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Abstract

The scattering of linear waves by periodic structures is a crucial phenomena in many branches of applied
physics and engineering. In this paper we establish rigorous analytic results necessary for the proper numer-
ical analysis of a class of High-Order Perturbation of Surfaces methods for simulating such waves. More
specifically, we prove a theorem on existence and uniqueness of solutions to a system of partial differential
equations which model the interaction of linear waves with a multiply layered periodic structure in three
dimensions. This result provides hypotheses under which a rigorous numerical analysis could be conducted
for recent generalizations to the methods of Operator Expansions, Field Expansions, and Transformed Field
Expansions.
© 2017 Elsevier Inc. All rights reserved.
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1. Introduction

The scattering of linear waves by periodic structures (both in two and three dimensions) is a
crucial phenomena in many branches of applied physics and engineering. From acoustics (e.g.,
remote sensing [69], nondestructive testing [67], and underwater acoustics [14]), to electromag-
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netics (e.g., extraordinary optical transmission [31], surface enhanced spectroscopy [52], and
surface plasmon resonance biosensing [38,44]), to elastodynamics (e.g., full waveform inver-
sion [70,18] and hazard assessment [36,68]), examples abound. Obviously, the ability to rapidly
simulate such configurations numerically with great accuracy and high fidelity is of the upmost
importance to many disciplines.

The most popular approaches to these problems in the engineering literature are volumetric
numerical methods. For instance, sampling from the seismic imaging community alone, formu-
lations based upon Finite Differences [64], Finite Elements [73], and Spectral Elements [41] are
common. However, these methods suffer from the requirement that they discretize the full vol-
ume of the problem domain which results in both a prohibitive number of degrees of freedom
for the layered structures we consider here, and the difficult question of appropriately specifying
far-field boundary conditions explicitly.

For these reasons, surface methods are an appealing alternative, particularly Boundary Inte-
gral Methods [23,43,66,3,12,13,10,45,19] and the High-Order Perturbation of Surfaces (HOPS)
methods of Milder (Operator Expansions) [47,48] (see also [22]), Bruno and Reitich (Field Ex-
pansions) [15—17], and the author and Reitich (Transformed Field Expansions) [56-58]. These
surface methods are greatly advantaged over the volumetric algorithms discussed above primarily
in the greatly reduced number of degrees of freedom required to resolve a computation, in addi-
tion to the exact enforcement of far-field boundary conditions. Consequently, these approaches
are an extremely important alternative and are becoming more widely used by practitioners.

Of course there has been a huge amount of rigorous analysis on the systems of partial dif-
ferential equations which model these scattering phenomena, in addition to the design of com-
putational schemes. Most of these results utilize either Integral Equations techniques or weak
formulations of the volumetric problem (each of which naturally lead to numerical implemen-
tations). We find the Habilitationsschrift of T. Arens [5] a particularly readable and definitive
reference for the periodic layered media problems we consider here. In particular, we point the
interested reader to Chapter 1 which discusses in great detail the state-of-the-art in both two and
three dimensions for solutions of the Helmholtz and Maxwell equations. To summarize, in two
dimensions most of the questions of existence and uniqueness have been satisfactorily addressed
and these results are summarized in surveys such as those of Petit [62] and Bao, Cowsar, and
Masters [7]. For single layer configurations we point out the work of Alber [2], Wilcox [71], and
Elschner and Schmidt [32]. In three dimensions, for the Helmholtz equation, most results are
connected to variational formulations such as those of Abboud and Nedelec [4], Bao [6], Bao,
Dobson, and Cox [9], and Dobson [30] (see also the work of Chen and Friedman [21] and Dob-
son and Friedman [28] in the context of Maxwell’s equations). Arens summarizes these with the
following sentence [5]: “There may exist at most a countable set of frequencies with infinity as
the only possible accumulation point for which the problem is not uniquely solvable.”

The purpose of this contribution is to establish rigorous analytic results necessary for the
proper numerical analysis of HOPS methods. More specifically, we prove a result (Theorem 4.1)
using boundary perturbations on existence and uniqueness of solutions to a system of Helmholtz
equations which model the interaction of linear (acoustic) waves with a multiply layered periodic
structure in three dimensions. The goal of this study is to provide hypotheses under which a
rigorous numerical analysis could be conducted, and a solution to which our HOPS schemes can
be shown to converge. More specifically, we seek a framework to study the generalizations to the
Operator Expansions method of the author and Fang [54,35], to the Field Expansions approach
by the author and Malcolm [50,49,51,55], and, based upon the recursions derived herein, to
the Transformed Field Expansions approach. For the numerical analysis, we have in mind an
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investigation very much in the spirit of the author and Shen [60], which we will conduct in a
future publication.

The organization of the paper is as follows: In § 2 we briefly discuss the well-known equations
governing the scattering of linear (acoustic) radiation by a layered, three-dimensional periodic
structure. In particular, we recall in § 2.1 how the far-field boundary conditions can be enforced
transparently with the use of appropriate Dirichlet-Neumann Operators (DNOs), while the entire
system of equations can be equivalently restated in terms of other DNOs in § 2.2. In § 3 we
present a rather general and rigorously justifiable perturbative scheme for solving systems of
linear systems of equations in Banach spaces. The appropriate analyticity theorems for a single
perturbation parameter and one of multiple dimensions are presented and proven in § 3.1 and
§ 3.2, respectively. The application of these results to the governing equations presented in § 2
is made in § 4 where the novel result (Theorem 4.1) is established. This proof requires several
rigorous analyses, and those of the invertibility of the linearized operator are given in § 4.1 (with
a commentary on its relation to previously known results in § 4.2), and the analyticity of the
inhomogeneity are presented in § 4.3. The final analysis is that the linear operator itself is analytic
which proceeds from analyticity results for DNOs that are given in § 5. This treatment utilizes
the Transformed Field Expansions methodology first derived by the author and Reitich [56-58],
and we describe the relevant change of variables (§ 5.1), the transformed field equations (§ 5.2),
the corresponding formulas for the DNO (§ 5.3), the formulas for the perturbation corrections
(§ 5.4), and finally the rigorous demonstration (§ 5.5). We provide concluding remarks in § 6,
while in Appendix A we describe details of the estimates of solutions to the fundamental elliptic
boundary value problem at the core of our analyticity theorem on DNOs.

2. Governing equations

The Helmholtz equation governs the scattering of linear acoustic waves in a periodic layered
structure, with insonification conditions at the upper interface, and upward and downward prop-
agating wave conditions at positive and negative infinity [1,62,39,11]. For the latter of these we
demand the “upward propagating Rayleigh expansion radiation condition” (URC) and its “down-
ward propagating” analogue (DRC) as specified in [5] (which we make precise in § 2.1). In [54]
we detailed a restatement of the classical governing equations in terms of Dirichlet—-Neumann
Operators (DNOs) which we reprise here for the reader’s convenience.

We consider a multiply layered material with M interfaces at

z=a™ +¢™(x,y), l=m=M,
which are d, x d, periodic
g™ +de,y+d)=¢"(x,y), 1<m<M,
separating (M + 1)-many layers which define the domains

SO = {(x,y,2) | z>aV 4+ gV(x, y)},
S = {(x,y,2) | @D 4 gD (x y) <z <a™ 4+ g (x, y)}, l<m<M-1,

SM = {(x,y,2) |z <a™ + g™ (x, y)},
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Fig. 1. Five-layer problem configuration with layer interfaces z = a(™ + g (x).
with (upward pointing) normals

N = (=8, (x, y), —dyg"™ (x, y), DT;

see Fig. 1. The (M + 1) domains are all lossless, constant-density acoustic media with velocities
cm (m=0,..., M) and we assume that plane-wave radiation is incident upon the structure from
above

. i . _ (0) . .
ymc(x’ v, 2, f=e 1wtet(otx+ﬁy vV e twtvlnc(x’ ¥, 2).

In each layer the parameter k" = w/c™ characterizes both the properties of the material and
the frequency of radiation in the structure. We denote the reduced scattered fields in S by

V™ (x,y,2) =™ (x, y, 2, 1),

(the full scattered fields with the periodic time dependence factored out) which, like the incident
radiation, will be quasiperiodic [62]

v(m)(x—|—dx,y+dy,z)=ei(adX+ﬂdy)v(m)(X,y,Z), m=0,....M.

These reduced fields satisfy the Helmholtz equations
2
AV 4 (K) w0 =0, inS™, 0<m=M,

which are coupled through the Dirichlet and Neumann boundary conditions

V0D =g, 2=a" +g"Mxy), 1=m=M,

Ipm [v("’_l) - v(’")] =y, z=a"™ +g™(x,y), 1<m=<M,

where
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D x,y)i=—v™(x, y,a® 4+ gD(x, y))

_ _ei(ozx+ﬂy—)/(0)(a(l)+g(”(X»)’)))’ (2.1a)

M)y ;=_[a Vi (x Z]
w ( 1y) N(l) ( ’y’ ) z:a(1)+g(l)(x»)’)

=iy QO +ia(@.e") + ,-ﬂ(aygu)))ei<ax+ﬁy—y<°>(a<”+g“><x,y))). (2.1b)

If continuity is enforced inside the structure then C(’") = w(’") =0,m=2,..., M. However, as
we shall see, it is no impediment to the method if we set these to any nonzero function.

2.1. Transparent boundary conditions

Regarding the upward/downward propagating wave conditions, we introduce the planes

(M)_‘

Z=E>a(1)+)g(l))mo, z=a<a g(M)‘LOO,

define the domains
S:={z>a}, S:={z<al,

and note that we can find unique quasiperiodic solutions of the relevant Helmholtz problems on
each of these domains given generic Dirichlet data, say £(x, y) and u(x, y). For this we use the
Rayleigh expansions [65] which state that

oo oo

v (x, y, 7) = Z £, qeia,,x+iﬂqy+iy,£?; -a),
o0

p=—00g=—

oo oo
v ™ (x,y, 7) = Z Z ﬁp’qeiapx+iﬁqy—iy,(,{z)(Z—g)’

p=—00g=—00

where, for p,g € Z, m € {0, ..., M},

2 2
O‘P:=“+<Z>P, IBq 1=,3+<a)q,

you = \/(k(m))z—“;%—ﬁzf (p,q) eU™,
’ V%+%—%Wﬂ (p.q) ¢ U™,

(2.2)

and the set of propagating modes is

2
Uum .= {(p,q) cZ| ot[2,+ﬂ3 < (k(m)> }
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We note that

o o0
U(O) (x,y,a)= Z Z ép’qeia,,xﬂﬂqy =£(x,y),

p=—00g=—00

(0.¢] o
v M,y = Y Y g Y = pix, y).

p=—00g=—00

With these formulas we can compute the outward-pointing Neumann data at the artificial bound-
aries

Oy = 33 iy e = 7O ey,

p=—00g=—00

o0 o0
o0y @ = 30 Y i e = T, yl,

p=—00g=—00

which define the multipliers in Fourier space, {7, 7},
With these operators it is not difficult to see that quasiperiodic, upward propagating solutions
to the Helmholtz equation

Av O + (k(o))2 V0 =0, z>a"+ gV, y),
equivalently solve
2
Av©@ + (k(o)) @ = 0, a + g(l)(x, y)<z<a, (2.3a)
9,0 4+ 7© [v“’)] —0, z=a. (2.3b)

Similarly, one can show that quasiperiodic, downward propagating solutions to the Helmholtz
equation

2
A 4 (k(M)> v =0, z<a™ +gMx, ),

equivalently solve
2
AvM) 4 (k(M)) oM =0, a<z< a™ 4 g(M)(x, y), (2.4a)

9,0 M _ (D [U<M>] =0, z=a. (2.4b)

Remark 2.1. We point out that the conditions (2.3b) and (2.4b) specify solutions which satisfy
the UPC and DPC of Definition 2.6 in Arens [5]. It is these two conditions which guarantee the
uniqueness of solutions on the unbounded domains {z > a} and {z < a}.
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2.2. Boundary formulation

We now follow [54] and reduce our set of unknowns to the following surface quantities, the
(lower and upper) Dirichlet traces

VOl vy =0 (x, y, a4 gD (x, y)), O<m=M-—1,
Ve vy = 0™ (x, y,a™ + g™ (x, y)), l=m=<M,
and their (exterior, lower and upper) Neumann analogues
VL, y) i= =@y ™) (x, y, @™t + gD (x, yy), O<m=M-—1,
VO e, y) = @y v ™) 0x, y, a™ 4 g™ (x, 1), l=m=M.

Using the fact that, from these, one could recover the scattered field at any point with a suitable
integral formula [33], we find that our governing equations reduce to the boundary conditions

ym=D.t _ymu — pm) l<m<M, (2.52)
— =Dt g mu ), l<m<M. (2.5b)

We can further simplify by introducing Dirichlet-Neumann operators (DNOs). For this we
make the following definitions.

Definition 2.2. Given a sufficiently smooth deformation gV (x, y), the unique quasiperiodic so-
lution of

2
A0+ (K0) 0@ =0, aV 400y <z <7
@ = YO, z=a® 44V, y),
2,00 47O [v<0>] —0, z=a,

defines the Dirichlet-Neumann Operator
G [V<0>,e] —G@, aM, ¢V [V«»,z] — 7O

Definition 2.3. Given sufficiently smooth deformations g(’”) (x,y)and g(m“) (x,y),forl <m <
M — 1, if a unique quasiperiodic solution exists to

2
Av™ 4 (k“’”) ™ =0, A L gD (s <r a4 oMy vy (2.6a)
v =yt z=a"t) 4 gD (x,y), (2.6b)
" =y, z=a" + g™ (x,y), (2.6¢)

it defines the Dirichlet—Neumann Operator
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V(m),u V(m),u
H(m) |:< V(m)’@ ):| = H(m§ Cl(m), g(m), a(m+1)7 g(m+1)) [( V(m),g
_ Hu (m) Hué (m) V(m),u
~\H"@m) H"(m) v m.t
y(m).u
= (Wm)"f) . 2.7)

Definition 2.4. Given a sufficiently smooth deformation g™’ (x, y), the unique quasiperiodic
solution of

2
A 4 (k(M)) v =0,  a<z<a™ +gM,y),
M) =y D z=a™ +gMx, ),

9,uM) _ (M) [v(M>] -0,

A\l

= Q .
defines the Dirichlet—-Neumann Operator

J [V<M),u] — J(a,a™ D) [VW),M] — P

Remark 2.5. In § 5 we will show that g™ e C5+3/2%9 (d) for an integer s > 0, and any o > 0,
is smooth enough. However, Lipschitz smooth will also suffice [25,37].

In terms of this notation the boundary conditions, (2.5), become
V(m—l),i _ V(m),u — é‘(m)’ l<m< M,
and

— GV - H VD = BV D=y O,
_ Hlu(m _ 1)[V(m—1),u] _ Hlf(m _ 1)[V(m—1),l]
— H" m)[V "] = H" m)[V "] = ™, 2<sm<M-1,

The first of these can be used to eliminate V)4
V(m),u — V(m—]),@ _ {(m)’ l<m<M,
so that the latter equations become

=GV O = H VO — D= o v D =y,
_ Hﬁu(m _ 1)[V(m—2),l _ ;(m—l)] _ Hel(m _ 1)[v(m—1),f]
— H™ (m)[V =D — ] — g [V ] = g ), 2<m<M-—1,
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— HU (M — D[V M2 _ g M=Dy _ gt yr )y M-D.¢
— JIVM=DE 0D 0D,

or
{G+H“M} VO + = DIV
=—y '+ D),
H o = DIV O L Gn = 1) 4 H ) | [V D) v )
==y £ H"m - D"V H Y e ™), 2sm=M -1,
HOM = DV L =1+ g} v
=~y 4 B M = DIEM D]+ 1),

Stated more compactly these read

(L+D+U)VE=AV' =R, (2.8)
where
V(O),l
y .
Vi= : , (2.9)
Y (M-2).1
yM=1),!
and
A H(D)[¢ D] 0
Y@ H*(2)[¢?] H*()[¢ M)
y™M=h H*“ (M = D[g ™M=V H™(M —2)[¢ M=)
AR J[g M H(M — 1)[¢ ™M~
and
D) U1) O 0 0
L(2) D@2) UQ) 0 0
a=| © h - A 0 0 , 2.11a)
0 0 .. .. .. 0
0 0 LM-1) DM—-1) UM-1
0 0 0 L(M) D(M)
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where
U(m) = H" (m), l<m<M~—1, (2.11b)
G + H"(1), m=1,
Dm)={ H*(m — 1)+ H"(m), 2<m<M — 1, (2.11¢)
HYM = 1)+ J, m=M,
L(m)=H"(m - 1), 2<m<M. (2.11d)

3. Analyticity of solutions of linear systems

In order to establish our desired results we consider quite general systems of linear equations
of the form

A(e)V(e) =R(e), (3.1

and show how our equations, (2.8), which are clearly of this form, can be solved by regular
perturbation theory. For this perturbative approach we provide two theorems which show that
unique solutions exist, the first giving a sufficient result with a simpler methodology while the
second gives a stronger result with greater complexity.

To begin, we consider € € R which is meant to model the situation where the geometry of the
configuration is parameterized by one parameter (height/slope)

gD gf D (@ p@ D) ()

We then proceed to the more general case ¢ € RY in which each interface is perturbed by an
independent parameter

3.1. A single parameter

In the single parameter case we assume
o o0
As) = ZAns", R(¢) = ZR,,g",
n=0 n=0
in (3.1) and seek a solution of the form
o0
Vie) =) Ve (3.2)
n=0

From (3.1) we find at order O (™)

n—1

AOVn = Rn - ZAn—ZVZv
£=0
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or

n—1
V,=A," |:Rn —~ ZAngVe} : (3.3)
=0
With these we can establish the following theorem.
Theorem 3.1. Given two Banach spaces X and Y, suppose that:
1. R, €Y foralln >0, and there exist constants Cg > 0, Bgr > 0 such that
IRxlly < CrBg,
2. A, : X =Y forall n >0, and there exist constants C4 > 0, B4 > 0 such that
lAnllx—y < CaBj},

3. Ag Ly 5 x , and there exists a constant C, > 0 such that

A‘IH <C,.
H 0 y»x_ce

Then the equation (3.1) has a unique solution, (3.2), and there exist constants Cy > 0 and
By > 0 such that

IVallx < Cv By, (34
forall n > 0 and any
Cy >2C,Cg, By >max{Bg,2B4,4C.,CaB,}.
This implies that, for any 0 < p < 1, (3.2) converges for all € such that Be < p, i.e., ¢ < p/B.
Proof of Theorem 3.1. We work by induction, beginning with n = 0. At this order (3.3) yields
Vo=A,'Ro,

and, from the properties of Ag 1, we have
IVollx = | A3 Ro| = CeIRoly =: Cv.

Now, assuming estimate (3.4) for all n < we use (3.3) and the mapping properties of A "to
give

n—1
IVally < Ce {nRﬁ ly+° ||Aﬁ—sz||y} .

£=0
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Now, using the estimates on R,, and A,, (for all n), and V,, (n < n) we have

n—1
IVally <C. {cRBz n ZcABg—echg}
=0

< C,CgB". Ba ) pr
= LeLR R+CeCACV B_V BV

< C.CrBj+C.CaCy (ﬂ) B} (#> :

By 1-1/2

if B4/By <1/2 (implying By > 2Bj4). We are done if we demand that

By = B, C.Cr=Cv/2, 2C.CaCy(Ba/By)=Cyv/2.
All of this can be achieved if
Cy >2C,Cr, By >max{Bg,2Bs,4C,CaBs}. O
3.2. Multiple parameters
For the multiple parameter case of (3.1) we consider

o o0
A(g) = ZAnsn, R(g) = ZR,,E”,
n=0

n=0

using multi-index notation [33]

€1 ni
£:= , n:= )
EM ny
and the convention
o o0 o0
ZAnS" ::Zm ZA”I ,,,,, €l ey
n=0 n;=0 ny=0

‘We seek a solution of the form
o0
Vie) =) V",
n=0

and, from (3.1), we find at order O(&")

n
A()Vn = Rn - (Z An—(ZVZ - AOVn> s

£=0

5053

(3.5)



5054 D.P. Nicholls / J. Differential Equations 263 (2017) 5042-5089

or

n—1
V. =Ay |:R - (ZAn Ve — AoV, )} (3.6)

£=0

In these we use the notation

n
D A Ve= Z ZAnl 1=y ¥l
£=0

6=0  £y=0
forn = (ny,...,ny). Remembering the multi-index notation 0 = (0, ..., 0) and the convention
n>0 <= n;>0,...,ny>0,
we can establish the following theorem.
Theorem 3.2. Given two Banach spaces X and Y, suppose that:
1. R, €Y forall n >0, and there exist multi-indexed constants Cgr > 0, Bg > 0 such that
IRy |ly < CrBg,
2. A, : X = Y foralln > 0, and there exist multi-indexed constants C 4 > 0, B4 > 0 such that
Al x—y < CaBj},

3. Aa Ly 5 x , and there exists a constant C, > 0 such that

|43°], . =c-
Y—X

Then the equation (3.1) has a unique solution, (3.5), and there exist multi-indexed constants
Cy > 0 and By > 0 such that

IVallx < Cv By, (3.7
for all n > 0 and any
Cy 22C,Cr, B=max{Bg,2B4,4C.CaBa},

enforced componentwise. This implies that, for any 0 < p < 1, (3.5) converges for all € such that
Be <p,ie,e<p/B.

Proof of Theorem 3.2. We will focus upon the case M =2; M > 2 (but finite) is a straightfor-
ward, though tedious, generalization. Thus, we seek to establish

< Cv.CvaBy' By

v Yni,np=0.

[ Vi |y =
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We prove this via an induction on n;. The base case ny = 0:
ny

||Vn1,0||X =Cv,iBy,;, Vn =0,

is a special case of Theorem 3.1 with ¢ = ¢1. We now assume
ny pna =
IV | x < CviCyvaBy By, Vn1 =0, Vny<na,

and seek

_ ny pho

||Vn1,n2 ”X = CV,ICV,ZvalBV’T Vny > 0.

This we establish by a second induction, this time on n. The base case n; = 0:

Vo | < CvaBy,.  Via =0,

is a special case of Theorem 3.1 with & = g;. Finally, we assume
n n —~
|Varin| x <CviCvaBy By, Vni<ni,
and seek
oo ny piy
”V”lynz ”X = CVJCVJBV,IBV,T
We now use (3.6) and the mapping properties of A ! to realize

n|—1
”Vﬁlﬁz ”X =Ce “Rfllﬁz ”Y + Z ”AIFLI—ZV@ ”Y
[€]=0

Using the estimates on Ry, ,, and A, ,, (for all n1, n2), and V,, ,, (n1 <ny, n2 < ny) we have

|n|—1
[ i pio E: n1—Ly pia—4£; Ll pl
”Vﬂl,mHXSCe CR,lCR,ZBRJBR,z‘*‘ CA,ch,ZBA,l BA,Z CV,ICV,ZBV’IBVJ
|€]=0

< CeCr1CR2BY By +CeCa1Ca2Cy,1Cy 2

7] —1 iy —0— iyl —
X(BA’I)Bﬁ] (BA72>Bﬁ2 nz <BA,1>VH £ 1<BA,2>"2 lr—1
Byi/) V' \ By, VY2|£|=0 By 1 By

< CeCR,1CR,2B;"/le€2,2 + CeC4,1C42Cy,1Cy 2

Ba 1 i (Ba2\ i 1 2
() o (52) o (=)
V.1 ) /
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if By, j/By,j <1/2, j=1,2 (implying By j > 2By ;). We are done if we demand that
By j>=Bgrj, C.Crj=<Cy;/2, 2C,Cx jCy ;j(Ba, j/Bv,j) =<Cyj/2
This can be realized if
Cy,j>2C.Cr,j, Byj>=max{Bg ;,2Ba j,4C.Ca ;B4 ;}. O
4. Analyticity of solutions
We recall the surface formulation of our scattering problem,
(L+D+U)V  =AV =R,

cf. (2.8), where the known function R and operator A are specified in (2.10) and (2.11), respec-
tively, and the vector of unknowns V¢ is defined in (2.9). As we mentioned in the Introduction,
our solution procedure is perturbative in nature and we will simply invoke Theorem 3.2 from § 3
to realize our desired result (which will deliver the conclusions of Theorem 3.1 as a special case).
For this we formally expand

oo o
Ae)=) A", Re)=) Rye",
n=0 n=0
which we presently justify rigorously, and seek a solution to (2.8) in the form
o
Vi) =) Ve, .1

n=0

where ¢ € RM.
To make our theorem precise we recall the classical L? based Sobolev spaces for (dy x
dy)-periodic surface functions with s-many derivatives [33] as

H’(d) := {E(x, v) | & is bounded, measurable, ||§]| s < oo} ,
where d := [0, d,] x [0, dy] and
o o0 . 2
1613 = 3" " fpa| (@ (@) =14 1pP + 1P
p=—00g=—00
In addition, we require their vector-valued analogues
£D(x,y)

XS(d):={&= : £Mx,y)e H @),
EM(x,y)
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with norm

M 2
I8 = > 5] .
m=1

with which we can now establish the following result. For this we will require the somewhat
technical definitions of t-allowable layer configuration, interface configuration, and medium
configuration, which are found in Definitions 4.5, 4.9, and 4.11, respectively.

Theorem 4.1. Given an integer s > 0 and any o > 0, if f™ e C513/2%9(d), 1 <m < M, then,

for a t-allowable medium configuration, (4.7), the equation (2.8) has a unique solution, (4.1),
and there exist constants C > 0 and B > 0 such that

|v.

<CB",

XS

for all n > 0. However, C = C(t) — o0 as t — 0. This implies that, for any 0 < p < 1, (4.1)
converges for all € such that Be < p, i.e., ¢ < p/B.

Proof of Theorem 4.1. As we mentioned above, our method of proof is to simply invoke Theo-
rem 3.2, thus we must verify the relevant hypotheses. To begin, we consider the spaces

X =xt, y=x*

In § 4.3 we will show that (1 and ¥ (! can be expanded in Taylor series which converge strongly
in the spaces H* for any s > 0 provided that f(1) e C5*1(d) c C5*+3/2%° (d). This clearly implies
that the R,, satisfy the estimates of Item 1 in Theorem 3.2.

In § 5 we show that the DNOs G, J, and H (m) are analytic in boundary perturbations ™ e
C51+3/249(d) provided that each layer is a t-allowable layer configuration, (4.3). With these, it
is clear that the A,, satisfy the estimates of Item 2 in Theorem 3.2.

Finally, in § 4.1 we show that the estimates and mapping properties of A ! for Item 3 in
Theorem 3.2 hold true provided that we are in a t-allowable medium configuration, (4.7). O

Remark 4.2. The smoothness requirements, that £ e C$*t3/2%9(d), can be relaxed in ex-
change for a significantly more complicated demonstration and less convenient set of function
spaces. The approach we have in mind was pursued by the author and Hu [37], and will deliver
results which permit £ in the Schauder space C!:® for any « > 0, and even in the Lipschitz
class.

Remark 4.3. The result above requires that ¢ be sufficiently small and we certainly cannot im-
prove upon this. However, using the analysis of the author and Reitich [58] we can postulate
about the distribution of poles in the complex plane. In particular, we believe that one should be
able to demonstrate that the only singularities on the real axis are due to topological obstruction,
e.g. choices of & which produce cavitation of a layer.
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4.1. The flat interface problem

As we just outlined, the key to our developments (as with all regular perturbation arguments)
is the flat-interface version of (2.8)

AoV§ =Ry,

where Ag = A(0), V¢ = V£(0), and Ry = R(0), in particular the invertibility of Ag and the map-
ping properties of Ay ! As we recall from (2.10) and (2.11), Rg and Aq consist of the operators
Go, Jo, and Hy(m); the functions ¢y and vo; and combinations of these.

It is not difficult to show, for plane-wave incidence from above, that

1 1 iBy 1 iBy
§(§ ) _ezax+t/3)’ w( ) < (O)) zax—&-zﬁ)’

and §(m) = w(gm) =0form=2,..., M. (Again, nothing essential changes if all of the ;“(m) nd

w(m) are non-zero so we do not eliminate them from our equations.) We demonstrated in [54]
that

Go= —l)/g)), Jo= zyéM),

where we have again used Fourier multiplier notation, i.e.,

m(D)&(x, y) =m(Dy., Dy)&(x, y) := Z Zm(p q)Ep g r e,

—00 g=—00

where

E(x y)e_“”l’x ey gy dy.

\

dy d
Spq - d f
0

Additionally, in [54] we derived that

coth(iy " h™)  —csch(iy S hm)
csch(zy(m)h(’”)) coth(zy(m)h(’”))

Ho(m) = (iyJ") (

where A" 1= g™ — gm+D 5 0,

Remark 4.4. To clarify this formula we note that (2.2) specifies not only that
vy =0, (p,q)eU™,

but also

Vo =7y Vg =00 (o) U™,
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which defines the positive real parameter )71%). Seeking the symbol of Hy(m), namely Im P

we consider three cases for the quantity )/152) separately

1. For (p,q) e U™ and y[g;z) >0,

Ho(m) o [ € (”P )h(m)> —ose (”(m)h(m) (4.22)
Hy(m =y s .2a
PATPA L _ese (yp’f])h(m)) cot (y,%)h(m))
which is well-defined for
y R £nw,  n e Z\{O);
we exclude n = 0 as this is handled in the next case.
2. For yp q =0 we have
— 1 -1
Hy(m), , = <_1 1 ) ) (4.2b)
which is clearly free of singularities.
3. Finally, for (p, q) ¢ U™,
. ) coth ( (m)h(m)> —csch y(m)h(’")
Ho(m), 4 =7, 4 (4.2¢)

csch( (m)h(’”)) coth( (m)h(’”)) 7

which is always well-defined.

Turning to the conditions which will ensure that Hy(m) is well-defined, we now specifically
exclude the “Dirichlet eigenvalues” [23], the (p, ¢) € U™ where y,Sf’;)h(m) is a non-zero integer
multiple of . More precisely, we make the following definition to prohibit these.

Definition 4.5. A layer configuration, Cém), of the m-th layer is a sextuple

C™ = (dy, dy, k™, a, B,y ™).

For any t > 0, the set of t-allowable layer configurations is defined by

E(m) {C(m)

‘sin(ylﬁf';)h“'”) >1, V(p,q)ewm)}. 4.3)

Remark 4.6. We shall only consider layer configurations Cém) € /J(Tm), m=1,...,M—1, sothat
all of the operators Hy(m) are well defined. We note that the operators G and Jy are well-defined
for all configurations of the upper and lower layers.



5060 D.P. Nicholls / J. Differential Equations 263 (2017) 5042-5089

Remark 4.7. We note that these resonances could be removed with the choice of operators
different from the DNOs. One possible choice are the Impedance-to-Impedance operators first
suggested by Monk and Wang [53] which were designed specifically for this issue.

With this we can prove the following lemma.

Lemma 4.8. Given any integer s > 0 and t > 0 we have, for a t-allowable layer configuration
C(’") c E(m)
¢ T o

& vy € H (@),

{Go. Jo} : H*T'(d) — H*(d),

{HY™ (m), HY  (m), H{" (m), H*(m)} : H*'(d) — H*(d) forall L <m <M — 1,
Hé‘[(m), H(f”(m) are compact forall1 <m <M — 1.

.

Proof of Lemma 4.8. The proof of (1) is trivial upon consideration of the fact that g(‘) nd

1//0 consist of a single Fourier coefficient each, while §(m) and ‘po are identically zero for
m=2,...,M.
The proof of (2) comes easily from the symbols

Go)pg =—ivin.  (Jo)pq=—ivsh,

and the asymptotic behavior

=iy )~/ pP?+ 42, ((p.q)) — o0
=iy~ +4%  ((p.q) — oo

The proof of (3) is not much more difficult given the forms for Hy(m), (4.2), and their behavior

iy coth(iy "W h™) ~ [ p? + ¢, ((p,q)) — o0,
(m) . (m)p (m)y
(—iy,.q)esch(iy, 'y h'™) ~ 0, {((p,q)) — oo.

The layers require a little more attention (due to the Dirichlet eigenvalues) but one can estimate

2 2, (p.q)eU™
- (m) () (m) 200 ’

i coth(i h ‘ < C{(p,
‘( Yp.g) ¥pq )| =Clp. ) :Co, (p.q) U™,
7_2’ (p’ q) eu(m)’

[avimesehiiyn)| < Ci(p. )
P P - L (g gU™,

for some C > 0 provided we are in a t-allowable layer configuration. In these we have used
csch(z) < 1 for z € R, and, for zg > 0,

coth(z) <coth(zg), z€R, z>z9>0.
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The latter is helpful by setting

zo:= min {?,S”;’h(’")}>0, Co := coth(zp).
(p.ygum L7

With these we can show, for instance,

gl = 3 3 [y cothtiy SR8, o (9. )

p=—00g=—00

A 2
vy cotv i h ™y | ()
(p.eUt™

N 2
D [ ot R [ ()
(p.q)gU™

= Y Slad e

(p.g)el™

Y ol | a0

(p.q)gU™

<co Y ] e

p=—00g=—00

< CO IENF 0 -

where C is a constant (which may change from one line to the next), that behaves like 72 as
T — 0.

To show compactness of the operators H, ut = H, . (4), we follow the approach of Kress
[42] and approximate them by finite dlmensmnal range operators (which are compact, see
Theorem 2.23 of [42]). We then show that these are norm convergent to H ut HE” which
demonstrates that these are compact as well (Theorem 2.22 of [42]). We choose the natu-
ral approximating operator of finite dimensional range: The truncation after (P, Q) Fourier
modes,

HY% ole1:= " Y —(iy)esch(iyWh™)E, 4ol tiPay. (4.4)
PI=P lal<Q

Now, to show norm convergence we assume that P, Q are large enough so that

Yp.a ¢uU™, p>P, ¢>0,

which allows us to compute
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H(H(g‘Z—HO”ﬁ,’Q)éuz > [ rmesch (R, , \ (P )™

lpl>Plq|>Q

—2r | A 2 )
= 3 |l e lpemne | el 1.

IpI>P lq|>Q

for any r > 0 (since csch(x) < Cx~" for any r > 0). Continuing,

gt = mi | <oy 3% [epaf gy

[pl>P lq|>Q

<P, Q) NEN7 01 -
which clearly tends to zero as P2 + Q% — 0 showing norm convergence. [

Now, to deal with the fully layered medium problem we must consider other potential reso-
nances (in addition to the Dirichlet eigenvalues) which may arise from the interaction of waves
between different layers. To quantify these we make the following extensions to Definition 4.5.

Definition 4.9. An interface configuration, Cl.(m), of the m-th interface is an octuple

C(m) = (dy, d,, pm=1) h(m) a, B, 7/(m 1) (m)).

For any t > 0, the set of t-allowable interface configurations is defined by

70 =[] Do), g > 7. Vp.q)et™], 45)
where we recall that
- (—iy ) + Gys)) cothiy, ) R D), m=1,
Do(m), , = (zy,% 1))coth(zy(m Dpm=1)y 4 (l)/(m))COth(l)/(m)h(m)) 2<m<M—1,
(i yp,q l))COth(l 7/1% Dy - Dy + (—lyp,q)), m=M.
4.6)

Remark 4.10. As before, we shall only consider interface configurations Ci(m) € Iﬁ’”), m =
1,..., M, so that all of the operators Do(m) are well defined and invertible.

Definition 4.11. A medium configuration, C, of a M-many layered medium is a (2M + 4)-tuple
C:= (dx,dy,h(l), o hMTD o By @ My,

For any t > 0, the set of t-allowable structure configurations is defined by

Sp = {C ‘ |det{(§3)p’q}| >1, Y(p,q) EZZ},
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where the determinant function det {(/AE) ». q} is theoretically straightforward to resolve, though
laborious to compute. Finally, for any 7 > 0, the set of t-allowable medium configurations is
defined (with a slight abuse of notation) by

&:(ﬁzwyWQiWOQ&. (4.7)

m=1

Remark 4.12. At this point one can reasonably ask, “How severe are these constraints on a
candidate configuration?” The answer is that they are not as onerous as they first appear.

e Existence of DNOs: To begin, the forbidden layer configurations correspond to the Dirichlet
eigenvalues: Those for which

sin(ylgf’;)h(m)) =0 — ylgf'j])h(m) =nm.

e Invertibility of Do(m2): The unacceptable set of interface configurations are those which
support localized trapped modes. The only problematic wavenumbers must be in the finite
set Ym—D Ju () however, we can specify a prohibited interface. For instance, for 2 <
m <M — 1, we have

Dol = 7ty eottyfly PR =D) 4y couty ).

so that we can realize a zero value if

yéf';—l)h(m—l) =nmw +m/2, and )/;’Z)h(m_l) =4 +7/2,

for some integers n and €. (Note that these are not Dirichlet eigenvalues.)

o Invertibility of Ay: Finally, the set of acceptable structures are those for which the overall
boundary value problem has condition number bounded below by 1/7. As in the previous
case, this determinant will be non-zero unless (p, ¢) is in a finite set

M
u:=Ju™
m=0
as the alternative guarantees that the tridiagonal matrix (KE) p.q 1s diagonally dominant.

With these we can prove the following Theorem.

Theorem 4.13. Given any integer s > 0 and t > 0 we have, for a t-allowable medium configu-
ration C € A,

1. The operator D, U exists and maps X*(d) to X s+,
2. The operator Loy + Uy is compact,
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3. The operator Ay U exists and maps X*(d) to X*+1(d). More precisely, there exists a constant
C, = C.(t) such that

"8l

=Ccl&lxs-

s+1

Proof of Theorem 4.13. The invertibility of D follows from the definition of the set .A; which
demands membership in I§ ™ forallm =1, . M The mapping property claimed in (1) follows

readily from the asymptotic properties of Do(m) p.q» cf. (4.6). More specifically, for ((p, g))
sufficiently large

’Do(l)pq‘wy(o>+ 5 (1) coth( (l)h“)) ’)/(O)‘—i—‘y

and, for2<m <M —1,

‘lmp’q"vy[g”; 1)coth< (m=1) py (m— 1)>+)/p COth( (’")h(’")> ‘y(m 1)‘+’y,,q

and
‘DO(M)M‘N M- 1)Coth( (M—1) (M~ 1>)+y ‘y% 1)‘+‘y<M)‘

Each of these delivers, for some C > 0,

Bom,| = €l )

The compactness result, (2), follows from the same reasoning used in the proof of Lemma 4.8,
part (4). That is, approximation by the natural finite dimensional range operators (truncation after
(P, Q) Fourier modes, cf. (4.4)) which are norm convergent to L + Up.

Finally, the invertibility of Ag and the estimate claimed in (3) follow from the classical Riesz
Theory (see, e.g., Chapter 3 of Kress [42]). For instance, we may invoke Theorem 3.6 of Kress
[42] which states the alternative that either

Ak =Do+Lo+Upé=0 4.8)
has a non-trivial solution, or else, if Ry € X* then
Apé = (Do + Lo+ Up) § =Ry,

has a unique solution in X* *+1. The former possibility is rendered impossible by the demand that
the determinant of (Ao) , 4 is uniformly bounded away from zero. O

Remark 4.14. As we outlined above, our boundary perturbation approach to solving (2.8) re-
quires a “base case” from which to perturb. The natural candidate is the flat interface configura-
tion, however, in this instance the notion of a periodic grating loses its meaning. The actual flat
interface problem is significantly more difficult as the wavenumbers (p, g) cannot be restricted to
the (two-dimensional) lattice. However, in our approach we consider the “infinitesimally small”
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perturbed configuration as our base case which can be parameterized by the lattice (p, ¢) and is
amenable to our analysis.

4.2. Previous results

Of course, rather than going to all of this work we could have simply applied to the theorems
of [32] which were generalized to the three-dimensional acoustic wave setting in Chapter 2 of
the beautifully clear and complete Habilitationsschrift of Arens [5]. More specifically, the reader
will be rewarded by a careful study of Section 2.4 which presents the transmission problem we
discuss here. In short, Arens considers the variational formulation of Dobson [29,30] and Bao [8]
(see [5] for a much more extensive list of citations, particularly for the electromagnetics problem)
and appeals to the Fredholm theory (see, e.g., Evans [33] and Kress [42]) for its solution. In brief,
a “choice” arises which reduces the problem to one of ensuring uniqueness of solutions as we
pursued above.

Defining V to be the space of (x, y)-quasiperiodic functions in L2(d x [a, a]) with first (weak)
derivatives in Lz(d X [a, a]), Arens [5] states the following result.

Corollary 4.15. The scalar Transmission Problem is uniquely solvable except possibly for a
sequence, {k;}, of wavenumbers such that kj — oo as j — oo.

With the existence of this result one can wonder why we expended so much effort to prove the
theorems above, in particular Theorem 4.13. The answer is that since our method is perturbative
in nature, the flat-interface (base) case determines the applicability of our result (Theorem 4.1).
As a consequence we can study the unique solvability of the simple trivial interface problem to
decide upon the utility of our theorem. This is characterized by the definition of the t-allowable
medium configuration, cf. Definition 4.11, so that any given configuration can be tested and
assigned a value of 7. Arens’ theorem is more general as it considers interfaces without reference
to any “base configuration,” however, it is impossible to test whether any given configuration
features one of the prohibited k; mentioned above. By contrast, our result lists three tests, (4.7),
for membership in the set of allowable configurations which are readily computed.

4.3. Analyticity of the Dirichlet and Neumann data

We now study the analyticity properties of the Dirichlet, (2.1a), and Neumann data, (2.1b).
For this we recall that g = &f (but £ =0 for 2 < m < M) and investigate the convergence of
the Taylor series

o o0
¢V yien =Y ¢ yel, vy P yien =Y v x yef.
n=0 n=0

It is not difficult to see that the terms in the Taylor series are given by

eV = =00y (<iy®) FO ),
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where

00,y

1 1 (0) (D)
O I O

Furthermore,

v =90 [ ) + @)y D) (v @) i)
+60 00y ) (=i @) Fatx, ).
={@@ s + oSN+ OeP . @)
In order to establish our analyticity result we require the following “Algebra Property” of
Sobolev spaces which permits us to estimate products of functions in these spaces. We refer the

interested reader to Evans [33] or [56], for instance, for more details.

Lemma 4.16. Given an integer s > 0 and any o > 0, there exists a constant M = M(s) such
that if f € C°(d), w € H*(d) then fw € H*(d) and

I fwllgs = MIfles llwlias

and if f € CSTV2Ho (@), i € HSTVY2(d) then fw € HYV/2(d) and

[7] .0 < MU lssins Nl

With this we can prove the following.

Lemma 4.17. Given any integer s > 0 and any o > 0, if f(V e CS*1(d) then

(€] M n
| . = kB! (4.10)

for all n > 0 and constants K(l), K(l) By, By > 0.

y» H <k\"By, (4.10D)

Proof of Lemma 4.17. The proof of (4.10a) proceeds by induction and begins with n = 0 where
we set

M .| ,m
k=[],

ol @xtpy—y©@a®) )

Hs+1 ’

‘We now assume that (4.10a) holds for all n < n and note that

(1
G = (=iy®) (%) ooy
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From this we find (using Lemma 4.16)

1 M
o

o et

Cs+l ¢

&)
é"_’_l HHS-H S

Cs+l

and we are done provided

B, > ‘y“’)‘M(f“)

Cs+l '

From (4.9) it is clear that the proof of (4.10b) follows in essentially the same manner. The only
modification that one needs to make is to set

. (e8] i, @\ itex+By—y@a®)
Ky s= ], = () -
v = Vo |, =T )e .

5. Analyticity of Dirichlet—-Neumann operators
At this point we return to the analyticity of the DNOs G, J, and H (m), which are fundamental
to our analyticity proof presented above. The analyticity results for G and J have already been
presented in [59], and we state them for completeness.
Theorem 5.1. Given an integer s > 0 and any o > 0, if it, £ € C13/2%9 (d) then the series
o o)
Gel) =) Gu()e", J(ei) =) Ju(ie",
n=0 n=0
converge strongly as operators from H**t1(d) to H*(d). More precisely
1Gullgpss1 s < KGBG, Wl s e < K9 B,
for universal constants KO , kg, Bg, By > 0.

The corresponding result for H (m) is novel and more interesting as the possibility for Dirich-
let eigenvalues means that a DNO cannot be well-defined for all layer configuration choices,

e,
5.1. Change of variables

To begin, we recall the defining boundary value problem, (2.6), for the DNO, and the definition
of the DNO itself (2.7). To streamline the presentation we simplify the notation slightly,
Av—i—kzv:O, £_+£(x,y)<z<12+u(x,y), (5.1a)
v=1L, =L+ 0(x,y), (5.1b)
v=U, z=u+u(x,y), (5.1¢)
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where v = v, k =k 1 =a"™, t =a™tD y=g™ ¢ =g+t andthe DNO is given by

(920 = (@xu)drv — (Byu)dyv]

_(H9W, 1] .
HIU, L] = ( ) = <[—azu + (9.0, + (aye)ayvl:l;:z) :

HO[U, L]

We follow the lead of the author and Reitich [56,58,59] and introduce the following changes
of variables (known as o -coordinates [63] and the C-method [26,20])

, / , _< i +ux,y) =z ) _( z—L—tx,y) )
X =x, y=y, z=¢{-= = +ul| = = ,
a+u(x,y)—L€—4L£(x,y) u+ulx,y)—£€—4L4(x,y)

which maps the perturbed domain
S€_+Z,fl+u = {Z+Z(X7 y) <z<u-+u(x, y)} s

to the flat-interface domain S; ; which has height h := it — £. We rewrite the vertical change of
variables as

u(x, y) — £(x, ) _ e, y) — lux, y)

Cx,v)7 =z—D(x,y), C(x,y):=1+ -

D(x,y):

The function v = v(x, y, z) transforms to
w=w',y, ) =v@’ Yy, ),y ¥, D, 2y D).
It is not difficult to show that, via the chain rule, the derivative formulas are
Coy=Coy —E*dy, Cdy=Cdy—E’dy, Cd, =0y,
where, given
Zp:=E = 0/h, Zy:=@@—z)/h,
we have

(Ot — 307 + (3 €) — £(dyu)

EXZEX.X, 7Z=
(x,y,2) 7

= Oxu)ZL + (0O Zy,

and

(Byu — 3y )z + i (dy ) — £(dyu)
h

EY=E’(x,y,2) = = (0yu)Zp + (0, 0) Zy.
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5.2. The Helmholtz equation and boundary conditions

From these, upon multiplication by C?, it is not difficult to show that the Helmholtz equation,
(5.1a),

Av+Kkv=0, £+L(x,y)<z<i+u(x,y),

transforms to

div’/ [AV’w]—i—B'V’w—i—kZCzw:O, (<7 <a, (5.2)
where
c? 0 —E*C —(8yC)C
A= 0 C? —EYC , B= —(3yC)C
—E*C —EYC 14 (E%*+ (EY)? (3 C)E* 4+ (3, C)EY

From here, for clarity of presentation, we drop the primed notation.
We note that, if © = i and £ = §¢ then

A=A(e,8) =Apo+ A1 08+ Ap18 + Az,oaz + A1186 + Ao’282,
B =B(s,8) = Bi,o¢ + Bo.18 + Bo.os> + B1.188 + Bo 28,
C?=C%(e,8) = C§ o+ Cioe + Cj18 + C3 g% + CT 188 + C§ 187,

where
1 00
Ago=|0 1 0},
0 0 1
0 —h(0,i)Z1,
AI’O_Z B 22U —h(ayﬂ)ZL ,
—h(axu)ZL —h(0ya)Zy, 0
0 —h(3:0)Zy
AO,I_Z -2 —h(@0Zy |,
—h(axe)zu —h(3,0)Zy 0
and
] i 0 —hit(3,i)Z1,
Ag,ozﬁ 0 ot _ —ha@yn)Zy :
—hii(ci)Z, —hi(yi)Z; 1> {(0xi)? + (3yi)*} Z37
| —2al 0 hE*
A== 0 —2iif hEY |,
h2 _ _ _

hEX hEY hEXY
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22 0 he(0,0)Zy

0 22 he(d,0)Zy
hi@D)Zy hi@,DZy R [(axzf)2 + (ayé)z} 2

’

App =

-

where
E* == he(dyi) Z1, — hit(3:0)Zy, EY:=hi(dyi)Z, — hi(3,0)Zy,
B =20 {0 0D + 0y 0,D) | 7120

In addition

| [~ @) L @D
Bio==\|-0,n) |, Boi==1 (0,01,
1,0 7 (Oy ) 0,1 2 ( 6 )
and
| — i1 (D i1)
Bro= - —u(0yit) ,
h{(@x)* + (3ya)*} Z1
| i(9:0) + £(0.)
Bii= = ii(dy0) + £(dyit) ,
i@ @D + @i 0,0 | (Zu — Z0)
| —0(3:0)
Bos= — —(3y0)
R B e 7\2
i @07 + @07} 20
Finally, we have
2 2. 1 2 - 1.
Clo=1, Clo==ia, Ci,=—-=l, Ci,=—=—0i% C? =—=il, C2,=—=—10"
0,0 1,0 h 0,1 h 2,0 ]’l2 1,1 h2 0,2 h2
With these we write (5.2) as
Aw+kw=F, {<z<i, (5.3)

where
F=div[(I — A)Vw]— B - Vw + k2(1 — C®w,

so that if u = eit and £ = 8¢ then F = O(e) + O(5).
It is easy to see that the boundary conditions, (5.1b) and (5.1c¢), simply transform to

w=1L. =1 (5.4a)
w="U. =i (5.4b)
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5.3. The Dirichlet~Neumann operators

We close by noting that the generic DNO

[0:v — (Bxu)dxv — (yu)dyv]

H(“)[U, L] _ z=i+u
HOWw, L))~ [—8:0 4 (3:0) v + (@y0)dyv] _z,, |

transforms (upon dropping primes) to

H(”)[U, LT\ _( o;w(x,y,u) Q(u)
<H“>[U, L]) - (—3Zw(x, y,z)) + <Q(e>) : (5.5)
where

hO™ = —uH™W[U, L1+ tH™[U, L] — h(0cu)dxw — u(dxu)dxw + £(dxu)dyw
— h(@yu)dyw — u@yu)dyw + £@yu)dyw + h(dyu)*d;w + h(dyu)*d,w,

hQ® = —uHOW, L1+ CHOW, L1+ h(3:0)dw + u(d:O)dw — £(3:0)dxw
+ h(3y0)dyw + u(dy)dyw — £(3,€)dyw — h(3,€)*d,w — h(3,€)*d,w,

and again, if u = ¢t and £ = 8¢, then {0™, 0O} = O(8) + O(e).
5.4. Taylor expansion

We now gather our field equations in transformed coordinates

Aw+k2w:F, {<z<i,
w=1L, 7=¢,
w=U, z=1u,

cf. (5.3) and (5.4), together with the transformed equation for the DNO

HWU, LT\ _ { d.w(x,y, i) oW
HOW, 1) =\ ~a.we.y.0) T\ o® )

cf. (5.5). At this point we make the specification that, for ¢, § € R,

where the (implicit) smallness assumptions on ¢ and § can be removed (up to topological ob-
struction) [58,61]. With this we can formally expand
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o X
w=wx,y, 26,8 =YY w,(x,y, 2", (5.62)
n=0r=0
H(u)) (H(u)(x yie 8)) S H(u)(x ¥)
H = = T = nr ’ 8}18}”, (56b)
(H“) HO(x,y;¢,5) 2; H(x, )

and find that, at each perturbation order O(e"§"), we must solve

Awn,r + kzwn,r = Fn,r’ g <z<u, (5721)
Wp,r = (1 =8n,)L, z=1, (5.7b)
Wy,r = (1 —=8,,,)U, z=1i, (5.7¢)

where 8, , is the Kronecker delta, and

H{ U LT\ _ ( 8w (x, y, D) L
Hy :[U, L] —0zwn,r(x, y, £) nor
In these
2
Far=— Y {div [AvpVnsr—p] + Byop - Vidu—sr—p +k2C§,pwn_u,r_p},
v+p=1
and

ol

0Y) =—iH\", (U, L1+ IH") (U, L]
— h(3yit)dxwn—1,r — (D) wy—2,r + L(Dci) D Wp—1,r-1
— R(Byi0)dy w1, — i1(dyi1)dywp—2,r + £(dyi1)dywp—1,r—1
+ 73020, wn—2, + h(Byi)* D, wy—2,r,

ho\") =—iH\", (U L1+ H)

n,r—1

[U, L]
+ (@)D w1 + @) wy—1,r—1 — L@ D)Dx Wy 2
+h(@y0)dywy r—1 + 1Dy 0)dywp—1r—1 — L@y )dywy r—2
— 1@ 0)? 0wy r—2 — M(3y0) >, Wy r—2.

5.5. Analyticity Theorem and Proof

We now state the main theorems of this section together with the essential lemmas necessary to
prove them. We close with the proofs of the fundamental results themselves. To begin we define
a Sobolev norm for the field functions, w = w(x, y, z) which helps us give a nearly optimal
result in terms of boundary smoothness. We define, for laterally (dyx x dy)-periodic volumetric
functions on the domain
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Vi=d x [{,i] = [0,dy] x [0,dy] x [£, ],
with s-many lateral derivatives, the Sobolev space,
Z*(V):={w(x, y,2) | w is bounded, measurable, [|w |l zsv) < oo},

where

u

ol = 3 Y (g /}wpq<z)| dz.

p=—0g=—0x0

With these we can prove the following useful results, the first a crucial elliptic estimate of
the type used in previous results on analyticity of DNOs [56,58,61,34] which can easily be de-
rived from classical theory found in, e.g., [46,27,33]. For completeness we outline the proof in
Appendix A.

Theorem 5.2. Given an integer s > 0, if F € H~VY>(V) and U, L € H*T'(d) then there exists
a solution of

Aw+k2w:F, {<z<i, (5.9a)
w=L, z=14, (5.9b)
w=U, =i, (5.9

satisfying

max {[[xw(x, y, i)l g » | dyw e, y, D) o s 18w, y, @)l gs s wlx, y, @)l s

w(x, yaz)“Herl 3

||8XU)()C, y7g)||Hs ’ 8yw(xv yvg)”Hs ’ 8ZU)()C,y,£_)||HS )

|||azw|||Hs+1/2(v), |||w|||HS+3/2(v)}
Ke {IIFNgzs—120) + MUl s + I L1 s}, (5.10)

where K, = K.(t) > 0 is a universal constant. The solution is unique in a t-allowable configu-
ration, but K, — oo as t — 0.

In addition, it is not difficult to show the following lemma.
Lemma 5.3. Given an integer s > 0, if w € ZS+1/2(V) then
max {[|Zzwll gs+172¢vy> 1 Zuwll gevrzeny } < Kz IIwll gsi2gvys
where K 7 is a universal constant.

Also, one can generalize Lemma 4.16 in the following way.
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Lemma 5.4. Given an integer s > 0 and any o > 0, there exists a constant M = M(s) such that
if feC(d), weZ(V) then fwe Z°(V) and

”lfw'”H‘(V) = M |f|C: ”lw”'HV(V),

and if f € CSHV2%9(d), b € Z5HV2(V) then fo € 251V (V) and

|72

<M)f

H:+l/2(v) -

coszea WO Es1200)-

We are now in a position to state our main results.

Theorem 5.5. Given an integer s > 0 and any o > 0, if u, { e Cst3/2to (d)yand U, L € HS'H(d),
there exists a solution, (5.6a), of (5.1) and if the configuration is t-allowable then it is unique. In
any case, the solution satisfies

max{”aan,r(x7 yaﬁ)“Hs ’ aywn,r(x’ y,ﬁ)”Hs ’ azwn,r(x7 y’ﬁ)HH.v ) ’wn,r(x’ y’l’_t)“H.H—l )

Haan,r(xvyvé)HHsv aywn,r(x7y9z)HHsv 8an,r(x9ys£_)HHsr wn,r(xvyvg)HHH—lv

10zwnr gz 12 vys M Ml ggsssnyy } < KO BBy, (5.11)

1 [z 1 ~ 1 [z g1 7
B, > max {SKWZ’ SKWZ} lit| cs+3/240 ,  Bg > max {SKM’Z, SKu,e} ‘E cotafe
where K ,} ¢ comes from Lemma 5.13 and K ,9 ¢ > 0 is a universal constant, but KS ¢ = 00 as
7—0.

From this we can easily prove the following result on analyticity of the DNO.

Theorem 5.6. Given an integer s > 0 and any o > 0, if it, £ € C513/2T9(d) then if the layer
configuration is t-allowable the series (5.6b) converge strongly as operators from H*t1(d) to
H* (d). More precisely

H®O

\r n,r

max H H Hé”)

| <R, BB, (5.12)

Hstl 5 gs ’ H Hstl 5 gs

for universal constants Kg ¢» Bus Be > 0, but KL? ;—> 00ast— 0.

To justify these we establish four preliminary results which show that both the field and the
DNO are analytic in upper (lower) boundary perturbation provided that the lower (upper) one is
trivial (i.e., zero).

Theorem 5.7. Given an integer s > 0 and any o > 0, if it € C*3/21(d) and £ =0, and U, L €
HSTY(d), there exists a solution, (5.62), of (5.1) and if the configuration is T-allowable then it is
unique. In any case, the solution satisfies
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max { ” Oxwn,0(x, y, i) ” Hs* |aywn,0(x’ v, u) ”Hx s |9z wn,0(x, ¥, i) ” HS* |wn,0(x’ v, u) ” Hs+lo

“ 3an,0(xv yv E) ” Hs aywn,o(xv )’7 Z) ” Hs azwn‘o(xv y’ E) H Hs wn,o(xﬂ y7 Z) “ Hx+l )

19zwn 0l 120y, w0l 3200y} < K oBlts — (5.13)

for

1 ~
B, > max {ZKM’O, w/ZK;,O} it cs+3/240

where Kli o comes from Lemma 5.11 and Kgo > 0 is a universal constant, but KI?O — 00 as
T — 0.

From this one can show the following result on analyticity of DNOs.

Theorem 5.8. Given an integer s > 0 and any o > 0, if it € CST3/29(d) and € = 0 then if the
layer configuration is T-allowable the series (5.6b) converge strongly as operators from H**t1(d)
to H¥(d). More precisely

©

()
max { ” H,o HsHl g’ H n,0

| <Rl (5.14)

Hstl 5 Hs

for universal constants IE'B»O, B, > 0, but 123‘0 —o0ast— 0.
For variations of the bottom layer we have the following.
Theorem 5.9. Given an integer s > 0 and any o > 0, if { € C*13/21°(d) and i =0, and U, L €

H*TY(d), there exists a solution, (5.6a), of (5.1) and if the configuration is t-allowable then it is
unique. In any case, the solution satisfies

max{Haxwo,r(xay’ﬁ)”Hsv 8yw0,r(xvyaﬁ)”H:5 8Zw0,r(-xvyaﬁ)”H:7 wo,r(xvy7'2)“HS+Ia

[0xwo.r e, 3, O s » [0y wo.r Ceu 3, )| s+ [9zw0.r o ¥, O] s+ [|wo.r ey 3, 8) | s -

0
N0z wo.r l gs+12¢vy» Nwor ll gs+32¢vy } < Koo By

By > max {2K(§,e,,/21<(;’5} @

where K& ¢, comes from Lemma 5.12 and Kg ¢ > 0 is a universal constant, but Kg ;> 00 as
T — 0.

Cs+3/2+40

As before, the following can be readily established.
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Theorem 5.10. Given an integer s > 0 and any o > 0, if £ € C513/249(d) and it = 0 then if the

layer configuration is T-allowable the series (5.6b) converge strongly as operators from H*'(d)
to H'(d). More precisely

[0

(u)
max { ‘ H0 0.r

s

<I€(())ZB£’

H > Hs ‘ HS+1—>HA‘} -

or universal constants K9 , By >0, but K%, > ocoast— 0.
0,0 0,¢

We now require two lemmas for the recursive estimation of the inhomogeneities in (5.7), the
first in perturbation orders n and the second in orders r.

Lemma 5.11. Let s > 0 be an integer and let ii € C573/279 (d) for some o > 0. Assume

max { || aan,()(-xv ) ”_l) || HS>

aywn,o(x1 y’ L_‘)HHS ’

aan,O(-x9 ys ”_t) || Hs>

wn,O(x, ys ’/_t) ||Hs+l )
w00, ¥, O s

8ywn,0(xv yv E) HH_S )

aan,O(-xv y1 E) “H° )

wn,O(x’ yv Z) ||Hs+l ’

0
N0z wn.0ll gs+172(vys Mwnolll gs+32vy } < Ky o Bl

for constants KS’O, B, > 0 and all n < n. Then the function Fj; o from (5.7) satisfies

max { || Fio(x, y, i) ||Hs )

Fio(x, 3, 0| g - WF ol grs-120v) }
1 0 ~ n—1 ~12 n—2
< Ku,OKu,O {|M|CS+1 B;l + |M|Cs+1 B,;l } ,
; 1
for a universal constant K, 4 > 0.

In addition to this we have the following.

Lemma 5.12. Let s > 0 be an integer and let £ € CT3/219 (d) for some o > 0. Assume

max { || dxwo,r (x, y, i) HHS )

aywo,r(x» y7 I/_t)”Hx )

8Zw0,r(-xs y’ ’/_t)”Hs )

wO,r(x’ yv ﬁ)” Hs+l 9
”axwo,r(xa yvg)”Hr k]

dywo,r (X, y, E) HHS )

8Zw0,r(-xv Y, Z) || Hs >

’wo,r(-xv Y, Z) || Hs+1»

0
18z wo,r Il s+1/2vys Mwo,r ll gss320vy } < Koo By s

for constants Kgﬁ ¢» Be>0and all r <r. Then the function Fy ; from (5.7) satisfies

max { || For(x,y, ﬁ)”HS )

Fo i, 9, 0| s - Fo 7 lll grs-172vy }
_ 2 _
1 »0 )7 —1 |7 -2
51{0,[1{0’@{‘40“ B Y|, B }

for a universal constant K 6 > 0.



D.P. Nicholls / J. Differential Equations 263 (2017) 5042-5089 5077

The proof of each of these is quite similar and thus we present only that for Lemma 5.11.

Proof of Lemma 5.11. For brevity we consider only one representative term which must be
estimated. We focus upon

RFRY = 0. @20cwi 2,0 — WO Z10wi-2,0]
+ 4, [(ﬂ)zay Wi—2.0 — hil (3 Z, azwﬁ_Q,o]
+ 0, [—hit(3c) Z1 0 wi—2,0 — hit(3yit) Z 1,0y wi—2,0
+h? {(3xﬁ)2 + (ayﬁ)z} 73 BZWﬁfz,o] .
We now estimate

a

n,0

oy = M@ 05wn 20l ey, + Alla@iD ZL 00520l sy

+ || @29y wi—2.0 512, + Rll@@y@) Z18:wi 20| 1yss1/2y,
+ 1| @@ ZLdewi-2.0 || ey,
+h||a@yi) ZLoywi-2.0|| iy,
+ i ||| (8)65‘)22% 0; W7i-2,0 ||| Hs+1/2(V)
+ i ||| (8yﬁ)2zi 0; W7i-2,0 ||| Hs+1/2(V)

‘We can now use Lemma 5.4 to estimate

72 2,0) 21~12
P EG0 ] gy =M V200 W20l sy

+ hMP Jii| cor1 /210 il ostane Kzllwi—2.0lll gsts20v)
+ M il o0 lwi—2,0ll gossny)

+ RMP il cs41240 il ost3/240 Kzllwi—2,0lll gs+320vy
+ hM? i csv1240 il os43/210 Kz llwi—2,0ll gs+32¢vy
+ RMP il cs41240 il ost3/240 Kzllwi—2,0ll gs+320v)
+ P M? |'Z|2Cs+3/2+a K% llwi—2,0lll grs+372v)

7221512 2
+h M il iyspr0 Kz llwi—2,0ll gs+3/2(vy
where M = M(s +3/2 + o). Upon using
|ﬁ|cs+1/2+a 5 |lx~l|cs+3/2+a )

we are finished by making the estimate
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2,0)

72|
aLE

2 T 12221 1~12 0 n—2
|y, =M {24 40K 4 2R KD 0BI 7

and choosing
K!'i=M? {2 +4hK 7 + 2E2K§} /h%. O

We are now in position to prove Theorem 5.7 and once again note that the corresponding
proof of Theorem 5.9 is nearly identical so that we omit it for brevity.

Proof of Theorem 5.7. Our proof proceeds by induction in n; at order n = 0 we note that in
(5.7) we have

Fo0=0,

and it is a simple matter to write down the exact solution using the method of separation of
variables. We have assumed that this solution is unique and set

0
Ku,O = [llwo,0 |||Hs+3/2(v),

thereby establishing the base case of our induction. We now assume our estimates (5.13) for all
n < n. As we have assumed that a solution of (5.7) exists, we can apply Theorem 5.2 to (5.7) to
estimate

max { H axwﬁ,o(xv y’ IZ) || HS> 8ywr‘z,0(x’ y’ IZ)H HS > 8Zwﬁ,0(x9 y’ IZ) || HS > w;,,o(x, y’ l’_l) “ Hs+lo»

|| 8xwﬁ,0(-xv yﬂ E) ||Hs s 8}’w7_l,0(x7 yv Z) HHA ’ azwﬁ,()(x» ya Z) “Hs ) wr‘l,O(x’ yv Z) ||HA‘+1 )

|||3zwr'l,0|||HA‘+1/2(V)a |||wﬁ,0|||HS+3/2(V)} = Ke|||Fﬁ,0|||Hsf1/2(v)'

‘We now invoke LLemma 5.11 to discover that

max { ” axwr_l,()(xv y’ IZ) “ HS> aywr_l,o(x’ y, IZ)H HS> azwr_l,()(xv y’ I'_t) “ Hs> wr_l,()(x’ y’ IZ) ” H.H—I )

||8xwﬁ,0(x» yﬂE)HH_s ’ 8yw;l,0(xv y»E)HH_s ’ azwﬁ,O(x» ysﬁ_)“Hs ’ wfl,o(xv yvz) ||Hx+l ’
182w olll s+1/2 vy Mlwa, ol s+ }
< KK oK b o {1l cont B 412,00 B2

u,

and we are done provided

B, > max {ZK;’OK@ ,/ZKJ’OKe} it| cs+3/240 . O

With this we can establish Theorem 5.8 and, as before, note that the corresponding proof of
Theorem 5.10 is nearly the same and thus omitted.
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Proof of Theorem 5.8. Again, our proof is inductive in #; at order n = 0 we note that in (5.8)
we have

so that

HyolU. LT _ ( d;wo,0(x, y, i) )

HOW, L] —8,wo,0(x, . 0)
We have assumed configurations where solutions are unique, thus, from Theorem 5.5, we have
that

d.wo,0(x, y, i), wo0(x, y, £) € H* (),

so that we may set

K} o =max {[|;wo.00x, y.i)| s . [ 9-w0.00x, v, O s } -

thereby establishing the base case of our induction. We now assume our estimates (5.14) for all
n < n. Equation (5.8) with r = 0 delivers,

HY)[U. L] z(azwﬁ,o(x,y,ﬁg> (2
HU, L] —d;wz0(x, y, ) oy )’

and we focus upon one representative term in Q,(f()), namely

hQy Y = —aH\"| JIU, L] — h(3;@)dxwi-1,0 — h(Byi)dywi—1,0,
(the others can be handled in a similar fashion). We now utilize Theorem 5.7 to deliver
’ H le’b()) H o H_ﬁH’;LfLO[U’ L] — h(3it)dywii—1,0 — fz(ayﬁ)aywﬁ—l,OHH:
< M) lileent { B o0, L]+ |cwa-ro] o +F [oywirol .}
< M) lilern | RO 0BE +20K0 0B}

We are done provided that we choose
IM i ! 20 /RO
B, > Mlulcmmax{z, K, o/K; ol O

We require one final recursive lemma whose proof is very similar to that of Lemma 5.11 so it
is omitted.
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Lemma 5.13. Let s > 0 be an integer and let i, £ € CS13/2%9 (d) for some o > 0. Assume

max { | dxwn,r (x, y, i0) | s

’aywn,r(x’ Y, IZ)HHS )

azwn,r(xs ya IZ)”HV ) ’wn,r(x9 ya IZ)HHH—I ’

H Oxwy,r (X, y, E) ”Hs )

8ywn,r(xv y9E)HHs ’

azwn,r(x9 y, E) ”Hs ’ wn,r(xv }H E) ||Hs+l )

N0z w,r M gzss172vys Mwn.r ll s+ } < K,?,ZB,Z’BZ,
for constants K;?z’ By,,B¢>0,allnifr <r,and n <n if r =r. Then the function F;; from
(5.7) satisfies

max { | Fia 7 (x, y, ) | s -

| Fii 6, 3, 0| s Wil gs—12 vy }

F-1
Cs+3/240 4

1 0 ~ n—1 3
<K, .K,, {|M|C3+3/2+rr B, + ‘E

E‘ BB 4 ‘Z

~12 A2 =
Flalgespee By =+ litlestanto Cs¥3/240 U

F—2
Cs+3/2+0 By } . (.15
; 1
for a universal constant K, , > 0.
At last we can prove Theorem 5.5.

Proof of Theorem 5.5. We will now proceed by a double induction, beginning in r. The base
case is (5.11) with r = 0 which we have established in Theorem 5.7. We now assume (5.11) for
all n if r < r, and seek to establish (5.11) for all n and r = r. For this we perform a second
induction on n. Here the base case is to show (5.11) for n = 0 and any 7, but this we verified
in Theorem 5.9. Thus, we are finished provided that we can establish (5.11) for (n =n,r =r)
provided that this estimate holds for all n if r <7 and n < n if r =7. As we have assumed that a
solution of (5.7) exists, we can apply Theorem 5.2 to estimate

max { | dxwi 7 (x, y, i0) | s

}aywﬁ,f(-x’ y’ IZ)” HS’

8Zwﬁ,f(xr Yy, IZ) || HS }wﬁ,f(x9 Yy, IZ) || Hs+1 >

|| axwr_l,f(xv Yy, E) ”Hs s

aywr_l,f(-xv )’»E)HHS ’

3zwr‘zi(x» Vs Z_) ”Hs ) wr_l.f(-xa Vs E) ||Hs+l s
|||azwﬁ,F|||Hx+1/2(v), |||wr'z,f|||HS+3/2(v)} = Ke|||Fﬁ,f|||Hf—1/2(v)-

‘We now invoke Lemma 5.13 to discover that

max { | dxwi 7 (x, y, i0) | s

ayw;l,f(x’ y’ IZ)” HS’

azwﬁ,f(xv y’ ’Z)” Hs }wr_l,f(x9 y’ l’_t)” H.H—I )

H axwﬁ,f(-xv Yy, E) ”Hs s

aywﬁ,f(-xv )’»E)HHS ’

azwﬁ,f(x» Yy, Z_) ”Hs s wfl,f(-xv Y, E) ||Hs+l )

W13z wi 7 Wl s 1720y Nwa 7 g3z vy }

F—1

1 0 ~ n—1 7
< K.K! K?, {|u|cs+3/z+a B 4 ‘z s B

~ 2 —_2 - ~
+ Ul Gi3/240 B 77+ it] os+3/240 |€

BB 4 ‘E

Cs+3/240 U

2 B2
Cs+3/240 L ’
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and we are done provided

B, > max {SK;’eKe,,/SK;,ZKg} |ii| cs43/240
By > max {SK;’ZKE,,/SK;’KKE} o

And now, after all of this work, we can establish Theorem 5.6

Cs+3/2+0

Proof of Theorem 5.6. As in the proof of Theorem 5.5 we conduct a double induction beginning
in r. The base case is (5.12) in the case r = 0 which we verified in Theorem 5.8. We now assume
(5.12) for all n if r < 7, and seek to establish (5.12) for all n if » = 7. We perform this by
another induction in n. The base case is (5.12) for r = r if n = 0, but this was established in
Theorem 5.10. We are finished if we can show (5.12) for (n = n, r = r) provided that this bound
holds foralln if r <7 and n < n if r =r. Now (5.8) gives

U, L) = (e )+ O
HOW, L] =0 wi 7 (x, y, €) Q(_[,)F 7

n,r n

©

and we focus on one term in Qr-l’ N
7 AL0) _ ~ ) A= o _F(a _
]’lQﬁf = MH,—E_L;[U,L] h(axu)aanfl,r h(ayu)aywnfl,rv

(our analysis of the other terms is nearly identical). Theorem 5.5 gives

7| (1,0
oz’

=

| = aH o Ll Jh @)oo g + [ O D w7 e

< M) litles

O AU L1+ 25M ) il [ e
< M(s)liiles K By~ By +2hM(s) il es+1 KO B By

We are done provided we choose
2 50 R0 ~
B, > max{ﬁ,4hK”’£/Ku’l}M lit|cs+1. O

6. Conclusions

In this contribution we have established rigorous analytic results necessary for the proper
numerical analysis of a class of High-Order Perturbation of Surfaces (HOPS) methods. In par-
ticular, we have proven a theorem (see Theorem 4.1) on existence and uniqueness of solutions
to a system of partial differential equations which model the interaction of linear waves with a
multiply layered periodic structure in three dimensions. With this we now have hypotheses un-
der which a rigorous numerical analysis could be conducted, and a solution to which our HOPS
schemes can be shown to converge. This will apply not only to the classical methods of Milder
(Operator Expansions) and Bruno and Reitich (Field Expansions)—perhaps with more stringent
further hypotheses—but also to the stabilized approach of the author and Reitich (Transformed
Field Expansions).
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Appendix A. Elliptic estimate

The goal of this appendix is to give an idea of the proof of Theorem 5.2 in § 5.5. Recall that
in the middle layer we solve (5.9)

Aw+kw=F {0 <z<h),
w=1L, z=0,
w=U, z=h,

after a simple linear change of variables in z from [4, 2] to [0, h]. For this we express the solution
as

o0 oo
Wy D= D ) @Y
p=—00g==00

which delivers the following two point boundary value problems to solve

A

02ip.g +Vpgpg=Fpg  (0<z<h), (A.la)
Wp,q(0) = I:p,f/v (A.1b)
Wpg(h)=U,,. (A.1c)
‘We recall that,
p=at 2—71)17, Bq =ﬂ+<2—n>q,
dy d,
JKE—aZ =2, (p.q)el,
e _[ a2+ 82— (p.a) ¢ U,
U:= {(p 9 eZ| >+ B2 <k2}
of. (2.2).

A.l. Existence and uniqueness of solution

To begin, we establish the existence and uniqueness of solutions to (A.1) provided y, 4 # nrw
using the classical result of Keller [40], later extended in the “Integrated Solution Method” of
Zhang [72] (which the author learned from [24]). In the notation of [24], this method considers
problems of the form
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u'(2) + M(2u(z) =£(2), 0<z<h, (A.22)
Aou =Ty, = 0, (A.Zb)
Biu=s, z=h, (A.2¢)

where
f(z) eC™", ro(z) eC™, s1(z) €C™,
are vector fields (m = m + m»). Further,
M(z) eC™"™,  ApeC™>™ By eC™*™
are full rank matrices. Let ®(z) be the fundamental matrix solution of the system
D'(2)+M()P() =0, P0)=1Iy,
where I, is the m x m identity matrix. With these Keller [40] proves the following.

Theorem A.1. The two-point value problem (A.2) has a unique solution if and only if

Ap
det(Bch(h)> £0.

For our system we have m =2, m; =my =1, and

_ ﬁ)p,q > _ 0 —1> _ 0
u= £ , M((z)= ( , f=|{ - ,
<azwl’"f Vliq 0 Fpq

A

Ao:(] 0), B]:(l 0), ro=>Lpg, S0=0p,q,
where, the behavior of solutions depend strongly upon the character of ), 4:

1. First, yp 4 may be real and positive so that

_ cos(Yp,q2) Sin(yp,q2)/Vp.q
D(z) = .
—¥p.q Si(Yp.g2) cos(¥p,q2)

and

Ao\ 1 0 .
det <qu>(h)> = det <cos(y,,,qh) sin(yp,qh)/y,,,q) =sin(yp.g")/vp.g-

Thus, a unique solution exists if and only if

sin(yp,gh) #0 <= ypqh#nm, n#0.
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2. Second, yp 4, may be zero so that

and

Agp _ I 0\ __
det(qu)(h)>_det<1 h>_h'

Therefore, a unique solution exists in this case.
3. Finally, y, , may be purely complex with positive imaginary part, yp g =iVp.q (¥p,q > 0),

_( cosh(pp42) sinh(Yp 42)/Vp.q
d()=| - NS 7
VYp.q Sinh(¥p,q2) cosh(yp.42)
and

Ao\ 1 0 o
det <B1<I>(h)) = det (cosh(;;,,,qh) sinh(;;,,,qh)/;;p,) = sinh(yp.qM)/Vp.g-

Since sinh(y, 4 h) # 0, for y, 4h # 0, a unique solution always exists.
A.2. Solution formula
We now exclude the possibility of non-uniqueness by considering layer configurations which

are t-allowable, Definition 4.5, so that y, ;2 # nm (n # 0). Under these circumstances, the
unique solution can be written in terms of the following homogeneous solutions of (A.1a)

sin(yp,42)/ sin(yp gh), Yp.q €ERT,
Wp,q(Z) = Z/h, Yp.qg = 0,
sinh(yp,42)/sinh(Pp gh),  Vp.g =iVpq €IRT,

which are well-defined (if yp 4h 7 n). Using the facts that
Wp,q(o) =0, Wp,q(h) =1,
we write the solution of (A.1) as
Wpg(@) = LpgWpgh—2)+UpgWp4(2)
+CWyg(h = 2)I0[F) 41(2) + CW, o (W[ Fp 41(2),  (A3)

for some constant C, where

z h
I[F) 4)(2) = / Wy () Epg(s)ds, Ih[Fp,1) = / Wy qg(h—$)F, ,(s) ds.
0 z
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To find C we note that

Yp.q COS(Vp,qZ)/ Sin(yp,qh)» Yp.q € RT,
0,Wy,(2):=11/h, Ypq =0,
Vp.qg cosh(Pp g2)/ sinh(Pp gh),  Vp.q =iVpq €iRT,

and
_Vg,q sin(yp,q2)/sin(yp.gh),  ¥pq €RT,
BZZWpsq(Z) = 0’ ]/p,q = 0’
)7[3,(1 sinh(Pp 42)/ sinh(Pp gh),  Vpg =iVpq €IRT,
or 32? Wpq= —V,%,q Wp.4(2). In order to satisfy (A.1a) we choose

—sin(yp,gh)/Vp.q Ypg € R,
C= —h, Yp.q = O»

—sinh(ypqh)/Vp.qs  Vp.q €IRT.
A.3. Estimates
We recall the estimates we require to establish Theorem 5.2,
lMwlll gs+372(vy < Ke {|||F|||Hsf1/2(v) F U |l gs+1 + L] gs+1 } ) (Ada)
8z wlll grs+12vy < Ke {INF g1y + 10Ul ggssr + 1Ll s } (A.4b)
max {[[w(x, y, i)l gs+1 . Jw, v, O i }

< K {IIFlgs120vy + 10 g + 1 Ll gt } (Ado)

max { |9y w(x, y, @)l g »

|oywx, y, )| s - 0w (. y, i) | s }

Ke {IIF Wl gs—120vy + U s+ + [ Ll s } (A.4d)
max { |9y w(x, y, O o [dywCe, 3. O s+ 0w, . Oy}

Ke {IIF M gs=120vy + U gs1 + I L1 o1 } (A.4e)

cf. (5.10). We now demonstrate that these follow from the following lemma whose proof comes
from the exact solution formula (A.3) and arguments very much akin to those given in [56].

Lemma A.2. It can be shown that

[0y @72 < K. {((p O Fog |, 10,007 O] + 00 L }
(A.52)

~ 2
) ||+ 00 L }
(A.5b)

”8 wpq(Z)||L2<K {“P ) Hqu
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[y @[ = Ko {<(p, )7 | ﬁp,q(x)H; [0y + 1:1,,,,\2} , (A.50)

[0cibp, @[ = Ko {((p 07 | B

PO 4 (0.0 }
(A.5d)

for some universal constant K, > 0.

Given this, to establish (A.4a) we estimate

[ A S SR () [T E]

p=—00g=—00

<K Z Z{(pq)“HF

p=—00g=—00

@) |Op[ + (.a0? 72 ]ip,q it

which follows from (A.5a) and we are done. Now,

o (e.¢]
o wliog, = Do 2 (P @)+ [0, )]

p=—00g=—00

<K. i i {((p,cmzs_1 Hﬁ’,,,

p=—00g=—00

P 20|+ 1 002 )2} ,

comes from (A.5b) and we are done with (A.4b). Continuing, to verify (A.4c) we begin with

lwey. 2= Y. Y (@) iy )]

p=—00g=—00
o o0

<k Y ¥ {<<p,q>>2“‘ |2,
p=—00g=-00

@) [0 + (000202 \2} ,

which results from (A.5¢) and we are done. Since
et o (@) = (iap) Wy g (@),  Fyw, (i) = (iBg)ibp,q (D),

estimate (A.5c) suffices to show the estimates for (d,w)(x, y,u) and (dyw)(x, y, u) in (A.4c).
Now,
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locw.y. DI} = Y. Y ((p.)> by g @]
p

=—00g=—00

2
L2

kY Y {<<p,q>>23—‘ | 0@

p=—00g=—00
2542 |17 2 2542 |1 2
P D> (O] + (0> | } ,

from (A.5d) and we are done with (A.4d). The estimates in (A.4e) are validated in a similar
fashion. This completes the proof.
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