higher order methods

Due to the form of the DNO (see Lemma 2.6), the Left Factor-
ization method, (27), can easily be generalized to arbitrary order.
Beginning with (8), we truncate after M perturbation orders:

−ω2η̄(x) = −gG0,0
[
η̄(x)

] − g
M∑

m=1

G0,m(ζ )
[
η̄(x)

]
,

or, using the notation of Section 3.1.1,

R = −
M∑

m=1

G0,m(ζ )
[
η̄(x)

]
.

We now use Lemma 2.6 to realize

R = −
M∑

m=1

A(D)ζ Q m(ζ )
[
η̄(x)

]
,

and

A−1 R = −ζ

(
M∑

m=1

Q m(ζ )
[
η̄(x)

])
.

In analogy with (26) we define

ψM(ζ ) := −
(

M∑
m=1

Q m(ζ )
[
η̄(x)

])

which gives rise to the equation

ζ = A−1 R
.

ψM(ζ )
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We set up the iteration

ζn+1 = A−1 R

ψM(ζn)
(30)

which we denote the “M-th Order Left Factorization” (M L)
method.

The design philosophy of the Picard method is also amenable
to higher order implementation. In fact, using the M-th order ap-
proximation of the DNO in (8), we can write:

Aζ Aη̄ =
(

G0,0 − ω2

g

)
η̄ +

M∑
m=2

G0,m(0, ζ )[η̄].

Setting up the natural iteration

ζn+1 = A−1[(G0,0 − ω2/g)η̄ + ∑M
m=2 G0,m(0, ζn)[η̄]]

Aη̄
(31)

we have the “M-th Order Picard” (M P) method.
We remark that it is not immediately obvious how to generalize

the Right Factorization scheme to arbitrary order. In fact a prelimi-
nary study of the terms G0,3 and G0,4, seems to indicate that such
a method may be impossible to conveniently formulate.

4. Numerical results

To completely specify any of the algorithms we have proposed
(Craig’s formula, ML, 2R, MP) we choose a Fourier collocation
method [4,11] for discretization at Nx collocation points with prod-
ucts evaluated via Fast Fourier transforms (FFTs). This method is
particularly appropriate not only due to the periodic boundary
conditions and the rapid rate of convergence of these schemes, but
also because these techniques are so amenable to the approxima-
tion of Fourier multipliers like A(D) and G0,m (see, e.g., [9,10,13,
14]).

To test the algorithms that we have outlined in Section 3 we
select a known profile for the bottom topography, insert this as an
input to the eigenvalue problem (8) (evaluated up to a high order
in expansion of the DNO), generate an eigenvalue/eigenfunction
pair (ω, η̄), and insert this as data into each of our algorithms (ML,
2R, MP). Clearly, the fact that we have an exact solution for this
data allows us to make very precise measurements of our error.

Regarding the profiles, we select two which we feel are repre-
sentative of reasonable bottom topography:

ζ (1)(x) = a sech(bx), (32a)

ζ (2)(x) = a
[
tanh

(
b(x + c)

) − tanh
(
b(x − c)

)]
. (32b)

The first, ζ (1) (depicted in Fig. 1), is a simple Gaussian while the
second, ζ (2) (pictured in Fig. 2), is meant to resemble a sandbar.
Both profiles are extended periodically, with period 2π , outside
the displayed interval [−π,π ]. The parameters a and b (for the
Gaussian profile) and a, b, and c (for the sandbar profile) can be
adjusted to alter the shape of the bottom topography and we will
test our methods with respect to change of these parameters. One
note before proceeding, the parameter a for ζ (1) does measure the
amplitude of the Gaussian topography, however, for ζ (2) the value
of a gives only about one half of the amplitude of the sandbar
profile.

To begin, we consider the Gaussian profile, (32a), with fixed
parameters a = 0.07, b = 2, and h = 0.6, and study the convergence
of five algorithms as the iteration order is increased for fixed Nx =
64. The five algorithms we consider are:

(1) Second-order Picard (2P),
(2) Second-order Left-Factored (2L),
(3) Second-order Right-Factored (2R),
Fig. 1. Plot of Gaussian profile, (32a), with a = 0.07, b = 2, and h = 0.6.

Fig. 2. Plot of sandbar profile, (32b), with a = 0.025, b = 2, c = 3π/5, and h = 0.6.

Fig. 3. Plot of convergence of five algorithms to the exact bottom topography
given by the Gaussian profile (32a). L∞-error is plotted versus iteration num-
ber. (2P: Second-order Picard method; 2L: Second-order Left-Factorization method;
2R: Second-order Right-Factorization method; 5P: Fifth-order Picard method;
5L: Fifth-order Left-Factorization method.)
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Fig. 4. Plot of self-convergence of five algorithms for bottom topography given
by the Gaussian profile (32a). L∞-difference is plotted versus iteration number.
(2P: Second-order Picard method; 2L: Second-order Left-Factorization method; 2R:
Second-order Right-Factorization method; 5P: Fifth-order Picard method; 5L: Fifth-
order Left-Factorization method.)

Fig. 5. Plot of convergence of five algorithms to the exact bottom topography
given by the Gaussian profile (32a). L∞-error is plotted versus Nx . (2P: Second-
order Picard method; 2L: Second-order Left-Factorization method; 2R: Second-order
Right-Factorization method; 5P: Fifth-order Picard method; 5L: Fifth-order Left-
Factorization method.)

(4) Fifth-order Picard (5P),
(5) Fifth-order Left-Factored (5L).

Before considering the details of the behavior of these five meth-
ods, we point out that all five do converge quite well with errors of
0.1% or even 0.01% once they are properly converged. Furthermore,
they all outperform the Craig formula since this, as we mentioned
earlier, is always used as the initial guess, and all methods improve
upon the first iteration step. It should be pointed out that none of
the methods converge beyond errors of about 10−4 as these are
all approximate algorithms. Additionally, the division algorithm we
discussed in Remark 2.2 is effectively a smoothing technique which
mollifies the recovered approximation thereby introducing extra
errors. Despite this, we find the performance of all algorithms to
be excellent while being extremely easy to implement.
Fig. 6. Plot of convergence of five algorithms to the exact bottom topography
given by the sandbar profile (32b). L∞-error is plotted versus iteration num-
ber. (2P: Second-order Picard method; 2L: Second-order Left-Factorization method;
2R: Second-order Right-Factorization method; 5P: Fifth-order Picard method;
5L: Fifth-order Left-Factorization method.)

Fig. 7. Plot of self-convergence of five algorithms for bottom topography given by the
sandbar profile (32b). L∞-difference is plotted versus iteration number. (2P: Second-
order Picard method; 2L: Second-order Left-Factorization method; 2R: Second-order
Right-Factorization method; 5P: Fifth-order Picard method; 5L: Fifth-order Left-
Factorization method.)

Considering the Gaussian profile, in Fig. 3 we study the con-
vergence in iteration order of these five methods to the exact
solution, while in Fig. 4 we display their self-convergence. As ex-
pected, Fig. 3 shows that the fifth-order algorithms outperform the
second-order methods, while algorithms of the same order per-
form similarly. We note also that nearly an order of magnitude of
additional accuracy can be realized by moving to one of the fifth-
order schemes. In Fig. 4 we notice that all methods self-converge
quite quickly, however, the left–factored methods and the fifth-
order Picard schemes seem to saturate with errors around 10−10

to 10−12; we do point out that this is well below the precision
any of these algorithms can hope to deliver. Finally, in Fig. 5 we
see that there is quite rapid convergence for all methods as Nx

is refined. In this plot the iteration order is chosen so that each
of the methods is properly converged (error approximately 10−10

or less). Not surprisingly, the fifth-order methods converge more
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Fig. 8. Plot of convergence of five algorithms to the exact bottom topography
given by the sandbar profile (32b). L∞-error is plotted versus Nx . (2P: Second-
order Picard method; 2L: Second-order Left-Factorization method; 2R: Second-order
Right-Factorization method; 5P: Fifth-order Picard method; 5L: Fifth-order Left-
Factorization method.)

Fig. 9. Plot of convergence of five algorithms to the exact bottom topography
given by the Gaussian profile (32a) with varying a. L∞-error is plotted versus a.
(2P: Second-order Picard method; 2L: Second-order Left-Factorization method;
2R: Second-order Right-Factorization method; 5P: Fifth-order Picard method;
5L: Fifth-order Left-Factorization method.)

quickly than the second-order while, again, methods of the same
order perform approximately the same.

These computations were repeated for the sandbar profile,
(32b), (with a = 0.025, b = 2, c = 3π/5, and h = 0.6) and the
results are shown in Figs. 6, 7 and 8. The conclusions that we
reached above are, for the most part, realized once again with only
slight variations in the particular details of the convergence. Gener-
ally, the higher order methods perform better while the difference
in capabilities among methods of the same order is negligible.

Having convinced ourselves that our new methods work ex-
tremely well for the topography parameter choices given above, we
set about testing the capabilities of our methods as these constants
are varied, even toward extreme values. In all of these experiments
we use, for the parameters not being varied, the following baseline
values:
Fig. 10. Plot of convergence of five algorithms to the exact bottom topography
given by the Gaussian profile (32a) with varying b. L∞-error is plotted versus
b. (2P: Second-order Picard method; 2L: Second-order Left-Factorization method;
2R: Second-order Right-Factorization method; 5P: Fifth-order Picard method;
5L: Fifth-order Left–Factorization method.)

Fig. 11. Plot of convergence of five algorithms to the exact bottom topography
given by the Gaussian profile (32a) with varying h. L∞-error is plotted versus
h. (2P: Second-order Picard method; 2L: Second-order Left-Factorization method;
2R: Second-order Right-Factorization method; 5P: Fifth-order Picard method;
5L: Fifth-order Left-Factorization method.)

(1) Gaussian profile: a = 0.07, b = 2, h = 0.6,
(2) Sandbar profile: a = 0.025, b = 2, c = 3π/5, h = 0.6.

To begin, we again focus upon the Gaussian profile, (32a) and
vary the parameters a, b, and h. In Fig. 9 we see the results of
our five methods as a is moved from just over 0.3 down towards
zero. All methods perform better as a is decreased, however, we
note that the two Picard methods do not converge over the entire
parameter range and that a must be sufficiently small for them
to work. In Fig. 10 we notice somewhat different behavior as b
is changed from 8.0 down towards zero; all of the methods seem
to work best near the middle of the range. Finally, in Fig. 11 we
move the location of the reference depth, h, and study our five
algorithms. For the most part all five perform uniformly well for
almost all values of h chosen (between 0.25 and 0.8) while there
is a precipitous divergence as h nears 0.8 which, presumably, is
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Fig. 12. Plot of convergence of five algorithms to the exact bottom topography
given by the sandbar profile (32b) with varying a. L∞-error is plotted versus a.
(2P: Second-order Picard method; 2L: Second-order Left-Factorization method;
2R: Second-order Right-Factorization method; 5P: Fifth-order Picard method;
5L: Fifth-order Left-Factorization method.)

Fig. 13. Plot of convergence of five algorithms to the exact bottom topography
given by the sandbar profile (32b) with varying b. L∞-error is plotted versus b.
(2P: Second-order Picard method; 2L: Second-order Left-Factorization method;
2R: Second-order Right-Factorization method; 5P: Fifth-order Picard method;
5L: Fifth-order Left-Factorization method.)

the value of the depth where one starts to enter the deep-water
regime.

Finally, we consider the sandbar profile, (32b) and change a, b,
c, and h. In Fig. 12 we change a from roughly 0.2 down to zero.
Again, all methods improve as a is decreased, but we point out
the rather limited range of applicability that the Picard schemes
possess. In Fig. 13 we vary the parameter b and notice that all
methods are quite comparable (though the fifth-order methods are
superior for a certain range) and work best for a moderate value
of b. The parameter c variation is depicted in Fig. 14 and here we
can see that the fifth-order methods are clearly superior. At last,
in Fig. 15 we show how the methods behave for different refer-
ence depths. Again, the performance is fairly uniform throughout
all depths with a marked deterioration as the value h = 0.8 is ap-
proached.
Fig. 14. Plot of convergence of five algorithms to the exact bottom topography
given by the sandbar profile (32b) with varying c. L∞-error is plotted versus c.
(2P: Second-order Picard method; 2L: Second-order Left-Factorization method;
2R: Second-order Right-Factorization method; 5P: Fifth-order Picard method;
5L: Fifth-order Left-Factorization method.)

Fig. 15. Plot of convergence of five algorithms to the exact bottom topography
given by the sandbar profile (32b) with varying h. L∞-error is plotted versus h.
(2P: Second-order Picard method; 2L: Second-order Left-Factorization method;
2R: Second-order Right-Factorization method; 5P: Fifth-order Picard method;
5L: Fifth-order Left-Factorization method.)

5. Conclusion

In this paper we have proposed three families of generaliza-
tions to the Craig formula for recovering bottom topography from
surface water wave measurements. We have found all to be rel-
atively easy to implement with a Fourier collocation method, all
extremely rapid in execution, and all superior to the formula of
Craig in terms of accuracy. The simulations of Section 4 show that
these methods are highly accurate and that additional accuracy
can be realized by use of higher order versions of our formulas.
At present these algorithms are not well-suited for direct applica-
tion to open-ocean measurements as standing waves are difficult
to extract from generic wavefield data. It is an ongoing project of
the authors to devise new methods to glean this information from
“real world” data.
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