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Abstract
The scattering of linear acoustic radiation by a periodic layered structure
is a fundamental model in the geosciences as it closely approximates the
propagation of pressure waves in the earth’s crust. In this contribution, the
authors describe new algorithms for (1) the forward problem of prescribing
incident radiation and, given the known structure, determining the scattered
field, and (2) the inverse problem of approximating the form of the structure
given prescribed incident radiation and measured scattered data. Each of these
algorithms is based upon a novel statement of the problem in terms of boundary
integral operators (Dirichlet–Neumann operators), and a boundary perturbation
algorithm (the method of operator expansions) for their evaluation. Detailed
formulas and numerical simulations are presented to demonstrate the utility of
these new approaches.

1. Introduction

The interior of the earth’s crust can effectively be modeled as a layered media: largely
homogeneous blocks of material separated by sharp interfaces across which material properties
change discontinuously. With such a model in mind, one can pose two important and related
questions. (1) Given the knowledge of the material properties of the layers and the shapes
of the interfaces, can one compute scattering returns from such a structure given incident
radiation? (2) Specifying incident radiation and measuring scattered waves, can one deduce
information about material properties and interface shapes within the layered media? In this
paper, we take up both questions (the ‘forward’ problem (1) and the ‘inverse’ problem (2))
and propose novel algorithms for each. These algorithms are based upon a new formulation
of the problem in terms of Dirichlet–Neumann operators (DNOs), and convenient boundary
perturbation (BP) formulas for their simulation.
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Unsurprisingly, the full complement of classical numerical methods have been brought
to bear upon both the forward and inverse problems we mention above. The finite difference
method (FDM) [MRE07, Pra90], finite element method (FEM) [Zie77, KFI04] and spectral
element method (SEM) [KT02a, KT02b] have been implemented but suffer from the fact that
they discretize the full volume of the model incurring significant cost, and the difficulty of
faithful enforcement of far-field boundary conditions. A compelling alternative are surface
methods [SSPRCP89, Bou03] (e.g. boundary integral methods or boundary element methods)
which only require a discretization of the layer interfaces (rather than the whole structure) and
which, due to the choice of Green’s function, enforce the far-field boundary condition exactly.
However, these methods, while capable of delivering high-accuracy solutions, must not only
utilize specially designed quadrature rules which respect the singularities in Green’s function,
but also generate a dense system of linear equations to be solved which require carefully
designed preconditioned iterative methods (with accelerated matrix-vector products, e.g., by
the fast-multipole method [GR87]).

The literature on methods for the inverse problem is as vast as that for the forward problem,
occupying hundreds of books and thousands of papers (the text of Colton and Kress [CK98]
is an excellent starting point). Interestingly, most of the work has concerned the bounded-
obstacle problem, but for the recovery of interface shapes in layered media we point out
some recent work based upon classical integral formulations and the solution of the resulting
(nonlinear and ill–conditioned) equations [KT00, AKY06, CG11]. For a more extensive
review, we refer the interested reader to the bibliographies of these.

Here we propose a boundary perturbation method for both the forward and inverse
problems for irregularly shaped periodic layered media. Like boundary integral/equation
methods, our approach requires only the discretization of the layer interfaces while it avoids
not only the need for specialized quadrature rules but also the solution of dense linear systems.
Our approach is a generalization of the ‘method of operator expansions’ (OE) of Milder
[Mil91a, Mil91b, MS91, MS92, Mil96b, Mil96a] which we use precisely because the
interface shapes appear so explicitly in these formulations making them particularly appealing
for the development of an inversion algorithm. For a generalization of the closely related
‘method of field expansions’ (FE) described by Bruno and Reitich [BR92, BR93a, BR93b,
BR93c] for dielectric structures with multiple layers (denoted there the ‘method of variation
of boundaries’), we refer the interested reader to the authors’ recent publication [MN11].

As with the OE method as it was originally designed by Milder, our new approach is
spectrally accurate (i.e. has convergence rates faster than any polynomial order) due to both
the analyticity of the scattered fields with respect to boundary perturbation and the optimal
choice of spatial basis functions which arise naturally in the methodology. Our inversion
strategy is inspired by the work of Nicholls and Taber [NT08, NT09] on the recovery of
topography shape under a layer of an ideal fluid (e.g. the ocean) which also uses the explicit
nature of the OE formulas to great effect.

The organization of the paper is as follows. In section 2, we recall the governing equations.
In section 3, we discuss considerations of the forward problem, including a new algorithm for
the forward problem (section 3.1) and formulas for Taylor series coefficients of the relevant
boundary operators (sections 3.2, 3.3 and 3.4). We also present the exact formula in the flat
interface case (section 3.5) and a representative numerical result for a non-trivial interface
(section 3.6). In section 4, we outline our new methods for solving the inverse problem,
including both an iteration-free (linear) algorithm (section 4.1) and an iterative (nonlinear)
method (section 4.2); numerical results are presented in section 4.3.

2



Inverse Problems 27 (2011) 095009 A Malcolm and D P Nicholls

0 1 2 3 4 5 6

−1.5

−1

−0.5

0

0.5

1

1.5

y = g(x)

v = v(x, y)

u = u(x, y)

x

y

Figure 1. Problem configuration with a layer boundary (solid line); here, g(x) = 0.2 exp(cos(2x)).

2. Governing equations

It is well known that the (reduced) scattered pressure inside a d-periodic structure satisfies
the Helmholtz equation with illumination conditions at the interface, and outgoing wave
conditions at positive and negative infinity. More precisely, we define the domains

Su = {(x, y) | y > g(x)} , Sv = {(x, y) | y < g(x)} , g(x + d) = g(x)

with the (upward pointing) normal

N = (−∂xg, 1)T ;
see figure 1.

Both domains are constant-density acoustic media with velocities cj (j = u, v); we
assume that plane-wave radiation of wavenumber (α,−β) = (α,−βu) is incident upon the
structure from above:

u(x, y, t) = e−iωt ei(αx−βuy) = e−iωtui(x, y). (2.1)

With these specifications, we can define in each layer the parameter kj = ω/cj which
characterizes both the properties of the material and the frequency of radiation in the structure.
If the reduced scattered fields (i.e. the full scattered fields with the periodic time dependence
factored out) in Su and Sv are respectively denoted {u, v} = {u(x, y), v(x, y)}, then these
functions will be quasiperiodic [Pet80]

u(x + d, y) = eiαdu(x, y), v(x + d, y) = eiαdv(x, y),

and the system of partial differential equations to be solved are

�u + k2
uu = 0 y > g(x) (2.2a)

B{u} = 0 y → ∞ (2.2b)

�v + k2
vv = 0 y < g(x) (2.2c)

B{v} = 0 y → −∞ (2.2d)
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u − v = ζ, ∂N(u − v) = ψ y = g(x), (2.2e)

where

ζ(x) := −ui(x, g(x)) = −ei(αx−βug(x)) (2.2f )

ψ(x) := − [∂Nui(x, y)]y=g(x) = (iβu + iα(∂xg)) ei(αx−βug(x)). (2.2g)

In these equations, the operator B enforces the condition that scattered solutions must
either be ‘outgoing’ (upward in Su and downward in Sv) if they are propagating, or ‘decaying’
if they are evanescent. We make this ‘outgoing wave condition’ (OWC) [Pet80] more precise
in the Fourier series expression for the exact solution, see (2.3) below.

The quasiperiodic solutions of the Helmholtz equations—(2.2a) and (2.2c)—and the
OWCs—(2.2b) and (2.2d)—are given by [Pet80]

u(x, y) =
∞∑

p=−∞
ap exp(i(αpx + βu,py)) (2.3a)

v(x, y) =
∞∑

p=−∞
bp exp(i(αpx − βv,py)), (2.3b)

where the OWC mandates that we choose the positive sign in front of βu,p in (2.3a) and the
negative sign in front of βv,p in (2.3b). These formulas are valid provided that (x, y) are
outside the grooves, i.e.

(x, y) ∈ {y > |g|L∞} ∪ {y < − |g|L∞}.
In these equations

αp = α + (2π/d)p, βj,p =
⎧⎨
⎩

√
k2
j − α2

p α2
p < k2

j

i
√

α2
p − k2

j α2
p > k2

j

, (2.4)

where j = u, v and d is the period of the structure. Again, the OWC determines the choice of
sign for βj,p in the evanescent case α2

p > k2
j .

3. Forward problem

For the forward problem, we specify the grating g(x) and the Dirichlet and Neumann data
from the incident radiation: ζ(x) and ψ(x). From this we should produce the scattered fields
u(x, y) and v(x, y). However, it is not difficult to deduce that if we recover the Dirichlet and
Neumann traces of u and v

U(x) := u(x, g(x)), V (x) := v(x, g(x)),

U ′(x) := (∂Nu)(x, g(x)), V ′(x) := (∂Nv)(x, g(x)),

then integral formulas will give us u and v everywhere.
Furthermore, if we define the Dirichlet–Neumann operators (DNOs) as

G(g)[U(x)] := U ′(x), H(g)[V (x)] := V ′(x),

then it suffices to find simply the Dirichlet traces U and V. As the DNOs encapsulate the
solution of the Helmholtz equations and the OWCs, it is not difficult to see that (2.2) are
equivalent to the surface equations
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U − V = ζ (3.1a)

G[U ] − H [V ] = ψ. (3.1b)

This can be simplified in a number of ways, but one which is convenient for our current
purposes uses the first equation to solve for V, V = U − ζ , which is then inserted into the
second equation yielding

(G − H)[U ] = ψ − H [ζ ]. (3.2)

As the boundary quantity U will be inconvenient or impossible to recover, we note that an
alternative quantity to recover is the ‘far-field’ data

ũ(x) := u(x, a)

for some a > |g|L∞ . We point out that there is some ambiguity in the term ‘far-field’ as
some authors use this to characterize the propagating modes solely, whereas we use it to
mean ‘away’ from the grating (where the evanescent modes will have exponentially small, but
nonzero effect). As we comment later (section 3.3), the location of the far-field hyperplane
y = a has a strong influence on the behavior of our inversion algorithm. This value encodes
the inherent ill-posedness of our recovery scheme and as a increases, the accuracy of our
method deteriorates rather rapidly.

If we define the ‘backward propagator’ L by

L(g)[ũ(x)] := U(x),

then we can replace (3.2) with

(G − H)[L[ũ]] = ψ − H [ζ ], (3.3)

or, for use with our inversion algorithms,

0 = Q(g)[ũ] := (G − H)[L[ũ]] − ψ + H [ζ ]. (3.4)

3.1. A new algorithm for the forward problem

We propose a perturbative approach to the solution of (3.3) based upon the assumption
g(x) = εf (x) where, a priori, ε is assumed small. If this is the case, then it can be shown that
the data {ζ, ψ} and operators {G,H,L} depend analytically upon ε so that

ζ = ζ(x; ε) =
∞∑

n=0

ζn(x)εn, ψ = ψ(x; ε) =
∞∑

n=0

ψn(x)εn,

G = G(εf ) =
∞∑

n=0

Gn(f )εn, H = H(εf ) =
∞∑

n=0

Hn(f )εn,

L = L(εf ) =
∞∑

n=0

Ln(f )εn,

and we assume

ũ = ũ(x; ε) =
∞∑

n=0

ũnε
n.

A rigorous justification for these expansions can be found in the work of Coifman and Meyer
[CM85], Craig et al [CSS97], and the authors (in collaboration with Reitich and Hu) [NR01,
NR03, NR04b, HN05, HN10]. Inserting this into (3.3), we see that( ∞∑

n=0

εn(Gn − Hn)

) [( ∞∑
s=0

εsLs

) [ ∞∑
m=0

ũmεm

]]
=

∞∑
n=0

ψnε
n −

( ∞∑
n=0

εnHn

) [ ∞∑
m=0

ζmεm

]
.
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At order O(ε0),

ũ0 = L−1
0 [(G0 − H0)

−1[ψ0 − H0[ζ0]]], (3.5)

while at order O(εn),

n∑
s=0

s∑
m=0

(Gn−s − Hn−s) [Ls−m [ũm]] = ψn −
n∑

m=0

Hn−m [ζm] .

Solving for ũn,

ũn = L−1
0 (G0 − H0)

−1

{
ψn −

n∑
m=0

Hn−m [ζm] −
n−1∑
s=0

s∑
m=0

(Gn−s − Hn−s) [Ls−m [ũm]]

−
n−1∑
m=0

(G0 − H0) [Ln−m [ũm]]

}
. (3.6)

Note that at every perturbation order in this approach, we repeatedly invert the common
operator (G0−H0)L0 which is, in Fourier space, diagonal and can, therefore, be accomplished
very rapidly.

3.2. Expansions: surface data

The key to both our forward and inverse algorithms are convenient, high order formulas for
the functions ζn and ψn, and the operators Gn, Hn and Ln. We begin with ζ :

ζ(x; ε) = −ei(αx−βuεf (x)) = −eiαx

∞∑
n=0

Fn(x)(−iβu)
nεn,

where Fn(x) := f (x)n/n!. Thus,

ζn = −eiαxFn(x)(−iβu)
n. (3.7)

Similarly, for ψ we have

ψ(x) = (iβu + iαε(∂xf )) ei(αx−βuεf (x))

= eiαx

(
iβu

∞∑
n=0

Fn(x)(−iβu)
nεn + iαε(∂xf )

∞∑
n=0

Fn(x)(−iβu)
nεn

)
.

So

ψn = eiαx(−Fn(x)(−iβu)
n+1 + (∂xf )Fn−1(x)(iα)(−iβu)

n−1). (3.8)

3.3. Expansions: backward propagator operator

The operators {L,G,H } are a bit more involved and we will use the method of ‘operator
expansions’ (OE) [Mil91a, CS93, NR04a] to find the action of {Ln,Gn,Hn} on a Fourier basis
function which, of course, leads to its action on any L2 function. To begin, we consider the
operator L which maps the far-field data ũ to the surface data U. The function

up(x, y) = ei(αpx+βu,p(y−a))

satisfies Helmholtz’s equation and the outgoing wave condition in the upper material. We can
insert this into the definition of the operator L giving

L(g)[up(x, a)] = up(x, g(x))

6
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or

L(g)[eiαpx] = ei(αpx+βu,p(g(x)−a)).

Setting g(x) = εf (x), and expanding L and the exponential in the Taylor series reveals( ∞∑
n=0

εnLn(f )

)
[eiαpx] = eiαpxe−iβu,pa

∞∑
n=0

Fn(x)(iβu,p)nεn.

At order O(ε0), we discover

L0[eiαpx] = e−iβu,pa eiαpx = e−iβu,Da eiαpx,

where we have introduced a Fourier multiplier

m(D)[ξ(x)] :=
∞∑

p=−∞
m(p)ξ̂p eiαpx.

Using the fact that any α-quasiperiodic L2 function can be expressed via its Fourier series, we
deduce that

L0[ξ ] = e−iβu,Daξ =
∞∑

p=−∞
e−iβu,pa ξ̂p eiαpx.

At order O(εn) we find

Ln(f )[eiαpx] = eiαpxe−iβu,paFn(x)(iβu,p)n = Fn(x) e−iβu,Da(iβu,D)n eiαpx,

so that

Ln(f )[ξ ] = Fn(x) e−iβu,Da(iβu,D)nξ = Fn(x)L0(iβu,D)nξ = Fn(x)(iβu,D)nL0ξ. (3.9)

Remark. We will soon introduce an inversion algorithm for the interface shape g based upon
the formulas presented in these sections. A fundamental feature of such problems is severe
ill-posedness and we point out that this is reflected in the operator L0. For p corresponding to
propagating waves (p sufficiently small), we have chosen βu,p real so that the Fourier multiplier
exp(−iβu,pa) is of modulus one. However, for p corresponding to evanescent modes (p large),
βu,p is purely imaginary with a positive imaginary part, cf (2.4). Therefore, while the operator
L−1

0 , which factors into the forward solve (see (3.5)), is exponentially smoothing, the operator
L0 amplifies Fourier coefficients of large index exponentially.

3.4. Expansions: Dirichlet–Neumann operators

Consider now the DNO G which maps the surface Dirichlet data U to the surface normal
derivative U ′. We now (slightly) redefine the function

up(x, y) = ei(αpx+βu,py)

which again satisfies Helmholtz’s equation and the outgoing wave condition in the upper
material. We can insert this into the definition of the operator G giving

G(g)
[
up(x, g(x))

] = (∂yup)(x, g(x)) − (∂xg)(∂xup)(x, g(x)),

or

G(g)
[
ei(αpx+βu,pg(x))

] = (
iβu,p − (∂xg)iαp

)
ei(αpx+βu,pg(x)).

7
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Again setting g(x) = εf (x), and expanding G and the exponentials in the Taylor series gives( ∞∑
n=0

εnGn(f )

)[
eiαpx

∞∑
m=0

Fm(x)(iβu,p)mεm

]
= iβu,p eiαpx

∞∑
n=0

Fn(x)(iβu,p)nεn

− ε(∂xf )(iαp) eiαpx

∞∑
n=0

Fn(x)(iβu,p)nεn.

At order O(ε0), we find

G0[eiαpx] = (iβu,p) eiαpx = (iβu,D) eiαpx

or

G0[ξ ] = (iβu,D)ξ.

At order O(εn), we obtain
n∑

m=0

Gm[Fn−m(iβu,p)n−m eiαpx] = Fn(x)(iβu,p)n+1 eiαpx − (∂xf )Fn−1(x)(iαp)(iβu,p)n−1 eiαpx

or

Gn[eiαpx] = {Fn(x)(iβu,p)2 − (∂xf )Fn−1(x)(iαp)}(iβu,p)n−1 eiαpx

−
n−1∑
m=0

Gm[Fn−m(iβu,p)n−m eiαpx].

Since

α2
p + β2

u,p = k2
u

we have

(iαp)2 + (iβu,p)2 = −k2
u

and

(iβu,p)2 = −k2
u − (iαp)2.

Thus,

Gn[eiαpx] = {−k2
uFn(x) − Fn(x)(iαp)2 − (∂xf )Fn−1(x)(iαp)

}
(iβu,p)n−1 eiαpx

−
n−1∑
m=0

Gm[Fn−m(iβu,p)n−m eiαpx]

= −k2
uFn(x)(iβu,D)n−1 eiαpx − ∂x[Fn(x)∂x(iβu,D)n−1 eiαpx]

−
n−1∑
m=0

Gm[Fn−m(iβu,D)n−m eiαpx],

where we have used

∂x eiαpx = (iαp) eiαpx.

Finally,

Gn[ξ ] = −k2
uFn(x)(iβu,D)n−1ξ − ∂x[Fn(x)∂x(iβu,D)n−1ξ ] −

n−1∑
m=0

Gm[Fn−m(iβu,D)n−mξ ].

(3.10)

8
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In particular, for use in section 4.1,

G1[ξ ] = −k2
uf ξ − ∂x[f ∂xξ ] − G0[f (iβu,D)ξ ]

= −k2
uf ξ − ∂x[f ∂xξ ] − G0[f G0ξ ].

In an exactly analogous fashion, consider the DNO H which maps the surface Dirichlet
data V to the surface normal derivative V ′. Specify the function

vp(x, y) = ei(αpx−βv,py)

which satisfies Helmholtz’s equation and the outgoing wave condition in the lower material.
We can insert this into the definition of the operator H giving

H(g)[vp(x, g(x))] = (∂yvp)(x, g(x)) − (∂xg)(∂xvp)(x, g(x))

or

H(g)[ei(αpx−βv,pg(x))] = (−iβv,p − (∂xg)iαp) ei(αpx−βv,pg(x)).

Once again setting g(x) = εf (x), and expanding H and the exponentials in the Taylor series
gives( ∞∑

n=0

εnHn(f )

)[
eiαpx

∞∑
m=0

Fm(x)(−iβv,p)mεm

]
= −iβv,p eiαpx

∞∑
n=0

Fn(x)(−iβv,p)nεn

− ε(∂xf )(iαp) eiαpx

∞∑
n=0

Fn(x)(−iβv,p)nεn.

At order O(ε0) we find

H0[eiαpx] = −(iβv,p) eiαpx = −(iβv,D) eiαpx

or

H0[ξ ] = −(iβv,D)ξ.

At order O(εn), we obtain
n∑

m=0

Hm[Fn−m(−iβv,p)n−m eiαpx] = Fn(x)(−iβv,p)n+1 eiαpx

− (∂xf )Fn−1(x)(iαp)(−iβv,p)n−1 eiαpx

or

Hn[eiαpx] = {Fn(x)(−iβv,p)2 − (∂xf )Fn−1(x)(iαp)}(−iβv,p)n−1 eiαpx

−
n−1∑
m=0

Hm[Fn−m(−iβv,p)n−m eiαpx].

As before

(−iβv,p)2 = −k2
v − (−iαp)2 = −k2

v − (iαp)2.

Thus,

Hn[eiαpx] = {−k2
vFn(x) − Fn(x)(iαp)2 − (∂xf )Fn−1(x)(iαp)

}
(−iβv,p)n−1 eiαpx

−
n−1∑
m=0

Hm[Fn−m(−iβv,p)n−m eiαpx]

= −k2
vFn(x)(−iβv,D)n−1 eiαpx − ∂x[Fn(x)∂x(−iβv,D)n−1 eiαpx]

−
n−1∑
m=0

Hm[Fn−m(−iβv,D)n−m eiαpx].

9
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Finally,

Hn[ξ ] = −k2
vFn(x)(−iβv,D)n−1ξ − ∂x[Fn(x)∂x(−iβv,D)n−1ξ ]

−
n−1∑
m=0

Hm[Fn−m(−iβv,D)n−mξ ]. (3.11)

In particular, again for the use in section 4.1,

H1[ξ ] = −k2
vf ξ − ∂x[f ∂xξ ] − H0[f (−iβv,D)ξ ]

= −k2
vf ξ − ∂x[f ∂xξ ] − H0[f H0ξ ].

3.5. Forward solve: flat interface

With formulas for the operators now in place we can utilize formulas (3.5) and (3.6) to find
approximations to the ũn and form

ũN (x; ε) :=
N∑

n=0

ũn(x)εn. (3.12)

Before beginning we point out that the relevant Fourier multipliers (e.g. iβv,D) have a
particularly simple action on the single mode eiαx . For example, since

eiαx =
∞∑

p=−∞
dp eiαpx, dp =

{
1 p = 0
0 p �= 0

,

we have

iβv,D[eiαx] = iβv,D

[ ∞∑
p=−∞

dp eiαpx

]
=

∞∑
p=−∞

(iβv,p)dp eiαpx = iβv eiαx.

Returning to our solution algorithm, (3.5) can now be written as

ũ0 = eiβu,Da[(iβu,D + iβv,D)−1[(iβu) eiαx + iβv,D[−eiαx]]

= eiβu,Da[(iβu,D + iβv,D)−1[(iβu − iβv)] eiαx]

= eiβu,Da

[
(iβu − iβv)

(iβu + iβv)
eiαx

]

= eiβua
(iβu − iβv)

(iβu + iβv)
eiαx, (3.13)

which is, of course, the exact solution in the flat interface (ε = 0) case and recovers the
plane-wave reflection coefficients.

Remark. We note that in this simple flat-interface case

ψ0 = G0[ζ0]

so that (3.5) simplifies to

ũ0 = L−1
0 [(G0 − H0)

−1[(G0 − H0)[ζ0]]] = L−1
0 [ζ0]

as expected.

Remark. We point out here that this formula can also be used as a very primitive inverse
problem solver. If we specify the incident radiation (in particular βu) and measure the far-field
pattern ũ0 at the known plane y = a, then (3.13) can be solved for βv which gives very rough

10
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Table 1. Absolute and relative L∞ errors in approximation of the far-field pattern ũ at a = 1.
Physical parameters: α = 0.1, βu = 1.1, βv = 5.5, d = 2π , a = 1; numerical parameter:
Nx = 32.

N Absolute L∞ error Relative L∞ error

0 0.000 196 114 0.000 294 154
1 4.518 06 × 10−8 6.776 71 × 10−8

2 3.228 02 × 10−10 4.841 76 × 10−10

3 3.282 69 × 10−10 4.923 77 × 10−10

4 3.2827 × 10−10 4.923 77 × 10−10

material properties of the lower layer. Note that (3.13) demands that ũ0 have the rather trivial
Fourier series

ũ0(x) = ũ0,0 eiα,

but, given this, one can use (3.13) to deduce that

βv = βu

(
eiβua − ũ0,0

eiβua + ũ0,0

)
. (3.14)

3.6. Numerical results for a general interface

To briefly test this new algorithm for the forward problem we select a configuration with
physical parameters

α = 0.1, βu = 1.1, βv = 5.5,

cf (2.2f ) and (2.2g) with a d = 2π -periodic layer interface shaped by

g(x) = εf (x) = ε ecos(2x),

and ‘far-field’ ũ at a = 1. To compute an ‘exact solution’, we utilize the method of
field expansions (FE) [BR93a] as implemented by the authors in the recent publication
[MN11]. While the methods are related (both are spectral collocation boundary perturbation
approaches), they are not identical and one provides an excellent test for the other. For
the configuration mentioned above and ε = 0.0001, we performed a numerical simulation
using the FE approach with Nx = 128 collocation points and N = 40 Taylor orders (Taylor
summation was used); please see [MN11] for more details regarding the algorithm and these
parameters.

In table 1, we present results of a numerical implementation of (3.5) and (3.6) to deliver
(3.12), reporting perturbation order versus absolute and relative errors. Here we note the
very stable and rapid (exponential) convergence of our numerical approximation to the ‘exact
solution’ provided by the FE method.

4. Inverse problem

Our real goal in this paper is to devise a technique for recovering the layer interface, g(x),
from surface measurements. In this initial contribution, we propose as given data the incident
radiation:

ui(x, y) = eiαx−iβuy

(which includes the material properties of the upper layer through βu) the ‘far-field pattern’
ũ(x) at all values of x, and the most basic material properties of the lower layer βv (which we
assume can be recovered from (3.14) or some other method).

11
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4.1. Iteration-free linear model

With these constraints in mind, consider the forward problem (3.4) and suppose that the
unknown interface can be expressed as g(x) = εf (x). In this case, we have

(G0 + εG1 − H0 − εH1)[(L0 + εL1)[ũ]] − ψ0 − εψ1 + (H0 + εH1)[ζ0 + εζ1] = O(ε2).

More precisely, and making the f dependence explicit, we have

(G0 − H0)L0[ũ] + ε(G0 − H0)L1(f )[ũ] + ε(G1(f ) − H1(f ))L0[ũ]

−ψ0 − εψ1(f ) + H0[ζ0] + εH1(f )[ζ0] + εH0[ζ1(f )] = O(ε2).

For a first algorithm, we ignore theO(ε2) terms and gather theO(1) andO(ε) terms separately:

Q0(ũ) + εQ1(ũ)[f ] = 0, (4.1a)

where

Q0(ũ) := (G0 − H0)L0[ũ] − ψ0 + H0[ζ0] (4.1b)

Q1(ũ)[f ] := (G0 − H0)L1(f )[ũ] + (G1(f ) − H1(f ))L0[ũ] − ψ1(f )

+ H1(f )[ζ0] + H0[ζ1(f )]. (4.1c)

The operator Q1(·)[ũ] is linear in f , though in a rather implicit way, and we propose the
following solution formula:

g̃ = −{Q1(·)[ũ]}−1 Q0[ũ], (4.2)

where g̃ ≈ g. Note that this approach is ‘linear’ (i.e. terms of order 2 and higher were ignored)
and the unique solution can be found rather directly (without iteration) by simply inverting the
linear operator (represented as a matrix in a numerical simulation), Q1(·)(ũ).

Remark. As we mentioned earlier (section 3.3), the operators L0 and L1 = f (iβu,D)L0, (3.9),
are ill-conditioned resulting in potentially unstable numerics. However, such ill-conditioning
is a standard feature of inverse problems [CK98] and it is to be expected in such algorithms.

4.2. Iterative nonlinear model

To devise a second, and hopefully more accurate approach, we return to the forward problem
(3.4) and again suppose that the unknown interface can be expressed as g(x) = εf (x). Now,

Q0(ũ) + εQ1(ũ)[f ] +
N∑

n=2

εnQn(ũ, f ) = O(εN+1), (4.3)

where

Qn(ũ, f ) =
n∑

m=0

(Gn−m(f ) − Hn−m(f )) [Lm(f ) [ũ]] − ψn(f ) +
n∑

m=0

Hn−m(f ) [ζm(f )] .

A natural algorithm which suggests itself is to combine the higher accuracy of the expansion
(4.3) for N > 1 with the ease of inversion of (4.2); thus, we drop the O(εN+1) term in (4.3),
mark the linear (in ε) term with iteration number k + 1, and all other terms with iteration
number k resulting in the Picard iteration [BF97, AH01]

g̃k+1 = −{Q1(·)[ũ]}−1

[
Q0[ũ] +

N∑
n=2

Qn(ũ, g̃k)

]
. (4.4)

12
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Table 2. Absolute and relative L∞ errors in approximation of the analytic profile y = ε ecos(2x),
(4.5), using the exact linear model, (4.2), for reconstruction. Physical parameters: α = 0, βu = 1.1,
βv = 5.5, d = 2π , a = 1; numerical parameters: Nx = 32, Nforward = 10.

ε Absolute L∞ error Relative L∞ error

0.001 3.403 41 × 10−6 0.001 252 05
0.002 1.354 04 × 10−5 0.002 490 62
0.003 3.029 75 × 10−5 0.003 715 28
0.004 5.357 26 × 10−5 0.004 927 06
0.005 8.326 29 × 10−5 0.006 126 14
0.006 0.000 119 28 0.007 313 42
0.007 0.000 161 528 0.008 489
0.008 0.000 209 926 0.009 653 43
0.009 0.000 264 389 0.010 807
0.01 0.000 324 838 0.011 9501

Table 3. Absolute and relative L∞ errors in approximation of the analytic profile y = ε ecos(2x),
(4.5), using the nonlinear model, (4.4), for reconstruction. Physical parameters: α = 0, βu = 1.1,
βv = 5.5, d = 2π , a = 1; numerical parameters: Nx = 32, Nforward = 10, τ = 10−8, Ninverse = 4.

ε Number of iterations Absolute L∞ error Relative L∞ error

0.001 4 1.219 23 × 10−9 4.485 31 × 10−7

0.002 5 1.053 61 × 10−9 1.938 × 10−7

0.003 6 1.506 81 × 10−9 1.847 75 × 10−7

0.004 7 3.999 85 × 10−9 3.678 65 × 10−7

0.005 8 7.419 19 × 10−9 5.458 73 × 10−7

0.006 9 2.035 56 × 10−8 1.248 07 × 10−6

0.007 10 4.269 12 × 10−8 2.2436 × 10−6

0.008 11 8.298 94 × 10−8 3.816 26 × 10−6

0.009 12 1.501 13 × 10−7 6.135 94 × 10−6

0.01 13 2.565 47 × 10−7 9.437 82 × 10−6

Note that in the case N = 1, this becomes our linear algorithm (4.2). However, in
contrast with (4.2), this new method is ‘nonlinear’ (as we now retain quadratic and higher
terms) and requires an iteration scheme for its solution. As with any iterative scheme it is of
paramount importance to select a good initial guess. For this, we recommend using the linear
approximation (4.2)

g̃0 = −{Q1(·)[ũ]}−1 Q0[ũ].

4.3. Results

We now demonstrate the capabilities of our new algorithms with a sequence of numerical
studies. To begin, we consider the analytic and d = 2π -periodic profile

g(x) = ε ecos(2x) (4.5)

(see figure 1) as the shape of the interface between two materials with ku = 1.1 and kv = 5.5.
Utilizing our algorithm for the forward problem, (3.6), we generate a far-field pattern ũ (with
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Figure 2. Problem configuration with layer boundary (solid line); here g(x) = 0.2sech(2(x −π)).

Table 4. Absolute and relative L∞ errors in approximation of the Gaussian profile y = ε sech(bx)

(b = 2), (4.6), using the exact linear model, (4.2), for reconstruction. Physical parameters:
α = 0.2, βu = 1.3, βv = 6.8, d = 2π , a = 1; numerical parameters: Nx = 32, Nforward = 10.

ε Absolute L∞ error Relative L∞ error

0.001 3.592 24 × 10−7 0.000 359 224
0.002 1.434 28 × 10−6 0.000 717 14
0.003 3.221 59 × 10−6 0.001 073 86
0.004 5.717 94 × 10−6 0.001 429 49
0.005 8.921 24 × 10−6 0.001 784 25
0.006 1.282 65 × 10−5 0.002 137 76
0.007 1.743 17 × 10−5 0.002 490 24
0.008 2.2733 × 10−5 0.002 841 63
0.009 2.872 92 × 10−5 0.003 192 13
0.01 3.541 61 × 10−5 0.003 541 61

Nx = 32 equally spaced grid points and N = Nforward = 10 Taylor orders). Using the ‘linear
model’ (4.2), we produce the approximation g̃0 and in table 2 report on the absolute and
relative supremum norm errors in the recovery of g for various values of ε. We note the
rapid rate of convergence as ε → 0 which is repeated for all of the profiles considered here.
Additionally, we use the nonlinear iterative approach (4.4) to approximate g (with initial guess
g̃0, N = Ninverse = 4, and tolerance τ = 10−8 for the iteration) and display these absolute and
relative errors in table 3. In these, we see not only the rapid and stable convergence of both
of our new approaches to the specified boundary shape g(x) but also the highly advantageous
nature of the nonlinear iteration scheme which can generate three to four more digits of
accuracy with only a modest (4–13) number of iterations.

We now move on to two other profiles, one meant to resemble a Gaussian pulse

gG(x) = ε sech(b(x − d/2)) (4.6)
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Figure 3. Problem configuration with layer boundary (solid line); here g(x) =
0.2 [tanh(2((x − π) + 3π/5)) − tanh(2(x − π) − 3π/5))].

Table 5. Absolute and relative L∞ errors in approximation of the Gaussian profile y = ε sech(bx)

(b = 2), (4.6), using the nonlinear model, (4.4), for reconstruction. Physical parameters: α = 0.2,
βu = 1.3, βv = 6.8, d = 2π , a = 1; numerical parameters: Nx = 32, Nforward = 10, τ = 10−8,
Ninverse = 4.

ε Number of iterations Absolute L∞ error Relative L∞ error

0.001 3 5.693 07 × 10−10 5.693 07 × 10−7

0.002 4 5.209 79 × 10−10 2.6049 × 10−7

0.003 4 5.9729 × 10−10 1.990 97 × 10−7

0.004 5 4.019 66 × 10−10 1.004 92 × 10−7

0.005 5 8.179 42 × 10−10 1.635 88 × 10−7

0.006 5 6.833 63 × 10−10 1.138 94 × 10−7

0.007 6 6.816 67 × 10−10 9.738 11 × 10−8

0.008 6 5.429 17 × 10−10 6.786 46 × 10−8

0.009 6 1.056 07 × 10−9 1.173 41 × 10−7

0.01 7 2.168 23 × 10−9 2.168 23 × 10−7

and another meant to model a smoothed bar

gB(x) = ε [tanh(b((x − d/2) + c)) − tanh(b(x − (d/2) − c))] ; (4.7)

see figures 2 and 3.
For these interfaces, we select α = 0.2 and materials such that βu = 1.3 and βv = 6.8

(so that ku ≈ 1.3153 and kv ≈ 6.8029). Once again we produce a far-field pattern using our
forward algorithm, (3.6), with Nx = 32 equally spaced grid points and Nforward = 10 Taylor
orders. With the ‘linear model’ (4.2) we produce the approximation g̃0 and in tables 4 and
6 report on the absolute and relative supremum norm errors in the recovery of gG and gB,
respectively. Additionally, we use the nonlinear iterative approach (4.4) to approximate gG

and gB (with initial guess g̃0, degree of nonlinearity Ninverse = 4 and tolerance τ = 10−8) and
display these absolute and relative errors in tables 5 and 7. As with the analytic profile above,
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Table 6. Absolute and relative L∞ errors in approximation of the bar profile y =
ε [tanh(b(x + c)) − tanh(b(x − c))] (b = 2, c = 3π/5), (4.7), using the exact linear model, (4.2),
for reconstruction. Physical parameters: α = 0.2, βu = 1.3, βv = 6.8, d = 2π , a = 1; numerical
parameters: Nx = 32, Nforward = 10.

ε Absolute L∞ error Relative L∞ error

0.001 4.440 73 × 10−7 0.000 222 273
0.002 1.778 19 × 10−6 0.000 445 019
0.003 4.003 01 × 10−6 0.000 667 879
0.004 7.121 05 × 10−6 0.000 891 079
0.005 1.113 26 × 10−5 0.001 114 45
0.006 1.603 95 × 10−5 0.001 338 05
0.007 2.184 09 × 10−5 0.001 561 72
0.008 2.853 84 × 10−5 0.001 785 55
0.009 3.613 23 × 10−5 0.002 009 49
0.01 4.462 44 × 10−5 0.002 233 59

Table 7. Absolute and relative L∞ errors in the approximation of the bar profile y =
ε [tanh(b(x + c)) − tanh(b(x − c))] (b = 2, c = 3π/5), (4.7), using the nonlinear model, (4.4),
for reconstruction. Physical parameters: α = 0.2, βu = 1.3, βv = 6.8, d = 2π , a = 1; numerical
parameters: Nx = 32, Nforward = 10, τ = 10−8, Ninverse = 4.

ε Number of iterations Absolute L∞ error Relative L∞ error

0.001 3 4.145 24 × 10−10 2.074 82 × 10−7

0.002 4 2.980 51 × 10−10 7.4592 × 10−8

0.003 5 7.764 37 × 10−10 1.295 44 × 10−7

0.004 5 8.704 47 × 10−10 1.089 22 × 10−7

0.005 5 8.920 73 × 10−10 8.930 22 × 10−8

0.006 6 9.983 51 × 10−10 8.328 44 × 10−8

0.007 6 1.935 22 × 10−9 1.383 77 × 10−7

0.008 6 3.512 24 × 10−9 2.197 49 × 10−7

0.009 7 6.066 07 × 10−9 3.373 62 × 10−7

0.01 7 1.012 94 × 10−8 5.070 09 × 10−7

we note both the rapid convergence of our approach, and the truly superior accuracy one can
achieve with the nonlinear iterative methodology.
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