
Applied Numerical Mathematics 157 (2020) 544–562
Contents lists available at ScienceDirect

Applied Numerical Mathematics

www.elsevier.com/locate/apnum

High–order perturbation of surfaces algorithms for the 

simulation of localized surface plasmon resonances in 

graphene nanotubes

David P. Nicholls ∗, Xin Tong

Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, IL 60607, United States of America

a r t i c l e i n f o a b s t r a c t

Article history:
Received 19 February 2020
Received in revised form 15 May 2020
Accepted 14 July 2020
Available online 21 July 2020

Keywords:
High–order spectral methods
High–order perturbation of surfaces 
methods
Graphene
Two–dimensional materials

The plasmonics of two–dimensional materials, such as graphene, has become an important 
field over the past decade. The active tunability of graphene via electrical gating or 
chemical doping has generated a great deal of excitement among engineers seeking 
sensing devices. Consequently there is significant demand for robust and highly accurate 
computational capabilities which can simulate such materials. The class of High–Order 
Perturbation of Surfaces methods have proven to be particularly appropriate for this 
purpose. In this contribution we describe our recent efforts to utilize both Dirichlet–
Neumann Operators and Impedance–Impedance Operators in these schemes. In addition, 
we present detailed numerical results which not only validate our simulations using 
the Method of Manufactured Solutions, but we also describe Localized Surface Plasmon 
Resonances in graphene nanotubes enclosing rod–shaped dielectric materials.

© 2020 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

Graphene is a single layer of carbon atoms in a honeycomb lattice which was first isolated experimentally in 2004 [54]
resulting in the 2010 Nobel Prize in Physics to Geim [22] and Novoselov [53]. Graphene’s semimetallic character permits 
electrostatic biasing which allows one to tune its electrical properties, unlike the noble metals, which also support plas-
mons. Plasmons in graphene have been exploited for a wide range of applications, including optical modulators [36,60,63], 
photodetectors [20,21,32,35,25], metasurfaces [19,5,31], polarization control devices [4,64], and sensors [34,58,28]. For a 
complete discussion of graphene including modeling, device design, and particular applications, we refer the interested 
reader to the survey article of Bludov, Ferriera, Peres and Vasilevskiy [6] and the text of Goncalves and Peres [24].

All of the classical numerical algorithms have been utilized to simulate structures featuring two–dimensional materials 
numerically, for instance, Finite Difference Methods [62,33], Finite Element Methods [30,29], Discontinous Galerkin Methods 
[27], Spectral Element Methods [17], and Spectral Methods [26,13,7], but it can be argued [38,44] that such volumetric 
approaches are greatly disadvantaged with an unnecessarily large number of unknowns for the piecewise homogeneous 
problems we consider here. Interfacial methods based upon Integral Equations [14] are a natural alternative but these also 
face difficulties. One challenge is that an Integral Equation solver will return the scattering returns only for a specified 
geometric configuration. For instance, if the interface shape is changed then the solver must be run again. Another difficulty 
is the dense and non-symmetric positive definite systems of linear equations which must be inverted with each simulation.
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Fig. 1. Plot of the cross–section of a graphene nanotube, �, enclosing a material (occupying S w ) shaped by r = ḡ + g(θ) = ḡ + ε cos(4θ) (ε = (3/10)ḡ) 
housed in a dielectric (occupying Su ) under plane–wave illumination with wavenumber (α, −γ u).

A “High Order Perturbation of Surfaces” (HOPS) approach [38,44] can effectively address these concerns. More specifi-
cally, we have in mind the method of Field Expansions (FE) which was introduced to generalize the low–order methods of 
Rayleigh [55] and Rice [56]. The high-order version of FE was first investigated by Bruno and Reitich [8–11], and later en-
hanced and stabilized by Nicholls and Reitich [48,49] resulting in the Method of Transformed Field Expansions (TFE). These 
algorithms maintain the advantageous properties of classical Integral Equation implementations (e.g., surface formulation 
and exact enforcement of far–field conditions) while avoiding the shortcomings stated above. For a description of the TFE 
approach to the bounded obstacle geometry see [43].

Our new approach is quite closely related to the work of Bruno and Reitich [11] who studied the same problem in the 
three–dimensional context of nanospheres. The current contribution differs in a number of ways beginning with its two–
dimensional character (invariant in the third dimension) which requires the study of different Hankel functions. In addition 
we describe formulations in terms of either Dirichlet–Neumann Operators (DNOs) [37] or Impedance–Impedance Operators 
(IIOs) which permit the immediate simulation by other classical HOPS methods [8–11,49,43,50]. The IIO formulation is 
considered to avoid “Dirichlet eigenvalues” inherent to DNOs as advocated by Gillman, Barnett, and Martinsson [23].

The rest of the paper is organized as follows: In Section 2 we discuss the governing equations of our model for the 
response of a two–dimensional material mounted between two dielectrics. In Section 3 we outline our surface formulation 
of these equations in terms of both DNOs and IIOs. We present the conditions for a Localized Graphene Surface Plasmon 
Resonance (LGSPR) in this configuration in Section 4. In Section 5 we define the IIOs required for our surface formulation, 
and we discuss the FE (Section 5.1) and TFE methods (Section 5.2) for their computation. With this we describe our full 
HOPS methodology in Section 6. To conclude, we present our numerical results in Section 7 with a discussion of implemen-
tation issues in Section 7.1, validation by the Method of Manufactured Solutions in Section 7.2, and simulation of graphene 
nanotubes in Sections 7.3 and 7.4.

2. Governing equations

Following [51,52] the structure we consider is displayed in Fig. 1, a y–invariant nanotube of bounded cross–section 
with interface shaped by r = ḡ + g(θ). This interface separates two domains filled with materials of permittivities ε(u) in 
Su := {r > ḡ + g(θ)} and ε(w) in S w := {r < ḡ + g(θ)}, respectively. The superscripts are chosen to conform to the notation 
of previous work by the authors [44,37,51,52]. The cylindrical geometry demands that the interface be 2π–periodic, g(θ +
2π) = g(θ).

We consider monochromatic plane–wave illumination by incident radiation of frequency ω and wavenumber ku =
nuω/c0 = ω/cu (c0 is the speed of light), aligned with the corrugations of the obstacle. The scattered (electric or mag-
netic) fields are denoted by {u(r, θ), w(r, θ)} in Su and S w , respectively, and the incident radiation in the outer domain 
by

uinc(r, θ) = eiαx−iγ u z = eir(α cos(θ)−γ u sin(θ)).

The governing equations in this configuration are, for Transverse Electric (TE) and Transverse Magnetic (TM) polarization, 
[41,42]


u + (ku)2u = 0, r > ḡ + g(θ), (2.1a)


w + (kw)2 w = 0, r < ḡ + g(θ), (2.1b)

u − w + Aτ w∂N w = ξ, r = ḡ + g(θ), (2.1c)

τ u∂N u − τ w∂N w + B w = τ uν, r = ḡ + g(θ), (2.1d)

lim
r→∞ r1/2 (∂ru − ikuu

)= 0, (2.1e)

|w|L∞ < ∞, r < ḡ + g(θ), (2.1f)
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where for m ∈ {u, w}

τm =
{

1, TE,

1/ε(m), TM,
A =

{
0, TE,

σ̂ /(|N| (ik0)), TM,
B =

{
|N| (ik0)σ̂ , TE,

0, TM,

and

ξ(θ) :=
[
−uinc

]
r=ḡ+g(θ)

, ν(θ) :=
[
−∂N uinc

]
r=ḡ+g(θ)

.

In these

∂N = r̂(ḡ + g)∂r − θ̂

(
g′

ḡ + g

)
∂θ ,

for unit vectors in the radial (r̂) and angular (θ̂ ) directions, while (2.1e) is the Sommerfeld radiation condition and (2.1f)
expresses boundedness of solutions. Of particular note is σ̂ = σ/(ε0c0), the dimensionless surface current which models the 
effects of the graphene deposited at the interface between the two layers [41,42].

3. Reformulation via surface integral operators

We now formulate (2.1) in terms of surface integral operators, first with Dirichlet–Neumann Operators (DNOs) and then 
with Impedance–Impedance Operators (IIOs). For the former we define the Dirichlet traces

U (x) := u(ḡ + g(θ), θ), W (x) := w(ḡ + g(θ), θ),

and the outward pointing Neumann traces

Ũ (x) := −(∂N u)(ḡ + g(θ), θ), W̃ (x) := (∂N w)(ḡ + g(θ), θ).

In terms of these, the boundary condition (2.1c) and (2.1d) read

U − W + Aτ w W̃ = ξ, r = ḡ + g(θ), (3.1a)

− τ u Ũ − τ w W̃ + BW = τ uν, r = ḡ + g(θ). (3.1b)

These specify two equations for four unknowns which would be problematic save that U and Ũ are connected, as are W
and W̃ . We formalize this with the following definition [51].

Definition 3.1. Given the unique outgoing solution to the Dirichlet problem


u + (ku)2 u = 0, r > ḡ + g(θ), (3.2a)

u(ḡ + g(θ), θ) = U (θ), (3.2b)

lim
r→∞ r1/2 (∂ru − ikuu

)= 0, (3.2c)

the Neumann data, Ũ (θ), can be computed. The DNO G(u) is defined by

G(u)(g) : U → Ũ .

In addition we require the following definition.

Definition 3.2. If the bounded solution to the Dirichlet problem


w + (kw)2 w = 0, r < ḡ + g(θ), (3.3a)

w(ḡ + g(θ), θ) = W (θ), (3.3b)

|w|L∞ < ∞, r < ḡ + g(θ), (3.3c)

is unique, the Neumann data, W̃ (θ), can be computed. The DNO G(w) is defined by

G(w)(g) : W → W̃ .
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In terms of these operators, (3.1) can now be written as [41,42](
I −I + Aτ w G(w)

τ w G(u) τ w G(w) − B

)(
U
W

)
=
(

ξ

−τ uν

)
. (3.4)

Remark 3.3. As we explicitly accommodate in the definition, the possibility of non–unique solutions of the Dirichlet problem 
(3.3) exists. While this is not generic for a given configuration, it does inspire the IIO formulation given below.

Next, following [52], we formulate (2.1) in terms of IIOs. For this purpose we define the impedances

I(u) := [−τ u∂N u + Y u
]

r=ḡ+g , I(w) := [τ w∂N w − Z w
]

r=ḡ+g ,

their “conjugates”

Ĩ(u) := [−τ u∂N u + Zu
]

r=ḡ+g , Ĩ(w) := [τ w∂N w − Y w
]

r=ḡ+g ,

and the interfacial data

ζ := [−τ uν + Y ξ
]
, ψ := [−τ uν + Zξ

]
,

where I is the identity, and Y and Z are unequal operators to be specified.

Remark 3.4. Before proceeding, we recall an analysis recently presented in [52] where we showed that the IIO problems 
(3.6) and (3.7) will each have a unique solution if the following conditions are met

Im

⎧⎪⎨⎪⎩
∫

r=ḡ

((
Y

τ u

)
u

)
ū dθ

⎫⎪⎬⎪⎭≤ 0, Im

⎧⎪⎨⎪⎩
∫

r=ḡ

((
Z

τ w

)
w

)
w̄ dθ

⎫⎪⎬⎪⎭≥ 0. (3.5)

Since τ u ∈ R+ the choice of Despres [15,16], Y = −iη where η ∈ R+ , satisfies (3.5). The situation with τ w is more interesting 
as it can be complex. In particular, if ε(w) = ε(w)′ + iε(w)′′ and Z = Z ′ + i Z ′′ , as

Im

{
Z

τ w

}
=

⎧⎪⎨⎪⎩
Z ′′, TE,

ε(w)′ Z ′′, dielectric in TM,

ε(w)′ Z ′′ + ε(w)′′ Z ′, metal in TM,

the Despres choice, Z = iη, satisfies (3.5) provided that the interior is not a metal (ε(w)′ < 0 and ε(w)′′ > 0) in TM polariza-
tion. In this case the choice of Z must be configuration specific, e.g.,

Z ′′

Z ′ >
−ε(w)′

ε(w)′′ > 0,

which can be accommodated.

We now give our two definitions.

Definition 3.5. Given an operator Y satisfying (3.5), the outgoing solution to


u + (ku)2 u = 0, r > ḡ + g(θ), (3.6a)

− τ u∂N u(ḡ + g(θ), θ) + Y u(ḡ + g(θ), θ) = I(u)(θ), (3.6b)

lim
r→∞ r1/2 (∂ru − ikuu

)= 0, (3.6c)

is unique and the impedance, Ĩ(u)(θ), can be computed. The IIO Q is defined by

Q (g) : I(u) → Ĩ(u).

We also require the following definition.
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Definition 3.6. Given an operator Z satisfying (3.5), the bounded solution to


w + (kw)2 w = 0, r < ḡ + g(θ), (3.7a)

τ w∂N w(ḡ + g(θ), θ) − Z w(ḡ + g(θ), θ) = I(w)(θ), (3.7b)

|w|L∞ < ∞, r < ḡ + g(θ), (3.7c)

is unique and the impedance, Ĩ(w)(θ), can be computed. The IIO S is defined by

S(g) : I(w) → Ĩ(w).

In terms of these, the boundary conditions (2.1c) and (2.1d) read

I(u) + Ĩ(w) + Y A(I + Z(Y − Z)−1(I − S))I(w) − B(Y − Z)−1(I − S)I(w) = Y ξ − τ uν,

− τ u Ĩ(u) − τ w Ĩ(w) + Z A(I + Z(Y − Z)−1(I − S))I(w) − B(Y − Z)−1(I − S)I(w) = Zξ − τ uν.

If we further assume that the operators Y and Z commute, then these equations can be written as(
I S + Y A(Y − Z)−1(Y − Z S) − B(Y − Z)−1(I − S)

Q I + Z A(Y − Z)−1(Y − Z S) − B(Y − Z)−1(I − S)

)(
I(u)

I(w)

)
=
(

ζ

ψ

)
. (3.9)

4. Localized graphene surface plasmon resonances

We are now in a position to search for the surface waves (the localized surface plasmons) which deliver field enhance-
ments at the interface of the materials. For noble metals there is a classical formula to excite a Localized Surface Plasmon 
Resonance (LSPR) [18] and we seek an analogous condition here in the presence of graphene. Following [44] the condition 
for a Localized Graphene Surface Plasmon Resonance (LGSPR) is the singularity of the linearized operator (about the un-
perturbed, cylindrical, geometry) in the governing equations. More specifically, in terms of IIOs, for a TE LGSPR we would 
require that

MTE :=
(

I S0 − B0(Y − Z)−1(I − S0)

Q 0 I − B0(Y − Z)−1(I − S0)

)
be singular, and, for a TM LGSPR we would demand that

MTM :=
(

I S0 + Y A0(I + Z(Y − Z)−1(I − S0))

Q 0 I + Z A0(I + Z(Y − Z)−1(I − S0))

)
be not invertible. At this point we follow Despres [15,16] and choose Y = −Z = iη for a constant η ∈ R+ . This leads us to 
consider singularities of the operators

MTE =
(

I S0 − (ik0)σ̂
2iη (I − S0)

Q 0 I − (ik0)σ̂
2iη (I − S0)

)
,

and

MTM =
(

I S0 + iησ̂
2(ik0)

(I + S0)

Q 0 I − iησ̂
2(ik0)

(I + S0)

)
. (4.1)

In [52] we observed that, for general Y and Z , solutions to (3.6) and (3.7) are given by

u(r, θ) =
∞∑

p=−∞

( Î(u))p

−τ u(ku ḡ)H ′
p(ku ḡ) + Ŷ p H p(ku ḡ)

H p(kur)eipθ ,

w(r, θ) =
∞∑

p=−∞

( Î(w))p

τ w(kw ḡ) J ′
p(kw ḡ) − Ẑ p J p(kw ḡ)

J p(kwr)eipθ ,

where J p is the p–th Bessel function and H p is the p–th Hankel function of the first kind. From these we saw that
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Q 0[I(u)] =
∞∑

p=−∞

(
Î(u)
)

p

(−τ u(ku ḡ)H ′
p(ku ḡ) + Ẑ p H p(ku ḡ)

−τ u(ku ḡ)H ′
p(ku ḡ) + Ŷ p H p(ku ḡ)

)
eipθ , (4.2a)

S0[I(w)] =
∞∑

p=−∞

(
Î(w)

)
p

(
τ w(kw ḡ) J ′

p(kw ḡ) − Ŷ p J p(kw ḡ)

τ w(kw ḡ) J ′
p(kw ḡ) − Ẑ p J p(kw ḡ)

)
eipθ , (4.2b)

which, upon setting Y = −Z = iη, define the order–one Fourier multipliers

Q 0 =
(−τ u(ku ḡ)H ′

D(ku ḡ) − iηH D(ku ḡ)

−τ u(ku ḡ)H ′
D(ku ḡ) + iηH D(ku ḡ)

)
, S0 =

(
τ w(kw ḡ) J ′

D(kw ḡ) − iη J D(kw ḡ)

τ w(kw ḡ) J ′
D(kw ḡ) + iη J D(kw ḡ)

)
.

Thus, we can measure the singularity of MTE and MTM by examining the singularity of their actions at each wavenumber

M̂TE
p =

⎛⎝ 1
(

Ŝ0
)

p − (ik0)σ̂
2iη

[
1 − ( Ŝ0

)
p

]
(

Q̂ 0
)

p 1 − (ik0)σ̂
2iη

[
1 − ( Ŝ0

)
p

] ⎞⎠ ,

and

M̂TM
p =

⎛⎝ 1
(

Ŝ0
)

p + iησ̂
2(ik0)

[
1 + ( Ŝ0

)
p

]
(

Q̂ 0
)

p 1 − iησ̂
2(ik0)

[
1 + ( Ŝ0

)
p

] ⎞⎠ ,

which can, in turn, be characterized by a zero of the determinant functions


̃TE
p = 1 − (ik0)σ̂

2iη

[
1 − ( Ŝ0

)
p

]
− (Q̂ 0

)
p

(
Ŝ0
)

p − (ik0)σ̂

2iη

(
Q̂ 0
)

p

[
1 − ( Ŝ0

)
p

]
, (4.3a)


̃TM
p = 1 − iησ̂

2(ik0)

[
1 + (Ŝ0

)
p

]
− (Q̂ 0

)
p

(
Ŝ0
)

p − iησ̂

2(ik0)

(
Q̂ 0
)

p

[
1 + ( Ŝ0

)
p

]
. (4.3b)

With all of these considerations in hand we can investigate the possibility of exciting an LGSPR. However, there is one 
last piece of information that we require, namely the surface current model for the graphene. There are many models 
available for this purpose [24] and most are derived with a particular range of illumination frequencies, ω, in mind. In order 
to test multiple possibilities without overwhelming the reader, we have selected two models for our simulations. The first 
we found in the work of Angelis, Locatelli, Mutti, and Aceves [1,2] and it is an approximation due to Stauber, Peres and Neto 
[61] which accounts for both interband and intraband contributions. This “full” model is designed to be useful over a wide 
range of illumination frequencies but its form is rather opaque (see [6] for full details). By contrast, for lower frequencies, 
e.g. in the terahertz regime, the straightforward Drude model

σD = σ0
4E F

π

1

h̄γ − ih̄ω
,

is a simple and accurate model which is often employed [6], and so we use this as our second approximation.
With these models of graphene we now study the determinant functions (4.3) to examine the possibility of exciting 

an LGSPR. In order to eliminate the complicated frequency–dependent behavior of some popular dielectric materials, we 
consider a free–standing configuration where the inner and outer layers are filled with vacuum. We further investigate the 
effects of the size of the nanotube by considering two radii, ḡ = 0.025 microns and ḡ = 1 microns. Our results for the 
full model with ḡ = 0.025 microns are depicted in Fig. 2 for TE (left) and TM (right) polarization. These were repeated in 
the case ḡ = 1 microns and the output is shown in Fig. 3, again in TE (left) and TM (right) polarization. Each of these 
experiments was revisited with the Drude model for graphene, and the results are given for ḡ = 0.025 microns in Fig. 4, 
and for ḡ = 1 microns in Fig. 5. The inescapable conclusion is that an LGSPR can only be excited in TM polarization which 
matches the conclusion we reached in [51] in the absence of graphene.

5. Numerical simulation of the IIOs

Moving beyond this approximate formula to excite an LGSPR, 
̃TM
p ≈ 0 for some integer p, we investigate algorithms to 

simulate the full governing equations (3.9). For this, we now discuss how to compute the IIOs Q and S . In our previous 
work [52] we demonstrated the rigorous analyticity of these IIOs with respect to interface deformation for g sufficiently 
smooth (e.g., C2 sufficed for our proof) and small. The proof begins with the assumption

g(θ) = ε f (θ), f = O(1), ε 
 1,

and explicitly justifies the expansions
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Fig. 2. Plot of the determinant function 
̃p , (4.3), with the full model of graphene in (left) TE and (right) TM polarization for ḡ = 0.025 microns.

Fig. 3. Plot of the determinant function 
̃p , (4.3), with the full model of graphene in (left) TE and (right) TM polarization for ḡ = 1 microns.

Fig. 4. Plot of the determinant function 
̃p , (4.3), with the Drude model of graphene in (left) TE and (right) TM polarization for ḡ = 0.025 microns.
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Fig. 5. Plot of the determinant function 
̃p , (4.3), with the Drude model of graphene in (left) TE and (right) TM polarization for ḡ = 1 microns.

Q (ε f ) =
∞∑

n=0

Q n( f )εn, S(ε f ) =
∞∑

n=0

Sn( f )εn.

The question now becomes, can useful forms for the {Q n, Sn} be derived? We briefly describe two approaches here: The 
Method of Field Expansions (FE) due to Bruno and Reitich [8–10], and the Method of Transformed Field Expansions (TFE) 
devised by Nicholls and Reitich [45,49].

5.1. Field expansions

The FE approach begins with the supposition that the scattered fields also depend analytically upon ε (which is later 
verified). Focusing upon the field in the outer layer, {r > ḡ + g(θ)}, this implies that

u = u(r, θ;ε) =
∞∑

n=0

un(r, θ)εn.

Upon insertion of this into (3.6) one finds that the un must be outgoing solutions of the boundary value problem


un + (ku)2un = 0, r > ḡ, (5.1a)

− τ u ḡ∂run + Y un = δn,0 I(u) + Ln, r = ḡ, (5.1b)

where δn,m is the Kronecker delta function, and

Ln = f

ḡ
δn,1 I(u) − Y

n−1∑
m=0

∂n−m
r um Fn−m − f

ḡ
Y

n−1∑
m=0

∂n−m−1
r um Fn−m−1

+ τ u

[
ḡ

n−1∑
m=0

∂n−m+1
r um Fn−m + 2 f

n−1∑
m=0

∂n−m
r um Fn−m−1

+ f 2

ḡ

n−2∑
m=0

∂n−m−1
r um Fn−m−2 − f ′

ḡ
∂θ

n−1∑
m=0

∂n−m−1
r um Fn−m−1

]
.

The outgoing solutions of (5.1a) are

un(r, θ) =
∞∑

p=−∞
ûn,p

H p(kur)

H p(ku ḡ)
eipθ ,

and the ûn,p are determined recursively from the boundary conditions, (5.1b), beginning, at order zero, with
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û0,p =

(
Î(u)
)

p(
−τ u ḡ

H ′
p(ku ḡ)

H p(ku ḡ)
+ Y p

) .

From this the IIO, Q , can be computed from

Q = −τ u∂N u + Zu = τ u
[
−(ḡ + ε f )∂ru + ε f ′

ḡ + ε f
∂θ u

]
+ Zu

=
∞∑

n=0

∞∑
p=−∞

{
τ u

[
−ku(ḡ + ε f )

H ′
p(ku(ḡ + ε f ))

H p(ku ḡ)
+ ε f ′

(ḡ + ε f )
(ip)

H p(ku(ḡ + ε f ))

H p(ku ḡ)

]

+ Ẑ p
H p(ku(ḡ + ε f ))

H p(ku ḡ)

}
ûn,peipθ εn.

Expanding the Hankel functions H p(ku(ḡ + ε f )) and their derivatives in power series in ε, and equating like powers of ε
we can find forms for the Q n [51,52]. Similar considerations hold for the IIO S save that the alternate expansion

wn(r, θ) =
∞∑

p=−∞
ŵn,p

J p(kwr)

J p(kw ḡ)
eipθ ,

must be used.

5.2. Transformed field expansions

The TFE method proceeds in exactly the same manner as the FE approach above except that a “domain–regularizing” 
change of variables is affected before the expansion in ε is made. The change of variables essentially amounts to

r′ = r − g(θ), θ ′ = θ,

which not only maps the deformed interface shape {r = ḡ + g(θ)} to the trivial shape {r = ḡ}, but also results in a greatly 
stabilized sequence of recursions. For complete details please see [52].

6. High–order perturbation of surfaces method

In light of the developments in the previous section regarding the computation of IIOs, we can now describe a rapid, 
highly accurate, and stable algorithm to compute solutions of the surface equations (3.9). In the interest of brevity we 
describe our approach for TM polarization (B ≡ 0) as the TE version (A ≡ 0) is quite similar.

To begin, we make Despres’ choice [15,16] Y = −Z = iη, η ∈ R, which simplifies (3.9) to⎛⎝ |N| |N| S +
(

iη
2

)(
σ̂

ik0

)
(I + S)

|N| Q |N| −
(

iη
2

)(
σ̂

ik0

)
(I + S)

⎞⎠( I(u)

I(w)

)
=
( |N| ζ

|N|ψ
)

. (6.1)

Again, making the HOPS assumption g(θ) = ε f (θ), we suppose not only that the IIOs depend analytically upon ε but also 
that the surface fields do as well, so that

I(u) = I(u)(θ;ε) =
∞∑

n=0

I(u)
n (θ)εn, I(w) = I(w)(θ;ε) =

∞∑
n=0

I(w)
n (θ)εn.

Upon insertion of these into (6.1), equating at like orders of ε delivers, at order zero,⎛⎝ I S0 +
(

iη
2

)(
σ̂

ik0

)
(I + S0)

Q 0 I −
(

iη
2

)(
σ̂

ik0

)
(I + S0)

⎞⎠( I(u)
0

I(w)
0

)
=
(

ζ0
ψ0

)
. (6.2)

At higher orders we find⎛⎝ I S0 +
(

iη
2

)(
σ̂

ik0

)
(I + S0)

Q 0 I −
(

iη
2

)(
σ̂

ik0

)
(I + S0)

⎞⎠( I(u)
n

I(w)
n

)
=
(

Pn

Rn

)
, (6.3)

where
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Pn =
n∑

m=0

|N|n−m ζm −
n−1∑
m=0

|N|n−m I(u)
m −

n−1∑
m=0

Sn−m I(w)
m −

(
iη

2

)(
σ̂

ik0

) n−1∑
m=0

Sn−m I(w)
m

−
n−1∑
m=0

|N|n−m

m∑
l=0

Sm−l I
(w)

l ,

Rn =
n∑

m=0

|N|n−m ψm −
n−1∑
m=0

|N|n−m I(u)
m −

n−1∑
m=0

|N|n−m

m∑
l=0

Q m−l I
(u)

l −
n−1∑
m=0

|N|n−m I(w)
m

−
(

iη

2

)(
σ̂

ik0

) n−1∑
m=0

Sn−m I(w)
m ,

and

|N| = |N| (θ;ε) =
∞∑

n=0

|N|n (θ)εn.

Appealing to our simple formulas for Q 0 and S0, (4.2), and using the Fourier expansions

I(u)
n (θ) =

∞∑
p=−∞

(
Î(u)
)

n,p
eipθ , I(w)

n (θ) =
∞∑

p=−∞

(
Î(w)

)
n,p

eipθ ,

we realize that (6.3) can be solved rapidly, as the only operator requiring inversion is (block 2 × 2) diagonalized by the 
Fourier transform.

7. Numerical results

We now present results of simulations using an implementation of the algorithm outlined above. The scheme is es-
sentially a High–Order Spectral approach [26,13,17] with products approximated by convolutions implemented by the Fast 
Fourier Transform.

7.1. Implementation details

The numerical algorithm we analyze in this section utilizes the IIO formulation of the problem, (3.9), and the IIOs are 
simulated using the FE and TFE methods (see Section 5 and [51,52]). In order to approximate solutions of (6.1) we define{

I(u), I(w)
}

≈
{

I(u)
Nθ ,N , I(w)

Nθ ,N

}
:=

N∑
n=0

Nθ /2−1∑
p=−Nθ /2

{(
Î(u)
)

n,p
,
(

Î(w)
)

n,p

}
eipθ εn.

An important consideration is how the series in ε are summed. For this, the classical numerical analytic continuation 
technique of Padé approximation [3] has been used very successfully for HOPS methods in the past (see, e.g., [9,47]) and 
we will use it here.

7.2. Validation by the method of manufactured solutions

Before proceeding to our numerical simulations, we validated our code using the Method of Manufactured Solutions 
(MMS) [12,57,59]. To summarize the MMS, when solving a system of partial differential equations subject to boundary 
conditions for an unknown, v , say

Pv = 0, in �, (7.1a)

Bv = 0, at ∂�, (7.1b)

it is typically just as easy to implement an algorithm to solve the “inhomogeneous” version of the above,

Pv = F, in �, (7.2a)

Bv = J , at ∂�. (7.2b)

In order to test an implementation, one begins with the “manufactured solution,” ṽ , and sets

Fṽ := P ṽ, Jṽ := B ṽ.
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Now, given this pair {Fṽ , Jṽ} we have an exact solution to (7.2) against which we can compare our numerical simulation. 
While this provides no guarantee of a correct implementation, with a careful choice of ṽ , e.g., one which displays the same 
qualitative behavior as solutions of (7.1), the approach can give great confidence in the accuracy of a scheme.

For the implementation in question we considered the 2π–periodic, outgoing solutions of the Helmholtz equation, (2.1a),

uq(r, θ) = Aq
u Hq(k

ur)eiqθ , q ∈ Z, Aq
u ∈ C,

and the bounded counterpart for (2.1b)

wq(r, θ) = Aq
w Jq(k

wr)eiqθ , q ∈ Z, Aq
w ∈ C.

We selected an analytic profile

g(θ) = ε f (θ) = εecos(θ), (7.3)

and defined, for a choice of the base radius of the interface ḡ , the Dirichlet and Neumann traces

uexact(θ) := uq(ḡ + g(θ), θ), ũexact(θ) := (−∂N uq)(ḡ + g(θ), θ),

and

wexact(θ) := wq(ḡ + g(θ), θ), w̃exact(θ) := (∂N wq)(ḡ + g(θ), θ).

From these we computed the exact inner impedance

Ĩ(w),exact(θ) = τ w w̃exact − iηwexact,

made the physical parameter choices

q = 2, Aq
u = 2, Aq

w = 1, η = 3.4, λ = 0.45, (7.4a)

the numerical parameter choices

Nθ = 64, Nr = 32, N = 16, (7.4b)

and computed the approximation to Ĩ(w),exact by the FE and TFE algorithms delivering Ĩ(w),FE
Nθ ,N and Ĩ(w),TFE

Nθ ,N , respectively. 
We point out that despite the fact that we chose η > 0, the algorithm delivered consistently accurate and stable results 
indicating that conditions (3.5) are sufficient but not necessary to ensure uniqueness of solutions. We measured the relative 
errors

ErrorFE
rel =

∣∣∣ Ĩ(w),exact − Ĩ(w),FE
Nθ ,N

∣∣∣
L∞∣∣∣ Ĩ(w),exact

∣∣∣
L∞

, ErrorTFE
rel =

∣∣∣ Ĩ(w),exact − Ĩ(w),TFE
Nθ ,N

∣∣∣
L∞∣∣∣ Ĩ(w),exact

∣∣∣
L∞

, (7.5)

and display our results in Fig. 6. From these we learn a number of important facts. First, from Fig. 6 (left), we see that if 
ε is sufficiently small (here ε = ḡ/100) then either HOPS approach (FE or TFE) with either summation mechanism (Taylor 
or Padé) will deliver excellent results (essentially machine precision) with a very modest choice of parameters. Here we 
see that with only 4–6 perturbation orders one fully resolves the exact MMS target, behavior that is consistent with that 
exhibited by HOPS schemes in other contexts [8,46,49,39].

However, as displayed in Fig. 6 (right), when the deformation size is large (here ε = (2/5)ḡ) the behavior of both the 
HOPS algorithms and the summation techniques diverges significantly. Here we see that the FE algorithm delivers excellent 
results through 8 perturbation orders, however, beyond this the Taylor summation algorithm produces divergent results 
while Padé approximants deliver consistent approximations. The TFE algorithm also produces robust simulations through 
8 perturbation orders with a similar divergence of Taylor and Padé results at this point. As it has been not only proven 
[45,48,40] but also demonstrated numerically [46,49,39], the TFE approach produces accurate approximations of the Taylor 
coefficients in a stable fashion throughout all perturbation orders. Thus, we conclude that this value of ε is outside the disk 
of convergence of the relevant Taylor series. The fact that Padé summation of the TFE coefficients delivers the best results 
seen in Fig. 6 (right) indicates that not only does the domain of analyticity extend beyond this disk [47], but also that Padé 
summation is able to access this region of extended analyticity.

We repeated this convergence study with the more challenging profile

g(θ) = ε f (θ) = ε cos(4θ),

c.f., (7.8). Provided that we further refined the angular discretization to Nθ = 128, we found results nearly identical to those 
depicted in Fig. 6.
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Fig. 6. Relative error (7.5) versus perturbation order for configuration (7.4) with (left) ε = ḡ/100 and (right) ε = (2/5)ḡ; FE and TFE schemes with Taylor 
and Padé summation.

Fig. 7. Plot of the cross–section of a graphene nanotube, �, enclosing a material (occupying S w ) shaped by r = ḡ + ε cos(2θ) (ε = (1/5)ḡ) housed in a 
dielectric (occupying Su ) under plane–wave illumination with wavenumber (α, −γ u). The dash–dot blue line depicts the unperturbed geometry, the circle 
r = ḡ . (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

7.3. Graphene nanotubes with elliptically shaped cross–section

Having verified our code we proceeded to simulate bounded structures (nanorods) encased in graphene with cross–
section shapes that are perturbations of a ring. A most natural such profile is given by

f (θ) = cos(2θ), (7.6)

which resembles an ellipse, see Fig. 7. Our experiments consisted of illuminating this structure over a range of Nλ–many 
incident wavelengths λmin ≤ λ ≤ λmax. For this initial simulation we considered the following physical parameters

ḡ = 0.025,0.1,1, λmin = 35, λmax = 40, ε = ḡ/5. (7.7a)

In addition, our FE algorithm required the following numerical discretization parameters

Nλ = 101, Nθ = 64, N = 16. (7.7b)

There are many outputs to this experiment that one could consider, each of which would indicate the presence or absence 
of an LGSPR. We chose to measure the L2 norm of the output impedances, Ĩ(u) and Ĩ(w) , which are produced as the outputs 
of the maps Q and S respectively. While these do not have obvious physical interpretations, they are readily computed 
Quantities of Interest (QoI) which will not only grow precipitously near an LGSPR, but also vary continuously as the interface 
shape is deformed by ε.

We began with the full model of graphene [61,1,2] and report our results in Fig. 8. Here we have plotted the QoI (the 
L2 norms of Q (left column) and S (right column)) as ḡ is varied among 0.025, 0.1, and 1 microns. From these figures we 
learn a number of things. First, regardless of the value of ε, there is a pronounced enhancement in the magnitude of the QoI 
at a particular value of λ indicating the excitation of an LGSPR. This enhancement is not only significant in magnitude but 
also quite sensitive in its response (its excitation range can be less than a nanometer). Beyond this, both the strength and 
sensitivity are significantly enhanced as the ring radius is decreased from 1 micron down to 0.025 microns. Finally, for all 
three radii, one sees a pronounced and easily identified shift in the LGSPR as the perfect ring is perturbed to an elliptically 
shaped one.
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Fig. 8. Plot of the L2 norms of Q (left column) and S (right column) for ḡ = 0.025 microns (top row), ḡ = 0.1 microns (middle row), and 1 micron (bottom 
row). The responses for a perfectly circular ring and the perturbed (elliptically shaped) ring are plotted in red and blue, respectively. The full model for 
graphene was utilized.
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We repeated these experiments with the Drude model of graphene [6] and display our findings in Fig. 9. As before, we 
plotted the QoI (the L2 norms of Q (left column) and S (right column)) as ḡ is varied among 0.025 (top row), 0.1 (middle 
row), and 1 microns (bottom row). In order to properly observe all relevant effects we modified the range of λ in (7.7) to 
λmin = 32 and λmax = 37. The results here share similarities with our previous ones with the full graphene model. There is 
a decided enhancement regardless of ε and the range of wavelengths is still somewhat narrow. Also, there is still a shift 
as the interface shape is perturbed from circular to elliptical. However, it should be noted that each of these effects are 
significantly mollified in comparison to our results for the full graphene model. More specifically, the response range is 
much wider, the enhancement is not as pronounced, and the shift is much smaller when compared with the excitement 
spread in λ.

7.4. Graphene nanotubes with clover shaped cross–section

After studying graphene nanotubes with elliptically shaped cross–section we proceeded to consider clover shaped cross–
sections of the form

f (θ) = cos(4θ), (7.8)

see Fig. 10. We conducted the same experiments as in the past section with the same parameters, (7.7), and our results 
for the full model of graphene are shown in Fig. 11. As in the case of the elliptically shaped graphene nanotube, there are 
several common features of these plots among all radii and perturbation sizes ε. First, an LGSPR is always excited which 
is indicated by an enhancement in the QoI (the L2 norm of either Q or S). Furthermore, the response is always strong 
(though stronger for smaller radius ḡ) and quite narrow (though narrower for smaller ḡ). As above, in all cases there is a 
readily identified shift in the location of the LGSPR as a function of λ as the ring is deformed to a clover shape.

Our results for the Drude model of graphene are shown in Fig. 12. Once again, this classical model smears the rather 
“sharp” results for the full current model of graphene. However, there are, once again significant shifts in the LGSPR location 
for all configurations as the graphene geometry is deformed.

As we have seen, in every instance reported above, the location of the LGSPR changes as the shape of the cross–section 
of the graphene nanotube is deformed. We closed our investigations with a quantitative study of how this shift varied as 
the base radius was changed. The shift was defined as the (absolute value of) the difference in incident wavelength of the 
LGSPR for a perfectly circular cross–section (ε = 0) and the incident wavelength of the LGSPR excited by the perturbed 
geometry (ε = ḡ/5). We have plotted this shift versus base radius ḡ in Fig. 13 over values

ḡ = 0.025,0.05,0.1,0.2,0.5,1.

Here we see how the shift increases, essentially monotonically, as ḡ is increased.

8. Conclusion

In this contribution we have taken up the questions of the existence and properties of Localized Graphene Surface 
Plasmon Resonances (LGSPRs). Using a generalization of our interfacial formulation of the problem of scattering of electro-
magnetic radiation by a nanorod (which accounts for the presence of graphene with a surface current), we were able to 
investigate these questions in a careful and rigorous fashion. Using two popular surface current models for graphene we 
gave evidence that LGSPRs can only be observed in Transverse Magnetic polarization akin to the same conclusion in the ab-
sence of this two–dimensional material. Beyond this we used a rapid, robust, and high–order accurate numerical scheme to 
investigate the effects of perturbing the shape of a perfectly cylindrical (circular cross–section) nanotube upon the appear-
ance and characteristics of LGSPRs. We found these LGSPRs exist for any perturbation size, but that they can be significantly 
“moved,” with quite modest shape deformation, in that they occur for values of incident illumination wavelength quite 
different than for the zero–deformation case. This interesting phenomena (also observed for periodic gratings) suggests a 
novel mechanism for sensing in the nanoscale regime.
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Fig. 11. Plot of the L2 norms of Q (left column) and S (right column) for ḡ = 0.025 microns (top row), ḡ = 0.1 microns (middle row), and 1 micron 
(bottom row). The responses for a perfectly circular ring and the perturbed (clover shaped) ring are plotted in red and blue, respectively. The full model for 
graphene was utilized.
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Fig. 12. Plot of the L2 norms of Q (left column) and S (right column) for ḡ = 0.025 microns (top row), ḡ = 0.1 microns (middle row), and 1 micron 
(bottom row). The responses for a perfectly circular ring and the perturbed (clover shaped) ring are plotted in red and blue, respectively. The Drude model 
for graphene was utilized.
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Fig. 13. Shift in excitation wavelength (in microns) of LGSPR as nanotube is deformed from ε = 0 to ε = ḡ/5 versus base radius, ḡ , for (a.) full model and 
(b.) Drude model of graphene.
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