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Three-dimensional acoustic scattering by
layered media: a novel surface formulation
with operator expansions implementation

BY DAVID P. NICHOLLS*

Department of Mathematics, Statistics and Computer Science,
University of Illinois at Chicago, Chicago, IL 60607, USA

The scattering of acoustic waves by irregular structures plays an important role in a
wide range of problems of scientific and technological interest. This contribution focuses
on the rapid and highly accurate numerical approximation of solutions of Helmholtz
equations coupled across irregular periodic interfaces meant to model acoustic waves
incident upon a multi-layered medium. We describe not only a novel surface formulation
for the problem in terms of boundary integral operators (Dirichlet–Neumann operators),
but also a Boundary Perturbation methodology (the Method of Operator Expansions)
for its numerical simulation. The method requires only the discretization of the layer
interfaces (so that the number of unknowns is an order of magnitude smaller than
volumetric approaches), while it avoids not only the need for specialized quadrature rules
but also the dense linear systems characteristic of Boundary Integral/Element Methods.
The approach is a generalization to multiple layers of Malcolm & Nicholls’ Operator
Expansions algorithm for dielectric structures with two layers. As with this precursor,
this approach is efficient and spectrally accurate.

Keywords: boundary perturbation method; acoustic scattering; high-order spectral methods

1. Introduction

The interaction of acoustic waves with irregular structures plays an important
role in a wide range of problems of scientific and technological interest. From
remote sensing (Tsang et al. 1985) to underwater acoustics (Brekhovskikh &
Lysanov 1982), the ability to simulate, in a robust and accurate way, the
fields generated by such structures is of crucial importance to researchers from
many disciplines. This contribution focuses upon the rapid and highly accurate
numerical approximation of solutions of Helmholtz equations coupled across
irregular periodic interfaces meant to model acoustic waves incident upon a
multi-layered medium. We describe not only a novel surface formulation for the
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732 D. P. Nicholls

problem in terms of boundary integral operators (Dirichlet–Neumann operators,
DNOs), but also a Boundary Perturbation methodology (the Method of Operator
Expansions) for their numerical simulation.

A wide array of numerical algorithms have been devised for the simulation
of problems akin to the one we consider here. The classical Finite Difference
(Pratt 1990), Finite Element (Zienkiewicz 1977) and Spectral Element
(Komatitsch & Tromp 2002) methods are available but suffer from the
requirement that they discretize the full volume of the problem domain which not
only introduces a huge number of degrees of freedom, but also raises the difficult
question of appropriately specifying a far-field boundary condition explicitly.

The surface integral methods are popular and appealing alternatives (Sanchez-
Sesma et al. 1989; e.g. Boundary Integral Methods—BIM—or Boundary Element
Methods—BEM), which only require a discretization of the layer interfaces
(rather than the whole structure) and which, owing to the choice of the Green
function, satisfy the far-field boundary condition exactly. While these methods
can deliver high-accuracy simulations with greatly reduced operation counts,
there are several difficulties which need to be addressed (Reitich & Tamma
2004). First, high-order simulations can only be realized with specially designed
quadrature rules which respect the singularities in the Green function (and
its derivative, in certain formulations). Additionally, BIM/BEM typically give
rise to dense linear systems to be solved which require carefully designed
preconditioned iterative methods (with accelerated matrix–vector products; e.g.
by the Fast–Multipole Method; Greengard & Rokhlin 1987) for configurations of
engineering interest.

Boundary Perturbation Methods (BPMs) have recently received attention
as an alternative strategy that maintain the reduced numbers of degrees of
freedom of BIM/BEM while avoiding the need for special quadrature formulas
or preconditioned iterative solution procedures for dense systems. Bruno &
Reitich introduced the Method of Field Expansions (FE) (Bruno & Reitich
1993a,b,c) for doubly layered media, and (Malcolm & Nicholls 2011b) generalized
this to an arbitrary number of layers, greatly improving upon the prohibitive
operation counts of Dinesen & Hesthaven’s (2000) extension based upon iterated
two-layer solvers.

A closely related BPM was devised by Milder (1991a,b) (see also the
improvements of Coifman et al. 1999) for the simulation of scattering by
impenetrable gratings. This Operator Expansions (OE) approach was recently
generalized by Malcolm & Nicholls (2011a) in the case of doubly layered media
for the purpose of devising an algorithm for the inverse problem of identifying
the interface shape based upon far-field measurements. This approach enjoys all
of the speed and accuracy of Bruno & Reitich’s FE method, while only requiring
one surface unknown rather than the two, which the implementation of Malcolm
& Nicholls (2011b) currently requires.

In this contribution, we generalize this OE method of Milder and Malcolm
& Nicholls to the case of (M + 1)-many layers. In this formulation, we realize
the minimum number of problem unknowns (M surface functions, also used by
BIM/BEM) which halves the number currently mandated by the approach of
Malcolm & Nicholls (2011b). While we fully anticipate that the FE algorithm of
Malcolm & Nicholls (2011b) can be reformulated to involve only one unknown per
interface, our new approach has the additional benefit of having rather explicit
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Acoustic scattering by layered media 733

dependence upon the interface shapes, which make their application towards
an inverse problem algorithm very appealing (cf. Malcolm & Nicholls 2011a).
However, we leave this latter observation for future work and focus instead upon
this novel forward solver.

The organization of the paper is as follows. In §2, we recall the governing
equations of acoustic scattering in a triply layered medium, and in §2a, we present
a novel boundary formulation of the problem in terms of DNOs. In §§2b–d, we
outline an OE methodology for approximating solutions to our new boundary
formulation. In §3, we repeat these developments in the general case of (M + 1)
layers. We outline a boundary formulation in §3a with an OE implementation
in §3b. Finally, in §4, we provide details of our numerical experiments. In §4a,
we discuss a class of exact solutions and in §4b, we give details of our numerical
approach, including error measurement in §4c and Padé approximation in §4d.
In §§4e,f, we display results in two and three dimensions, respectively, and brief
concluding remarks are given in §5.

2. Governing equations: three layers

For ease of notation, we begin our developments with a detailed description of
scattering by a triply layered media. We will return to the general setting in the
following section. It is well-known (Petit 1980; Ihlenburg 1998) that the (reduced)
scattered pressure inside a periodic structure satisfies the Helmholtz equation
with isonification conditions at the interface, and outgoing wave conditions at
positive and negative infinity. More precisely, for a triply layered medium, we
define the domains

Su = {(x , y, z)|z > ḡ + g(x , y)},
Sv = {(x , y, z)|h̄ + h(x , y) < z < ḡ + g(x , y)}

and Sw = {(x , y, z)|z < h̄ + h(x , y)},
with dx × dy periodic interfaces g and h,

g(x + dx , y + dy) = g(x , y), h(x + dx , y + dy) = h(x , y),

and (upward pointing) normals

Ng = (−vxg, −vyg, 1)T, Nh = (−vxh, −vyh, 1)T.

All three domains are constant-density acoustic media with velocities cj (j =
u, v, w); we assume that plane-wave radiation is incident upon the structure
from above:

u(x , y, z , t) = e−iutei(ax+by−guz) = e−iutui(x , y, z). (2.1)

With these specifications, we can define in each layer the parameter kj = u/cj
which characterizes both the properties of the material and the frequency of
radiation in the structure. If the reduced scattered fields (i.e. the full scattered
fields with the periodic time dependence factored out) in Su , Sv and Sw
are, respectively, denoted {u, v, w} = {u(x , y, z), v(x , y, z), w(x , y, z)}, then these

Proc. R. Soc. A (2012)

 on May 16, 2012rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


734 D. P. Nicholls

functions will be quasiperiodic (Petit 1980)

u(x + dx , y + dy , z) = ei(adx+bdy)u(x , y, z),

v(x + dx , y + dy , z) = ei(adx+bdy)v(x , y, z)

and w(x + dx , y + dy , z) = ei(adx+bdy)w(x , y, z),

and the system of partial differential equations (PDEs) to be solved are

Du + k2
uu = 0 z > ḡ + g(x , y), (2.2a)

B{u} = 0 z → ∞, (2.2b)

Dv + k2
v v = 0 h̄ + h(x , y) < z < ḡ + g(x , y), (2.2c)

u − v = z, vNg (u − v) = j z = ḡ + g(x , y), (2.2d)

Dw + k2
ww = 0 z < h̄ + h(x , y), (2.2e)

B{w} = 0 z → −∞ (2.2f )

and v − w = q, vNh (v − w) = m z = h̄ + h(x , y), (2.2g)

where

z(x , y) := −ui(x , y, ḡ + g(x , y)) = −ei(ax+by−gu(ḡ+g(x ,y))),

j(x , y) := −[vNg ui(x , y, z)]z=ḡ+g(x ,y) (2.2h)

and = (igu + ia(vxg) + ib(vyg))ei(ax+by−gu(ḡ+g(x ,y))). (2.2i)

If continuity is enforced inside the structure, then q = m ≡ 0; however, as we shall
see, it is no impediment to the method if we set it to any non-zero function. In
these equations, the operator B enforces the condition that scattered solutions
must either be ‘outgoing’ (upward in Su and downward in Sw) if they are
propagating, or ‘decaying’ if they are evanescent. We make this ‘Outgoing Wave
Condition’ (OWC; Petit 1980) more precise in the Fourier series expression for
the exact solution (see (2.3) below).

The quasiperiodic solutions of the Helmholtz equations—(2.2a, c and e)—and
the OWCs—(2.2b,f )—are given by Petit (1980)

u(x , y, z) =
∞∑

p=−∞

∞∑
q=−∞

ap,q exp(i(apx + bqy + gu,p,qz)), (2.3a)

v(x , y, z) =
∞∑

p=−∞

∞∑
q=−∞

bp,q exp(i(apx + bqy − gv,p,qz))

+
∞∑

p=−∞

∞∑
q=−∞

cp,q exp(i(apx + bqy + gv,p,qz)) (2.3b)

and w(x , y, z) =
∞∑

p=−∞

∞∑
q=−∞

dp,q exp(i(apx + bqy − gw,p,qz)), (2.3c)
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Acoustic scattering by layered media 735

where

ap := a +
(

2p

dx

)
p, bq := b +

(
2p

dy

)
q,

gj ,p,q :=

⎧⎪⎨
⎪⎩
√

k2
j − a2

p − b2
q , a2

p + b2
q < k2

j

i
√

a2
p + b2

q − k2
j , a2

p + b2
q > k2

j

,

j = u, v, w. The OWC mandates that we choose the positive sign in front of gu,p,q
in (2.3a) and the negative sign in front of gw,p,q in (2.3c). These formulas are valid
provided that (x , y, z) are outside the grooves, i.e.

(x , y, z) ∈ {z > ḡ + |g|L∞} ∪ {h̄ + |h|L∞ < z < ḡ − |g|L∞} ∪ {z < h̄ − |h|L∞}.

(a) Boundary formulation

The key to our solver is the realization that if we recover the Dirichlet and
Neumann traces of u, v and w,

U (x , y) := u(x , y, ḡ + g(x , y)), V g(x , y) := v(x , y, ḡ + g(x , y)),

V h(x , y) := v(x , y, h̄ + h(x , y)), W (x , y) := w(x , y, h̄ + h(x , y)),

Ũ (x , y) := −(vNg u)(x , y, ḡ + g(x , y)), Ṽ g(x , y) := (vNg v)(x , y, ḡ + g(x , y)),

Ṽ h(x , y) := −(vNhv)(x , y, h̄ + h(x , y)), W̃ (x , y) := (vNhw)(x , y, h̄ + h(x , y)),

then integral formulas will tell us u, v and w everywhere. We point out that
the choice of signs on {Ũ , Ṽ g , Ṽ h , W̃ } prescribe normal derivatives exterior to
the domain of definition of the corresponding fields {u, v, w}. Furthermore, if we
define the DNOs

G(g)[U (x , y)] := Ũ (x , y), (2.4a)

H (g, h)[ �V ] =
(

H gg(g, h) H gh(g, h)
H hg(g, h) H hh(g, h)

)(
V g(x , y)
V h(x , y)

)
:=

(
Ṽ g(x , y)
Ṽ h(x , y)

)
(2.4b)

and J (h)[W (x , y)] := W̃ (x , y), (2.4c)

then it suffices to simply find the Dirichlet traces {U , V g , V h , W }. As the DNOs
encapsulate the solution of the Helmholtz equations and the OWCs, it is not
difficult to see that (2.2) are equivalent to the surface equations

U − V g = z

−G[U ] − H gg[V g] − H gh[V h] = j

V h − W = q

−H hg[V g] − H hh[V h] − J [W ] = m.

We can further simplify by using the first and third equations to express

V g = U − z and W = V h − q,

Proc. R. Soc. A (2012)
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and then insert these into the second and fourth equations:

−G[U ] − H gg[U − z] − H gh[V h] = j,

−H hg[U − z] − H hh[V h] − J [V h − q] = m

or (
G + H gg H gh

H hg H hh + J

)(
U
V h

)
=

( −j + H gg[z]
−m + H hg[z] + J [q]

)
. (2.5)

Remark 2.1. At this point, we indicate that the formulation (2.5) is
independent of algorithm choice and that the method we advocate below (the
Method of Operator Expansions) is not the only approach which can be used
to solve these equations. For instance, a surface integral approach could also be
considered. The crucial consideration is how are the operators H gg , H hg and J to
be computed and, more importantly, how is the inverse of the operator(

G + H gg H gh

H hg H hh + J

)

to be approximated?

We choose the OE approach because of its favourable operation counts
(which match integral equation methods), rapid execution times and remarkable
accuracy (please see Bruno & Reitich (1993a,b,c) and (Milder 1991a,b) for a full
verification of all of these claims). We note, however, that for very large and/or
rough interfaces, the OE algorithm does face conditioning challenges. We refer
the interested reader to the work of the author and F. Reitich for a comprehensive
discussion of the relevant height-to-period ratios, smoothness requirements and
frequency dependence of this phenomena (Nicholls & Reitich 2004a), together
with potential remedies (Nicholls & Reitich 2004b).

(b) An operator expansions method

We propose a perturbative approach to the solution of (2.5) based upon the
assumption g(x , y) = 3f (x , y) and h(x , y) = 3s(x , y) where, a priori, 3 is assumed
small. If this is the case, then it can be shown that the data {z, j, q, m} and
operators {G, H gg , H gh , H hg , H hh , J } depend analytically upon 3 so that

{z, j, q, m} = {z, j, q, m}(x ; 3) =
∞∑

n=0

{zn , jn , qn , mn}(x)3n ,

{G, H gg , H gh , H hg , H hh , J } = {G, H gg , H gh , H hg , H hh , J }(3)

=
∞∑

n=0

{Gn , H gg
n , H gh

n , H hg
n , H hh

n , Jn}3n .

Furthermore, the scattered fields can also be shown to be analytical so that

{U , V g , V h , W } = {U , V g , V h , W }(x ; 3) =
∞∑

n=0

{Un , V g
n , V h

n , Wn}(x)3n .
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Inserting these into (2.5), we see that( ∞∑
n=0

3n
(

Gn + H gg
n H gh

n

H hg
n H hh

n + Jn

))( ∞∑
m=0

3m
(

Um
V h

m

))

= −
∞∑

n=0

3n
(

jn
mn

)
+

( ∞∑
n=0

3n
∞∑

m=0

3m
(

H gg
n [zm]

H hg
n [zm] + Jn[qm]

))
.

At order O(30) we find

A0

(
U0
V h

0

)
= R0, (2.6)

where

A0 :=
(

G0 + H gg
0 H gh

0
H hg

0 H hh
0 + J0

)

and

R0 := −
(

j0
m0

)
+

(
H gg

0 [z0]
H hg

0 [z0] + J0[q0]
)

,

while at order O(3n)
n∑

m=0

An−m

(
Um
V h

m

)
= Rn ,

where

An :=
(

Gn + H gg
n H gh

n

H hg
n H hh

n + Jn

)

and

Rn = −
(

jn
mn

)
+

n∑
m=0

(
H gg

n−m[zm]
H hg

n−m[zm] + Jn−m[qm]
)

.

Solving for (Un , V h
n )T,(

Un
V h

n

)
= A−1

0

{
Rn −

n−1∑
m=0

An−m

(
Um
V h

m

)}
. (2.7)

Note that at every perturbation order in this approach, we repeatedly invert the
same operator, A0, which, as we shall see, is block diagonal in Fourier space and
can, therefore, be accomplished very rapidly.

(c) Expansions: surface data and the Dirichlet–Neumann operators G and J

The key to our algorithm is convenient, high-order formulas for the functions
{zn , jn , qn , mn}, and the operators {Gn , H gg

n , H gh
n , H hg

n , H hh
n , Jn}. While many of

these formulas have appeared in the literature (particularly for two-dimensional
configurations), we collect all of them here for convenience.
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We begin with z

z(x , y; 3) = −ei(ax+by−gu(ḡ+3f (x ,y))) = −ei(ax+by−gu ḡ)
∞∑

n=0

Fn(x , y)(−igu)n3n ,

where Fn(x , y) := f (x , y)n/n! Thus

zn = −ei(ax+by−gu ḡ)Fn(x , y)(−igu)n . (2.8)

Similarly, for j we have

j(x , y) = i(gu + a3(vx f ) + b3(vyf ))ei(ax+by−gu(ḡ+3f (x ,y)))

= ei(ax+by−gu ḡ)

(
igu

∞∑
n=0

Fn(x , y)(−igu)n3n + ia3(vx f )
∞∑

n=0

Fn(x , y)(−igu)n3n

+ ib3(vyf )
∞∑

n=0

Fn(x , y)(−igu)n3n

)
.

So
j0 = (igu)ei(ax+by−gu ḡ) (2.9a)

and

jn = ei(ax+by−gu ḡ)(−Fn(x , y)(−igu)n+1 + (vx f )Fn−1(x , y)(ia)(−igu)n−1

+ (vyf )Fn−1(x , y)(ib)(−igu)n−1), (2.9b)

for n > 0. In the current model, we have included q and m as forcing terms at the
lower interface z = h̄ + h(x , y) as they introduce no significant complications to
the algorithm. However, for our present purposes, we simply enforce continuity
at this interface and therefore set q = m ≡ 0 so that qn = mn = 0 for all n.

The operators
{G, H gg , H gh , H hg , H hh , J }

are a bit more involved and we use the method of OE (Milder 1991a; Craig &
Sulem 1993; Nicholls & Reitich 2004a) to find the action of

{Gn , H gg
n , H gh

n , H hg
n , H hh

n , Jn}.
In previous work (Nicholls & Reitich 2004a,b), it was shown that

G0[x] = −(igu,D)x,

where we have used Fourier multiplier notation

m(D)x = m(Dx , Dy)x(x , y) = m(Dx , Dy)
∞∑

p=−∞

∞∑
q=−∞

x̂p,qei(apx+bqy)

=
∞∑

p=−∞

∞∑
q=−∞

m(p, q)x̂p,qei(apx+bqy).
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Acoustic scattering by layered media 739

Furthermore,

Gn[x] = k2
uFn(x , y)(igu,D)n−1x + vx [Fn(x , y)vx(igu,D)n−1x]

+ vy[Fn(x , y)vy(igu,D)n−1x] −
n−1∑
m=0

Gm[Fn−m(igu,D)n−mx]. (2.10)

In an exactly analogous fashion, we can derive

J0[x] = −(igw,D)x

and

Jn[x] = −k2
wSn(x)(−igw,D)n−1x − vx [Sn(x , y)vx(−igw,D)n−1x]

− vy[Sn(x , y)vy(−igw,D)n−1x] −
n−1∑
m=0

Jm[Sn−m(−igw,D)n−mx]. (2.11)

(d) Expansions: the operator H

The matrix-valued operator H is more complicated than the DNOs G and J
presented above; however, the same OE philosophy can be brought to bear upon
this operator as well. To begin, we define the function

vp,q(x , y, z) = {Ap,qQ+(z) + Bp,qQ−(z)}ei(apx+bqy), (2.12)

where

Q+(z) := sinh(igv,p,q(z − h̄))

sinh(igv,p,q(ḡ − h̄))
and Q−(z) := sinh(igv,p,q(ḡ − z))

sinh(igv,p,q(ḡ − h̄))
,

which satisfy Helmholtz’s equation in the middle layer and

vp,q(x , y, ḡ) = Ap,qei(apx+bqy) and vp,q(x , y, h̄) = Bp,qei(apx+bqy),

since

Q+(ḡ) = 1, Q+(h̄) = 0, Q−(ḡ) = 0 and Q−(h̄) = 1.

We insert this into the definition of H

H (g, h)
[(

vp,q(x , y, ḡ + g)
vp,q(x , y, h̄ + h)

)]

=
(

vzvp,q(x , y, ḡ + g)
−vzvp,q(x , y, h̄ + h)

)
−

(
(vxg)vxvp,q(x , y, ḡ + g)

−(vxh)vxvp,q(x , y, h̄ + h)

)

−
(

(vyg)vyvp,q(x , y, ḡ + g)
−(vyh)vyvp,q(x , y, h̄ + h)

)
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or

H (g, h)
[({Ap,qQ+(ḡ + g) + Bp,qQ−(ḡ + g)}ei(apx+bqy)

{Ap,qQ+(h̄ + h) + Bp,qQ−(h̄ + h)}ei(apx+bqy)

)]

=
( {Ap,qvzQ+(ḡ + g) + Bp,qvzQ−(ḡ + g)}ei(apx+bqy)

−{Ap,qvzQ+(h̄ + h) + Bp,qvzQ−(h̄ + h)}ei(apx+bqy)

)

− (iap)
(

(vxg){Ap,qQ+(ḡ + g) + Bp,qQ−(ḡ + g)}ei(apx+bqy)

−(vxh){Ap,qQ+(h̄ + h) + Bp,qQ−(h̄ + h)}ei(apx+bqy)

)

− (ibq)
(

(vyg){Ap,qQ+(ḡ + g) + Bp,qQ−(ḡ + g)}ei(apx+bqy)

−(vyh){Ap,qQ+(h̄ + h) + Bp,qQ−(h̄ + h)}ei(apx+bqy)

)
. (2.13)

With an eye towards simplifying these expressions, we define S = Sg + Sh , where

Sg(g) :=
(

Q+(ḡ + g) Q−(ḡ + g)
0 0

)

= 1

sinh(igv,p,q(ḡ − h̄))

(
sinh(igv,p,q(ḡ − h̄ + g)) sinh(−igv,p,qg)

0 0

)
(2.14)

and

Sh(h) :=
(

0 0
Q+(h̄ + h) Q−(h̄ + h)

)

= 1

sinh(igv,p,q(ḡ − h̄))

(
0 0

sinh(igv,p,qh) sinh(igv,p,q(ḡ − h̄ − h))

)
(2.15)

and C = Cg + Ch , where

Cg(g) := 1
igv,p,q

(
vzQ+(ḡ + g) vzQ−(ḡ + g)

0 0

)

= 1

sinh(igv,p,q(ḡ − h̄))

(
cosh(igv,p,q(ḡ − h̄ + g)) − cosh(−igv,p,qg)

0 0

)
(2.16)

and

Ch(h) := 1
igv,p,q

(
0 0

−vzQ+(h̄ + h) −vzQ−(h̄ + h)

)

= 1

sinh(igv,p,q(ḡ − h̄))

(
0 0

− cosh(igv,p,qh) cosh(igv,p,q(ḡ − h̄ − h))

)
. (2.17)

We note that

S(0) =
(

1 0
0 1

)
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and

C(0) =
(

coth(igv,p,q(ḡ − h̄)) −csch(igv,p,q(ḡ − h̄))
−csch(igv,p,q(ḡ − h̄)) coth(igv,p,q(ḡ − h̄))

)
∼

(
1 0
0 1

)
,
√

p2 + q2 → ∞,

so that, by factoring out (igv,p,q), we realize an operator C(0) which is bounded
as the wavenumbers increase. With these definitions, equation (2.13) reads

H (g, h)
[
(Sg(g) + Sh(h))

(
Ap,q
Bp,q

)
ei(apx+bqy)

]

= {
Cg(g)(igv,p,q) − (vxg)Sg(g)(iap) − (vyg)Sg(g)(ibq)

}(
Ap,q
Bp,q

)
ei(apx+bqy)

+
{
Ch(h)(igv,p,q) + (vxh)Sh(h)(iap) + (vyh)Sh(h)(ibq)

}(
Ap,q
Bp,q

)
ei(apx+bqy).

(2.18)

At this point, we see a further difference with the operator H : it depends not
only on two Dirichlet data, but also two boundaries. While we view these two
boundaries as of the same order of magnitude, g(x) = 3f (x) and h(x) = 3s(x),
where both f = s = O(1), we note that this need not be the case and, in fact,
the variations can be quite independent. Expanding the operators H , S and C in
Taylor series delivers( ∞∑

n=0

3nHn(f , s)

)[ ∞∑
m=0

3m(Sg
m(f ) + Sh

m(s))
(

Ap,q
Bp,q

)
ei(apx+bqy)

]

=
∞∑

n=0

3n
{
(Cg

n(f ) + Ch
n(s))(igv,p,q) − 3((vx f )Sg

n(f ) − (vx s)Sh
n(s))(iap)

− 3((vyf )Sg
n(f ) − (vys)Sh

n(s))(ibq)
}(

Ap,q
Bp,q

)
ei(apx+bqy). (2.19)

(i) Zeroth order

At order O(30) in (2.19), we find

H0

[
(Sg

0 + Sh
0)

(
Ap,q
Bp,q

)
ei(apx+bqy)

]
= (Cg

0 + Ch
0)(igv,p,q)

(
Ap,q
Bp,q

)
ei(apx+bqy).

Noting that Sg
0 + Sh

0 = I and

Cg
0 + Ch

0 = 1

sinh(igv,p,q(ḡ − h̄))

(
cosh(igv,p,q(ḡ − h̄)) −1

−1 cosh(igv,p,q(ḡ − h̄))

)

=
(

coth(igv,p,q(ḡ − h̄)) −csch(igv,p,q(ḡ − h̄))
−csch(igv,p,q(ḡ − h̄)) coth(igv,p,q(ḡ − h̄))

)
,

Proc. R. Soc. A (2012)

 on May 16, 2012rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


742 D. P. Nicholls

we have

H0

[(
x
n

)]
= (igv,D)

(
coth(igv,D(ḡ − h̄)) −csch(igv,D(ḡ − h̄))

−csch(igv,D(ḡ − h̄)) coth(igv,D(ḡ − h̄))

)(
x
n

)
. (2.20)

(ii) General domain

At order O(3n), n > 0 in (2.19), we have

Hn(f , s)
[
(Sg

0 + Sh
0)

(
Ap,q
Bp,q

)
ei(apx+bqy)

]

=
{
(Cg

n(f ) + Ch
n(s))(igv,p,q) − ((vx f )S

g
n−1(f ) − (vx s)Sh

n−1(s))(iap)

− ((vyf )S
g
n−1(f ) − (vys)Sh

n−1(s))(ibq)
}(

Ap,q
Bp,q

)
ei(apx+bqy)

−
n−1∑
m=0

Hm(f , s)
[
Sg

n−m(f ) + Sh
n−m(s))

(
Ap,q
Bp,q

)
ei(apx+bqy)

]
.

Using Sg
0 + Sh

0 = I and, with a simplification in mind, introducing two cancelling
factors of (igv,p,q), we find

Hn(f , s)
[(

Ap,q
Bp,q

)
ei(apx+bqy)

]

=
{
(Cg

n(f ) + Ch
n(s))

(igv,p,q)2

(igv,p,q)
− ((vx f )S

g
n−1(f ) − (vx s)Sh

n−1(s))(iap)

− ((vyf )S
g
n−1(f ) − (vys)Sh

n−1(s))(ibq)
}(

Ap,q
Bp,q

)
ei(apx+bqy)

−
n−1∑
m=0

Hm(f , s)
[
(Sg

n−m(f ) + Sh
n−m(s))

(
Ap,q
Bp,q

)
ei(apx+bqy)

]
.

Using (igv,p,q)2 = −k2
v − (iap)2 − (ibq)2, we have

Hn(f , s)
[(

Ap,q
Bp,q

)
ei(apx+bqy)

]

=
{
−(Cg

n(f ) + Ch
n(s))

k2
v

(igv,p,q)
− (Cg

n(f ) + Ch
n(s))

(iap)2

(igv,p,q)
− ((vx f )S

g
n−1(f )

− (vx s)Sh
n−1(s))(iap) − (Cg

n(f ) + Ch
n(s))

(ibq)2

(igv,p,q)
− ((vyf )S

g
n−1(f )
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− (vys)Sh
n−1(s))(ibq)

}(
Ap,q
Bp,q

)
ei(apx+bqy)

−
n−1∑
m=0

Hm(f , s)
[
(Sg

n−m(f ) + Sh
n−m(s))

(
Ap,q
Bp,q

)
ei(apx+bqy)

]
.

or, since,

vxei(apx+bqy) = (iap)ei(apx+bqy) and vyei(apx+bqy) = (ibq)ei(apx+bqy),

for a general function (x, n),

Hn(f , s)
[(

x
n

)]

=
{
−(Cg

n(f ) + Ch
n(s))

k2
v

(igv,D)
− (Cg

n(f ) + Ch
n(s))

1
(igv,D)

v2
x − ((vx f )S

g
n−1(f )

− (vx s)Sh
n−1(s))vx − (Cg

n(f ) + Ch
n(s))

1
(igv,D)

v2
y − ((vyf )S

g
n−1(f )

− (vys)Sh
n−1(s))vy

}(
x
n

)
−

n−1∑
m=0

Hm(f , s)
[
(Sg

n−m(f ) + Sh
n−m(s))

(
x
n

)]
. (2.21)

(iii) Taylor coefficients for the operators S and C

All that remains is to specify formulas for the Sn and Cn . We shall show that,
in fact, these coefficients are quite closely related thus enabling a significant
simplification of formula (2.21). For these, it is most convenient to invent the
following notation

shchn(z) := ez − (−1)ne−z

2
=

{
sinh(z) n even
cosh(z) n odd

and we note that

vn
z sinh(z) = shchn(z), vn

z cosh(z) = shchn+1(z).

With this notation in hand, we have from (2.14)

Sg(3f ) = 1

sinh(igv,p,q(ḡ − h̄))

(
sinh(igv,p,q(ḡ − h̄ + 3f )) sinh(−igv,p,q3f )

0 0

)

=
∞∑

n=0

3nFn

(
shchn(igv,p,q(ḡ − h̄)) (−1)nshchn(0)

0 0

)
(igv,p,q)n

sinh(igv,p,q(ḡ − h̄))
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and (2.15)

Sh(3s) = 1

sinh(igv,p,q(ḡ − h̄))

(
0 0

sinh(igv,p,q3s) sinh(igv,p,q(ḡ − h̄ − 3s))

)

=
∞∑

n=0

3nSn

(
0 0

shchn(0) (−1)nshchn(igv,p,q(ḡ − h̄))

)
(igv,p,q)n

sinh(igv,p,q(ḡ − h̄))
,

so that

Sg
n(f ) = Fn

(
shchn(igv,p,q(ḡ − h̄)) (−1)nshchn(0)

0 0

)
(igv,p,q)n

sinh(igv,p,q(ḡ − h̄))
(2.22a)

and

Sh
n(s) = Sn

(
0 0

shchn(0) (−1)nshchn(igv,p,q(ḡ − h̄))

)
(igv,p,q)n

sinh(igv,p,q(ḡ − h̄))
. (2.22b)

Similarly, (2.16) and (2.17) give

Cg
n(f ) = Fn

(
shchn+1(igv,p,q(ḡ − h̄)) (−1)n+1shchn+1(0)

0 0

)
(igv,p,q)n

sinh(igv,p,q(ḡ − h̄))

(2.23a)

and

Ch
n(s) = Sn

(
0 0

−shchn+1(0) (−1)nshchn+1(igv,p,q(ḡ − h̄))

)
(igv,p,q)n

sinh(igv,p,q(ḡ − h̄))
.

(2.23b)

To make the simplifications we advertised at the beginning of this section, we
follow the lead of our previous work on these types of problems (e.g. Nicholls &
Reitich 2001a,b) and consider the sum of the third and fifth terms on the right-
hand side (r.h.s.) of (2.21)

H :=
{
−Cg

n(f )
1

(igv,D)
v2

x − (vx f )S
g
n−1(f )vx

}(
x
n

)
.

We can show by a direct invocation of the product rule that

vx

[
−Cg

n(f )
1

(igv,D)
vx

(
x
n

)]
= −

(
vx

[
Cg

n(f )
1

(igv,D)

])
vx

(
x
n

)
− Cg

n(f )
1

(igv,D)
v2

x

(
x
n

)
,
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which is reminiscent of H, but not evidently identical. However, from (2.23b)

vxCg
n(f )

1
(igv,D)

= (vx f )Fn−1

(
shchn+1(igv,D(ḡ − h̄)) (−1)n+1shchn+1(0)

0 0

)

× (igv,D)n−1

sinh(igv,D(ḡ − h̄))

= (vx f )Fn−1

(
shchn−1(igv,D(ḡ − h̄)) (−1)n−1shchn−1(0)

0 0

)

× (igv,D)n−1

sinh(igv,D(ḡ − h̄))

= (vx f )S
g
n−1(f ),

where the last step comes from (2.22a), so that

H =
{
−Cg

n(f )
1

(igv,D)
v2

x − (vx f )S
g
n−1(f )vx

}(
x
n

)

= −Cg
n(f )

1
(igv,D)

v2
x

(
x
n

)
−

(
vx

[
Cg

n(f )
1

(igv,D)

])
vx

(
x
n

)

= vx

[
−Cg

n(f )
1

(igv,D)
vx

(
x
n

)]
+

(
vx

[
Cg

n(f )
1

(igv,D)

])
vx

(
x
n

)

−
(

vx

[
Cg

n(f )
1

(igv,D)

])
vx

(
x
n

)

= vx

[
−Cg

n(f )
1

(igv,D)
vx

(
x
n

)]
.

Using similar manipulations for the fourth and sixth terms on the r.h.s., we can
simplify (2.21) to

Hn(f , s)
[(

x
n

)]
=

{
−(Cg

n(f ) + Ch
n(s))

k2
v

(igv,D)
− vx

[
(Cg

n(f ) + Ch
n(s))

1
(igv,D)

vx

]

− vy

[
(Cg

n(f ) + Ch
n(s))

1
(igv,D)

vy

]}(
x
n

)

−
n−1∑
m=0

Hm(f , s)
[
(Sg

n−m(f ) + Sh
n−m(s))

(
x
n

)]
. (2.24)
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3. Governing equations: (M + 1)-many layers

We now consider a multiple-layered material with M interfaces at z = a(m) +
g(m)(x , y) (1 ≤ m ≤ M ) separating (M + 1)-many layers which define the domains

S (0) := {(x , y, z)|z > a(1) + g(1)(x , y)}
S (m) := {(x , y, z)|a(m+1) + g(m+1)(x , y) < z < a(m) + g(m)(x , y)}, 1 ≤ m ≤ M − 1

S (M ) := {(x , y, z)|z < a(M ) + g(M )(x , y)}
with (upward pointing) normals Nm := (−vxg(m), −vyg(m), 1)T. The (M + 1)
domains are all constant-density acoustic media with velocities cm (m = 0, . . . , M )
and we again assume that plane-wave radiation (2.1) is incident upon the
structure from above. In each layer, the parameter km = u/cm characterizes both
the properties of the material and the frequency of radiation in the structure. We
denote the quasiperiodic reduced scattered fields in S (m) by v(m)(x , y, z), which
satisfy the Helmholtz equations

Dv(m) + (km)2v(m) = 0, in S (m), 0 ≤ m ≤ M . (3.1)

These are coupled through the Dirichlet and Neumann boundary conditions

v(m−1) − v(m) = z(m) z = a(m) + g(m)(x , y), 1 ≤ m ≤ M (3.2a)

and

vNm [v(m−1) − v(m)] = j(m) z = a(m) + g(m)(x , y), 1 ≤ m ≤ M . (3.2b)

Again, outgoing wave conditions are enforced on v(0) and v(M ) at positive and
negative infinity, respectively.

(a) Boundary formulation

We once again make the reduction to surface quantities, and define the (lower
and upper) Dirichlet traces

V (m),l(x , y) := v(m)(x , y, a(m+1) + g(m+1)(x , y)) 0 ≤ m ≤ M − 1

V (m),u(x , y) := v(m)(x , y, a(m) + g(m)(x , y)) 1 ≤ m ≤ M

and their (exterior, lower and upper) Neumann analogues

Ṽ (m),l(x , y) := −(vNm+1v
(m))(x , y, a(m+1) + g(m+1)(x , y)) 0 ≤ m ≤ M − 1

Ṽ (m),u(x , y) := (vNmv(m))(x , y, a(m) + g(m)(x , y)) 1 ≤ m ≤ M .

In terms of these, the boundary conditions become

V (m−1),l − V (m),u = z(m) 1 ≤ m ≤ M

−Ṽ (m−1),l − Ṽ (m),u = j(m) 1 ≤ m ≤ M .
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Again, we introduce the DNOs

G[V (0),l ] = G(a(1), g(1))[V (0),l ] := Ṽ (0),l

H (m)[V (m),u , V (m),l ] = H (a(m), a(m+1), g(m), g(m+1))[V (m),u , V (m),l ]

=
(

H uu(m) H ul(m)
H lu(m) H ll(m)

)[(
V (m),u

V (m),l

)]

:=
(

Ṽ (m),u

Ṽ (m),l

)
1 ≤ m ≤ M − 1

J [V (M ),u] = J (a(M ), g(M ))[V (M ),u] := Ṽ (M ),u ,

so that the boundary conditions become

V (m−1),l − V (m),u = z(m) 1 ≤ m ≤ M

− G[V (0),l ] − H uu(1)[V (1),u] − H ul(1)[V (1),l ] = j(1)

− H lu(m − 1)[V (m−1),u] − H ll(m − 1)[V (m−1),l ]
− H uu(m)[V (m),u] − H ul(m)[V (m),l ] = j(m) 2 ≤ m ≤ M − 1

− H lu(M − 1)[V (M−1),u] − H ll(M − 1)[V (M−1),l ] − J [V (M ),u] = j(M ).

The first of these can be used to eliminate V (m),u

V (m),u = V (m−1),l − z(m), 1 ≤ m ≤ M ,

so that the latter equations become

− G[V (0),l ] − H uu(1)[V (0),l − z(1)] − H ul(1)[V (1),l ] = j(1)

− H lu(m − 1)[V (m−2),l − z(m−1)] − H ll(m − 1)[V (m−1),l ]
− H uu(m)[V (m−1),l − z(m)] − H ul(m)[V (m),l ] = j(m) 2 ≤ m ≤ M − 1

− H lu(M − 1)[V (M−2),l − z(M−1)] − H ll(M − 1)[V (M−1),l ]
− J [V (M−1),l − z(M )] = j(M )

or

{G + H uu(1)}[V (0),l ] + H ul(1)[V (1),l ]
= −j(1) + H uu(1)[z(1)]

H lu(m − 1)[V (m−2),l ] + {H ll(m − 1) + H uu(m)}[V (m−1),l ] + H ul(m)[V (m),l ]
= −j(m) + H lu(m − 1)[z(m−1)] + H uu(m)[z(m)], 2 ≤ m ≤ M − 1

H lu(M − 1)[V (M−2),l ] + {H ll(M − 1) + J }[V (M−1),l ]
= −j(M ) + H lu(M − 1)[z(M−1)] + J [z(M )].

Stated more compactly, these read

AVl = (U + D + L)Vl = R, (3.3)
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where

Vl :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

V (0),l

V (1),l

...
V (M−2),l

V (M−1),l

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

R := −

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

j(1)

j(2)

...
j(M−1)

j(M )

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

H uu(1)[z(1)]
H uu(2)[z(2)]

...
H uu(M − 1)[z(M−1)]

J [z(M )]

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

0
H lu(1)[z(1)]

...
H lu(M − 2)[z(M−2)]
H lu(M − 1)[z(M−1)]

⎞
⎟⎟⎟⎟⎟⎟⎠

and A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D(1) U(1) 0 0 · · · 0
L(2) D(2) U(2) 0 · · · 0

0
. . . . . . . . . 0 0

0 0
. . . . . . . . . 0

0 · · · 0 L(M − 1) D(M − 1) U(M − 1)
0 · · · 0 0 L(M ) D(M )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where

U (m) = H ul(m), 1 ≤ m ≤ M − 1

D(m) =

⎧⎪⎨
⎪⎩

G + H uu(1) m = 1

H ll(m − 1) + H uu(m) 2 ≤ m ≤ M − 1

H ll(M − 1) + J m = M

1 ≤ m ≤ M

L(m) = H lu(m − 1) 2 ≤ m ≤ M .

(b) An Operator Expansions method

Following the developments of §2b, we now describe an OE approach to
solving (3.3), once again based upon the property g(m)(x , y) = 3f (m)(x , y) where,
a priori, 3 is small. Again, the data {z, j}, and operators {G, H (m), J } can be
shown to depend analytically on 3 so that

{z, j, G, H (m), J } = {z, j, G, H (m), J }(3) =
∞∑

n=0

{zn , jn , Gn , Hn(m), Jn}3n .

Furthermore, the fields are also analytical implying that

{Vl, Vu} = {Vl, Vu}(3) =
∞∑

n=0

{Vl
n , Vu

n}3n .
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Upon insertion of these into (3.3), we find( ∞∑
n=0

3nAn

)( ∞∑
m=0

3mVl
m

)
=

∞∑
n=0

3nRn ,

where

Rn := −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

j
(1)
n

j
(2)
n

...

j
(M−1)
n

j
(M )
n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

+
n∑

m=0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

H uu
n−m(1)[z(1)

m ]
H uu

n−m(2)[z(2)
m ]

...

H uu
n−m(M − 1)[z(M−1)

m ]
Jn−m[z(M )

m ]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

+
n∑

m=0

⎛
⎜⎜⎜⎜⎜⎜⎝

0
H lu

n−m(1)[z(1)
m ]

...
H lu

n−m(M − 2)[z(M−2)
m ]

H lu
n−m(M − 1)[z(M−1)

m ]

⎞
⎟⎟⎟⎟⎟⎟⎠

and

An =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Dn(1) Un(1) 0 0 · · · 0
Ln(2) Dn(2) Un(2) 0 · · · 0

0
. . . . . . . . . 0 0

0 0
. . . . . . . . . 0

0 · · · 0 Ln(M − 1) Dn(M − 1) Un(M − 1)
0 · · · 0 0 Ln(M ) Dn(M )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where

Un(m) = H ul
n (m) 1 ≤ m ≤ M − 1

Dn(m) =
⎧⎨
⎩

Gn + H uu
n (1) m = 1

H ll
n (m − 1) + H uu

n (m) 2 ≤ m ≤ M − 1
H ll

n (M − 1) + Jn m = M
1 ≤ m ≤ M

Ln(m) = H lu
n (m − 1) 2 ≤ m ≤ M .

At order O(30), we solve
A0Vl

0 = R0, (3.4)

while at order O(3n)
n∑

m=0

An−mVl
m = Rn ,
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or, solving for the one unknown Vl
n ,

Vl
n = A−1

0

[
Rn −

n−1∑
m=0

An−mVl
m

]
. (3.5)

Once again, we point out that at order n, each of the {Vl
0, . . . , V

l
n−1} are known,

and that the only inversion performed is that of A0, which is repeated at every
perturbation order.

4. Numerical results

In this section, we provide detailed results of numerical simulations of scattering
quantities compared with exact solutions. We are able to show that our numerical
method is not only fast and efficient, but also accurate and applicable to
configurations featuring large interface deformations.

(a) Exact solutions

Of course, in the case of non-trivial interface shapes there are no known exact
solutions for plane-wave incidence. To carry out a convergence study for our
algorithm, we use the following principle: in building a numerical solver for the
homogeneous PDE and boundary conditions

Lu = 0 in U

Bu = 0 at vU,

it is often, as it is here, no more difficult to construct an algorithm for the
corresponding inhomogeneous problem:

Lu = R in U

Bu = Q at vU.

Selecting an arbitrary function w, we can compute

Rw := Lw, Qw := Bw

and now have an exact solution to the problem

Lu = Rw in U

Bu = Qw at vU,

namely u = w. In this way, we can rigorously test our inhomogeneous solver for
which the homogeneous solver is a special case. However, one does need to be
careful to consider w, which has the same ‘behaviour’ as solutions u of the
inhomogeneous problem and here we find w such that Rw ≡ 0. We point out
though that our exact solution does not correspond to plane-wave incidence (but
rather to plane-wave reflection).
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To be more specific, we consider the functions

v
(m)
r ,t (x , y, z) = A(m)ei(ar x+bt y+gm,r ,t z) + B(m)ei(ar x+bt y−gm,r ,t z) (4.1)

with A(M ) = B(0) = 0, which satisfy the Helmholtz equations (3.1) and the
outgoing wave conditions so that Rw ≡ 0 in the notation above. However, the
boundary conditions satisfied by these functions are not those satisfied by an
incident plane wave. With the construction of the Qw in mind, we compute the
surface data

z̃(m) := v
(m−1)
r ,t − v

(m)
r ,t z = a(m) + g(m)(x , y), 1 ≤ m ≤ M

j̃(m) := vNm [v(m−1)
r ,t − v

(m)
r ,t ] z = a(m) + g(m)(x , y), 1 ≤ m ≤ M ,

(cf. (3.2)). We now have a family of exact solutions against which to test our
numerical algorithm for any choice of deformations {g(1), . . . , g(m)}.

(b) Numerical implementation

The description of our numerical scheme is rather straightforward and is one of
the powerful aspects of the approach. In the (M + 1)-layer case, we are charged
with finding, e.g. the Dirichlet traces at the lower domain boundaries

Vl(x , y) = (V (0),l(x , y), . . . , V (M−1),l(x , y))T

from which all other quantities (Dirichlet or Neumann traces, near or far-field data
or even the full field everywhere) can be computed by suitable integral formulas.
Our Boundary Perturbation approach posits an expansion of the form

Vl = Vl(x , y; 3) =
∞∑

n=0

Vl
n(x , y)3n

and we seek as an approximate solution, the truncation of this Taylor series after
N terms

Vl,N(x , y; 3) :=
N∑

n=0

Vl
n(x , y)3n .

Now, without approximation, we can recover the Vl
n from the formulas (3.4)

and (3.5) at orders zero and n > 0, respectively. However, the functions which
appear in these formulas generally involve Fourier series with an infinite number
of non-zero coefficients. Thus, we make a spectral approximation to each of the
Vl

n(x , y) by

Vl,Nx,Ny
n(x , y) :=

Nx/2−1∑
p=−Nx/2

Ny/2−1∑
q=−Ny/2

V̂
l
n,p,qe

i(apx+bqy).

Products appearing in (3.5) are computed by fast convolutions via the fast Fourier
transform algorithm (Gottlieb & Orszag 1977) and our final Fourier/Taylor
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approximation is

Vl,N,Nx,Ny(x , y; 3) :=
N∑

n=0

Nx/2−1∑
p=−Nx/2

Ny/2−1∑
q=−Ny/2

V̂
l
n,p,qe

i(apx+bqy)3n . (4.2)

(c) Error measurement

With these approximations in hand, we can make any number of error
measurements versus the exact solutions (4.1). For definiteness, we choose to
measure the defect in the Dirichlet traces, one of the most difficult we can pick
owing to the fact that these data are posed on the very surfaces around which
we perturb. For the results described in §4e and 4f we measure

V l
rel err(N , Nx , Ny) = sup

0≤m≤M−1

|V (m),l
r ,t (x , y) − V (m),l ,N ,Nx ,Ny (x , y)|L∞

|V (m),l
r ,t (x , y)|L∞

(4.3a)

and

V u
rel err(N , Nx , Ny) = sup

1≤m≤M

|V (m),u
r ,t (x , y) − V (m),u,N ,Nx ,Ny (x , y)|L∞

|V (m),u
r ,t (x , y)|L∞

. (4.3b)

(d) Padé approximation

Before leaving our description of the numerical procedure, we mention that
there are a number of choices for summing the Taylor series which appear in (4.2).
To avoid an avalanche of impenetrable notation, we focus on the generic problem
of approximating the analytical function

A(3) =
∞∑

n=0

An3n

by its truncated Taylor series

AN (3) :=
N∑

n=0

An3n .

It is a classical result that if 30 is in the disc of convergence of A(3), say {|3| < r},
AN (30) will converge to A(30) exponentially fast as N → ∞. However, it is
possible for 30 to be a point of analyticity outside the disc of convergence
of the Taylor series and for AN to produce meaningless results. The classical
numerical analytical continuation technique of Padé approximation (Baker &
Graves-Morris 1996) has been successfully brought to bear upon BPMs in the past
(e.g. Bruno & Reitich 1993b; Nicholls & Reitich 2003) and we use this here as well.
In short, Padé approximation seeks to simulate the truncated Taylor series AN

by the rational function[
L
M

]
(3) := aL(3)

bM (3)
=

∑L
l=0 al3

l

1 + ∑M
m=1 bm3m

,
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where L + M = N and [
L
M

]
(3) = AN (3) + O(3L+M+1);

well-known formulas for the coefficients {al , bm} can be found in Baker &
Graves-Morris (1996). This approximant has the remarkable properties that, for
a wide class of functions, not only is the convergence of [L/M ] to A at 3 = 30
faster than that of AN for |30| < r, but also that [L/M ] may converge to A for
points of analyticity 30 for which |30| > r. We refer the interested reader to §2.2 of
Baker & Graves-Morris (1996) and the insightful calculations of §8.3 of Bender &
Orszag (1978) for a thorough discussion of the capabilities and limitations of
Padé approximants.

(e) Numerical tests: two dimensions

To begin, we consider the two-dimensional and 2p-periodic case where the
profiles are independent of the y-variable; we will return to the fully three-
dimensional case shortly. To fix upon a reasonable class of deformations to test,
we recall the three profiles introduced by Nicholls & Reitich (2001b) for precisely
this purpose: the sinusoid

fs(x) = cos(x), (4.4a)

the ‘rough’ (C 4 but not C 5) profile

fr(x) = (2 × 10−4)
{
x4(2p − x)4 − 128p8

315

}
, (4.4b)

and the Lipschitz boundary

fL(x) =
⎧⎨
⎩−

(
2
p

)
x + 1, 0 ≤ x ≤ p( 2

p

)
x − 3, p ≤ x ≤ 2p

. (4.4c)

We point out that all three profiles have zero mean, approximate amplitude 2
and maximum slope of roughly 1. The Fourier series representations of fr and fL
are listed in Nicholls & Reitich (2001b) and in order to minimize aliasing errors,
we approximate these by their truncated P-term Fourier series.

We begin with two three-layer configurations.

1. Two smooth interfaces (figure 1a): physical and numerical parameters:

a = 0.1, gu = 1.1, gv = 2.2, gw = 3.3,

g(x) = 3fs(x), h(x) = 3fs(x), 3 = 0.01, d = 2p,

Nx = 32, N = 8. (4.5)

2. Rough and Lipschitz interfaces (figure 1b): physical and numerical
parameters:

a = 0.1, gu = 1.1, gv = 2.2, gw = 3.3,

g(x) = 3fr,40(x), h(x) = 3fL,40(x), 3 = 0.03, d = 2p,

Nx = 512, N = 20. (4.6)
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Figure 1. Plot of relative L∞ error, (4.3a), versus perturbation order, N , for three–layer
configurations. (a) Smooth/smooth: (4.5); (b) rough/Lipschitz: (4.6). Open circles with lines, Vl ;
open squares with lines, Vu .

In these, the wavelengths of propagation, given by lj = 2p/kj , are

lu ≈ 5.6885, lv ≈ 2.8530, lw ≈ 1.9031.

In the first configuration (which took just over 1 s to realize with a simple Matlab
script on the author’s dual quad-core PowerMac), (4.5), we show that only a small
number of Fourier coefficients (Nx = 32) and Taylor orders (N = 8) are required
to realize machine precision (up to the conditioning of our algorithm) for small,
smooth profiles, (4.4a), which displays the spectral accuracy of the scheme. In
simulation (4.6), we demonstrate that the algorithm performs well if the lower
and upper interfaces are replaced by the rough, (4.4b), and Lipschitz, (4.4c),
profiles, respectively (both truncated after P = 40 Fourier series terms) provided
that Nx and N are chosen sufficiently large.

Of course, there are an infinite quantity of number/profile combinations we
could consider. To give a flavour for the performance of our algorithm, we select
two more in the two-dimensional setting.

1. Six layer (figure 2a): physical and numerical parameters:

a = 0.1, gm = 1.1 + m, 0 ≤ m ≤ 5,

g(1)(x) = 3fs(x), g(2)(x) = 3fr,40(x), g(3)(x) = 3fL,40(x),

g(4)(x) = 3fr,40(x), g(5)(x) = 3fs(x), 3 = 0.02, d = 2p,

Nx = 512, N = 20. (4.7)

2. 201 layer (figure 2b): physical and numerical parameters:

a = 0.1, gm = 10m + 1
100

, 0 ≤ m ≤ 200,

g(m)(x) = 3fs(x), 1 ≤ m ≤ 200, 3 = 0.02, d = 2p,

Nx = 512, N = 20. (4.8)
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Figure 2. Plot of relative L∞ error, (4.3a), versus perturbation order, N , for (M + 1)-layer
configurations. (a) Six layer: (4.7); (b) 201 layer: (4.8). Open circles with lines, Vl ; open squares
with lines, Vu .

Once again, we can see that in all cases, our algorithm provides highly accurate
solutions in a stable and rapid manner provided that the problem is properly
resolved in space and perturbation order.

(f ) Numerical tests: three dimensions

We now consider the general case of (2p) × (2p) periodic three-dimensional
interfaces. Again, we follow the lead of Nicholls & Reitich (2001b) and select the
following interface shapes: the sinusoid

f̃ s(x , y) = cos(x + y), (4.9a)

the ‘rough’ (C 2 but not C 3) profile

f̃ r(x , y) =
(

2
9

× 10−3
){

x2(2p − x)2y2(2p − y)2 − 64p8

225

}
, (4.9b)

and the Lipschitz boundary

f̃ L(x , y) = 1
3

+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1 +
(

2
p

)
x , x ≤ y ≤ 2p − x

3 −
(

2
p

)
y, y > x , y > 2p − x

3 −
(

2
p

)
x , 2p − x < y < x

−1 +
(

2
p

)
y, y < x , y < 2p − x

. (4.9c)

Again, all three profiles have zero mean, approximate amplitude 2 and maximum
slope of roughly 1. The Fourier series representations of f̃ r and f̃ L are given
in Nicholls & Reitich (2001b) and in order to minimize aliasing errors, we
approximate these by their truncation after P = 20 coefficients.

Proc. R. Soc. A (2012)

 on May 16, 2012rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


756 D. P. Nicholls

(a) (b)

10–15

1 1

10–2

10–4

10–6

10–8

10–10

10–12

10–5

10–10re
la

tiv
e 

er
ro

r

0 2 4 86 10
N

0 5 10 15 20
N

Figure 3. Plot of relative L∞ error, (4.3a), versus perturbation order, N , for three-dimensional
three-layer configurations. (a) Smooth/smooth: (4.10); (b) smooth/rough: (4.11). Open circles with
lines, Vl ; open squares with lines, Vu .

In three dimensions, despite the immediate applicability of our recursions (e.g.
single convolutions are simply replaced by double convolutions), the numerical
simulations become much more involved. Therefore, we focus upon the four
three-layer configurations outlined below.

1. Two smooth interfaces (figure 3a): physical and numerical parameters:

a = 0.1, b = 0.2, gu = 1.1, gv = 2.2, gw = 3.3,

g(x , y) = 3f̃ s(x , y), h(x , y) = 3f̃ s(x , y), 3 = 0.1, dx = 2p, dy = 2p,

Nx = 48, Ny = 48, N = 20. (4.10)

2. Smooth and rough interfaces (figure 3b): physical and numerical
parameters:

a = 0.1, b = 0.2, gu = 1.1, gv = 2.2, gw = 3.3,

g(x , y) = 3f̃ s(x , y), h(x , y) = 3f̃ r,20(x , y), 3 = 0.03, dx = 2p, dy = 2p,

Nx = 64, Ny = 64, N = 10. (4.11)

3. Smooth and Lipschitz interfaces (figure 4a): physical and numerical
parameters:

a = 0.1, b = 0.2, gu = 1.1, gv = 2.2, gw = 3.3,

g(x , y) = 3f̃ s(x , y), h(x , y) = 3f̃ L,20(x , y), 3 = 0.01, dx = 2p, dy = 2p,

Nx = 128, Ny = 128, N = 10. (4.12)

4. Rough and Lipschitz interfaces (figure 4b): physical and numerical
parameters:

a = 0.1, b = 0.2, gu = 1.1, gv = 2.2, gw = 3.3,

g(x , y) = 3f̃ r,20(x , y), h(x , y) = 3f̃ L,20(x , y), 3 = 0.01, dx = 2p, dy = 2p,

Nx = 128, Ny = 128, N = 10. (4.13)
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Figure 4. Plot of relative L∞ error, (4.3a), versus perturbation order, N , for three-dimensional
three-layer configurations. (a) Smooth/Lipschitz: (4.12); (b) rough/Lipschitz: (4.13). Open circles
with lines, Vl ; open squares with lines, Vu .

We once again notice the rapid and stable convergence of our numerical scheme
in all four instances. The behaviour is independent of interface shape provided
that a sufficient number of discretization points are used to properly resolve all
features of importance in the simulation.

5. Conclusion

In this paper, we have presented a novel surface formulation of acoustic scattering
by layered media. We have also generalized the OE method of Milder and
Malcolm & Nicholls to the case of (M + 1)-many layers. In this formulation,
we realize the minimum number of problem unknowns (M surface functions,
also used by BIM/BEM) which halves the number currently mandated by the
approach of Malcolm & Nicholls (2011b). Our new approach has rather explicit
dependence upon the interface shapes which makes their application towards an
inverse problem algorithm very appealing, which we leave to future work.
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