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the stable and high-order accurate numerical simulation of the interaction of linear,
time-harmonic waves with a periodic, triply layered medium with irregular interfaces.
In contrast with volumetric approaches, High-Order Perturbation of Surfaces (HOPS)
algorithms are inexpensive interfacial methods which rapidly and recursively estimate

I,f,eémrfg'er spectral methods scattering returns by perturbation of the interface shape. In comparison with Boundary
Time-harmonic linear wave scattering Integral/Element Methods, the stable HOPS algorithm we describe here does not require
Periodic layered media specialized quadrature rules, periodization strategies, or the solution of dense non-
High-order perturbation of surfaces symmetric positive definite linear systems. In addition, the algorithm is provably stable
methods as opposed to other classical HOPS approaches. With numerical experiments we show the

remarkable efficiency, fidelity, and accuracy one can achieve with an implementation of
this algorithm.
© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The accurate numerical simulation of linear waves interacting with periodic layered media is a crucial capability in many
areas of scientific and industrial interest. Examples exist in areas such as geophysics [1,2], materials science [3], imaging [4],
oceanography [5], and nanoplasmonics [6-8]. The latter includes topics as diverse as extraordinary optical transmission [9],
surface enhanced spectroscopy [10], and surface plasmon resonance biosensing [11-16]. For each application, it is necessary
to approximate the scattering returns of such models in a fast, highly accurate, and reliable fashion.

While all of the classical numerical algorithms (e.g., Finite Differences and Finite/Spectral Element methods) have been
brought to bear upon this problem (see, particularly, the work of Dobson [17,18] and Bao [19-21] on Finite Element solution
of the doubly layered problem), we have recently argued [22-25] that such volumetric approaches are greatly disadvantaged
with an unnecessarily large number of unknowns for the layered media problems we consider here. Interfacial methods
based upon Integral Equations (IEs) [26], for instance [27-32], are a natural candidate but, as we have pointed out [22-25],
these also face difficulties. Most of these have been addressed in recent years through (i.) the use of sophisticated quadrature
rules to deliver High-Order Spectral accuracy, (ii.) the design of preconditioned iterative solvers with suitable acceleration
[33], and (iii.) new strategies to avoid periodizing the Green function [27-32]. Consequently, they are a compelling alter-
native (see, e.g., the survey article of [34] for more details), however, two properties render them non-competitive for the
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parameterized problems we consider as compared with the methods we advocate here. First, for configurations characterized
by the real value ¢ (for us the heights/slopes of the irregular interfaces), an IE solver will return the scattering returns only
for a particular value of e. If this value is changed then the solver must be run again. Second, the dense, non-symmetric
positive definite systems of linear equations generated by IEs which must be inverted with each simulation. We note that
the “Rigorous Coupled Wave Analysis” (RCWA) [35,36] is very popular amongst practitioners for the problem we consider
here. While it is very convenient to code and can be very fast if implemented with care, non-trivial interface shapes are
modeled as thin layers using a staircase approximation which is, necessarily, a low-order approximation.

A “High Order Perturbation of Surfaces” (HOPS) approach can effectively address these concerns. More specifically, in
[23-25] we put forth the method of Field Expansions (FE) which traces its roots to the low-order calculations of Rayleigh
[37] and Rice [38]. This was extended to a high-order algorithm by Bruno & Reitich [39-41] and later enhanced and stabi-
lized by Nicholls and Reitich [42-44], and Nicholls and Malcolm [45,23,25]. These formulations are particularly compelling
as they maintain the advantageous properties of classical IE formulations (e.g., surface formulation and exact enforcement
of far-field and quasiperiodicity conditions) while avoiding the shortcomings listed above. First, since the methods are built
upon expansions in the boundary parameter, &, once the Taylor coefficients are known for the scattering quantities, it is
simply a matter of summing these (rather than beginning a new simulation) for any given choice of ¢ to recover the re-
turns. Second, due to the nature of the scheme, at every perturbation order one need only invert a single, sparse operator
corresponding to the flat-interface, order-zero approximation of the problem.

However, Nicholls and Reitich [46] showed that, like other classical HOPS schemes, the FE method depends upon strong
cancellations for its convergence which can result in quite ill-conditioned simulations. We refer the interested reader to
[46-48,42,43] for the initial description of this phenomena, and the additional exhaustive and illuminating simulations of
Wilkening and Vasan [49].

In response to these observations, Nicholls and Reitich described an alternative HOPS scheme, the method of Transformed
Field Expansions (TFE), which does not possess strong cancellations [46-48,42,43]. In fact, the resulting recursions can be
used in a rigorous proof of the strong convergence of the perturbation expansions in a Sobolev space [46,48], which was
later extended to Lipschitz profiles in [50]. In addition, the TFE recursions were implemented to reveal a stable and highly
accurate numerical scheme for the simulation of scattering returns by singly layered periodic gratings [47,43].

This work was generalized by Nicholls and Shen to the case of irregular bounded obstacles in two [51] and three dimen-
sions [52], who later delivered a rigorous numerical analysis of the method [53]. Subsequently, He, Nicholls, and Shen [54]
devised a highly non-trivial extension to the case of periodic gratings separating two materials of different dielectric con-
stants. Here, of course, one must be concerned not only with a reflected field and its far-field boundary condition (upward
propagating) at positive infinity, but also with a transmitted field which satisfies a different condition (downward propa-
gating) at negative infinity. In this contribution we make the further extension to the case of three layers which introduces
the added complication of waves propagating both “up” and “down” in a vertically bounded layer in between. This difficulty
manifests itself in the governing equations (and our numerical algorithm) through the complication of a coupled system of
three boundary value problems (at each wavenumber in the spatial variable).

More specifically, to begin we introduce artificial boundaries above and below the interfaces of the structure, which
truncate the unbounded domain. We use Dirichlet-Neumann operators at each of these artificial boundaries to enforce
the outgoing wave conditions transparently and without reflection [55-64]. Our spectrally accurate method involves the
novelty of a modified Legendre-Galerkin approach where the standard basis is supplemented with additional connecting
basis functions across the layer boundaries in the spirit of the work by He, Nicholls, and Shen [54] for two layers. However,
our contribution is more subtle than what appears in the aforementioned publication; for more details we refer the reader
to Section 5.

The organization of the paper is as follows: In Section 2 we recall the governing equations of an electromagnetic field
incident upon a periodic, two-dimensional, triply layered irregular grating structure. In Section 3 we derive the TFE recur-
sions in this triply layered context, and discuss a Legendre-Galerkin method to solve the resulting coupled boundary value
problems in Sections 4 and 5. Extensive numerical results are provided in Section 6, followed by concluding remarks in
Section 7.

2. Governing equations

The geometry we consider is displayed in Fig. 1: A z-invariant, triply layered structure. Dielectrics occupy all three
domains, the upper (with refractive index n") fills the region

Sg={y>g+gw},
the middle (with refractive index n") occupies
b= {iHhe <y <2+ e},

while the lower (with index of refraction n") fills

sii={z<h+ne).
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Fig. 1. A depiction of the triply layered grating structure with layer interfaces at y =g + g(x) and y =h + h(x).

The gratings are d-periodic so that g(x+d) = g(x) and h(x+d) = h(x). The structure is illuminated from above by monochro-
matic plane-wave incident radiation of frequency w, aligned with the grooves

Einc(x y t) — Aeiaxfiﬂ”yfiwt Hinc(x y t) — BeiO{X*iﬁuy*ia)t
We consider the reduced electric and magnetic fields

E(x,y) = e E(x,y,t), H(x y)=e“H(x,y,t),

which, like the reduced scattered fields, are a-quasiperiodic due to the incident radiation. To close the problem, we specify
that the scattered radiation is “outgoing” (upward propagating in Sg and downward propagating in S}’ ).

It is well known (see, e.g., Petit [65]) that in this two-dimensional setting, the time-harmonic Maxwell equations
decouple into two scalar Helmholtz problems which govern the transverse electric (TE) and transverse magnetic (TM) po-
larizations. We define the invariant (z) direction of the scattered (electric or magnetic) fields by

u=u,y), v=vxy), w=wky),

in Sg, S; » and S}, respectively. The incident radiation in the upper layer is specified by yine,

We find that we must seek outgoing, o-quasiperiodic solutions of

Au+kiu=0, in Sg, (1a)
AV +k2v =0, inSg . (1b)
Aw + k2w =0, in Sy, (1)
u—v=—um y=2+gW, (1d)
v—w=0, y=h+h), (Te)
Mﬂ—r%wV=—%Mm7 y=g+gx), (1f)
on, v — 00N, w =0, y=h+h(), (1g)

where ky =n™w/co = w/c™, m e {u, v, w}, co is the speed of light, Ng = (=g, 1)T, Ny = (—dxh, 1)T, and

, |1 TE
T =
(ku/ky)? = (¥ /n")? M,

and
o211 TE
| ky Jkw)% = (0¥ /)2 TML

2.1. Transparent boundary conditions

Following the standard TFE methodology [47,43,54] we introduce artificial boundaries and transparent boundary condi-
tions to solve (1) (see also the work of Dobson [17,18], Bao [19-21], and He, Min, and Nicholls [66] for such developments
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Fig. 2. A depiction of the truncated triply layered grating structure with layer interfaces at y =g+ g(x) and y = h + h(x), and artificial boundaries at y =a
and y =b.

in the setting of Finite/Spectral Element solution of layered medium problems). More precisely, we introduce the planes
y=a>g+|gli~ and y=b <h — |h|;~, and define the domains

S“:={y>a}, S":={y<h},
sgt:={g+gx) <y<a}, S,‘;V’b = {b<y<ﬁ+h(x)];

see Fig. 2.

The transparent boundary conditions are based upon the Rayleigh expansions [37] which can be used to solve the
problems on S% and SP explicitly with generic Dirichlet data, say ¢(x) and ¥ (x), at the artificial boundaries {y =a} and
{y = b}, respectively. More precisely we have

o0
u=u@ y) =y Ger YOy,

p=—o0

and

o0
w=w(x, y)= Z &peiapx—iﬂ;;”(Y—b)’ y <b,

p=—00

where, for p € Z and m € {u, w},

2.2 m
w4y i=a +@r/d)p. B = Vkm)*—a; pel
’ S e -k peum

and the set of propagating modes is given by
U™ .= {p eZ|ot§ < (km)2}.

Notice that

ux. @)= Y et =c(x), wxb= Y et =y ).
p=—00

p=—00
With these solution formulas we can compute the Neumann data at the artificial boundaries

o 00
dyue = 3 GG dywieb) = Y (BT,
p=—00 p=—00
which permit us to define the Dirichlet-Neumann Operators (DNOs)

oo

Tilgli= Y (BDGE™ . Talpl= Y. (Y )dpe ™™,

p=—00 p=—00

which are order-one Fourier multipliers.
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Using these we can state (1) equivalently on the bounded domain {b < y < a} as

Au+kiu=0, in Sg, (2a)
AV +Ik2v =0, in Sy . (2b)
AW+ k2w =0, in sy, (20)
u—v=—um, y=Z+gx), (2d)
vV—w=0, y=h+hx), (2e)
Ongu — T20N, v = —dn,u™, y=g+gw), (20)
N,V — 020N, w =0, y=h+h®, (2g)
dyu — T1[u] =0, y=a, (2h)
dyw — T3[w] =0, y=b, (2i)

which we use as the starting point for our numerical method.
3. Transformed field expansions

In this section, we present the Transformed Field Expansion (TFE) algorithm. First, we introduce a domain flattening
change of variables known as o -coordinates [67] in the oceanographic literature, and the C-method [68] in the electromag-
netics community. Then, we consider a boundary perturbation algorithm to solve the resulting equations which leads to the
provably convergent TFE recursions.

3.1. The change of variables

We define the change of variables:

/

X =x,
_(y—(E&+8\ , - a—y _
n=ii=grg) amgrn) sresy=e
— y—(E+9 s (h+h)—y - _
ya=h(—= — + — — , h+h<y<g+g,
? (<h+h)—<g+g)) (<h+h)—<g+g)>
y—(h+hy -/ b-y _
—p(1 = h(—= b R+h,
y3 (b—(h+h))+ (b—(h+h)) Syt
which maps

a,u a,u v v w,b w,b
Sg - Sy, Sgyh—>50’0, Sy —=> Sy

We note that
b<ys<h<y,<g<yi<a

A long calculation, presented in Appendix A, shows that (2) transforms under this change of variables to the following
system of equations to be solved.

Ay gt +Ku="Ry, in Sg, (3a)
Ay y,V+ KV =Ry, in Sg . (3b)
Ay.ysW + k2w =Rs, inSy"?, (30)
u—v=—ee ' Ee) yi=y2=8, (3d)
v—w=0, y2=y3=h, (3e)
dy,u — T2y, v = T4, yi=Yy2=8, (3h)
dy,V — 028y, w = T, y2=y3=h, (32)
By,u — Tiu] = ——=—T1[u], yi=aq, (3h)

a—g
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h .
Oy, w — T3[w] = s HTB[WL y3=bh, (3i)

where
1 X X
Ri= 5 [0x R} + 0y, R + Ri].
i
We refer the reader to Appendix A for the particular forms for the right hand sides {R1, R2, R3, J1, J2}.

3.2. Boundary perturbation

We now consider a boundary perturbation method to solve the transformed governing equations, (3). To begin, we set
g=¢fg and h=¢f (see Appendix A) and expand the fields in power series

{u, v, wh = "{un, vn, Wa} (x, y)&".

n=0

Inserting these expansions into (3) and equating at order O(e") delivers

Ay .y Un +K2Un =R n, in S, (4a)
Ay yoVn +k2Vn = Ron, in Sg . (4b)
Ay ysWn + k%VWn =R3n, in Sg'b, (4c)
o (—ipY n
Up — vy = —e @ e P78 %, y1=y2=8. (4d)
Vp — wp =0, y2=y3=h, (4e)
aylun—fzayzvn:jl,ny yi=Yy2=¢, (4f)
ayzvn_o-zangnZJZ,n, y2:y3:E, (4g)
f

dyyttn — T1[tn] = ——=Ti[up—1], yi=aq, (4h)

___fn _ .
Oyswn — T3[wp] = _b ET3[W11—1]7 y3=b. (4i)

In these we have defined

1 o X 4
Rz,n = E2 [3x’R,"n + ayiRiyn + Rl.n],
i

and the remaining terms are specified in Appendix A.
Using the quasiperiodicity of the solutions, we make the following (generalized) Fourier series expansions,

o0

{Un, v, way =Y {uf (), vE(y), wh (y)}e*,

p=—00

o0 i o0 .
Rinx.y)= Y RE ™, Finx)= > TP e,

p=—00 p=—0o0
for i =1, 2, 3. Insertion of these into (4) delivers
ub () + (ki — apuf (y) =R (). g<y=<a (5a)
RVEW) + (ks — ap)VE(y) =RE (1), h<y<E, (5b)
Wh () + (5, — ap)wh (y) =R (), b<y<h, (50)
_ _ _ipg (CiBf)"

up(@) - va (@ =—e It =g, (5d)
v (h) — wh (h) =0, (5e)

yul (8) — T2y v (@) = T (50)
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vii(h) — o2y wh (h) = 75,
fe

8}’”5 - lﬁguﬁ - __ng[u 1] = 1,1’ y

fn

dywh +iprwh = — o hT”[w,1 =8, y

Il
2

Il
s

4. A Weak formulation of the boundary value problem

In order to homogenize (5) for our weak formulation we decompose the solutions {uf, v2, w

{un7 V,I-,), Wl’l} - {ugv ‘7157 Wﬂ}+ {ﬂll’l)v {/Igl)! Wﬂ}

whl as

where {ii, V5, wj} solve (5) with R =0, while {iif, v;;, Wi} solve (5) with Bfn =gl = j,.f’n = 0. More specifically, drop-

ping the {n, p} indices, we write

dyu(y) + (ki — aH)ii(y) =0, g<y<a
V() + (kg —a®)V(y) =0, h<y<Zg
852,\7v(y)+(k%,v—052)17v(y)20, b<y<h
(@) —¥(@ =

v(h) —wh) =0,

3yl (®) — 129, V(@) = 1,
dyv(h) —a?ayw(h) = 7,
aytl —ip'il = B, y=a,
W +ip"w =By, y=bh.

Due to their simplicity, (6) can be solved explicitly so it remains to solve for {i1, v, w} which we accomplish by a High-Order

Spectral method. For the latter we set
o= M]eiﬂ”y +N1€_iﬁuy, V= Mzeiﬂvy + Nze_iﬁvy,
w= M3eiﬁwy + N3€—iﬂWy

which we substltute into (6), and then find explicit forms for M; and N;j.
For {11}, VE, WP} we consider the following equations

dyu(y) + (ki — a?)it(y) =Ra(y), g<y<a
V() + (K — a®)V(y) =Ra(y), h<y<g
RW(y) + ks, — @) W(y) =R3(y), b<y<h

u(g —v(E =0,

v(h) — w(h) =

yl(®) — 120,V (Z) =

dyv(h) — o2, w(h) =0,

dyll —igUl =0, y=a,
dyw +ip"w =0, y=bh.

Our weak formulation of (7) is: Find U € H!([b, a]) such that

(KU, @) — (ByU, 8y9) + (1 — T3y v(@)P(@) + (02 — Dy v(@(h)
= (R, ) —ipuu@p(a — ipwwb)gb), Yo eH'([b,al),

where
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un, yeh, v1, yel,
U=3vn, yel, ¢={¢2, yely,
wn, Yyels, 3, yEeEls,
R1, Yyely, ky, yel,
R=1R,, yel, k= ky, yel,
R3, yels, kw, yels,

and

Ii:={g<y<a), Iy;=th<y<g), I3:={b<y<h).

Following He, Nicholls, and Shen [54], we define the following finite dimensional function space Xy, C H([b, a]) to specify
a Legendre-Galerkin method,

Xn, :={gi € Py, (Ii) | 3yp1(a) —iB"p1(a) =0, dyg3(b) +iB" p3(b) = 0},

where Py, is the space of polynomials of degree less than Ny. The Legendre-Galerkin formulation becomes: Find Uy, € Xy,
such that

(K2Un,. ) — @yUn,. 3y@) + (1 — 123y vn, (B)P(@) + (02 — Ddyvn, (H@(h)
=(In, f, ) —ip"un, (@@(a) —ip"un,(b)@(b), Vo e Xn,,

where Iy, is the projection operator onto Py, . Using integration-by-parts on each subdomain, we can obtain the alternate
variational formulation: Find Uy, € Xy, such that

(3UN,. @) + K2 (Un,. @) + dyun, (®)G(E) — 120y v, (@)P(2)
+o0 20y v, (@) — dywy, (@) = (In,R. 9). Vo € Xy,
5. The Legendre-Galerkin numerical method

At this point we follow the spectral Legendre-Galerkin approach of Shen [69,70,54]| and consider as basis functions
combinations of Legendre polynomials, L;(s). For y € I1 we define

y—a y—a
=ik (T 1) vt (70 1)

+b1jLjs2 (M n 1)
g
such that

(Byo1,j —iB"p1,))(@) =0, ¢1,j(8) =0
for j=1,2,..., Ny — 2. Further, for y € I, we denote

$2,j =1+ )L]<M+l>+a2]LH1 (M >
h g—h

2(y — g) )

+bajLita <

where
$2,j@ =0, ¢j()=0
In a similar way we define, for y € I3,

2 h h
¢3j:=0+1L; <% >+03]LJ+1 (%4‘1)

2(y—h
+b3jLjia (ﬁ ) ,

where
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dyes, j(b) +ip" s j(b)=0,  ¢3j(h)=0.

Note that these basis functions vanish at the mean interface levels y =g and y = h. For this reason (cf., [54]), we introduce
additional basis functions which are nonzero at y =g and y =h:

ay-o+1, g=<y=a
my)=qcy—-g+1, hsysg,
0, b<y<h,

and
0, g<y<a,
ny)=yay-h+1, h<y<g,
ca(y—h)+1, b<y=<h,

chosen such that
(@ym —ig"m)(@ =0, ni(h)=0,
(Bym2 +i"n2)(b) =0, n2(8) =0.

It is easy to show that

ip" 1 1 igv
=7 = Q=" 06==—7T, T ——
1—-ipt(a—g) g—h h—g 1+ip¥ (b —h)
With these we define the basis functions defined on all {b <y <a}
= $1,;(y), g<y<a, .
i(y)= ’ =0,...,N, =2,
i) {o, b<y<g ’ y
and
0, g<y<a
ONy—1+j(¥) = § d2,; (1), h<y<(_§, j=0,...,N, -2,
0, b<y<h,
and
- 0, ﬁ<y<a
$an,—2+j (V) = - =0,....,Ny -2,
o [¢3,j(y), b<y<h, !
and, finally,

B3ny 3N =m Q). P3n,—2(¥) =1m2(¥).

Our numerical approximation proceeds by seeking

3Ny -2

uMr(y)= ) (),
j=0

and setting
u=(lo,....My,—2)",
v=(iln,1. ..., l2n,-3)",
W= (N, 2. ..., l3n,-a),
f=(fo..... fan,—-a)",

where

fi=(n,f.¢p, j=0,....3N, 2.

We also define the following block matrices
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(A1ij = (35031,5)1')11 +k*(pj, B)1y s
(C11)ij = @ dNy—14j: ONy—1401, + K> BNy—14j. ENy—14D)1 -
(B11)ij = (022N, —2+j. Bany—240)15 + K> (bany—24j» Pany 24015
where 0 <i, j < Ny — 2. We make the column vectors
12 = (32han,—3 + K> P3n,—3. 61,
C12 = (355531\@—3 + kP3N, -3, ONy—14))15
di2 = (333N, -2 + K2 b3n, 2. ONy -1+ )1
b1z = (333N, —2 + K2b3n, 2. an, 24 )15
and row vectors
az1 = (3}2,431' +1<2<l~5j,<l~531vy73)11 + 3y (),
€1 = (3§¢3Ny—1+j +kzd;Ny—1+jv ¢;3Ny—3)12 - T23y¢~>Ny—1+j(§),
da1 = (05PN, —14) + K2PNy—14j. B3N, 21, + 0 2dydn,—14j(h).
ba1 = (33@an,—2+j + K2Pan,—2+4. B3N, —2)15 — dydan,—2+j(),
for 0 < j <N, — 2. Finally, we set
a2 = (32¢3n,—3 + kK*P3n,—3. d3n,—3) + dydan,—3(8") — 79y Pan,—3(27).
a33 = (3,2,<Z>3Ny—2 +1hn, 2. $3n,—2) + 0 2dydan, 2 (ht) — dydan, 2 (h7),
a3 = (3}2,53Ny—2 + kP3N, —2. $3n,—3)
+ [y dan,—2(8") — 720y dan,—2(27)1dan,—3(D).
asy = (3;¢3n,—3 + k> p3n, 3. d3n,—2)
+ [0 %9y dan,—3(h™) — dydan,—3(h)Idsn, —2(h).

With these our Legendre-Galerkin scheme becomes the following system of 3Ny, — 1 equations:

A1] 0 0 ain 0 u
0 C11 0 C12 d12 \' f
0 0 Biy; 0 byp w =
al. I 0 a i f
21 o 22 a3 || Usn,-3 3N, -3
T T a r
0 dy by a2 as) \Usn,—2 fany—2

6. Numerical simulations

We conducted numerical experiments with an implementation of the algorithm outlined above. To begin, we demon-
strated the accuracy of the boundary value problem solver (7) at the core of our approach versus an exact solution. We
followed this by exhibiting the fidelity of our full scattering solver using the “energy defect” as our indicator of conver-
gence.

6.1. Simulations of a simplified model
To begin our numerical experiments we considered the approximation of the “reduced” boundary value problem (7)

at the heart of our full solver. With this we displayed the convergence performance we anticipated for the full algorithm
proposed in Section 5. For this we considered the following problem.

u(y) +kau(y) = F1(y), g<y<a (8a)
Rv(y) +kiv(y) = Fa(y). h<y<g (8b)
Rw(y) +ka,w(y) = F3(y). b<y<h (8¢)
u(@ —v(@ =0, (8d)

v(h) — w(h) =0, (8e)
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The relative L? error for u,v, and w
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Fig. 3. Relative L? error, (11), of our Legendre-Galerkin approximation of (8) with parameter choices (9) versus number of basis functions Ny.

dyu(g) — t20,v(g) =0, (8f)
dyv(h) —o?3,w(h) =0, (8g)
dyu —iptu=0, y=a, (8h)
yw—+ip"w=0, y=b. (8i

To test the convergence of our algorithm we began by considering the following functions and parameters which we used
to define an exact solution:

u=exp(y)(y —a)’(y —b)*>, v=exp(y)(y —a)*(y —b)?,

w=exp(y)(y —a)*(y — b)?,

a=25 g=1, h=0, b=-2, =1, o=1,

ky,=5.0, k,=1.0, ky=1.1,

Bu=—-2+2i, Bw=1-1i (9)

One can check that the functions u, v, and w satisfy the homogeneous boundary conditions in (8). One can also easily find

the corresponding terms F1, F», and J3 which make u, v, and w exact solutions.
As a second example, we considered t # 1 and o # 1, which was meant to model a TM simulation:

u=tlo’exp()(y —)*(y —b*y - Dy —h).

v=0’exp(y)(y — )’ (y = b)*(y — )y — h),

w=exp(y)(y —0*(y = b’ (y = Dy — ).

a=5 g=3, h=0, b=-2, 1=2, o=4,

k,=3.0, ky=1+i, ky,=2.0,

Bu=2+1i, Bw=1-1 (10)
To test numerical convergence, we defined the relative L2 error

luex — uny, Ilf2 (11)

ltex |l 2

where uex is the exact solution (cf. (9) and (10)) and uy, is the numerical solution of (8). Figs. 3 and 4 display the spectral
rate of convergence which our Legendre-Galerkin method achieved in this simplified setting.
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The relative L? error for u,v, and w
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Fig. 4. Relative L? error, (11), of our Legendre-Galerkin approximation of (8) with parameter choices (10) versus number of basis functions Ny.

6.2. Simulations of a triply layered medium: smooth interfaces

We now display results of simulations of a triply layered medium whose scattering returns are governed by (2). As exact
solutions are unavailable, to display the spectral accuracy of our Legendre-Galerkin scheme we use the widely-accepted
diagnostic of “energy defect”; see e.g. [65,16,39-41].

To describe this we consider the Rayleigh expansions [37] in the upper and lower layers

oo oo
o o
U, y)= Y ape Y wx yy= Y e Y,

p=—00 p=—00

and, from these, define the efficiencies

u.__ /3; A2 uu
ep'_ﬂ_u|up|7 peu-,
ﬂW
_Pp a0
e‘r’," .:ﬁ|wp|, peuU”.

The efficiencies measure the energy at wavenumber p propagated away from the grating interface, and if all materials in
the structure are lossless (n™ € R), we obtain conservation of energy. More precisely, in TE mode

u wo__
Dot D ey =1
peUt peuUv
while in TM mode
> (K) ¥ o=
p k2 p—
peUt w7 peuw
In particular, we can define the “energy defect” [65] for TE polarization as
1 u _ w
=1 Y Y e,
peUt peUvW
and for TM polarization as
k2
e _ u __ _u w
1= 2 e () ey,
peldt W7 pew

which should be zero for an exact solution.
We conducted a sequence of simulations to show the spectral accuracy of our proposed Legendre-Galerkin algorithm.
For a series of smooth interface tests, we used the following parameters
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Energy defect versus perturbation orders for the TE mode
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Fig. 5. Energy defect versus perturbation order, N, for smooth interface configuration (12): TE mode.

0 Energy defect versus perturbation orders for the TM mode
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Fig. 6. Energy defect versus perturbation order, N, for smooth interface configuration (12): TM mode.

a=5, g=2, h=1, b=-2, a=0.1,
d=2m, g)=sin(x), h(x)=-sin(x/2). (12)

For numerical parameters we used N to denote the perturbation order, Ny the number of Fourier modes in x, and Ny, the
number of Galerkin coefficients in y. Finally, & was the boundary deformation height/slope, while k,, k,, and k,, were the
wavenumbers in the upper, middle, and lower layers, respectively.

In Figs. 5 and 6 we display the energy defect versus number of perturbation orders retained for the parameter choices
Ny =Ny =24 and (ky, ky,kw) = (1.5,2.5,3.5). We show this for TE and TM modes with various values of ¢. The figures
show the spectral convergence of the energy defect as the perturbation order N is refined. We also found that the energy
defect decays more quickly to machine precision for smaller choices of ¢.

We repeated this experiment for fixed value of N while varying the spatial discretization parameters Ny and Ny. The
results are displayed in Figs. 7 and 8 for N =20 and various values of Ny and Ny. Once again, we chose (ky,ky,kw) =
(1.5,2.5,3.5) and performed simulations for TE and TM modes for a selection of €. Once again we saw the spectral conver-
gence of the energy defect, this time versus the number of Fourier and Legendre coefficients.

We then focused on the behavior of our method as ¢ was increased. For this we fixed Ny =22 and N, = 24, and
once again choose (ky, ky, kyw) =(1.5,2.5,3.5). We conducted numerical experiments in both TE and TM polarizations, and
display the results in Figs. 9 and 10. These figures depict the energy defect versus the perturbation size & with various
perturbation orders N. As expected, smaller errors are realized for smaller choices of ¢ and larger values of N.
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lgllel'gy defect versus the number of modes (,/N, x N,) for the TE mode
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Fig. 7. Energy defect versus number of modes, ,/NxNy, for smooth interface configuration (12): TE mode.

I*[:Jnergy defect versus the number of modes (y/N, x N,) for the TM mode
10
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Fig. 8. Energy defect versus number of modes, ,/NxNy, for smooth interface configuration (12): TM mode.

Finally, in Figs. 11 and 12 we computed the energy defect for fixed £ =0.01, N =15, Ny = 20, and Ny, =40 (for TE
and TE modes) with various choices of wavenumber. If the collection of wavenumbers was not large (e.g. (ky,ky,ky) =
(1.5,2.5,3.5)), then we observed rapid convergence to machine precision. However, as we increased to larger values of ky,
our convergence deteriorated due to the severe under-resolution of our parameter choices. To address this latter concern
we revisited these computations and found that if we refined our spatial discretization then we could recover the striking
convergence we saw for the smallest values of (ky, kv, kw). To be more specific, as we display in Fig. 13, if we chose Ny =30
and Ny = 60 we realized accuracies of 10714 to 10713 for the moderate values (ky, ky, kw) = (11.5, 12.5, 13.5). Furthermore,
if we chose Ny =40 and Ny = 100 then we realized errors on the order of 10~ for the large values (ky, ky,ky) =
(41.5,42.5,43.5).

6.3. Simulations of a triply layered medium: rough interfaces

We repeated the first simulation of the previous section specified in (12) with the smooth profiles replaced by the much
rougher profiles

fr(x) = (2 x 10—4) X4 —x* - co,

—2x+1, 0<x<m,
2x—3, mw<x<2m,

i) =
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Fig. 9. Energy defect versus perturbation size, &, for smooth interface configuration (12): TE mode.

Energy defect versus e for the TM mode
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Fig. 10. Energy defect versus perturbation size, ¢, for smooth interface configuration (12): TM mode.

Energy defect versus the perturbation order N for the TE mode
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Fig. 11. Energy defect versus perturbation order, N, for smooth interface configuration (12): TE mode.
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Energy defect versus the perturbation order N for the TM mode
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Fig. 12. Energy defect versus perturbation order, N, for smooth interface configuration (12): TM mode.

Energy defect versus the perturbation order N for the TE mode
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Fig. 13. Energy defect versus perturbation order, N, for two higher wavenumber combinations for smooth interface configuration (12): TE mode.

(with co chosen such that f, has zero mean) which possess C* (but not C°) and Lipschitz regularity, respectively [48]. For
our experiments we used their Fourier series representations

>, 96(2k2m? — 21

fr) = Z % cos(kx)
> 8

i =) T cos((2k — 1)x),
k=1

which we truncated after wavenumber P = 40,
P

o 96(2k%m? —21)
frp(x) = k; e cos(kx)
P/2 3
fLp() = ; P T cos((2k — 1)x).

The specific details of our numerical simulations are given by the following parameters.

a=5 g=2, h=1, b=-2, a=0.1,
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Fig. 14. Energy defect versus perturbation order, N, for rough interface configuration (13): TE mode.
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Fig. 15. Plot of the real part of the scattered field for rough interface configuration (13): TE mode. Layer interfaces depicted in dashed red lines. (For
interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

d=2m, g&x) = fraoXx) hX = fLa®. (13)

In addition, we picked (ky,ky,kw) =(1.5,2.5,3.5), € =0.05, N =15, and three choices of (Nx, Ny). In Fig. 14 we display
the results of these experiments and show that, provided with sufficient resolution, our new approach is equally applicable
to configurations with finite and even Lipschitz smoothness. In Figs. 15 and 16 we show the real and imaginary parts
of the scattered solution. The layer interfaces are depicted in dashed red lines. To further investigate the capabilities of
our algorithm, we revisit this computation with different values of P, more precisely P = 20,40, 80, 160. The results of
this study are summarized in Fig. 17 which show that, while the accuracy deteriorates a small amount as P increases
(representing a more faithful representation of the very rough interfaces), it remains quite small throughout the entire
range of P and shows no sign of producing divergent results regardless of how large P is chosen.

To close our study we reconsider the smooth profile configuration, (12), but replace the choice of k, with 42.5 meant to
simulate a device with “high-contrast media.” In Fig. 18 we report the results of this experiment and see, once again, that
given sufficient resolution we can realize results with excellent accuracy.

7. Conclusions
We have described a High-Order Perturbation of Surfaces (HOPS) algorithm for electromagnetic scattering in a triply lay-

ered periodic medium. We equivalently restated the governing Helmholtz equations for this layered medium on a bounded
domain using Dirichlet-Neumann operators at artificial boundaries above and below the structure. Utilizing a suitable
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Scattering field of I'm(u), Im(v), and Im(w) for the TE mode
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Fig. 16. Plot of the imaginary part of the scattered field for rough interface configuration (13): TE mode. Layer interfaces depicted in dashed red lines. (For

interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

Energy defect versus the perturbation order N for the TE mode
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Fig. 17. Energy defect versus perturbation order, N, for rough interface configuration (13) with P =20, 40, 80, 160: TE mode.

change of variables, we were able to study the governing equations on a separable geometry with flat interfaces. Introducing
boundary perturbations, we expressed the scattered field in a Taylor series and derived a sequence of linear problems to
be solved at each perturbation order for the n-th order term in this expansion, resulting in a Transformed Field Expansions
(TFE) algorithm. Accurate numerical simulations of these TFE recursions were performed with a Legendre-Galerkin method
based on a novel weak formulation. Our numerical simulations show the spectral convergence which our new algorithm
can achieve.

Our developments clearly point towards several extensions of great importance. In particular, our approach must be
generalized to an arbitrary number of layers. While the extension is, in some sense, straightforward given the developments
of this contribution, the algorithmic differences are significant and we will describe them in a future publication. In addition,
the current approach, which models the scattering of scalar waves relevant to acoustics, must be extended to the vector wave
scattering problems of electromagnetics (in three dimensions) and linear elastodynamics.
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Fig. 18. Energy defect versus perturbation order, N, for smooth interface configuration (12) with k, = 42.5: TE mode.

Appendix A. Derivation of the transformed equations
In this section we give a full derivation of the transformed version of the governing equations (2) presented in Section 3.1.

Remark 1. As our problem geometry features three distinct layers, two of which are similar (the upper and lower) and one
of which (the middle) has quite different character, the notation can become cumbersome. In order to simplify and shorten
our presentation we give formulas for the upper and lower layers together, while separating the middle layer formulas from
these. To achieve this we assign the upper and lower layers indices i =1 and i = 3, respectively, and define the middle layer
by i = 2. In addition we use the following notation for the geometrical aspects of each domain: In the upper layer

upi=u, §:=a, @1:=8 @1(x):=gx), &K =¢ey1(x),

the latter in anticipation of our boundary perturbation methodology. In the lower domain we define
usi=w, &:=b, @3i=h, @30:=hEX, hX=ey3().

In the middle layer (i =2) we find it more useful to simply define
up:=v, gK)=¢efg(x), hX=¢efr®),

where we note that {fg, fy} are just different names for {1, ¥3} defined above. In these, {1 = fg, ¥3 = fj,} are the order
one boundary perturbation shapes.

Returning to our change of variables, by the chain rule we find
Ox = Oy + (xYi)dy; (A1a)
dy = (3yyi)dy;, (A1Db)

fori=1,2,3. Fori=1,3, we have

wn= (5= o) e e

and noting that

(& — (@i + @i)1ox =[5 — (@; + ¢i)]0x + [§i — (@; + ¢i)]0xYi0y;
=& — @i+ )1oe + ox(16 — @1+ o011 )y,
— Yiox[&i — (@; + ¢i)]10y;,

we discover that
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[& — (@; + @)1k = [§ — (@; + )10y + dw @i (Vi — &) 3y;,
[& — (@i + o]y = (§i — @;)dy;.
On the other hand, for i = 2,

y-E+8 _( (hth)—y
_ ~ +3(= — .
(h+h)—(g+g)) ((h+h)—(g+g)>)
Setting M(x) = (h + h) — (g + g), we deduce that

', y2) = (X’,E(

Moy = Moy + M(ax}’Z)ayz = Moy + [3X(My2) - (3xM)y2]3y2

= Mo + [R(=008) + Bouh — (0 — 0x2)y2 ]y,
= Moy + [_Eaxg + goxh — dxhy2 + 0xgY219y,
= My + [3xg(y2 — h) — 3:h(y2 — ©)19y,.

Hence, we obtain that

My = My + [0xg(y2 — h) — 0xh(y2 — ©)1dy,.
Similarly, noting that

Mdy = Mdyy2dy, = dy(My2)dy, = (h — 8)dy,,
we find that

Mdy = (h — 8)dy,.
For i =1, 3, setting

9p; _
P yi—&), Ei=E -9,

Ci=l[&—(@;+ed]l, Di= o

and

C2=M, Dy=dxg(y2—h)—d:h(y2-2), E2=h-g,
we rewrite (A.1) as
Ciox=Cidy + Djdy,, Cijdy=E;dy,, i=1,2,3.
We now seek forms for the second derivatives
€202 = Coy(Cdy) — C(8xC)dx,
C20; = Cdy,(Cdy,) — C(dy,C)dy,.
We note that
Cox(Cdy) =[Coy + Dy, 1[Coy + Doy,]
= Coy[Coy]+ DAy, [Cox]+ Coy[D0y,]1+ DAy, [Dy,]
= 9¢[C28y] — (8¢ O)[Cy] + By, [CDA] — 3y, D)[Cdy]
+ 8¢ [CDay,] — (8 C)[Ddy,]1 4 dy,[D?dy.1 — (3y,D)[Ddy,],
and
C(3xC)dx = (B O)[Cy + Ddy,] = By O)[Cay] + By C)[Ddy,,
and
C%0; = Cdy(Cy) — C(3,C)dy = E*0. .
Hence, we deduce that the Laplacian transforms as
C?A = 3¢[C?8¢] — (8¢ O)[Cay] + 3y, [CDdy] — (3y,D)[Cay]
+ 8y [CDy,] — (8 C)[Ddy,] + dy,[D?dy,]1 — (dy, D)[Ddy,]
— (B¢ O)[Cdy] — (3¢ C)[Ddy,] + E*0;..
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Noting that 9y C = —dy, D, we derive that solutions of the Helmholtz equation satisfy

0= C?Au; + C2ku;

= d[C?dyui] + 8y, [CDdyu;] + dy [CDAy,u;i] — (3¢ O)[Ddy,u;]
+ 8y, [D?dy,ui] — (B O)[Copui] + E32 u;i + C2ku;.

Setting C2(x) = E2 + F(x), we find that

dw[E*dui] + E207 uj + E*k*uj = =3y [Foyu;] — k*Fu; — 9),[CDdyu;]

— 3w [CDAyui] + (B O[Ddy,ui] — 3y, [D*dy,ui] + (3 O)[Cow ],

and hence we arrive at

Ui + 05 u; + kPu; = lax,[—Faxfu,- — CDdy,u;)

i E2

1
+ 7 0% —CDdyu; — D2dy,u4]

1
+ 55| — KEFui + (3 O)[Ddy,ui + Coui] |- (A2)

Anticipating our boundary perturbation approach we introduce & as specified in Remark 1 and rearrange the right hand
side of (A.2). For i =1, 3 we have

Ci=& —(¢; +&vi), Di=edvyi(yi — &),
Ei=&—9;. Fi=e*y? +evyiQQp; — 28).

Hence, (A.2) becomes
dgu; + y ui +kuj = %[&«R;‘ + 3y, RY + Ril,
i
where
R} = —F;dyu; — CiD;dy,u;
= —(&*Y7 + Vi (2@; — 26))dui — (€ — @) — £Y) (€ i) (Vi — &) Dy, Ui

= —eyi(2@; — 2&)dy Ui — £(& — @) Vi (Vi — &)y, Ui
— 2P Oputi + YO Yi(yi — &)y Ui,

and
RY = —CiDidyu; — D?dy,u;
=—(&i — @i — eVDEN Vi (Vi — E)dplti — €2 (D W) (i — &)y, Ui
= —e(& — @) Vi (Vi — E)dwUi + E2Yidy Vi (Vi — &)y i
— 2B ¥i)? (yi — &) dy,u;,
and

Ri = —k*Fiu; + (8 Ci)[D;dy,u; + Cidyuil
= —K e yi(svi + 20; — 28)u; — €3y Viled Vi (Vi — &)y, Ui
+ & — @i — eyi)dyui]
= —ek® i (20; — 2&)u; — £ Vi (& — @) oy u; — £2K* (i) u;
— 2B Vi) (Vi — &)y, ui + EX i dy Yridy .

For i =2 we have
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CG=h-2) +e(fn— fo).

Dy = €[dy fg(y2 — ) — 0y fu(y2 — D)1,
E;=h-g,

Fy =2e(fi — fo)(h—2) + & (fn — fo)*.

and, for later use, we define D := ¢D5. Hence, we find that

Ry = —2&(fn — fo)(h— D)dwui — e2(fr — fg)*dwui
—e(h—2)Day,u; — e*(fr — fo)Ddy,u;,
and
Ry = —&(h — 8)D2dyui — &2 (fa — fg)D2dyu; — £2Ddy,u;,
and

Ry = =26k (fn — fo)(h — B)ui — k> (fu — fg)*ui + £%0x (fn — fg) Ddy,ui
+ &0y (fr — fo) (h = B)dwuti + &°(fi — fo)dy (fo — fg)dwuti.
For the boundary conditions we recall that

e (x, y) = elex—iB"y

and write (2d)—(2i) as

Uy — Uy = —elx—iB E+E() Y=F+ 200,
uy —u3 =0, y=h+h(x),
Ongtr — T2 0N Uz = (i0deg(x) +ip)e ™ H @y =g 4 g(x),
Inyuz — 09N, u3 =0, y=h+h),
oyur — T1[u1]1=0, y=a,
dyuz — T3[us] =0, y=bh.

At y=a and y = b, we find that
9y i — STyl =0
yiti E; itil =Y,

for i =1, 3, and this implies that
eV

i

dyui — Tilui] = = ——Tilui]l = ———

1 i 1 i

Tiluil.
At y =g+ g(x) we deduce that
INgUT — TN, U2 = (idy g +ip")e® 1" (EFE(X)
which implies that
— By g0xl1 4 Dyl — T2(—0p ylly + dyli) = (iotdy g + iB)el®* 1" E+8(0)
Using the change of variables, we find that

eD eD

1
C—13y1ul]+

E
—18y1u1 — rz[ - saxrfg<8,</u2 +
1

—8o fy| deur + .

C2
= (elatdy fg + 1% )el 1" @+
Then, we obtain that

Eq 2 E2
— 0y, U] — T“ =0y, Uy =
Cl Y1 1 CZ Y2 2

where

_zayzuZ) +

E
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C

2
ayzuz]
2
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D )
j]/ = 8(8X/fg)(8xlu1) + 82(3X’fg)c_l]8)’1ul - gfzax’fgax’UZ - Szfzax/fgc—zzayzuZ
+ (SiOlaxrfg 4 iﬁ”)eiax_iﬂuze—iﬁ”g(x).
Noting that
Elcz=(a—§)(ﬁ—§+h—g)=(a_§)(ﬁ_§)+(a_§)(h_g)’
ExCi=h-9a-g-g=a-9h-9-gh-2.
we deduce that
dy,u1 — rzayzuz =7,
where
Ty = CiCoJ] —e@—2)(fn — fg)dy, 1 — eT* fg(h — By, Uz
(a—gh-9

For later computations, the term C1C»J] can be written

C1CT =@-Dh -+ (@-DUn— f) — s = D) — e[ — [ .
Similarly, at y =h + h(x), we find that

oN, U2 — O‘zaNhU3 =0,
which implies that

(—dyhdyuy + dyuz) — 02 (—dyhdgus + dyus) = 0.

By the change of variables, we deduce that
852 E,
—&0x fn [BX/uz + —Byzuz] + ——0dy, Uz
G &)

eD E
— 0‘2[ — &0y fn (3X/U3 + —33y3U3) + —33y3U3] =0.
Cs3 Cs3
Rearranging the equations, we obtain that
E, 2 E3
C—28y2u2 — 0 C—38y3u3 = \72/5

where

D D
Iy = &(dy fr) By uz) + ezaxffhc—jayzuz — 8020y fadyus — ezazax/fhc—janus.
Noting that
E;C3=(h—g)(b—h—h)=(h—-g)(b—h) - (h-h,
EsCo=(b-h(h—-g+h—g =b-hHh-8 +b-hh-2g),
we deduce that
dy, Uz — 02y us = o,
where
7 C2C3; + & fn(h — B)dy,uz + €02 (b — h)(fr — fg)dy,us
2= — — = .
(h—2)(b—h)

For later computations, the term C; ngz’ can be written

C2C3 T =b-(M—-2T+eb—h(frn— fo) T —fuh =BT — € fu(fa — fe) T

As we have a boundary perturbation method in mind, it is clearly important to expand these forms in power series in €.
These are recorded here for completeness. For i =1, 3,



1066 Y. Hong, D.P. Nicholls / Journal of Computational Physics 330 (2017) 1043-1068

R}, = —vi(20; — 26)0x Ui n—1 — (& — ¥ ¥i(¥i — &)y Ui n—1
— Yy Uin_2 + Vidy i (Vi — £)dy Uin—2,
=—(&i — 0o Vi (¥i — &) Oy Uin—1 + Yidx¥i(¥i — &) OxUin_—2
— ¥ (Vi — )%y, Uin—2.
Rin = —k*%i(2@; — 26)Uin_1 — d Vi (& — @) Uin_1 — k> (Y1) *Uin—2
— @) (¥i — &)y, Uin—2 + Vidy Vidx Uin—2,
and
RS, ==2(fn — fo)(h = D)dyUin_1 — (fn — fo) *Ilin—2
— (h—8)D2dy, uin1 — (fr — fe) D20y, Uin—2.
Ri',n =—(h— 2 D2dyuin_1— (fn — fg)D2dxUin_2 — D3dy,Uin_2,
Ron=—2k*(fn — fo)(h — Dt n_1 — K*(fr — fg)*Uin—2
+ 3y (fn — fg)D2dy,Uin—2
+ 0 (fn — fo)(h = D) Uin-1+ (fn — fg)x (fa — fg)dxllin 2.

For the boundary terms, we write

_GGOJ,— @8 — fg)dytin1—7 2 fg(h —8)dy,u2n1
e @-32h-9

g C20373 , + fu(h — D)y, a1+ oz_(b —h)(fn — fg)dy;uzn1 ,
’ (h—2)(b—h)

where

Jln = (0y fg) (O U1 ,n—1) + (Ox fg 3y1U1n 2

-7 ax feoxuzn_1—7 ax/fg ayZUZn 2

i 7‘1 .
+ iy fgei“"/—iﬁugﬂ + iﬁueiax’—iﬁugﬂ

n—1)! n!
and
= (3x fn) (O U2,n— 1)+ax/fh 3y2u2n 2
— 020 et — 02 fr st
and hence
Ty =@=BDE =BT+ Ty (@ DU~ f) — [ - D)
— fe(fn = f) T n_2>
CCTyy=b—n =Ty, + b= (fa— f)Ts 1 — fath =BT 14
— fulfn = f) T2
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