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This paper is a study of the problem of nonlinear wave motion of the free surface
of a body of fluid with a periodically varying bottom. The object is to describe
the character of wave propagation in a long-wave asymptotic regime, extending the
results of R. Rosales & G. Papanicolaou (1983 Stud. Appl. Math. 68, 89–102) on
periodic bottoms for two-dimensional flows. We take the point of view of perturbation
of a Hamiltonian system dependent on a small scaling parameter, with the starting
point being Zakharov’s Hamiltonian (V. E. Zakharov 1968 J. Appl. Mech. Tech.
Phys. 9, 1990–1994) for the Euler equations for water waves. We consider bottom
topography which is periodic in horizontal variables on a short length-scale, with the
amplitude of variation being of the same order as the fluid depth. The bottom may
also exhibit slow variations at the same length-scale as, or longer than, the order
of the wavelength of the surface waves. We do not take up the question of random
bottom variations, a topic which is considered in Rosales & Papanicolaou (1983).

In the two-dimensional case of waves in a channel, we give an alternate derivation of
the effective Korteweg–de Vries (KdV) equation that is obtained in Rosales & Papan-
icolaou (1983). In addition, we obtain effective Boussinesq equations that describe
the motion of bidirectional long waves, in cases in which the bottom possesses both
short and long-scale variations. In certain cases we also obtain unidirectional equa-
tions that are similar to the KdV equation. In three dimensions we obtain effective
three-dimensional long-wave equations in a Boussinesq scaling regime, and again in
certain cases an effective Kadomtsev–Petviashvili (KP) system in the appropriate
unidirectional limit.

The computations for these results are performed in the framework of an asymp-
totic analysis of multiple-scale operators. In the present case this involves the
Dirichlet–Neumann operator for the fluid domain which takes into account the vari-
ations in bottom topography as well as the deformations of the free surface from
equilibrium.
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1. Introduction

Because of its relevance to coastal engineering, surface water wave propagation in
the presence of an uneven bottom has been studied for many years. The charac-
ter of coastal wave dynamics can be very complex; waves are strongly affected by
the bottom through shoaling and the resulting variations in local linear wave speed,
with the subsequent effects of refraction, diffraction and reflection. Nonlinear effects,
which influence waves of appreciable steepness even in the simplest of cases, have
additional components due to wave–bottom as well as nonlinear wave–wave interac-
tions, as is seen, for example, in depth-induced breaking. The presence of bottom
topography in the fluid domain introduces additional space- and time-scales to the
classical perturbation problem. The resulting nonlinear waves can have a great influ-
ence on sediment transport and the formation of shoals and sandbars in near-shore
regions: effects which are strongly felt over the longest time-scales of the problem.
It is therefore of central importance to understand the basic equations with which
they are described.

This paper is a reassessment and extension of the work of Rosales & Papanicolaou
(1983) on the long-wave limit of the free-surface problem of water waves in the
presence of a fluid domain of variable depth. It has been a general principle in
the study of free-surface water waves that the long-wave asymptotic scaling regime
describes many of the principal aspects of the dynamics of wave motion. This is the
focus of the present work, in which we study the effect of a periodic variation of
the bottom on the long-wavelength limit of free-surface water waves. Analysing the
Boussinesq scaling regime, we derive effective, or homogenized coefficients for the
resulting system of nonlinear dispersive equations, which is related to the classical
Boussinesq system. When considering initial data which are specifically arranged to
emphasize wave motion in one direction, we derive the effective coefficients for the
resulting Korteweg–de Vries (KdV) equation. Our analysis poses no assumptions on
the amplitude nor the slope of the bottom variations; they may be considered of
O(1). The analysis carries through to the three-dimensional case, where we derive a
two-dimensional Boussinesq-like system and expressions for its effective coefficients
in the first case, and a Kadomtsev–Petviashvili (KP) system in the case of wave
motion in one direction alone. Because of the explicit nature of our description of
the long-wave perturbation analysis, and the resulting expressions for the effective
coefficients of the long-wave equations, we can make several general observations.
First is the fact that, among bottom variations with fixed mean depth, the linear
wave speed of long waves is slower than that of constant depth, strictly so for non-
zero perturbations. This has previously been noted in Rosales & Papanicolaou (1983)
in the two-dimensional problem. Secondly, we give numerical computations of the
effective coefficients of nonlinearity and of dispersion in typical cases. Our conclusion
is that, for large bottom variations, nonlinear effects dominate dispersive ones when
the amplitude of bottom variations tends to the shoaling limit (with the mean depth
fixed). However, the balance of dispersion to nonlinearity is maintained through a
remarkably large range, a fact which tends to further justify the use of the Boussinesq
and KdV approximations in the homogenization limit.

We extend the results of Rosales & Papanicolaou (1983) on periodic bottom bound-
aries to cases in which the bottom varies over long spatial scales, in addition to the
periodic variations on a length-scale of O(1). This is a class of problems of flows
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over obstacles which has been of interest for many years, and which has most often
been treated without the presence of the short-scale periodic bottom variations. The
literature is very extensive, and we cite in particular the papers of Johnson (1973),
Whitham (1974), Miles (1979), Newell (1985), Nachbin & Papanicolaou (1992), Mei
& Liu (1993), van Groesen & Pudjaprasetya (1993), Yoon & Liu (1994) and Kirby
(1997). In our analysis, in the case in which the bottom topography varies on the
same length scale as the long waves of our scaling regime, we find a well-defined
Boussinesq system with effective coefficients which are functions of the slow spatial
variables X = εx. The three-dimensional Boussinesq regime is similar, as is its rel-
evance to flows over three-dimensional obstacles. The resulting Hamiltonian partial
differential equations (PDEs), which are nonlinear dispersive equations with vari-
able coefficients, are interesting in their own right. The derivation of an effective
KdV equation is a more subtle matter, and may be a little artificial as significant
bottom topography gives rise to scattering effects which for solutions of the water
waves problem will violate any ansatz of unidirectionality. Nonetheless, there are
several special situations in which one-way equations would make sense, in partic-
ular where the slow variations of the bottom topography are small, where the slow
variations are of very gradual slope, or a combination of the two. We analyse these
situations, giving a criterion under which a KdV scaling regime exists, and deriving
the new form of the KdV equation when it does. In the most compelling cases, the
effective equation governing unidirectional wave motion is the KdV equation with
variable coefficients of nonlinearity and dispersion, with an additional equation for a
wave component which propagates in the opposite direction, due to scattering from
the variable bottom topography. The scattered wave is generated after the passage
of the initial wave form; it is described by a scalar wave equation with forcing terms
formed from the solution of the variable coefficient KdV equation. In many ways this
parallels the work of van Groesen & Pudjaprasetya (1993), although we augment our
derivation with an estimate of the time of validity of the approximation in the various
regimes of interest. There are a few differences in the conclusions as well. Our results
extend to unidirectional cases in three dimensions, with the same proviso, giving rise
where appropriate to KP-like systems of PDEs.

Our analysis is based on the point of view of the water waves problem as a Hamil-
tonian system, and we treat the perturbation problem given by the long-wavelength
scaling limit as a problem in systematic Hamiltonian perturbation theory. The start-
ing point is the water waves Hamiltonian originally due to Zakharov (1968), as repre-
sented by Craig & Sulem (1993) using the Dirichlet–Neumann operator to express the
Dirichlet integral for the velocity potential over the fluid domain. The expansion of
the Hamiltonian in a small parameter which governs the long-wave/small amplitude
asymptotic regime follows a method given in Craig & Groves (1994) and Craig et al.
(2004). We employ an expression for the Dirichlet–Neumann operator in the case of
a variable bottom which is similar to those of Liu & Yue (1998) and Smith (1998).
Using a theory of multiple-scale expansions for Fourier multiplier operators given in
Craig et al. (1992), and results on scale separation, we identify explicit expressions
for the effective coefficients of the limiting long-wave problems. The fast Fourier
transform is used in the numerical evaluation of these coefficients. In an appendix
we give a concise derivation of the full Taylor expansion of the Dirichlet–Neumann
operator in the present case, with perturbed free-surface and non-constant bottom
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topography; it is conceivable that these expressions will be useful in other contexts,
such as for numerical simulations of Euler flow.

We do not address the problem of long-wave limits over random bottom topogra-
phy in this paper, which is a more difficult and probably a more important problem.
Random topography is a part of the analysis of Rosales & Papanicolaou (1983),
where effective coefficients are derived for evolution in the KdV scaling regime. The
issue that arises in our approach is that the effect of scale separation is much less
distinct for random bottom topography, and the statistics of bottom variations will
enter in a stronger way, which will not depend simply on mean values alone.

2. The equations of motion

The fluid domain consists of the region

S(β, η) = {(x, y) : x ∈ Rn−1,−h + β(x) < y < η(x)}

for spatial dimensions n = 2, 3, in which the fluid velocity is represented by the
gradient of a velocity potential

u = ∇ϕ, ∆ϕ = 0, (2.1)

where β(x) denotes the bottom perturbation and η(x) denotes the surface elevation.
The quiescent water level is chosen at y = 0 and the reference constant depth is
represented by h. On the bottom boundary {y = −h + β(x)}, the velocity potential
obeys Neumann boundary conditions

∇ϕ · N(β) = 0, (2.2)

where N(β) = (1 + |∂xβ|2)−1/2(∂xβ,−1) is the exterior unit normal. The top bound-
ary conditions are the usual kinematic and Bernoulli conditions imposed on {(x, y) :
y = η(x, t)}, namely

∂tη = ∂yϕ − ∂xη · ∂xϕ, ∂tϕ = −gη − 1
2 |∇ϕ|2. (2.3)

The asymptotic analysis in this paper is from the point of view of the pertur-
bation theory of a Hamiltonian system with respect to a small parameter. For this
purpose, the next section introduces the appropriate rephrasing of the above system
of equations for water waves as a Hamiltonian system with infinitely many degrees
of freedom.

(a) Hamilton’s canonical equations

Zakharov (1968) poses the equations of evolution (2.1)–(2.3) in the form of a
Hamiltonian system in the canonical variables (η(x), ξ(x)), where one defines ξ(x) =
ϕ(x, η(x)), the boundary values of the velocity potential on the free surface. The
evolution equations take the classical form

∂t

(
η
ξ

)
=

(
0 I

−I 0

) (
δηH
δξH

)
= JδH, (2.4)
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with the Hamiltonian functional given by the expression

H =
∫∫ η(x)

−h+β(x)

1
2 |∇ϕ(x, y)|2 dy dx +

∫
1
2gη2(x) dx

=
∫

1
2ξ(x)G(β, η)ξ(x) dx +

∫
1
2gη2(x) dx. (2.5)

The Dirichlet–Neumann operator G(β, η) is the singular integral operator which
expresses the normal derivative of the velocity potential on the free surface, in terms
of the boundary values ξ(x) and of the domain itself, as parametrized by the functions
β(x) and η(x), which define the lower and the upper boundaries of the fluid domain
S(β, η). That is, let ϕ(x, y) satisfy the boundary-value problem

∆ϕ = 0 in S(β, η),

∇ϕ · N(β) = 0 on the bottom boundary {y = −h + β(x)},

ϕ(x, η(x)) = ξ(x) on the free surface {y = η(x)}.

⎫⎪⎬
⎪⎭ (2.6)

The exterior unit normal on the free surface is N(η) = (1 + |∂xη|2)−1/2(−∂xη, 1),
through which the Dirichlet–Neumann operator is expressed as

G(β, η)ξ(x) = ∇ϕ(x, η(x)) · N(η)(1 + |∂xη|2)1/2. (2.7)

It is clearly a linear operator in ξ; however, it is nonlinear with explicitly non-
local behaviour in the two functions β(x) and η(x) which give the lower and upper
boundaries of the fluid domain. The form of this operator and its description in terms
of the two functions β(x) and η(x) are given in § 2 b. The asymptotic analysis of the
Dirichlet–Neumann operator G(β, η) in a multiple-scale regime plays a principal role
in the results in this paper.

(b) The Dirichlet–Neumann operator

We seek expressions for the solution of the elliptic boundary-value problem (2.6)
defined in the fluid domain S(β, η). The principal effort of our long-wave analysis of
the water wave problem will be an appropriate asymptotic expansion of this operator
in the presence of non-trivial bottom topography defined through β(x), in a multiple-
scale regime. The bottom variations represented by β(x) are taken to be of O(1),
while the surface deformations η(x) will be small, so we will start with a description
of the operator G(β, 0), which is the case η(x) = 0. When the free surface is also
non-constant, as in the situation with non-trivial solutions of the nonlinear water
wave problem, a perturbation analysis for the effects of non-zero η(x) will be used.

A central role is played by an expression for a harmonic function ϕ(x, y) defined
on the domain S(β, 0), expressed in terms of its boundary data ϕ(x, 0) = ξ(x) on
the free surface {y = 0}. In the undisturbed case, in which the bottom is flat,
{y = −h, x ∈ R} the solution is formally given by a Fourier multiplier operator in
the x-variables. Using the notation that ∂x = iD:

ϕ(x, y) =
∫∫

eik·(x−x′) cosh(k(y + h))
cosh(kh)

ξ(x′) dx′ dk =
cosh((y + h)D)

cosh(hD)
ξ(x). (2.8)

The result is not even a tempered distribution as a function of x ∈ Rn−1 when
y > 0, but expressions such as this are useful for our analysis, and will appear
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throughout this paper. The operators with which we ultimately work will, however,
give rise to well-defined distribution kernels. When the bottom topography is non-
trivial, as represented by {y = −h + β(x)}, expression (2.8) is modified by adding a
second term in order that the solution satisfies the bottom boundary conditions

ϕ(x, y) =
cosh((y + h)D)

cosh(hD)
ξ(x) + sinh(yD)(L(β)ξ)(x). (2.9)

The first term in (2.9) satisfies the homogeneous Neumann condition at y = −h,
while the second term satisfies the homogeneous Dirichlet condition at y = 0. The
operator L(β) in the second term acts on the boundary data ξ(x) given on the free
surface, giving a solution to Laplace’s equation in the fluid domain. When the bottom
is periodic in the x-variables, this is tantamount to the cell problem of the method
of homogenization. Since we allow bottom perturbations to be of O(1), the form of
L(β) is not explicit. An implicit description of it is given in § 2 c.

We now turn to the expansion of the operator G(β, η) for small but arbitrary
perturbations η(x) of the interface. As in the case of a flat bottom (Craig & Sulem
1993; Craig et al. 1997), we consider the family of ‘elementary’ harmonic functions
in the fluid domain S(β, η):

ϕk(x, y) =
cosh(k(y + h))

cosh(kh)
eikx +

∫
eipx sinh(py) ̂L(β)eikx dp. (2.10)

In the calculation below, we will give the expansion of G(β, η) in powers of η (uni-
formly in β). The Dirichlet–Neumann operator is defined by

G(β, η)ϕk(x, η(x)) = ∂yϕk − (∂xη)∂xϕk (2.11)

and G(β, η) =
∑

l G
(l)(β, η), where G(l) is of order l in η. Here

∂yϕk = k
sinh(k(h + y))

cosh(hk)
eikx +

∫
peipx cosh(py) ̂L(β)eikx dp (2.12)

and

∂xϕk = ik
cosh(k(h + y))

cosh(hk)
eikx +

∫
ipeipx sinh(py) ̂L(β)eikx dp. (2.13)

At O(1) in η and O(η), one gets, as predicted, G(0) = D tanh(hD) + DL(β) and
G(1) = DηD − G(0)ηG(0). It becomes clear that, at higher order, one gets for G(l)

the same recursion formula as for the case of a flat bottom (Craig & Nicholls 2002;
Craig & Sulem 1993), except that the role of the operator G0 = D tanh(hD) is now
replaced by G(0).

In § 2 c, we derive an implicit formula for the operator L(β). In the Appendix, we
give a recursion formula for L(β) in powers of β, as well as a Taylor expansion of the
Dirichlet–Neumann operator G(β, η) in powers of both β and η.

(c) Implicit formula for the operator L(β)

(i) Two-dimensional case

Although the operator L(β) is analytic for sufficiently small bottom variations
β(x) ∈ C1, we are considering variations which are of O(1) and it is not a Taylor
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expansion in the function β that we seek. Instead, it is more useful to our methods
to develop an implicit expression for L(β) from which we can deduce information
about the long-wave asymptotics of the resulting operator G(β, η).

Proposition 2.1. The operator L(β) can be written in the implicit form

L(β) = −B(β)A(β), (2.14)

where the operators A(β) and C(β) are defined by

A(β)ξ =
∫

eikx sinh(β(x)k) sech(hk)ξ̂(k) dk,

C(β)ξ =
∫

eikx cosh((−h + β(x))k)ξ̂(k) dk,

⎫⎪⎪⎬
⎪⎪⎭ (2.15)

and B(β) = C(β)−1.

Proof . Using (2.9), we will employ Fourier integral expressions for the various
terms appearing in the bottom boundary condition (2.2):

∂yϕ(x, y) =
∫

eikxk sinh((y + h)k) sech(hk)ξ̂(k) dk +
∫

eikxk cosh(yk)L̂(β)ξ(k) dk.

(2.16)
The Neumann bottom boundary conditions (2.2) are that ∂yϕ − (∂xβ)∂xϕ = 0.
The implicit formula for the operator L(β) is derived from this condition, using the
definition of G(β, η) and several differential identities. In particular,

(D sinh((y + h)D) sech(hD) − i(∂xβ)D cosh((y + h)D) sech(hD))ξ|y=−h+β

=
∫

eikx(sinh(β(x)k) − (i/k)∂x(sinh(β(x)k)))k sech(hk)ξ̂(k) dk

= −i∂x

∫
eikx sinh(β(x)k) sech(hk)ξ̂(k) dk = DA(β)ξ. (2.17)

The terms involving the operator L(β) in the expression for ∂yϕ − (∂xβ)∂xϕ are

(D cosh(yD)L(β) − i(∂xβ)D sinh(yD)L(β))ξ|y=−h+β

=
∫

eikx[cosh((−h + β(x))k) − i(∂xβ) sinh((−h + β(x))k)]kL̂(β)ξ(k) dk

=
∫

eikx[cosh(hk)(cosh(β(x)k) − i(∂xβ) sinh(β(x)k))

− sinh(hk)(sinh(β(x)k) − i(∂xβ) cosh(β(x)k))]kL̂(β)ξ(k) dk

= −i∂x

∫
eikx[cosh(β(x)k) cosh(hk) − sinh(β(x)k) sinh(hk)]L̂(β)ξ(k) dk

= DC(β)L(β)ξ. (2.18)

The boundary condition involving the operator L(β) becomes

A(β)ξ + C(β)L(β)ξ = 0,

which is L(β) = −B(β)A(β). �
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Proposition 2.2. The inverse B(β) of the operator C(β) given in (2.15) is well
defined.

Proof . Consider the problem in the half-space {y < 0}:

∆u = 0, u(x, 0) = ξ(x), ∂yu(x, 0) = 0. (2.19)

The solution of this problem is given formally by the expression u(x, y) =
cosh(yD)ξ(x), and the operator C(β)ξ(x) = u(x,−h + β(x)) gives the trace on
the curve y = −h + β(x) of cosh(yD)ξ(x). Problem (2.19) is of course in general ill
posed. However, to define B(β) = C(β)−1, one considers the alternate problem

∆w = 0 for (x, y) ∈ S(β, 0), ∂yw(x, 0) = 0, w(x,−h + β(x)) = ζ(x), (2.20)

which has a unique solution, and its trace on y = 0 is well defined. Indeed

B(β)ζ(x) = C(β)−1ζ(x) = w(x, 0).

�

(ii) Three-dimensional case

It is straightforward to extend the formulation to three (or higher) dimensions,
using x = (x1, x2) ∈ R2 to refer to the two horizontal coordinates, and retaining y for
the vertical coordinate. Using the notation D = (D1, D2)T = −i∂x = −i(∂x1 , ∂x2)

T,
one writes

|D| =
√

|D1|2 + |D2|2,

and the first terms in the expansion of the Dirichlet–Neumann operator are given by

G(0) = |D| tanh(h|D|) + |D|L(β), G(1) = D · ηD − G(0)ηG(0). (2.21)

Let us consider the configuration with an unperturbed free surface, η(x) = 0. In
three dimensions, the velocity potential can be expressed as

ϕ(x, y) =
cosh((y + h)|D|)

cosh(h|D|) ξ(x) + sinh(y|D|)L(β)ξ(x), (2.22)

where ϕ(x, 0) = ξ(x).
Similarly, as for the two-dimensional case, the operator L(β) can be determined

through the Neumann condition at the bottom. The corresponding implicit formula
for the operator L(β) in three dimensions is

L(β) = − D

|D| · B(β)A(β)
D

|D| , (2.23)

where

A(β) = sinh(β|D|) sech(h|D|), C(β) = cosh((β − h)|D|), B(β) = C(β)−1.
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(d) Integral formula for the operator B(β)

It is of interest to notice that the operator B(β) can be written explicitly in terms
of integrals involving the Dirichlet condition ζ at the bottom and the Dirichlet–
Neumann operator G(−h + β) associated to the bottom.

Let us consider first the two-dimensional case. The fundamental solution of the
Laplace equation in the half-plane {y < 0} with Neumann boundary conditions is
given by the method of images as

Γ (x,x′) =
1
2π

(ln |x − x′| + ln |x − x′
∗|)

=
1
2π

(ln
√

(x − x′)2 + (y − y′)2 + ln
√

(x − x′)2 + (y + y′)2), (2.24)

where x = (x, y), x′ = (x′, y′) and x′
∗ = (x′,−y′) is the reflection of x′ with respect

to the surface plane y = 0. Using Green’s identity for a point at the surface, we have

w(x, 0) = B(β)ζ(x)

=
∫

∇Γ (x,x′) · N(β)
√

1 + |∂x′β|2ζ(x′) dx′

−
∫

Γ (x,x′)G(−h + β)ζ(x′) dx′, (2.25)

where N(β) = (1 + |∂x′β|2)−1/2(∂x′β,−1) is the exterior unit normal to the bottom
boundary. Substituting (2.24) into (2.25), we get the following result.

Proposition 2.3. In two dimensions, the operator B(β) can be written in terms
of the Dirichlet condition ζ at the bottom and the Dirichlet–Neumann operator
G(−h + β) associated to the bottom in the form

B(β)ζ(x) =
1
π

∫
(∂x′β)(x′ − x) + h − β(x′)
(x − x′)2 + (β(x′) − h)2

ζ(x′) dx′

− 1
2π

∫
ln[(x − x′)2 + (β(x′) − h)2]G(−h + β)ζ(x′) dx′. (2.26)

In the special case β = 0 (flat bottom), the formula reduces to

B(0)ζ(x) = e−h|D|ζ(x) + tanh(h|D|)e−h|D|ζ(x) = sech(hD)ζ(x) = C(0)−1ζ(x).
(2.27)

A formula similar to (2.26) can be written in three dimensions. The fundamental
solution of the Laplace equation is now given by

Γ (x,x′) = − 1
4π

(
1

[(x1 − x′
1)2 + (x2 − x′

2)2 + (y − y′)2]1/2

+
1

[(x1 − x′
1)2 + (x2 − x′

2)2 + (y + y′)2]1/2

)
, (2.28)

where x = (x1, x2, y), x′ = (x′
1, x

′
2, y

′). Using the same derivation, we obtain the
following result.
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Proposition 2.4. In three dimensions, the operator B(β) can be written in terms
of the Dirichlet condition ζ at the bottom and the Dirichlet–Neumann operator
G(−h + β) in the form

B(β)ζ(x1, x2) =
1
2π

∫
1

[(x1 − x′
1)2 + (x2 − x′

2)2 + (β − h)2]1/2 G(−h + β)ζ dx′
1 dx′

2

− 1
4π

∫ (∂x′
1
β)(x1 − x′

1) + (∂x′
2
β)(x2 − x′

2) − h + β

[(x1 − x′
1)2 + (x2 − x′

2)2 + (β − h)2]3/2 ζ dx′
1 dx′

2.

(2.29)

3. Multiple-scale analysis

We will use extensively several mathematical results on multiple-scale analysis, and
the behaviour of Fourier multiplier operators under these scalings. Most of the ana-
lytic results have been addressed in prior work, and appear in Bensoussan et al.
(1978), and in particular the case of Fourier multipliers and more general pseudo-
differential operators is discussed in Craig et al. (1992). In the present context, only
a subset of this analysis is required, and for the convenience of the reader we include
in this section a complete presentation of what we need.

(a) Asymptotic expansions of multiple-scale operators

The basic ansatz of the theory of multiple-scale expansions is of a functional form
f(x, X) : R2(n−1) → C, where x ∈ Rn−1, X ∈ Rn−1 and X = εx is the spatial vari-
able describing long-scale variations. The dependence of a multiscale function f on
the short-scale variable x may be periodic, or possibly will be assumed to have other
behaviour, for example, to stem from a more general stationary ergodic process. In
the analysis in this paper it is important to describe the asymptotic behaviour of
Fourier multiplier operators on multiscale functions.

We will use the notation that Dx = (1/i)∂x and DX = (1/i)∂X . For m = m(k), a
function of k ∈ Rn−1, a Fourier multiplier operator is given by

m(Dx)f(x) =
1

(2π)(n−1)/2

∫
eik·xm(k)f̂(k) dk. (3.1)

Appropriate Fourier multiplier operators for our asymptotic expansions obey the
standard estimates for a symbol, namely that m(k) is a multiplier of order p if it is
smooth and satisfies

|∂α
k m(k)| � Cα(1 + |k|2)(p−|α|)/2. (3.2)

Theorem 3.1. Let m(k) be a Fourier multiplier operator of order p.

(i) Suppose that f(X) is a smooth function of the slow variables X. Then

m(Dx)f(εx) = (m(εDX)f)(εx)

=
∑

|α|�q

1
α!

εα∂α
k m(0)(Dα

Xf)(εx) + O(|εq+1Dq+1
X f |). (3.3)
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(ii) Suppose that f(x, X) is a smooth multiscale function. Then

m(Dx)f(x, εx) =
∑

|α|�q

1
α!

∂α
k m(Dx)εαDα

Xf(x, X)|X=εx

+ O(|εq+1(1 + |Dx|2)(p−|q|−1)/2Dq+1
X f(x, X)|X=εx|). (3.4)

Proof . In fact, statement (i) follows from (ii), but it is nice to give the calculation
independently for clarity of the proof. We use the expression of the Fourier transform:

f(εx) =
1

(2π)(n−1)/2

∫
eiK·εxf̂(K) dK =

1
(2π)(n−1)/2

∫
eik·xf̂

(
k

ε

)
1

εn−1 dk. (3.5)

Therefore, the action of a Fourier multiplier on f(εx) is given by

m(Dx)f(εx) =
1

(2π)(n−1)/2

∫
eik·xm(k)f̂

(
k

ε

)
1

εn−1 dk

=
1

(2π)(n−1)/2

∫
eiεK·xm(εK)f̂(K) dK

=
1

(2π)(n−1)/2

∫
eiεK·x

( ∑
|α|�q

ε|α|

α!
∂α

k m(0)Kα + Rq

)
f̂(K) dK. (3.6)

This is tantamount to the expression given in (3.3). The symbol estimates on Fourier
multipliers account for the estimate of the error Rq appearing in (3.3).

The calculation for statement (ii) also starts from an expression for the Fourier
transform, this time for a multiscale function

f(x, εx) = f(x, X)|X=εx =
1

(2π)n−1

∫∫
ei�·xeiL·X |X=εxf̂(�, L) d� dL. (3.7)

Therefore, the action of a Fourier multiplier is given by

(m(Dx)f)(x, εx)

=
1

(2π)n−1

∫∫
eik·(x−x′)m(k)f(x′) dx′ dk

=
1

(2π)2(n−1)

∫∫
eik·(x−x′)m(k)

∫∫
ei�·x′

eiL·X′ |X=εxf̂(�, L) d� dLdx′ dk

=
1

(2π)n−1

∫∫
ei(�+εL)·xm(� + εL)f̂(�, L) d� dL. (3.8)

Referring to the good behaviour of the multiplier m(k) under differentiation,

(m(Dx)f)(x, εx) =
1

(2π)n−1

∫∫
ei�·xeiL·(εx)

∑
α�q

1
α!

∂α
k m(�)εαLαf̂(�, L) d� dL + Rq+1

=
∑
α�q

1
α!

∂α
k m(Dx)εαDα

Xf(x, X)|X=εx + Rq+1. (3.9)

An estimate of the remainder term Rq+1 gives the result (ii) stated in (3.4). �
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(b) Scale separation

This section develops the basic results which are used in the asymptotic expansions
of multiple-scale Fourier multiplier and pseudo-differential operators in this paper.
The phenomenon of separation of scales is clearest in the case of periodic behaviour
in the short scales of the problem.

Lemma 3.2. Suppose that the function g(x) = g(x + γ) is continuous, and is
periodic with respect to a lattice of translations γ ∈ Γ ⊆ Rn−1, and that the function
f(X) is integrable and smooth. Then the short scales represented in g(x) and the
long scales represented by X = εx in f(εX) are asymptotically separated. That is,
for all N we have the estimate∫

g(x)f(εx) dx =
∫

g(x)f(X)|X=εx dx = ḡ

∫
f(X)

1
εn−1 dX + O(εN ), (3.10)

where
ḡ =

1
|Rn−1/Γ |

∫
Rn−1/Γ

g(x) dx.

Proof . Using the Plancherel identity,∫
f(εx)g(x) dx =

∫
f̂

(
k

ε

)
1

εn−1 ĝ(k) dk =
∫

f̂(K)ĝ(εK) dK.

Since g(x) is periodic over a fundamental domain Tn−1 = Rn−1/Γ ,

ĝ(k) =
∑
κ∈Γ ′

cnĝκδ(k − κ),

where

cn =

√
(2π)n−1

|Tn−1| , ĝκ = |Tn−1|−1/2
∫

Tn−1
e−iκ·xg(x) dx,

and we have ∫
f̂(K)ĝ(εK) dK = ε−(n−1)

∑
κ∈Γ ′

cnf̂

(
k

ε

)
ĝκ.

Using the fact that |f̂(K)| � CN (1 + |K|2)−N/2 for all N , we have∫
f̂(K)ĝ(εK) dK = ε−(n−1)

∑
κ∈Γ ′

cnf̂

(
k

ε

)
ĝκ

= ε−(n−1)cnĝ0f̂(0) +
∑

κ∈Γ ′\{0}
ε−(n−1)f̂

(
κ

ε

)
cnĝκ

= ε−(n−1)ḡ

∫
f(X) dX + O(εN ). (3.11)

�

When the function g(x, X) is a multiscale function itself, the analogous result is
as follows.
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Lemma 3.3. Suppose that g(x, εx) is continuous, and periodic in the variables x
of the short scales with respect to the lattice Γ ⊆ Rn−1. For any integrable, smooth
function f(X) then∫

Rn−1
g(x, εx)f(εx) dx =

∫
ḡ(X)f(X)

1
εn−1 dX + O(εN ), (3.12)

where

ḡ(X) =
∣∣∣∣Rn−1

Γ

∣∣∣∣
−1 ∫

Rn−1/Γ

g(x, X) dx.

4. Long-wave scaling of the Hamiltonian

The bottom of the fluid region is allowed to vary both on a scale of O(1) and on
a slowly varying length-scale. In the periodic case, this is modelled by a multiscale
ansatz on the function whose graph describes the bottom. We make no assumptions
on the amplitude of β, and indeed it is allowed to be of O(1). In this section, we
will consider the case in which the bottom varies only on the short length-scale, that
is β = β(x) is independent of the parameter ε. In the subsequent section we will
extend our analysis to the more general case in which β = β(x, X; ε), where X = εx,
which is to say that there are variations of the bottom topography which occur on
the length-scale of the long waves in the problem, or possibly longer.

(a) The Boussinesq scaling regime

The fundamental long-wave scaling for the problem of surface water waves repre-
sents a balance between linear dispersive and nonlinear effects in the dynamics of
the surface evolution. The traditional scaling that anticipates this balance is through
the transformation

X = εx, εξ′(X) = ξ(x), ε2η′(X) = η(x). (4.1)

Scaling the time variable will be taken as an ε-dependent time change for the resulting
Hamiltonian system (2.4). This represents the Boussinesq scaling regime for the
problem of surface water waves in two dimensions. From the Boussinesq regime, we
can recover the KdV equation by choice of an appropriate moving reference frame.

Introducing the scaling transformation into the Hamiltonian, we are given

H(η′, ξ′) = 1
2ε2

∫
ξ′(εx)G(β(x, εx), ε2η′(εx))ξ′(εx) dx + 1

2g

∫
ε4η′2(εx) dx. (4.2)

The basic task is to compute the relevant contributions in the expansion of the
Dirichlet–Neumann operator. The contributions from the first two orders in this
expansion are given by

G(0) = D tanh(hD) + DL(β), (4.3)

G(1) = DηD − G(0)ηG(0). (4.4)

When L(β) = 0, one recovers the formulation of the water wave problem with uniform
depth, whose long-wave limits have been investigated in a similar manner in Craig
& Groves (1994). In order to determine the contributions from terms involving DL
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and since the bottom deformations are not assumed to be small, we use the implicit
formula for L(β). Note that a priori the operator D = Dx + εDX in our two-scale
problem, reducing to D = Dx when acting on functions of x alone, or to D = εDX

when acting on functions of X alone.
Define b(x) = β(x)−h. The operators A(β) and C(β) which appear in the implicit

formula for the operator L(β) in (4.3), act on functions ξ(X) in the long-scale vari-
ables. They can be expanded as

A(β) = sinh(β(x)D) sech(hD)

= sinh(εβ(x)DX) sech(εhDX)

= εβ(x)DX − 1
2ε3h2β(x)D3

X + 1
6ε3β(x)3D3

X + O(ε4), (4.5)

C(β) = cosh(b(x)D) = cosh(b(x)(Dx + εDX))

= cosh(b(x)Dx) + εb(x) sinh(b(x)Dx)DX

+ 1
2ε2b(x)2 cosh(b(x)Dx)D2

X + 1
6ε3b(x)3 sinh(b(x)Dx)D3

X + O(ε4). (4.6)

From (4.6), we find, for the inverse of C(β),

B(β) = C(β)−1

= B0(β) − εB0(β)b(x) sinh(b(x)Dx)B0(β)DX

− 1
2ε2B0(β)b(x)2 cosh(b(x)Dx)B0(β)D2

X

+ ε2B0(β)b(x) sinh(b(x)Dx)B0(β)b(x) sinh(b(x)Dx)B0(β)D2
X

− ε3 1
6B0(β)b(x)3 sinh(b(x)Dx)B0(β)D3

X

+ ε3 1
2B0(β)b(x) sinh(b(x)Dx)B0(β)b(x)2 cosh(b(x)Dx)B0(β)D3

X

+ ε3 1
2B0(β)b(x)2 cosh(b(x)Dx)B0(β)b(x) sinh(b(x)Dx)B0(β)D3

X

− ε3B0(β)b(x) sinh(b(x)Dx)B0(β)b(x) sinh(b(x)Dx)

× B0(β)b(x) sinh(b(x)Dx)B0(β)D3
X + O(ε4), (4.7)

where B0(β) stands for the inverse of the operator cosh(b(x)Dx), acting on func-
tions of the short-scale variables x. Using (4.5) and (4.7), the operator DL(β) =
−DB(β)A(β) acting on functions of the long-scale variables ξ(X) can be approxi-
mated by

DL(β) = −εDxB0(β)β(x)DX

− ε2B0(β)β(x)D2
X + ε2DxB0(β)b(x) sinh(b(x)Dx)B0(β)β(x)D2

X

+ ε3 1
2h2DxB0(β)β(x)D3

X − ε3 1
6DxB0(β)β(x)3D3

X

+ ε3 1
2DxB0(β)b(x)2 cosh(b(x)Dx)B0(β)β(x)D3

X

+ ε3B0(β)b(x) sinh(b(x)Dx)B0(β)β(x)D3
X

− ε3DxB0(β)b(x) sinh(b(x)Dx)B0(β)b(x) sinh(b(x)Dx)B0(β)β(x)D3
X
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+ ε4 1
2h2B0(β)β(x)D4

X − 1
6ε4B0(β)β(x)3D4

X

+ ε4 1
2B0(β)b(x)2 cosh(b(x)Dx)B0(β)β(x)D4

X

− ε4 1
2h2DxB0(β)b(x) sinh(b(x)Dx)B0(β)β(x)D4

X

+ ε4 1
6DxB0(β)b(x) sinh(b(x)Dx)B0(β)β(x)3D4

X

+ ε4 1
6DxB0(β)b(x)3 sinh(b(x)Dx)B0(β)β(x)D4

X

− ε4 1
2DxB0(β)b(x) sinh(b(x)Dx)B0(β)b(x)2 cosh(b(x)Dx)B0(β)β(x)D4

X

− ε4 1
2DxB0(β)b(x)2 cosh(b(x)Dx)B0(β)b(x) sinh(b(x)Dx)B0(β)β(x)D4

X

− ε4B0(β)b(x) sinh(b(x)Dx)B0(β)b(x) sinh(b(x)Dx)B0(β)β(x)D4
X

+ ε4DxB0(β)b(x) sinh(b(x)Dx)B0(β)b(x) sinh(b(x)Dx)

× B0(β)b(x) sinh(b(x)Dx)B0(β)β(x)D4
X + O(ε5). (4.8)

In a similar way, for the terms of equation (4.4) involving DL in G(1), we obtain

D tanh(hD)ηDL(β) = −ε3D2
x tanh(hDx)B0(β)β(x)η′(X)DX

+ ε4D2
x tanh(hDx)B0(β)b(x) sinh(b(x)Dx)

× B0(β)β(x)η′(X)D2
X

− ε4Dx tanh(hDx)B0(β)β(x)η′(X)D2
X

− ε4hD2
x sech(hDx)2B0(β)β(x)DXη′(X)DX

− ε4Dx tanh(hDx)B0(β)β(x)DXη′(X)DX + O(ε5), (4.9)

and

DLηDL = ε3DxB0(β) sinh(β(x)Dx)Dx sech(hDx)B0(β)β(x)η′(X)DX

− ε4DxB0(β) sinh(β(x)Dx)Dx sech(hDx)

× B0(β)b(x) sinh(b(x)Dx)B0(β)β(x)η′(X)D2
X

+ ε4DxB0(β) sinh(β(x)Dx) sech(hDx)B0(β)β(x)η′(X)D2
X

− ε4hDxB0(β) sinh(β(x)Dx)Dx tanh(hDx)

× sech(hDx)B0(β)β(x)DXη′(X)DX

+ ε4DxB0(β)β(x) cosh(β(x)Dx)Dx sech(hDx)

× B0(β)β(x)DXη′(X)DX

− ε4DxB0(β)b(x) sinh(b(x)Dx)B0(β) sinh(β(x)Dx)

× Dx sech(hDx)B0(β)β(x)DXη′(X)DX

+ ε4B0(β) sinh(β(x)Dx)Dx sech(hDx)

× B0(β)β(x)DXη′(X)DX + O(ε5). (4.10)

The term DLηD tanh(hD) only gives first contributions at O(ε5), which we will not
consider in this paper. Note that the contributions from G(2) and higher orders are
also not relevant for expansions only up to O(ε4). Inserting the expansions for the
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various operators and keeping the terms up to O(ε3) yield the following expression
for the Hamiltonian

H = 1
2

∫
−ε2DxB0(β)β(x)ξ′(X)DXξ′(X) + ε3gη′2(X)

+ ε3(h + DxB0(β)b(x) sinh(b(x)Dx)B0(β)β(x)

− B0(β)β(x))ξ′(X)D2
Xξ′(X) dX + O(ε4), (4.11)

from which, by virtue of lemma 3.2 on scale separation, it follows that

H = 1
2ε3

∫
(h + c̄1)ξ′(X)D2

Xξ′(X) + gη′2(X) dX + O(ε4), (4.12)

where c1 = −B0(β)β(x). The overbar denotes the mean value over a period of the
domain. In particular the term Dx(B0(β)β(x)ξ′(X)) in (4.11) has a mean value of
zero, being a total derivative, and it drops from the Hamiltonian at any finite order
in ε.

Recalling from Craig et al. (2004) that the scaling (4.1) modifies the symplectic
structure so that J = ε3J ′ and dropping the primes, the equations of motion can be
expressed as

∂tη = ε−3δξH = (h + c̄1)D2
Xξ, ∂tξ = −ε−3δηH = −gη, (4.13)

and, writing u = ∂Xξ, they become

∂tη = −(h + c̄1)∂Xu, ∂tu = −g∂Xη. (4.14)

In this linear approximation, the constant coefficient c̄1 represents the correction to
uniform depth, leading to a change in wave speed

c0 =
√

g(h + c̄1).

Dispersive and nonlinear effects appear when considering the next order of approx-
imation, retaining terms up to O(ε5). It is clear that all terms of O(ε3), as well as
all terms which have the first factor which is a derivative Dx in (4.8)–(4.10), will not
contribute to the Hamiltonian by virtue of the lemma on scale separation, as they
have zero mean value on the periodic fundamental domain Tn−1. The Hamiltonian
then reads

H = 1
2ε3

∫
(h + c̄1)ξ′(X)D2

Xξ′(X) + gη′2(X)

+ ε2(1 + c̄2)ξ′(X)DXη′(X)DXξ′(X)

− ε2(c̄3 + 1
3h3)ξ′(X)D4

Xξ′(X) dX + O(ε7), (4.15)

with
c2 = −B0(β) sinh(β(x)Dx)Dx sech(hDx)B0(β)β(x), (4.16)

and

c3 = −1
2h2B0(β)β(x) + 1

6B0(β)β(x)3 − 1
2B0(β)b(x)2β(x)

+ B0(β)b(x) sinh(b(x)Dx)B0(β)b(x) sinh(b(x)Dx)B0(β)β(x). (4.17)
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In terms of u′ = ∂Xξ′ (and dropping the primes), the corresponding equations of
motion are given by

∂tη = −∂X((h + c̄1 + ε2(1 + c̄2)η)u) − ε2(c̄3 + 1
3h3)∂3

Xu,

∂tu = −g∂Xη − ε2(1 + c̄2)u∂Xu,

}
(4.18)

which constitute extensions of the Boussinesq equations to the case of a varying
depth. The time of validity of the approximation given by these equations is at least
of O(ε−2), which is the same as the problem with a bottom to the fluid domain of
uniform depth β(x) = 0. When β(x) = 0, or otherwise when the coefficients c̄1, c̄2
and c̄3 vanish, equations (4.18) reduce to the Boussinesq equations for a uniform
depth.

(b) The KdV limit

In this section, we adopt the procedure given in Craig & Groves (1994) to derive
a unidirectional analogue to equations (4.18). Starting from the Hamiltonian (4.15)
in the form

H = 1
2

∫
ε3gη′2(X) + ε3(h + c̄1)u′2(X) + ε5(1 + c̄2)η′(X)u′2(X)

− ε5(c̄3 + 1
3h3)(∂Xu′(X))2 dX + O(ε7), (4.19)

we introduce the new variables r and s such that

η′ = 4

√
(h + c̄1)

4g
(r + s), u′ = 4

√
g

4(h + c̄1)
(r − s). (4.20)

The Hamiltonian becomes

H = 1
2

∫
ε3

√
g(h + c̄1)(r2 + s2) + ε5

(
1 + c̄2

2

)
4

√
g

4(h + c̄1)
(r3 − r2s − rs2 + s3)

− ε5(c̄3 + 1
3h3)

√
g

4(h + c̄1)
((∂Xr)2 − 2(∂Xr)(∂Xs) + (∂Xs)2) dX. (4.21)

It is also useful to transform the system into a coordinate frame moving with the
characteristic velocity

c0 =
√

g(h + c̄1),

which is effected by subtracting the conserved momentum integral

c0I = ε3c0

∫
η′u′ dX = 1

2ε3
√

g(h + c̄1)
∫

(r2 − s2) dX (4.22)

from the Hamiltonian. This yields

H − c0I = 1
2

∫
2ε3

√
g(h + c̄1)s2 + ε5

(
1 + c̄2

2

)
4

√
g

4(h + c̄1)
(r3 − r2s − rs2 + s3)

− ε5(c̄3 + 1
3h3)

√
g

4(h + c̄1)
((∂Xr)2 − 2(∂Xr)(∂Xs) + (∂Xs)2) dX. (4.23)
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The evolution equations for r and s can now be written as

∂tr = −∂Xε−3δr(H − c0I), ∂ts = ∂Xε−3δs(H − c0I). (4.24)

In explicit terms, this is the following system of two coupled equations

∂tr = −ε2
(

1 + c̄2

4

)
4

√
g

4(h + c̄1)
∂X(3r2 − 2rs − s2)

− ε2(c̄3 + 1
3h3)

√
g

4(h + c̄1)
(∂3

Xr − ∂3
Xs), (4.25)

∂ts = 2
√

g(h + c̄1)∂Xs − ε2
(

1 + c̄2

4

)
4

√
g

4(h + c̄1)
∂X(r2 + 2rs − 3s2)

− ε2(c̄3 + 1
3h3)

√
g

4(h + c̄1)
(∂3

Xr − ∂3
Xs). (4.26)

The solution r corresponds to a predominantly right-moving component, while s
corresponds to a predominantly left-moving component.

The KdV regime consists in restricting one’s attention to regions of the phase
space where the equation for r decouples to lowest order from the equation for s.
Concentrating on the region of the phase space that corresponds to a predominantly
right-moving evolution (this will be the region where s remains of O(ε2)), all terms
but those which depend on r alone in the right-hand side of (4.25) are of higher
order in ε and thus can be neglected. It has been proved in Craig (1985) that this
regime is valid over time-intervals of O(ε−2) if the initial conditions are appropriately
chosen. Setting T = ε2t, which is a time change for the Hamiltonian, we have a closed
equation for the variable r, namely

∂T r = −3
(

1 + c̄2

2

)
4

√
g

4(h + c̄1)
r∂Xr − (c̄3 + 1

3h3)
√

g

4(h + c̄1)
∂3

Xr, (4.27)

which is the KdV equation whose coefficients are modified to account for the rapidly
varying depth. When c̄1, c̄2 and c̄3 are zero, equation (4.27) reduces to the classical
KdV equation.

(c) Properties of the coefficients

The coefficients c̄1, c̄2 and c̄3 derived in § 4 a are of central concern to understand
the effects of bottom topography on long-wave evolution of the free-surface problem.
They are given by explicit expressions which are functionals of the perturbation β(x)
of the bottom. To fix a reference depth, we normalize∫ 2π

0
β(x) dx = 0.

In this section, we give an alternate proof of the fact that c̄1 � 0, which was remarked
on in Rosales & Papanicolaou (1983). That is, the presence of non-trivial topography
results in a smaller velocity √

g(h + c̄1)
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for linear evolution of long waves. In addition, we compute numerically the coefficients
c̄1, c̄2 and c̄3 for the particular perturbation β(x) = β0 cos(x) as functions of the
amplitude β0 (0 � β0 � h). We also evaluate the ratio

R =
3
2

(
1 + c̄2

c̄3 + 1
3h3

)
4

√
4(h + c̄1)

g
, (4.28)

of the coefficients of nonlinearity to dispersion in the KdV equation, which determines
the dominant effect as β0 increases.

Proposition 4.1. For bottom perturbations β(x) with zero mean value, the effec-
tive depth h̄ = h + c̄1 satisfies h̄ � h, with equality only if β(x) = 0.

Proof . Let β(x) be of zero mean value and consider w a solution of the problem

∆w = 0 in S(β, 0), ∂yw = 0 on y = 0, w(x,−h + β(x)) = β(x). (4.29)

By the definition of B0(β)β, we have c̄1 = −
∫ 2π

0 w(x, 0) dx. Firstly,

0 =
∫∫

S(β,0)
∆w dxdy =

∫ 2π

0
∂yw(x, 0) dx −

∫
y=−h+β

∂Nw dσ,

so we conclude that ∫
y=−h+β

∂Nw dσ = 0.

Secondly, integrating the function (w(x, y) − y)∆w over S(β, 0), we find∫∫
S(β,0)

|∇w|2 dxdy −
∫∫

S(β,0)
∂yw dxdy

=
∫ 2π

0
(w − y)∂yw(x, 0) dx +

∫
y=−h+β

(w − y)∂Nw dσ.

Since ∂yw(x, 0) = 0 and (w − y)|y=−h+β = h, both terms in the right-hand side
vanish and we have∫∫

S(β,0)
|∇w|2 dxdy =

∫∫
S(β,0)

∂yw dxdy =
∫ 2π

0
w(x, 0) dx −

∫ 2π

0
β(x) dx.

Because β(x) has zero mean value, the quantity
∫ 2π

0 w(x, 0) dx � 0, and vanishes
only when w(x, y) is identically zero. We remark that the same conclusion, c̄1 < 0,
holds in arbitrary spatial dimensions. �

The numerical calculations of c̄1, c̄2 and c̄3 are performed using a Fourier spec-
tral method. The Fourier multipliers involving β(x)Dx are consistently expanded up
to third order in β, and explicit Fourier multiplier operations are performed using
fast Fourier transforms. Typically, we chose a number of modes equal to 512 and
g = h = 1. Figure 1 shows graphs of the coefficients h + c̄1, 1 + c̄2 and 1

3h3 + c̄3.
We note that all three coefficients decrease with increasing β0. The interpretation
is that the time-scale describing the KdV regime is slower with increasing β0. Bet-
ter approximations to c̄1, c̄2 and c̄3 can be obtained for β0 close to h by including
higher-order terms, but this would not change qualitatively the results.

Proc. R. Soc. A (2005)



858 W. Craig and others

0.5 1.0 1.5

β0

0

0.2

0.4

0.6

0.8

1.0

h + c1
−

0.5 1.0 1.50
1 + c2

−
0.2 0.40

c3 + h3/ 3−

(a) (b) (c)

Figure 1. Coefficients (a) h + c̄1, (b) 1 + c̄2 and (c) c̄3 + 1
3h3 as functions of β0. The bottom

perturbation is β(x) = β0 cos(x). Computations are performed with a number of modes equal
to 512 and h = 1. Expressions of c̄1, c̄2 and c̄3 are expanded up to third order in β.
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Figure 2. Ratio R of nonlinear to dispersive coefficients as a function of β0.
Computations are performed with a number of modes equal to 512 and g = h = 1.

Figure 2 shows the ratio R between the effective coefficients of nonlinearity and
dispersion in the resulting KdV equation (4.27). We observe that nonlinear effects
dominate dispersive effects as β0 approaches h. However, the two effects seem to
be remarkably of the same order of magnitude until β0 � 0.7h. As β0/h approaches
unity, the ratio diverges. Therefore, the KdV regime, in which dispersive and non-
linear effects are balanced, remains valid for a significant range of β0.

(d) Long-wave approximation to the three-dimensional problem

Two kinds of long-wave scalings are usually possible: ones which are isotropic in
both horizontal directions and ones which have different length-scales in the x1- and
x2-directions. We will focus on the latter in this section. A common non-isotropic
spatial scaling regime deals with wave motions which are long in one horizontal
direction and very long in the other. For this purpose, we introduce spatial and
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amplitude scalings as follows

X1 = εx1, X2 = ε2x2, εξ′(X1, X2) = ξ(x1, x2), ε2η′(X1, X2) = η(x1, x2).
(4.30)

Let us consider first the case where the bottom only varies on a single length-scale
O(1) in both horizontal directions, namely β = β(x1, x2). Again, we do not assume
any smallness of the amplitude of β. The same procedure as in two dimensions is
applied to expand the Hamiltonian in powers of the small parameter ε. We will use
the implicit formula for L(β) in three dimensions. In the first approximation, the
Hamiltonian is written as

H = 1
2ε3

∫
(h + c̄1)ξ′D2

X1
ξ′ + gη′2 dX1 dX2 + O(ε5), c1 = −B0(β)β. (4.31)

As above, B0(β) stands for the inverse of the operator cosh(b|D|) and b(x1, x2) =
β(x1, x2)−h. Dropping the primes, the corresponding equations of motion are given
by

∂tη = ε−3δξH = −(h + c̄1)∂2
X1

ξ, ∂tξ = −ε−3δηH = −gη, (4.32)

which coincide with the linear approximation that we derived for the two-dimensional
equations. At the second-order approximation, we have

H = 1
2ε3

∫
(h + c̄1)ξ′D2

X1
ξ′ + gη′2 + ε2(1 + c̄2)ξ′DX1η

′DX1ξ
′

− ε2(c̄3 + 1
3h3)ξ′D4

X1
ξ′ + ε2(h + c̄1)ξ′D2

X2
ξ′ dX1 dX2 + O(ε7), (4.33)

with

c2 = −B0(β) sinh(β|D|)D2
x1

|D|−1 sech(h|D|)B0(β)β

− B0(β) sinh(β|D|)Dx1Dx2 |D|−1 sech(h|D|)B0(β)β, (4.34)

and

c3 = −1
2h2B0(β)β + 1

6B0(β)β3 − 1
2B0(β)b2 cosh(b|D|)D2

x1
|D|−2B0(β)β

+ B0(β)b sinh(b|D|)Dx1 |D|−1B0(β)b sinh(b|D|)Dx1 |D|−1B0(β)β

− 1
2B0(β)b sinh(b|D|)(1 − D2

x1
|D|−2)|D|−1B0(β)β. (4.35)

Note here that |D| =
√

|Dx1 |2 + |Dx2 |2. The evolution of η and ξ is now governed
by

∂tη = −∂X1((h + c̄1 + ε2(1 + c̄2)η)∂X1ξ) − ε2(c̄3 + 1
3h3)∂4

X1
ξ − ε2(h + c̄1)∂2

X2
ξ,

∂tξ = −gη − 1
2ε2(1 + c̄2)(∂X1ξ)

2.

}

(4.36)

(e) The KP equation

The KP equation is a three-dimensional analogue of the KdV equation, which
is derived under the assumption that transverse variations of the wave motions in
the x2-direction are weaker than those in the x1-direction. Its derivation in the
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present Hamiltonian framework is carried out by means of the same technique as
that described in § 4 b. Let us express the Hamiltonian (4.33) in terms of u′ = ∂X1ξ

′:

H = 1
2ε3

∫
(h + c̄1)u′2 + gη′2 + ε2(1 + c̄2)η′u′2

− ε2(c̄3 + 1
3h3)(∂X1u

′)2 + ε2(h + c̄1)(∂−1
X1

∂X2u
′)2 dX1 dX2 + O(ε7). (4.37)

Making the further change of variables

η′ = 4

√
(h + c̄1)

4g
(r + s), u′ = 4

√
g

4(h + c̄1)
(r − s), (4.38)

one arrives at

H = 1
2ε3

∫ √
g(h + c̄1)(r2 + s2) + 1

2ε2(1 + c̄2) 4

√
g

4(h + c̄1)
(r3 − r2s − rs2 + s3)

− ε2(c̄3 + 1
3h3)

√
g

4(h + c̄1)
(∂X1(r − s))2

+ 1
2ε2(h + c̄1)

√
g

h + c̄1
(∂−1

X1
∂X2(r − s))2 dX1 dX2. (4.39)

Subtracting the momentum integral (4.22) and restricting the phase space to an ε2-
neighbourhood of η ∼ u as in the two-dimensional case, the Hamiltonian reduces to

H − c0I = 1
2ε3

∫
1
2ε2(1 + c̄2) 4

√
g

4(h + c̄1)
r3 − ε2(c̄3 + 1

3h3)
√

g

4(h + c̄1)
(∂X1r)

2

+ 1
2ε2(h + c̄1)

√
g

h + c̄1
(∂−1

X1
∂X2r)

2 dX1 dX2, (4.40)

which is valid up to O(ε5). One can write a system of equations for r and s, in terms
of a slow time variable T = ε2t, as

∂T r = −ε−5∂X1δr(H − c0I) = −3
2(1 + c̄2) 4

√
g

4(h + c̄1)
r∂X1r

− (c̄3 + 1
3h3)

√
g

4(h + c̄1)
∂3

X1
r − (h + c̄1)

√
g

h + c̄1
∂−1

X1
(∂2

X2
r), (4.41)

and

∂T s = ε−5∂X1δs(H − c0I) = 0, (4.42)

which is accurate up to terms of O(ε2). Equation (4.41) corresponds to the KP
equation for a rapidly varying bottom topography in three dimensions, while equa-
tion (4.42) implies that in the present approximation there is no change in s, at least
over time-intervals T ∈ [−T0(ε), T0(ε)], with T0(ε) = O(ε−2).

5. Bottom topography with multiple spatial scales

(a) The two-dimensional Boussinesq regime

We consider the Boussinesq scaling (4.1) but now allow the bottom to vary both
on a length-scale O(1) and on a slowly varying scale, namely β = β(x, X), where

Proc. R. Soc. A (2005)



Long-wave expansions over a rough bottom 861

X = εx. Again, no assumption is made on the amplitude of β. It also may be
possible that more than one slow scale behaviour is present, whereupon we write
β = β(x, X; ε). We will make explicit the behaviour of multiple scales. As before,
the effort in the asymptotic expansion is almost entirely in examining the Dirichlet–
Neumann operator, giving the result that

DL(β) = −εDxB0(β)βDX

− ε2DXB0(β)βDX + ε2DxB0(β)b sinh(bDx)DXB0(β)βDX

+ ε3 1
2h2DxB0(β)βD3

X − ε3 1
6DxB0(β)β3D3

X

+ ε3 1
2DxB0(β)b2 cosh(bDx)D2

XB0(β)βDX

+ ε3DXB0(β)b sinh(bDx)DXB0(β)βDX

− ε3DxB0(β)b sinh(bDx)DXB0(β)b sinh(bDx)DXB0(β)βDX

+ ε4 1
2h2DXB0(β)βD3

X − ε4 1
6DXB0(β)β3D3

X

+ ε4 1
2DXB0(β)b2 cosh(bDx)D2

XB0(β)βDX

− ε4 1
2h2DxB0(β)b sinh(bDx)DXB0(β)βD3

X

+ ε4 1
6DxB0(β)b sinh(bDx)DXB0(β)β3D3

X

+ ε4 1
6DxB0(β)b3 sinh(bDx)D3

XB0(β)βDX

− ε4 1
2DxB0(β)b sinh(bDx)DXB0(β)b2 cosh(bDx)D2

XB0(β)βDX

− ε4 1
2DxB0(β)b2 cosh(bDx)D2

XB0(β)b sinh(bDx)DXB0(β)βDX

− ε4DXB0(β)b sinh(bDx)DXB0(β)b sinh(bDx)DXB0(β)βDX

+ ε4DxB0(β)b sinh(bDx)DXB0(β)b sinh(bDx)

× DXB0(β)b sinh(bDx)DXB0(β)βDX + O(ε5), (5.1)

in the resulting expansion of G(0) in (4.3), and in the expansion of the term G(1)

in (4.4), one finds that

D tanh(hD)ηDL(β) = −ε3D2
x tanh(hDx)B0(β)βη′(X)DX

+ ε4D2
x tanh(hDx)B0(β)b sinh(bDx)η′(X)DXB0(β)βDX

− ε4Dx tanh(hDx)η′(X)DXB0(β)βDX

− ε4hD2
x sech(hDx)2DXB0(β)βη′(X)DX

− ε4Dx tanh(hDx)DXB0(β)βη′(X)DX + O(ε5), (5.2)

and that

DL(β)ηDL(β) = ε3DxB0(β) sinh(βDx)Dx sech(hDx)B0(β)βη′(X)DX

− ε4DxB0(β) sinh(βDx)Dx sech(hDx)

× B0(β)b sinh(bDx)η′(X)DXB0(β)βDX

+ ε4DxB0(β) sinh(βDx) sech(hDx)η′(X)DXB0(β)βDX
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− ε4hDxB0(β) sinh(βDx)Dx tanh(hDx)

× sech(hDx)DXη′(X)B0(β)βDX

+ ε4DxB0(β)β cosh(βDx)Dx sech(hDx)

× DXη′(X)B0(β)βDX

− ε4DxB0(β)b sinh(bDx)DXB0(β) sinh(βDx)

× Dx sech(hDx)B0(β)βη′(X)DX

+ ε4DXB0(β) sinh(βDx)Dx sech(hDx)

× B0(β)βη′(X)DX + O(ε5). (5.3)

For simplicity of notation, the quantities β and b are written without any independent
variables in (5.1)–(5.3), but recall that β = β(x, X) and b = b(x, X) = β(x, X) − h
are functions of multiple spatial scales.

Retaining explicit calculations of terms of up to O(ε3), the Hamiltonian reads

1
ε3 H = 1

2

∫
−ε−1DxB0(β)βξ′(X)DXξ′(X) + gη′2(X)

− (1 − DxB0(β)b sinh(bDx))ξ′(X)DXB0(β)βDXξ′(X)

+ hξ′(X)D2
Xξ′(X) dX + O(ε1). (5.4)

Again, the lemma of scale separation allows us to write

1
ε3 H = 1

2

∫
gη′2(X) − (h + c̄1(X))(DXξ′)2 dX + O(ε), (5.5)

where c1 = −B0(β)β. Dropping the primes, the corresponding equations of motion
are given in terms of u = ∂Xξ by

∂tη = −∂X((h + c̄1)u), ∂tu = −g∂Xη. (5.6)

In this form, equations (5.6) only differ from (4.14) by the X-dependence of the
coefficient c̄1. Higher-order corrections can be derived in a similar way. Keeping
terms up to O(ε5) in the Hamiltonian, we have

1
ε3 H = 1

2

∫
gη′2(X) − (h + c̄1(X))(DXξ′)2 − εc̄2(X)(DXξ′)2 − ε2c̄3(X)(DXξ′)2

+ ε2(c̄4(X) + 1
3h3)(DXξ′)D3

Xξ′ − ε2c̄5(X)(D2
Xξ′)2

− ε2(1 + c̄6(X))η′(X)(DXξ′)2 dX + O(ε3), (5.7)

with

c2 = B0(β)b sinh(bDx)DX(B0(β)β) − 1
2DX(B0(β)b sinh(bDx)B0β), (5.8)

c3 = 1
2B0(β)b2 cosh(bDx)D2

X(B0(β)β)

+ DX(B0(β)b sinh(bDx))B0(β)b sinh(bDx)DX(B0(β)β)

− 1
2DX(B0(β)b2 cosh(bDx)DX(B0(β)β)

+ DX(B0(β)b sinh(bDx))B0(β)b sinh(bDx)B0(β)β
+ B0(β)b sinh(bDx)B0(β)b sinh(bDx)DX(B0(β)β)), (5.9)
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c4 = −1
2h2B0(β)β + 1

6B0(β)β3 − 1
2B0(β)b2β, (5.10)

c5 = B0(β)b sinh(bDx)B0(β)b sinh(bDx)B0(β)β, (5.11)

c6 = −B0(β) sinh(βDx)Dx sech(hDx)B0(β)β. (5.12)

The equations of motion given by this approximation are

∂tη = −∂X((h̄(X) + ε2(1 + c̄6)η)u) − ε2∂2
X((1

3h3 + c̄4 + c̄5)∂Xu),

∂tu = −g∂Xη − 1
2ε2∂X((1 + c̄6)u2).

}
(5.13)

where the effective depth is expressed by h̄(X) = h + c̄1 + εc̄2 + ε2c̄3 + 1
2ε2(∂2

X c̄4).
Recall that the coefficients c̄i are X-dependent. One can see that the presence of

a slowly varying bottom topography introduces additional dispersive and nonlinear
terms in the evolution equation of η. It can be seen from the form of the terms of
O(ε5) in the expansion of the rescaled Dirichlet–Neumann operator (5.1) that there
are non-zero terms in the approximate Hamiltonian (5.7) of O(ε6), and therefore the
time-interval of validity of these equations is less than in the case of a bottom with
no variations on a slow spatial scale. The most pessimistic view states that the error
terms implied in the approximate long-wave equations (5.13) are of O(ε3), and there-
fore it affords the possibility that over time-intervals longer than T (ε) = o(ε−1) the
error can grow to compete with the terms retained in the system of equations (5.13).

(b) The three-dimensional Boussinesq regime

In the three-dimensional situation, in cases where the bottom varies both on
a length-scale O(1) and on a slowly varying scale in both horizontal directions
(i.e. β = β(x1, X1, x2, X2)), we find up to O(ε3) and O(ε5), respectively, that

H = 1
2ε3

∫
gη′2 − (h + c̄1)(DX1ξ

′)2 dX1 dX2 + O(ε4), (5.14)

where c1 = −B0(β)β and

H = 1
2ε3

∫
gη′2 − (h + c̄1)(DX1ξ

′)2 − εc̄2(DX1ξ
′)2

− ε2c̄3(DX1ξ
′)2 + ε2(c̄4 + 1

3h3)(DX1ξ
′)D3

X1
ξ′ − ε2c̄5(D2

X1
ξ′)2

− ε2(1 + c̄6)η′(DX1ξ
′)2 − ε2(h + c̄1)(DX2ξ

′)2

+ ε2c̄7(DX1ξ
′)(DX1DX2ξ

′) dX1 dX2 + O(ε6), (5.15)

with

c2 = B0(β)b sinh(b|D|)Dx1 |D|−1DX1(B0(β)β)

− 1
2DX1(B0(β)b sinh(b|D|)Dx1 |D|−1B0β), (5.16)

c3 = DX1(B0(β)b sinh(b|D|))Dx1 |D|−1B0(β)b sinh(b|D|)Dx1 |D|−1DX1(B0(β)β)

+ 1
2B0(β)b2 cosh(b|D|)D2

x1
|D|−2D2

X1
(B0(β)β)

+ 1
2B0(β)b sinh(b|D|)(1 − D2

x1
|D|−2)|D|−1D2

X1
(B0(β)β)

+ B0(β)b sinh(b|D|)Dx2 |D|−1DX2(B0(β)β)

− 1
2DX1(B0(β)b2 cosh(b|D|)D2

x1
|D|−2DX1(B0(β)β)

Proc. R. Soc. A (2005)



864 W. Craig and others

+ B0(β)b sinh(b|D|)(1 − D2
x1

|D|−2)|D|−1DX1(B0(β)β)

+ DX1(B0(β)b sinh(b|D|))Dx1 |D|−1B0(β)

× b sinh(b|D|)Dx1 |D|−1B0(β)β

+ B0(β)b sinh(b|D|)Dx1 |D|−1B0(β)

× b sinh(b|D|)Dx1 |D|−1DX1(B0(β)β)), (5.17)

c4 = −1
2h2B0(β)β + 1

6B0(β)β3 − 1
2B0(β)b2 cosh(b|D|)D2

x1
|D|−2B0(β)β

− 1
2B0(β)b sinh(b|D|)(1 − D2

x1
|D|−2)|D|−1B0(β)β, (5.18)

c5 = B0(β)b sinh(b|D|)Dx1 |D|−1B0(β)b sinh(b|D|)Dx1 |D|−1B0(β)β, (5.19)

c6 = −B0(β) sinh(β|D|)D2
x1

|D|−1 sech(h|D|)B0(β)β

− B0(β) sinh(β|D|)Dx1Dx2 |D|−1 sech(h|D|)B0(β)β, (5.20)

c7 = −iB0(β)b sinh(b|D|)Dx2 |D|−1B0(β)β. (5.21)

The corresponding approximate equations of motion to lowest order are

∂tη = −∂X1((h̄(X1, X2) + ε2(1 + c̄6)η)∂X1ξ)

− ε2∂2
X1

((c̄4 + 1
3h3 + c̄5)∂2

X1
ξ) − ε2∂X2((h + c̄1)∂X2ξ),

∂tξ = −gη − 1
2ε2(1 + c̄6)(∂X1ξ)

2, (5.22)

where the effective depth in this situation is given by the expression

h̄ = h + c̄1 + εc̄2 + ε2c̄3 + 1
2ε2(∂2

X1
c̄4) − 1

2ε2(∂X2 c̄7).

Recall that all coefficients c̄i depend on X1 and X2.

(c) Unidirectional equations in a regime with multiple spatial scales

In order to derive a unidirectional equation in the Boussinesq regime with multiple
spatial scales, we extend our analysis by considering the more general case where
β = β(x, X; ε). The equations of motion consist of a system of coupled equations for
the right- and left-moving components. The coupling at first order, which determines
the role of wave scattering, is measured by the slope of the effective depth in the
problem. Two typical examples of multiscale dependence for the bottom are

β = β(x, X̃), X̃ = εαX = εα+1x, (5.23)

β = β0(x) + εγβ1(x, X̃), X̃ = εδX = εδ+1x, (5.24)

where α, γ, δ � 0. The parameters α in (5.23) and γ + δ in (5.24) provide a measure
for the steepness of the slowly varying bottom. This is the regime in which the
bottom perturbation varies over an even longer length-scale than the wave motion
represented by η(X) and ξ(X). To illustrate the problem, we will present the analysis
only in the case (5.23), which was also considered by van Groesen & Pudjaprasetya
(1993).
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At the second order of approximation, the Hamiltonian (5.7) is given by

H = 1
2ε3

∫
gη′(X)2 + (h + c̄1(X̃) + εα+1c̄2(X̃) + ε2α+2c̄3(X̃)

+ 1
2ε2α+2(∂2

X̃
c̄4(X̃)))u′(X)2

− ε2(1
3h3 + c̄4(X̃) + c̄5(X̃))(∂Xu′(X))2

+ ε2(1 + c̄6(X̃))η′(X)u′(X)2 dX + O(ε5+α). (5.25)

Making the change of variables

η′ = 4

√
h̄(X̃)
4g

(r + s), u′ = 4

√
g

4h̄(X̃)
(r − s), (5.26)

where the effective depth h̄ is

h̄(X̃) = h + c̄1(X̃) + εα+1c̄2(X̃) + ε2α+2c̄3(X̃) + 1
2ε2α+2∂2

X̃
c̄4(X̃), (5.27)

the Hamiltonian becomes

H = 1
2ε3

∫ √
gh̄(r2 + s2) − ε2(1

3h3 + c̄4 + c̄5)

×
[(

4

√
g

4h̄
∂Xr

)2

− 2
(

4

√
g

4h̄
∂Xr

)(
4

√
g

4h̄
∂Xs

)
+

(
4

√
g

4h̄
∂Xs

)2]

+ ε2
(

1 + c̄6

2

)
4

√
g

4h̄
(r3 − r2s − rs2 + s3) dX + o(ε5). (5.28)

The evolution equations for r and s are now written as

∂t

(
r
s

)
=

1
ε3

( −∂X
1
4εα(∂X̃ log(h̄))

−1
4εα(∂X̃ log(h̄)) ∂X

) (
δrH
δsH

)
. (5.29)

The solutions r and s correspond to predominantly right- and left-moving wave
motions, respectively. The presence of the non-diagonal terms 1

4εα∂X̃ log(h̄(X̃))
in (5.29) is a consequence of the bottom variations and gives rise to the effect of
wave scattering. Note that, unlike the case of a rapidly varying bottom topography,
we do not subtract the momentum integral from the Hamiltonian in order to trans-
form to a moving reference frame, since momentum is not a conserved quantity when
the depth is variable.

In case that α = 0, the result (5.29) is the following system of two coupled KdV-like
equations:

∂tr = −∂X(C0(X)r + ε2∂X(C1(X)(∂Xr − ∂Xs)) + ε2C2(X)(3r2 − 2rs − s2))

+ S(X)(C0(X)s − ε2∂X(C1(X)(∂Xr − ∂Xs)) + ε2C2(X)(−r2 − 2rs + 3s2)),
(5.30)

∂ts = ∂X(C0(X)s − ε2∂X(C1(X)(∂Xr − ∂Xs)) + ε2C2(X)(−r2 − 2rs + 3s2))

− S(X)(C0(X)r + ε2∂X(C1(X)(∂Xr − ∂Xs)) + ε2C2(X)(3r2 − 2rs − s2)).
(5.31)
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The coefficients are defined as

C0(X) =
√

gh̄(X̃), C1(X) = (1
3h3 + c̄4 + c̄5)

√
g

4h̄
,

C2(X) = 1
4(1 + c̄6) 4

√
g

4h̄
, S(X) = 1

4(∂X̃ log(h̄)).

In (5.30) and (5.31), the expression for the effective linear phase speed is C0(X);
we note that this includes higher-order terms in ε. Because of the strong coupling
between the wave fields r(X, t) and s(X, t), these two do not separate into indepen-
dent solutions for a unidirectional regime.

When α > 0, and when the initial data r0(X) and s0(X) are functions which are
localized spatially, the analysis divides into several cases.

(i) Case 1

When α � 2, corresponding to very mild slopes, and initial conditions s0 = O(ε2),
one rescales s = ε2s′ and r = r′ in equations (5.30), (5.31). Dropping terms of higher
order, we have

∂tr
′ = −∂X(C0(X)r′ + ε2(∂X(C1(X)∂Xr′) + 3C2(X)r′2)),

∂ts
′ = ∂X(C0(X)s′ − ∂X(C1(X)∂Xr′) − C2(X)r′2) − εα−2S(X)C0(X)r′.

}
(5.32)

This system consists of an equation in closed form for r′(X, t), which is a KdV
equation with slowly varying coefficients representing a principally right-moving wave
field, and a second equation for a reflected wave s′(X, t). The solution s′(X, t) is
recovered from r′(X, t) by quadrature along left-moving characteristics, defined by
Ẋ = −C0(X).

This system of equations describing r′(X, t) is a valid asymptotic regime at least
over time-intervals of order T (ε) = o(ε−1), the same time-interval as for the Boussi-
nesq system (5.13), but a strictly shorter time-interval than the case of the KdV
equation with constant coefficients (as arising with a flat or a rapidly varying bot-
tom without slow spatial variations). This is due in part to the nature of the error
from truncation of the Hamiltonian. Furthermore, over such time-intervals the scat-
tering component s′(X, t) remains bounded. This latter fact is true because initial
conditions r′

0(X) which is spatially localized (that is, essentially supported in a neigh-
bourhood of diameter O(1)) gives rise to solutions r′(X, t) which move essentially
to the right. The quadrature for the scattering component s′(X, t) is along left-
moving characteristics, which encounter regions in which r′(X, t) is of significant
amplitude only over intervals of length O(1). Therefore, s′(X, t) does not grow by an
amount larger than O(1), even for quadrature over long time-intervals, as much as
T (ε) = o(ε−1). This will not be the case over longer intervals, for initial conditions
which is not spatially localized, for instance in case the initial conditions are periodic.

(ii) Case 2

When 3
2 � α < 2 and the initial conditions satisfy s0 = O(εα), we obtain equations

for r(X, t) = r′(X, t) and s(X, t) = εαs′(X, t), which are again in the form of a KdV
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equation coupled to an equation for the left-moving scattered field:

∂tr
′ = −∂X(C0(X)r′ + ε2(∂X(C1(X)∂Xr′) + 3C2(X)r′2)), (5.33)

∂ts
′ = ∂X(C0(X)s′ − ε2−α∂X(C1(X)∂Xr′) − ε2−αC2(X)r′2) − S(X)C0(X)r′.

(5.34)

Equation (5.33) is a KdV equation in r with variable coefficients. The evolution
of the reflected component of the solution s′(X, t) is governed by (5.34). From the
scaling, it is proportional to the slope of the bottom. As in the previous case, this
scaling regime is valid for time-intervals of order T (ε) = o(ε−1).

(iii) Case 3

When 1 < α < 3
2 and the initial conditions satisfy s0 = O(εα), the system of equa-

tions describing r′(X, t) is still given by (5.33), but the error in truncation is poten-
tially larger, and the time-interval in which one is assured of the validity of the
approximation is shorter, namely T (ε) = o(ε2(1−α)).

(iv) Case 4

If α = 1, the basic equation for the right-moving component r′(X, t) is modified
by a coupling term to the reflected component. The appropriate scaling is r(X, t) =
r′(X, t) and s(X, t) = εs′(X, t), giving rise to the system of equations

∂tr
′ = −∂X(C0(X)r′ + ε2(∂X(C1(X)∂Xr′) + 3C2(X)r′2)) + ε2S(X)C0(X)s′,

∂ts
′ = ∂X(C0(X)s′) − S(X)C0(X)r′.

}

(5.35)
The scaling regime gives a valid approximation for both r′(X, t) and s′(X, t), for
time-intervals of order T (ε) = o(ε−1) as in case 1; it is of this length because of
the increased accuracy given by inclusion of the extra coupling term, although we
sacrifice the simplicity of a decoupled equation for r′(X, t). We also note that because
of the coarser scaling in s′ the permissible error is greater.

(v) Case 5

Finally, if 0 < α � 1, the evolutions of r′ = r and εαs′ = s decouple only weakly,
and over time-intervals of O(ε−2α). A coarse description of the evolution is given by

∂tr
′ = −∂X(C0(X)r′),

∂ts
′ = ∂X(C0(X)s′) − S(X)C0(X)r′,

}
(5.36)

where the error of truncation is O(ε2α). Dispersion in the right-moving component is
not as significant as scattering effects in this linear system, and therefore dispersive
terms have been eliminated. Returning to the case α = 0 corresponds to the fully
coupled system (5.30), (5.31).

Similar results can be obtained for a bottom topography of the form (5.24). In
particular, the case γ = 2, δ = 0 was examined by Whitham (1974). It should be
noted that KdV-type equations for a slowly varying bottom in this setting have also
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been derived by several other authors, including Johnson (1973), Miles (1979) and
Newell (1985).

The present analysis can be extended to three dimensions in a straightforward
manner. For brevity, we will only give one example. Assuming that the wave motion
is primarily one-dimensional in the x1-direction and that the bottom has the following
dependence

β = β(x1, X̃1, x2, X̃2), (5.37)

where X̃1 = εαX1 = εα+1x1 and X̃2 = ε2αX2 = ε2α+2x2, a three-dimensional ana-
logue of (5.32), for α � 2 can be derived as

∂tr = −
√

gh̄∂X1r − ε2
√

g

4h̄
(c̄4 + 1

3h3 + c̄5)∂3
X1

r

− 3ε2 4

√
g

4h̄
1
2(1 + c̄6)r∂X1r − ε2

√
g

4h̄
(h + c̄1)∂−1

X1
(∂2

X2
r), (5.38)

with h̄ redefined as

h̄(X̃1, X̃2) = h + c̄1 + εα+1c̄2 + ε2α+2c̄3 + 1
2ε2α+2∂2

X̃1
c̄4 − 1

2ε2α+2∂X̃2
c̄7. (5.39)

Equation (5.38) can be viewed as the KP equation with slowly varying coefficients
for very mild slopes of the bottom.

6. Conclusions

We study the long-wave asymptotic regime for water waves in a fluid domain of
variable depth as a perturbation problem for a Hamiltonian system depending on a
small parameter. The formulation of the problem in terms of Zakharov’s Hamilto-
nian, using an expression for the Dirichlet integral in terms of the Dirichlet–Neumann
operator, is convenient for the analysis. When the bottom varies periodically on a
short length-scale, the motion of long-wavelength solutions is essentially governed by
a system related to the Boussinesq equation, whose effective coefficients are deter-
mined by homogenization averages. In a regime emphasizing one-way propagation,
the same conclusion holds for solutions of a KdV equation. Similar results hold in the
three-dimensional case, where bi-directional long-wavelength motions are governed
by a Boussinesq-like system, and one-way motions by a system closely related to the
KP equations. Expressions for the coefficients are quite explicit, and typical cases
are computed numerically. We find the following results.

(i) The linear wave speed of the long waves is slower for non-constant bottom
variations than for that of a flat bottom with the same average depth. This
recovers the result of Rosales & Papanicolaou (1983) in two dimensions for a
periodic bottom.

(ii) For bottom variations with fixed average depth, but which approach the shoal-
ing limit, the effective coefficient of the nonlinear term dominates the effective
coefficients of dispersive terms in the KdV equation. However, this is significant
only for very large variations, and over a large range of bottom perturbations
the nonlinearity and the dispersive effects are quite well balanced. This serves
to justify the use of the Boussinesq and KdV equations for a wide range of
bottom topography.
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(iii) The time-scale of the effects of both nonlinearity and dispersion are significantly
slower for large amplitude variations of the bottom (always considering the
average depth fixed).

In cases in which the periodic variations of the bottom themselves vary on the long
length-scale, we derive a number of Hamiltonian PDEs with variable coefficients to
describe the evolution of surface waves. Because of the presence of the variations in
the bottom, there are additional terms in the long-wave equations. Even at the lowest
order in perturbation theory, terms are present which describe the linear effect of
reflection of waves by the bottom topography. Denoting the effective depth by h̄(X),
we show that the linear reflection from left-propagating to right-propagating modes
(and vice versa) is proportional to S = ∂X log(h̄). This coefficient depends upon
X = εx, as do the resulting effective coefficients of dispersion and nonlinearity; it
appears both in the two-dimensional Boussinesq system and in its three-dimensional
analogue.

In the general case, the quantity S(X) is of O(1), and it does not make sense to
seek special solutions whose motions are principally unidirectional; any such solution
generates a substantial reflection in an O(1) length of time. However, in cases in
which S = S(X; ε) also depends upon the scaling parameter ε, such as when the
long-wavelength variations are small amplitude, or have small slope, or both, then
∂X h̄(X; ε) ∼ O(εα), and it is possible to proceed further. Depending on the value of
α, we find five different regimes that can be described in detail.

Finally, we would like to point out that the formulation of the Dirichlet–Neumann
operator as given in this paper is suitable for the numerical simulation of the full equa-
tions of the water wave problem with bottom topography. The recursive expressions
in terms of Fourier multipliers and of surface/bottom variations can be numerically
evaluated using a spectral method with fast Fourier transforms. Preliminary numer-
ical results appear in Guyenne & Nicholls (2004). More in-depth numerical compu-
tations constitute a substantial contribution in their own right, and are beyond the
scope of the present paper. These are envisioned for a separate and distinct article.

Appendix A. Taylor expansions of G(β, η) and L(β)

In § 2 b, we give a Taylor expansion of the Dirichlet–Neumann operator G(β, η) in
powers of η. The recursion formula for G(β, η) is found to be the same as that for the
case of a flat bottom, with the operator L(β) being absorbed in the lowest-order term
G(0) of the recursion formula. Here we present an alternative formulation for G(β, η)
as a double series in both β and η. This requires in particular a Taylor expansion of
L(β) in powers of β.

Consider the Dirichlet–Neumann operator in the form G(β, η) =
∑

j,l Gj,l(β, η),
where the Gj,l are homogeneous of degree j and l in powers of β and η, respectively.
The terms G0,l identify with the terms in the expansion of the Dirichlet–Neumann
operator for a flat bottom. It is convenient to compute the coefficients Gj,0 which
correspond to a domain with a flat interface and a variable bottom topography.
For this purpose, let us consider the problem (2.6) with η = 0. Its solution can be
expressed in the form of (2.9). By the definition of G, we have

G(β, 0)ξ ≡ ∂yϕ(x, 0) = D tanh(hD)ξ + DL(β)ξ. (A 1)
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Equivalently,

G0,0 = D tanh(hD), Gj,0 = D tanh(hD) + DLj(β), (A 2)

where the Lj(β) are the terms in the expansion of L(β) in powers of β. To compute
them explicitly, we write the Neumann condition at y = −h + β(x),

(∂yϕ − ∂xβ∂xϕ)(x,−h + β) = 0, (A 3)

and expand the various terms in powers of β.
From the expression (2.9) for the function ϕ(x, y) one calculates its derivatives.

We now formally perform the Taylor expansions of the operators

D sinh((h + y)D)|y=−h+β =
∑
l odd

βl

l!
Dl+1,

D cosh((h + y)D)|y=−h+β =
∑

l even

βl

l!
Dl+1,

D sinh(yD)|y=−h+β =
∑

l even

βl

l!
(−D)l+1 sinh(hD)

+
∑
l odd

βl

l!
(−D)l+1 cosh(hD),

D cosh(yD)|y=−h+β =
∑

l even

βl

l!
Dl+1 cosh(hD) −

∑
l odd

βl

l!
Dl+1 sinh(hD).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(A 4)

It is important to notice that in the above expansions, the operator D does not act
on β. Equation (A 3) is now rewritten as

∑
l odd

βl

l!
sech(hD)Dl+1 +

∑
l even

βl

l!
cosh(hD)L(β) −

∑
l odd

βl

l!
sinh(hD)L(β)

− i(∂xβ)
(

βl

l!
sech(hD)Dl+1 +

∑
l odd

βl

l!
cosh(hD)L(β)

−
∑

l even

βl

l!
Dl+1 sinh(hD)L(β)

)
= 0. (A 5)

Identification of the terms in zero, first and second powers of β leads to

L0 = 0, L1 = − sech(hD)β sech(hD), L2 = sech(hD)βD sinh(hD)L1.

More generally, the recursion formula takes the form:

Lj = − sech(hD)
[
βj

j!
sech(hD)Dj +

j−1∑
l=2,even

βl

l!
Dl cosh(hD)Lj−l

−
j−2∑

l=1,odd

βl

l!
Dl sinh(hD)Lj−l

]
(A 6)
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for j odd and

Lj = − sech(hD)
[ j−2∑

l=2,even

βl

l!
Dl cosh(hD)Lj−l −

j−1∑
l=1,odd

βl

l!
Dl sinh(hD)Lj−l

]
(A 7)

for j > 0 even.

We point out that the recursion formula given in (A 6) and (A 7) can be directly
obtained by a Taylor expansion of the implicit formula for L(β) in powers of β.

The recursion formula of L(β) can be easily extended to three dimensions, taking
the form:

Lj = − D

|D| sech(h|D|)

·
[
βj

j!
sech(h|D|)|D|j−1D +

j−1∑
l=2,even

βl

l!
cosh(h|D|)|D|l−1DLj−l

−
j−2∑

l=1,odd

βl

l!
sinh(h|D|)|D|l−1DLj−l

]
, (A 8)

for j odd and

Lj = − D

|D| sech(h|D|) ·
[ j−2∑

l=2,even

βl

l!
cosh(h|D|)|D|l−1DLj−l

−
j−1∑

l=1,odd

βl

l!
sinh(h|D|)|D|l−1DLj−l

]
. (A 9)

for j > 0 even.
Putting together the expansions of L(β) in powers of β above and the expansions

of G(β, η) in terms of L(β) and powers of η as given in § 2 c, one obtains an expression
for the series expansion of the Dirichlet–Neumann operator as a double series in β(x)
and η(x). Using the fact that G(β, η) is self-adjoint, one can write, for any j > 0 and
l > 0 even,

Gj,l = Lj |D|l−1D · ηl

l!
D

−
l−2∑

p=0,even

|D|l−p ηl−p

(l − p)!
Gj,p

−
l−1∑

p=1,odd

G0,0|D|l−p−1 ηl−p

(l − p)!
Gj,p

−
l−1∑

p=1,odd

j−1∑
q=0

Lj−q|D|l−p ηl−p

(l − p)!
Gq,p, (A 10)
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and, for any j > 0 and l odd,

Gj,l = −
l−2∑

p=1,odd

|D|l−p ηl−p

(l − p)!
Gj,p

−
l−1∑

p=0,even

G0,0|D|l−p−1 ηl−p

(l − p)!
Gj,p

−
l−1∑

p=0,even

j−1∑
q=0

Lj−q|D|l−p ηl−p

(l − p)!
Gq,p. (A 11)
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