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Abstract The capability of simulating scattering returns of electromagnetic radiation from
bounded obstacles is of overwhelming importance to scientists and engineers. Furthermore,
such simulations must be of both surpassing accuracy and high fidelity for many applica-
tions of interest. High-Order Spectral methods deliver highly accurate simulations with a
relatively small number of degrees of freedom, while interfacial formulations which utilize
these discretizations have orders of magnitude smaller execution times and memory require-
ments. Among these, the High-Order Perturbation of Surfaces algorithms have proved to be
a method of choice in layered media applications, and we display here how two of these-
the Methods of Field Expansions and Transformed Field Expansions-extend to obstacles of
bounded cross-section. In this contribution we provide not only a detailed prescription of the
algorithms, but also validate the schemes and point out their benefits and shortcomings. With
numerical experiments we show the remarkable efficiency, fidelity, and high-order accuracy
one can achieve with implementations of these algorithms.

Keywords High-Order Spectral Methods · Linear wave scattering · Bounded obstacles ·
High-Order Perturbation of Surfaces Methods

1 Introduction

The capability of simulating scattering returns of electromagnetic radiation from bounded
obstacles is of overwhelming importance to scientists and engineers. In the field of plasmonics
alone [13,26,36,51] such crucial applications as surface enhanced Raman scattering (SERS)
biosensing [60], imaging [25], and cancer therapy [14] are important examples. We refer the
interested reader to any of the many surveys on the topic including Chapters 5, 9, and 10 of
[26], the survey article [28], and the surveys on gold nanoparticles [33] and [24]. Due to the
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very strong plasmonic effect (the field enhancement can be several orders of magnitude) and
its quite sensitive nature (the enhancement is only seen over a range of tens of nanometers
in incident radiation for gold and silver particles), such simulations must be very robust and
of high accuracy for many applications of interest.

In this contribution we focus upon the Localized Surface Plasmon Resonances (LSPRs)
which can be induced in gold and silver nanorods with visible light, and how they change
as the shapes of these rods are varied analytically away from perfectly cylindrical. In more
detail, if a nanorod with cross-section shaped by {r = ḡ} is composed of a noble metal (e.g.,
gold or silver) with a wavelength-dependent permittivity, εm = εm(λ), housed in a dielectric
with constant permittivity, εd , then if ḡ is sufficiently small an LSPR is excited with incident
radiation of wavelength, λF , that (nearly) satisfies the two-dimensional “Fröhlich condition”
[26]

Re [εm(λ)] = − εd . (1.1)

However, if the cross-section of the rod is specified by

r = ḡ + ε f (θ),

for some smooth function f and ε sufficiently small, then the value λF = λF (ε) will change
and, as we shall see, our novel approach is ideally suited to study its evolution.

All of the classical numerical algorithms have been utilized for the simulation of this
problem (e.g., Finite Difference Methods [23,59], Finite Element Methods [20,21], Dis-
continous Galerkin Methods [19], Spectral Element Methods [12], and Spectral Methods
[3,10,16]), but we have recently argued [38,41] that such volumetric approaches are greatly
disadvantaged with an unnecessarily large number of unknowns for the piecewise homoge-
neous problems we consider here. Interfacial methods based upon Integral Equations (IEs)
[11] are a natural candidate but, as we have pointed out these also face difficulties. Most of
these have been addressed in recent years through (i) the use of sophisticated quadrature rules
to deliver High-Order Spectral accuracy, (ii) the design of preconditioned iterative solvers
with suitable acceleration [17]. Consequently, they are a compelling alternative (see, e.g., the
survey article of [58] for more details), however, two properties render them non-competitive
for the parameterized problems we consider as compared with the methods we advocate
here:

1. For geometries specified by the real value ε (here the deviation of an obstacle of bounded
cross-section from cylindrical), an IE solver will return the scattering returns only for a
particular value of ε. If this value is changed then the solver must be run again.

2. The dense, non-symmetric positive definite systems of linear equations which must be
inverted with each simulation.

As we advocated in [38,41] a “High Order Perturbation of Surfaces” (HOPS) approach
can effectively address these concerns. More specifically, we argued for the method of Field
Expansions (FE) which trace their roots to the low-order calculations of Rayleigh [52] and
Rice [53]. The high-order version was first investigated by Bruno and Reitich [4–7] and
later enhanced and stabilized by the first author and Reitich [45,46], the first author and
Nigam [40], and the first author and Shen [47], resulting in the Method of Transformed Field
Expansions (TFE). These formulations maintain the advantageous properties of classical IE
formulations (e.g., surface formulation and exact enforcement of far-field conditions) while
avoiding the shortcomings listed above:

1. As HOPS methods are built upon expansions in the deformation parameter, ε, once
the Taylor coefficients are known for the scattering quantities, it is simply a matter of
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summing these (rather than beginning a new simulation) for any given choice of ε to
recover the returns.

2. Due to the perturbative nature of the scheme, at every Taylor order, one need only invert
a single, sparse operator corresponding to the cylindrical-interface, order-zero approxi-
mation of the problem.

Our new approach is quite closely related to thework of Bruno andReitich [7] who studied
the same problem in the three-dimensional context of nanospheres. The current contribution
differs in a number of ways beginning with its two-dimensional character which requires the
study of different Hankel functions. In additionwe utilize a formulation in terms of Dirichlet–
Neumann Operators (DNOs) first described in [37] which permits the immediate simulation
by either of the classical HOPSmethods, FE [4–7] or Operator Expansions [9,29–32,34,35],
or the stabilized TFE approach [40,46,47]. In this contribution we provide not only a detailed
prescription of the algorithm (utilizing both the FE and TFE recursions), but also validate
the scheme and point out its benefits and shortcomings. With numerical experiments we
show the remarkable efficiency, fidelity, and high-order accuracy one can achieve with an
implementation of this algorithm.

The rest of the paper is organized as follows: In Sect. 2 we recall the governing equations
for linear waves reflected and transmitted by a cylindrical obstacle, with particular attention
paid to transparent boundary conditions in Sect. 2.1. We give a novel boundary formulation
of the resulting problem in Sect. 3 and using this we study the classical problem of scattering
by a rod in Sect. 3.1, and its generalization to non-trivial geometries in Sect. 3.2. The FE
method is explained in Sect. 3.3, while its TFE analogue is derived in Sect. 3.4. In Sect. 4 we
discuss our numerical results, including the Method of Manufactured Solutions to validate
our code in Sect. 4.1, implementation and error measurement in Sect. 4.2, and a convergence
study in Sect. 4.3. We end with simulations of nanorods in Sect. 4.4, and concluding remarks
in Sect. 5.

2 Governing Equations

We consider a y-invariant obstacle of bounded cross-section as displayed in Fig. 1. In this
paperwe assume a dielectricmaterial of refractive index nu (e.g., air) occupies the unbounded
exterior, and ametal of refractive index nw (e.g., gold or silver) fills the bounded interior; how-
ever, our formulation can accommodate arbitrary materials in either domain. The interface
between the two domains is described in polar coordinates, {x = r cos(θ), z = r sin(θ)},
by the graph r = ḡ + g(θ) so that the exterior domain is specified by

Su := {r > ḡ + g(θ)} ,

while the interior domain is given by

Sw := {r < ḡ + g(θ)} .

The superscripts are chosen to conform to the notation of previous work by the author
[37,41,48]. Obviously, the cylindrical geometry demands that the interface be 2π-periodic,
g(θ + 2π) = g(θ). The structure is illuminated by monochromatic plane-wave incident
radiation of frequency ω and wavenumber ku = nuω/c0 = ω/cu (c0 is the speed of light),
aligned with the corrugations of the obstacle. We consider the reduced incident fields of
incidence angle φ
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Fig. 1 Plot of the cross-section
of a metallic nanorod (occupying
Sw) shaped by r = ḡ + ε cos(4θ)

(ε = ḡ/5) housed in a dielectric
(occupying Su ) under plane-wave
illumination with wavenumber
(α, −γ u)

Einc = Aeiαx−iγ u z = Aeir(α cos(θ)−iγ u sin(θ)),

Hinc(x, z) = Beiαx−iγ u z = Beir(α cos(θ)−iγ u sin(θ)),

α = ku sin(φ), γ u = ku cos(φ),

where time dependence of the form exp(−iωt) has been factored out. The geometry demands
that the reduced electric and magnetic fields, {E,H}, be 2π-periodic in θ . To close the
problem, we specify that the scattered radiation is “outgoing” in Su and bounded in Sw.

It is well-known (see, e.g., [50]) that in this two-dimensional setting, the time-harmonic
Maxwell equations decouple into two scalar Helmholtz problems which govern the trans-
verse electric (TE) and transverse magnetic (TM) polarizations. We define the invariant (y)
directions of the scattered (electric or magnetic) fields by {u(r, θ), w(r, θ)} in Su and Sw,
respectively, and the incident radiation in the outer domain by uinc(r, θ).

In light of all of this, we are led to seek outgoing/bounded, 2π-periodic solutions of

�u + (ku)2u = 0, r > ḡ + g(θ), (2.1a)

�w + (kw)2w = 0, r < ḡ + g(θ), (2.1b)

u − w = ζ, r = ḡ + g(θ), (2.1c)

∂Nu − τ 2∂Nw = ψ, r = ḡ + g(θ), (2.1d)

where the Dirichlet and Neumann data are

ζ(θ) := [−uinc
]
r=ḡ+g(θ)

= −ei(ḡ+g(θ))(α cos(θ)−γ u sin(θ)) (2.1e)

ψ(θ) := [−∂Nu
inc]

r=ḡ+g(θ)

=
[
(ḡ + g)(iα cos(θ) − iγ u sin(θ))

− g′

ḡ + g
(−iα(ḡ + g) sin(θ) − iγ u(ḡ + g) cos(θ))

]
ζ. (2.1f)

In these

∂N = r̂(ḡ + g)∂r − θ̂

(
g′

ḡ + g

)
∂θ ,
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for unit vectors in the radial (r̂ ) and angular (θ̂ ) directions, and

τ 2 =
{
1, TE,

(ku/kw)2 = (nu/nw)2, TM,

where γ w = kw cos(φ). The case of TM polarization is of extraordinary importance in the
study of SPRs [51] and thus we concentrate our attention on the TM case from here.

2.1 Transparent Boundary Conditions

Regarding the Outgoing Wave Condition (OWC), commonly known as the Sommerfeld
Radiation Condition [11], and Boundedness Boundary Condition (BBC), we introduce the
circles {r = Ro} and {r = Ri }, where

Ro > ḡ + |g|L∞ , 0 < Ri < ḡ − |g|L∞ ,

define the domains
So := {r > Ro}, Si := {r < Ri },

and note that we can find periodic solutions of the relevant Helmholtz problems on these
domains given generic Dirichlet data, say ξ(θ) and μ(θ). For this we use the exact solutions
[11]

u(r, θ) =
∞∑

p=−∞
ξ̂p

Hp(kur)

Hp(ku Ro)
eipθ , w(r, θ) =

∞∑

p=−∞
μ̂p

Jp(kwr)

Jp(kwRi )
eipθ , (2.2)

where, Jp is the pth Bessel function and Hp is the pth Hankel function of the first kind. We
note that

u(Ro, θ) =
∞∑

p=−∞
ξ̂pe

ipθ , w(Ri , θ) =
∞∑

p=−∞
μ̂pe

ipθ .

With these formulas we can compute the outward-pointing Neumann data at the artificial
boundaries

− ∂r u(Ro, θ) =
∞∑

p=−∞
−ku ξ̂p

H ′
p(k

u Ro)

Hp(ku Ro)
eipθ =: T (u) [ξ(θ)] ,

∂rw(Ri , θ) =
∞∑

p=−∞
kwμ̂p

J ′
p(k

wRi )

Jp(kwRi )
eipθ =: T (w) [μ(θ)] .

These define the order-one Fourier multipliers {T (u), T (w)}.
With the operator T (u) it is not difficult to see that periodic, outward propagating solutions

to the Helmholtz equation

�u + (
ku

)2
u = 0, r > ḡ + g(θ),

equivalently solve

�u + (
ku

)2
u = 0, ḡ + g(θ) < r < Ro, (2.3a)

∂r u + Tu [u] = 0, r = Ro. (2.3b)

Similarly, one can show that periodic, bounded solutions to the Helmholtz equation

�w + (
kw

)2
w = 0, r < ḡ + g(θ),
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equivalently solve

�w + (
kw

)2
w = 0, Ri < r < ḡ + g(θ), (2.4a)

∂rw − T (w) [w] = 0, r = Ri . (2.4b)

3 Boundary Formulation

We follow [37,39] and reduce our degrees of freedom to the following surface unknowns,
the (outer and inner) Dirichlet traces

U (θ) := u(ḡ + g(θ), θ), W (θ) := w(ḡ + g(θ), θ),

and their (exterior, outer and inner) Neumann counterparts

Ũ (θ) := − (∂Nu)(ḡ + g(θ), θ), W̃ (θ) := (∂Nw)(ḡ + g(θ), θ).

From these one could recover the scattered field at any point with a suitable integral formula
[15]. Thus, the governing equations reduce to the boundary conditions

U − W = ζ, − Ũ − τ 2W̃ = ψ. (3.1)

At this point we have two equations for four unknowns, however, the pairs {U, Ũ } and
{W, W̃ } are clearly related, and we make this clear through the introduction of Dirichlet–
Neumann operators (DNOs). For this we make the following definitions.

Definition 3.1 Given a sufficiently smooth deformation g(θ), the unique periodic solution
of

�u + (
ku

)2
u = 0, ḡ + g(θ) < r < Ro, (3.2a)

u = U, r = ḡ + g(θ), (3.2b)

∂r u + T (u) [u] = 0, r = Ro, (3.2c)

defines the Dirichlet–Neumann Operator

G(u) [U ] = G(u)(Ro, ḡ, g) [U ] := Ũ . (3.3)

An analogous definition will presently be made on the interior domain, {Ri < r <

ḡ + g(θ)}, however, care is required. It is well known [11] that the governing Helmholtz
equation, (2.1b), is not uniquely solvable at a “Dirichlet eigenvalue” and so we must avoid
these. For example, in the case g ≡ 0 the exact solution is given by (2.2) with Ri replaced
by ḡ. It is easy to see that one will not be able to uniquely solve the Dirichlet problem
when Jp(kw ḡ) = 0 for any p ∈ Z. Such configurations, and their generalizations to g �≡ 0,
are the Dirichlet eigenvalues we must avoid. By contrast, the exterior problem has no such
obstruction and can always be shown to be uniquely solvable [11].

Definition 3.2 Given a sufficiently smooth deformation g(θ), if we are not at a Dirichlet
eigenvalue of the Laplacian on {r < ḡ + g(θ)}, the unique periodic solution of

�w + (
kw

)2
w = 0, Ri < r < ḡ + g(θ), (3.4a)

w = W, r = ḡ + g(θ), (3.4b)

∂rw − T (w) [w] = 0, r = Ri , (3.4c)
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defines the Dirichlet–Neumann Operator

G(w) [W ] = G(w)(Ri , ḡ, g) [W ] := W̃ . (3.5)

In terms of these operators the boundary conditions, (3.1), become

U − W = ζ, −G(u)[U ] − τ 2G(w)[W ] = ψ.

The first of these can be used to eliminate W ,

W = U − ζ,

so that the latter equation becomes

−G(u)[U ] − τ 2G(w)[U − ζ ] = ψ,

or
(G(u) + τ 2G(w))U = −ψ + τ 2G(w)[ζ ]. (3.6)

3.1 The Trivial Configuration: LSPR Condition

Before specifying our full algorithm, we show how our formulation delivers the classical
solution for plane wave scattering by a cylindrical obstacle. For this we investigate (3.6) in
the case g ≡ 0, (

G(u)
0 + τ 2G(w)

0

)
[U ] = −ψ0 + τ 2G(w)

0 [ζ0]. (3.7)

It is not difficult to see that, in this trivial configuration, the solutions to (3.2) and (3.4) are,
(c.f. (2.2)),

u(r, θ) =
∞∑

p=−∞
Ûp

Hp(kur)

Hp(ku ḡ)
eipθ , w(r, θ) =

∞∑

p=−∞
Ŵp

Jp(kwr)

Jp(kw ḡ)
eipθ , (3.8)

respectively. From these we find for (3.3)

G(u)
0 [U ] =

∞∑

p=−∞
Ûp(− ku ḡ)

H ′
p(k

u ḡ)

Hp(ku ḡ)
eipθ =: − (ku ḡ)

H ′
D(ku ḡ)

HD(ku ḡ)
U,

and for (3.5)

G(w)
0 [W ] =

∞∑

p=−∞
Ŵp(k

w ḡ)
J ′
p(k

w ḡ)

Jp(kw ḡ)
eipθ =: (kw ḡ)

J ′
D(kw ḡ)

JD(kw ḡ)
W,

which define the order-one Fourier multipliers

G(u)
0 = − (ku ḡ)

H ′
D(ku ḡ)

HD(ku ḡ)
, G(w)

0 = (kw ḡ)
J ′
D(kw ḡ)

JD(kw ḡ)
,

respectively.
Returning to (3.7), using the solution (3.8), we find the solution at each wavenumber

Ûp =
− (ψ̂0)p + τ 2(kw ḡ)

J ′
p(k

w ḡ)
Jp(kw ḡ) (ζ̂0)p

− (ku ḡ)
H ′

p(k
u ḡ)

Hp(ku ḡ)
+ τ 2(kw ḡ)

J ′
p(k

w ḡ)
Jp(kw ḡ)

= Hp(ku ḡ)Jp(kw ḡ)(ψ̂0)p − τ 2(kw ḡ)Hp(ku ḡ)J ′
p(k

w ḡ)(ζ̂0)p

(ku ḡ)Jp(kw ḡ)H ′
p(k

u ḡ) − τ 2(kw ḡ)Hp(ku ḡ)J ′
p(k

w ḡ)
.
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It is clear that solvability of this system hinges on

�p := − τ 2(kw ḡ)Hp(k
u ḡ)J ′

p(k
w ḡ) + (ku ḡ)H ′

p(k
u ḡ)Jp(k

w ḡ).

We study this in the “small radius” (quasistatic) limit [26], ku ḡ � 1 and kw ḡ � 1. For this
we recall that, for p a positive integer,

Jp(z) ∼ z p

2p p! , z → 0,

Hp(z) ∼ iYp(z) ∼ i(p − 1)!
π

2p

z p
, z → 0,

J ′
p(z) ∼ z p−1

2p(p − 1)! , z → 0,

H ′
p(z) ∼ iY ′

p(z) ∼ − i p!
π

2p

z p+1 , z → 0,

so that

�p ∼ − τ 2kw ḡ

(
i(p − 1)!

π

2p

(ku ḡ)p

) (
(kw ḡ)p−1

2p(p − 1)!
)

+ ku ḡ

(
− i p!

π

2p

(ku ḡ)p+1

)(
(kw ḡ)p

2p p!
)

= − i

π
(τ 2 + 1)

(
kw

ku

)p

.

This demonstrates that, in the small radius limit, �p ≈ 0 if τ 2 = −1, or

ε(u) = −Re{ε(w)} − iIm{ε(w)},
where we have used τ 2 = ε(u)/ε(w). Since ε(u) is real this can never be exactly satisfied,
however, if the Fröhlich condition

ε(u) = −Re{ε(w)}, (3.9)

c.f. (1.1), is verified then it can “almost” be true. We note that this is different from the three
dimensional Fröhlich condition for nanoparticles

ε(u) = − 2Re{ε(w)}.
3.2 Non-trivial Configurations

Of course the exact solution to the trivial configuration described above is classical [27] and
the scientific applications of this have been explored in great depth. Of greater current interest
is the non-trivial case where g �≡ 0, and we can use a High-Order Perturbation of Surfaces
(HOPS) scheme to simulate scattering returns if we view g(θ) = ε f (θ).

For ε sufficiently small and f sufficiently smooth the operators, {G(u),G(w)}, and data,
{ζ, ψ}, can be shown to be analytic in ε so that the following Taylor series are strongly
convergent

{G(u),G(w), ζ, ψ} = {G(u),G(w), ζ, ψ}(ε f ) =
∞∑

n=0

{
G(u)

n ,G(w)
n , ζn, ψn

}
εn .

Remark 3.3 In fact, appealing to the work of the first author and Reitich [42,44], Nigam
[40], and Hu [18], we can safely claim that surface perturbations of C2 (and even Lipschitz)
smoothness can be accommodated, and the domain of applicability be extended to all real
values of ε (up to topological obstruction).
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Consequently, the resulting scattered field can be shown to be analytic as well

U = U (ε f ) =
∞∑

n=0

Unε
n .

Furthermore, it is straightforward to identify a recursive formula for Un . For this we write
(3.6) as
( ∞∑

n=0

(
G(u)

n + τ 2G(w)
n

)
εn

) [ ∞∑

m=0

Umεm

]

= −
∞∑

n=0

ψnε
n+τ 2

( ∞∑

n=0

G(w)
n εn

) [ ∞∑

m=0

ζmεm

]

,

and equating at order O(εn),

(
G(u)

0 +τ 2G(w)
0

)
Un = −ψn + τ 2

n∑

m=0

G(w)
n−m [ζm]−

n−1∑

m=0

(
G(u)

n−m+τ 2G(w)
n−m

)
[Um] . (3.10)

At order zero we recover the trivial shape calculation, (3.7), from the previous section, while
higher order corrections can be recovered from (3.10). We note that at every perturbation
order we must invert the same linear operator, (G(u)

0 + τ 2G(w)
0 ), which renders the algorithm

extremely computationally efficient.
All that remains is to specify forms for the data, {ζn, ψn}, and operators, {G(u)

n ,G(w)
n }.

For the former it is easy to show that

ζn(θ) = − eḡ(iα cos θ−iγ u sin θ)(iα cos θ − iγ u sin θ)n Fn,

ψn(θ) = ḡ(iα cos θ − iγ u sin θ)ζn(θ)

+ [
f (iα cos θ − iγ u sin θ) − ( f ′)(−iα sin θ − iγ u cos θ)

]
ζn−1(θ),

where

Fn = Fn(θ) := ( f (θ))n

n! .

For the latter we appeal to the FE and TFE methods [4–6,45,46] which we briefly explain
here for completeness (see also [40]).

3.3 The Method of Field Expansions

The method of Field Expansions begins with the supposition that the scattered fields, {u, w},
depend analytically upon ε. Focusing upon the field u in the outer domain, {r > ḡ + ε f (θ)},
this implies that

u = u(r, θ; ε) =
∞∑

n=0

un(r, θ)εn .

Upon insertion of this into (3.2) one finds that the un must be 2π-periodic, outward-
propagating solutions of the elliptic boundary value problem

�un + (
ku

)2
un = 0, ḡ < r < Ro, (3.11a)

un(ḡ, θ) = δn,0U −
n−1∑

�=0

f n−�

(n − �)!∂
n−�
r u�(ḡ, θ), r = ḡ, (3.11b)

∂r un + T (u) [un] = 0, r = Ro, (3.11c)
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where δn,� is the Kronecker delta function. The exact solutions (3.8) are

un(r, θ) =
∞∑

p=−∞
ûn,p

Hp(kur)

Hp(ku ḡ)
eipθ ,

and the ûn,p are determined recursively from the boundary conditions, (3.11b), beginning,
at order zero, with

û0,p = Ûp.

From this the DNO, (3.3), can be computed from

G(u)[U ] = − (∂Nu)(ḡ + g(θ), θ)

=
∞∑

n=0

∞∑

p=−∞

{

−ku(ḡ + ε f )
H ′

p(k
u(ḡ + ε f ))

Hp(ku ḡ)

+ ε f ′

(ḡ + ε f )
(i p)

Hp(ku(ḡ + ε f ))

Hp(ku ḡ)

}

ûn,pe
ipθ εn,

expanding the Hankel functions H ′
p(k

u(ḡ + ε f )) and Hp(ku(ḡ + ε f )) in power series in ε,
and equating like powers of ε. This results in

G(u)
n ( f )[U ] = − ku ḡ

n∑

�=0

∞∑

p=−∞
û�,p

(ku f )n−�

(n − �)!
H (n+1−�)

p (ku ḡ)

Hp(ku ḡ)
eipθ − f

ḡ
G(u)

n−1( f )[U ]

− 2ku f
n−1∑

�=0

∞∑

p=−∞
û�,p

(ku f )n−1−�

(n − 1 − �)!
H (n−�)

p (ku ḡ)

Hp(ku ḡ)
eipθ

− ku

ḡ
f 2

n−2∑

�=0

∞∑

p=−∞
û�,p

(ku f )n−2−�

(n − 2 − �)!
H (n−1−�)

p (ku ḡ)

Hp(ku ḡ)
eipθ

+ 1

ḡ
( f ′)

n−1∑

�=0

∞∑

p=−∞
û�,p

(ku f )n−1−�

(n − 1 − �)!
H (n−1−�)

p (ku ḡ)

Hp(ku ḡ)
(i p)eipθ ,

where the superscript in parentheses denotes derivative. Similar considerations hold for the
DNO G(w)

G(w)
n ( f )[W ] = kw ḡ

n∑

�=0

∞∑

p=−∞
ŵ�,p

(kw f )n−�

(n − �)!
J (n+1−�)
p (kw ḡ)

Jp(kw ḡ)
eipθ − f

ḡ
G(w)

n−1( f )[W ]

+ 2kw f
n−1∑

�=0

∞∑

p=−∞
ŵ�,p

(kw f )n−1−�

(n − 1 − �)!
J (n−�)
p (kw ḡ)

Jp(kw ḡ)
eipθ

+ kw

ḡ
f 2

n−2∑

�=0

∞∑

p=−∞
ŵ�,p

(kw f )n−2−�

(n − 2 − �)!
J (n−1−�)
p (ku ḡ)

Jp(kw ḡ)
eipθ

− 1

ḡ
( f ′)

n−1∑

�=0

∞∑

p=−∞
ŵ�,p

(kw f )n−1−�

(n − 1 − �)!
J (n−1−�)
p (kw ḡ)

Jp(kw ḡ)
(i p)eipθ ,

c.f. [40].
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3.4 The Method of Transformed Field Expansions

The method of Transformed Field Expansions proceeds in much the same way as the FE
approach described above, save that a domain-flattening change of variables is effected prior
to perturbation expansion [40,42]. For definiteness we consider the TFE method applied to
the interior problem, (3.4), which we restate here for convenience,

�w + (
kw

)2
w = 0, Ri < r < ḡ + g(θ),

w = W, r = ḡ + g(θ),

∂rw − T (w) [w] = 0, r = Ri .

The change of variables we have in mind is

r ′ = (ḡ − Ri )r + Ri g(θ)

ḡ + g(θ) − Ri
, θ ′ = θ,

which maps the perturbed domain {Ri < r < ḡ + g(θ)} to the separable one {Ri < r ′ < ḡ}.
This transformation changes the field w into

v(r ′, θ ′) := w

(
(ḡ + g(θ ′) − Ri )r ′ − Ri g(θ ′)

ḡ − Ri
, θ ′

)
,

and modifies (3.4) to

�v + (
kw

)2
v = F(r, θ; g), Ri < r < ḡ, (3.12a)

v = W, r = ḡ, (3.12b)

∂rv − T (w) [v] = K (θ; g), r = Ri , (3.12c)

where we have dropped the primed notation for clarity. It is not difficult to see that

− (ḡ − Ri )
2F = g(ḡ − Ri )(r − Ri )∂r [r∂rv] + g(ḡ − Ri )r∂r [(r − Ri )∂rv]

+ g2(r − Ri )∂r [(r − Ri )∂rv] + g(ḡ − Ri )∂
2
θ v + (ḡ − Ri )∂θ [g∂θv] + g∂θ [g∂θv]

− (g′)(ḡ − Ri )(r − Ri )∂r∂θ v − g(g′)(r − Ri )∂r [∂θ v] − g(g′)∂θ v

− (ḡ − Ri )(r − Ri )∂θ [(g′)∂rv] − g(r − Ri )∂θ [(g′)∂rv] − (g′)(ḡ − Ri )∂θ v

+ (g′)2(r − Ri )∂r [(r − Ri )∂rv] + (g′)2(r − Ri )∂rv +
4∑

j=1

C j (g)(k
w)2v,

with

C1(g) = g[2(ḡ − Ri )r
2 + 2(ḡ − Ri )(r − Ri )r ],

C2(g) = g2[r2 + 4(r − Ri )r + (r − Ri )
2],

C3(g) = g3
[

2

(ḡ − Ri )
(r − Ri )r + 2

(ḡ − Ri )
(r − Ri )

2
]

,

C4(g) = g4
1

(ḡ − Ri )2
(r − Ri )

2,

and
K = g

ḡ − Ri
T (w) [v] .
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In addition we can recover that (3.5) changes to

G(w)[W ] = ḡ − Ri

ḡ − Ri + g

[
(ḡ + g) + (g′)2

ḡ + g

]
∂rv − g′

ḡ + g
∂θv.

Upon setting g = ε f and expanding

v(r, θ, ε) =
∞∑

n=0

vn(r, θ)εn,

we can show that

�vn + (
kw

)2
vn = Fn, Ri < r < ḡ, (3.13a)

vn = δn,0W, r = ḡ, (3.13b)

∂rvn − T (w) [vn] = Kn, r = Ri , (3.13c)

where

− (ḡ − Ri )
2Fn = f (ḡ − Ri )(r − Ri )∂r [r∂rvn−1] + f (ḡ − Ri )r∂r [(r − Ri )∂rvn−1]

+ f 2(r − Ri )∂r [(r − Ri )∂rvn−2] + f (ḡ − Ri )∂
2
θ vn−1 + (ḡ − Ri )∂θ [ f ∂θ vn−1]

+ f ∂θ [ f ∂θ vn−2] − ( f ′)(ḡ − Ri )(r − Ri )∂r∂θ vn−1 − f ( f ′)(r − Ri )∂r [∂θ vn−2]
− f ( f ′)∂θ vn−2 − (ḡ − Ri )(r − Ri )∂θ [( f ′)∂rvn−1]
− f (r − Ri )∂θ [( f ′)∂rvn−2] − ( f ′)(ḡ − Ri )∂θ vn−2

+ ( f ′)2(r − Ri )∂r [(r − Ri )∂rvn−2] + ( f ′)2(r − Ri )∂rvn−2

+
4∑

j=1

C j ( f )(k
w)2vn− j ,

and

Kn = f

ḡ − Ri
T (w)

[
vn−1

]
.

In addition it is not difficult to see that

G(w)
n [W ] = − f

(
1

ḡ
+ 1

ḡ − Ri

)
G(w)

n−1[W ] − f 2

ḡ(ḡ − Ri )
G(w)

n−2[W ] + ḡ∂rvn

+ 2 f ∂rvn−1 + f 2 + ( f ′)2

ḡ
∂rvn−2 − f ′

ḡ
∂θvn−1 − f ( f ′)

ḡ(ḡ − Ri )
∂θvn−2,

so that, provided with the {vn}, we can readily approximate the terms, G(w)
n , in the Taylor

series expansion of G(w).

4 Numerical Results

We now present results of simulations of our implementation of the algorithm outlined
above. The scheme is essentially a High-Order Spectral (HOS) approach [10,12,16] with
nonlinearities approximated by convolutions implemented by the Fast Fourier Transform
algorithm.
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4.1 Validation by the Method of Manufactured Solutions

Before proceeding to our results, we validate our code using the “Method of Manufactured
Solutions” (MMS) [8,22,49,54–57]. To summarize the MMS, when solving a system of
partial differential equations for an unknown, v, say

Pv = 0, in �, (4.1a)

subject to boundary conditions, e.g.,

Bv = 0, at ∂�, (4.1b)

it is typically just as easy to implement an algorithm to solve the “inhomogenous” versions
of the above,

Pv = F, in �, (4.2a)

Bv = J , at ∂�. (4.2b)

In order to test an implementation, one begins with the “manufactured solution,” ṽ, and sets

F := P ṽ, J := Bṽ.

Now, given this pair {F,J }we have an exact solution to (4.2) against which we can compare
our numerically simulated solution. While this provides no guarantee of a correct implemen-
tation, with a careful choice of ṽ, e.g. one which displays the same qualitative behavior as
solutions of (4.1), the approach can give great confidence in the accuracy of a scheme.

For the implementation in question we consider the 2π-periodic, outgoing solutions of
the Helmholtz equation, (2.1a),

uq(r, θ) = Aq
u Hq(k

ur)eiqθ , q ∈ Z, Aq
u ∈ C,

and the bounded counterpart for (2.1b)

wq(r, θ) = Aq
w Jq(k

wr)eiqθ , q ∈ Z, Aq
w ∈ C.

For a given choice of f = f (θ) we can compute, e.g., the exact exterior Neumann data

νex(θ) := [−∂Nu
q]

r=ḡ+ε f (θ)
= Ũ (θ).

4.2 Implementation and Error Measurement

The method we described in Sect. 3 is a Fourier collocation/Taylor method [43,46] enhanced
by Padé summation [1]. In more detail we approximate {U,W } by

UNθ ,N (r, θ) :=
N∑

n=0

Nθ /2−1∑

p=−Nθ /2

Ûn,pe
ipθ εn, WNθ ,N (r, θ) :=

N∑

n=0

Nθ /2−1∑

p=−Nθ /2

Ŵn,pe
ipθ εn .

We insert these into (3.10) for each n = 0, . . . , N to determine {Ûn,p, Ŵn,p}. As has been
pointed out [40,43], the TFE approach to computeDNOs requires an additional discretization
in the vertical direction which we achieve by a Chebyshev collocation approach.

An important consideration is how the Taylor series in ε are summed. To be specific, in
simulating U we consider the truncation UNθ ,N , which amounts to the approximation

Ûp(ε) :=
∞∑

n=0

Ûp,nε
n,
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for −Nθ /2 ≤ p ≤ Nθ /2 − 1, by

Û N
p (ε) :=

N∑

n=0

Ûp,nε
n .

The classical numerical analytic continuation technique of Padé approximation [1] has been
successfully brought to bear upon HOPS methods in the past (see, e.g., [5,44]), and we
advocate its use here. Padé approximation seeks to simulate the truncated Taylor series
Û N

p (ε) by the rational function

[L/M](ε) := aL(ε)

bM (ε)
=

∑L
�=0 a�ε

�

1 + ∑M
m=1 bmεm

(4.3)

where L + M = N and

[L/M](ε) = Û N
p (ε) + O(εL+M+1);

well-known formulas for the coefficients {a�, bm} can be found in [1]. This approximant has
remarkable properties of enhanced convergence, andwe refer the interested reader to Sect. 2.2
of Baker and Graves-Morris [1] and the insightful calculations of Sect. 8.3 of Bender and
Orszag [2] for a thorough discussion of the capabilities and limitations of Padé approximants.
To close this section, we point out that we measure the relative errors

ErrorFErel =
∣∣∣νex − νFENθ ,N

∣∣∣
L∞

|νex|L∞
, ErrorTFErel =

∣∣∣νex − νTFENθ ,Nr ,N

∣∣∣
L∞

|νex|L∞
. (4.4)

4.3 Convergence Study

For our convergence study we select the 2π -periodic and analytic function

f (θ) = ecos(θ), (4.5)

see Fig. 2, and with this we compute the exact surface current, νex. We make the physical
parameter choices

q = 2, Aq
u = 2, Aq

w = 1, ḡ = 0.025, ε = 0.002, (4.6)

Fig. 2 Plot of the cross-section
of a metallic nanorod (occupying
Sw) shaped by
r = ḡ + ε exp(cos(θ)) (ε = ḡ/5)
housed in a dielectric (occupying
Su ) under plane-wave
illumination with wavenumber
(α, −γ u). The dash-dot blue line
depicts the unperturbed
geometry, the circle r = ḡ (Color
figure online)
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Fig. 3 Relative error (4.4) versus perturbation order for configuration (4.6); FE with Taylor summation
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Fig. 4 Relative error (4.4) versus perturbation order for configuration (4.6); FE with Padé summation

and numerical parameter choices

Nθ = 64, N = 16, (4.7)

and compute approximations to νex by the FE algorithm delivering νFE.
In Figs. 3 and 4 we display results of our convergence study using Taylor and Padé

summation, respectively. In these we see not only the reliability and robustness of our new
approach, but also the extremely rapid, spectral, accuracy of our simulations.

We then reprise these calculations with a much larger choices of perturbation parameter,
ε = 0.01, 0.02, 0.05. For this we used both the FE and TFE algorithms with the same choice
of f (θ), (4.5), physical parameters, (4.6), and numerical parameters, (4.7), supplemented
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Fig. 5 Relative error (4.4) versus perturbation order for configuration (4.6); FE andTFEwith Padé summation,
ε = 0.01
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Fig. 6 Relative error (4.4) versus perturbation order for configuration (4.6); FE andTFEwith Padé summation,
ε = 0.02

with
ḡ = 0.025, Ri = ḡ/10, Ro = 10ḡ, Nr = 64, N = 24.

We compute approximations {νFE, νTFE} and report results of our convergence study using
Padé summation in Figs. 5, 6, and 7, for ε = 0.01, 0.02, and 0.05, respectively. Again,
the fidelity and utility of both approaches is clearly visible in each, but we note the added
accuracy and stability which TFE can provide.
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Fig. 7 Relative error (4.4) versus perturbation order for configuration (4.6); FE andTFEwith Padé summation,
ε = 0.05

4.4 Simulation of Nanorods

Wenow return to the problemof scattering of plane-wave incident radiation uinc = exp(iαx−
iγ uz) by a nanorod which demands the Dirichlet and Neumann conditions, (2.1c) and (2.1d)
respectively. More specifically, we consider metallic nanorods housed in a dielectric with
outer interface shaped by

r = ḡ + g(θ) = ḡ + ε f (θ).

We illuminate this structure over a range of incident wavelengths λmin ≤ λ ≤ λmax and
perturbation sizes εmin ≤ ε ≤ εmax , and compute the magnitudes of the reflected and
transmitted surface currents, Ũ and W̃ . These we term the “Reflection Map” (RM) and
“Transmission Map” (TM) in analogy with similar quantities of interest in the study of
metallic gratings [13,26,36,51]. Our study of the Fröhlich condition, (3.9), indicates that
there should be a sizable enhancement in each at an LSPR. In the case of a nanorod with
a perfectly circular cross-section we computed the value as the λF satisfying (3.9), and in
subsequent plots this is depicted by a dashed red line.

4.4.1 An Analytic Deformation

Using the FE approach to compute the DNOs, we begin our study with the 2π-periodic and
analytic profile from Sect. 4.3

f (θ) = ecos(θ), (4.8)

see Fig. 2. With this we consider the following physical configuration

ḡ = 0.025, nu = 1, nw = nAg,

λmin = 0.300, λmax = 0.800, εmin = 0, εmax = ḡ/10, (4.9)

so that a silver (Ag) nanorod sits in vacuum, with numerical parameters

Nλ = 201, Nε = 201, Nθ = 64, N = 16. (4.10)
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Fig. 8 Reflection Map and Transmission Map for a silver nanorod shaped by the analytic profile, (4.8), in
vacuum. Here εmax = ḡ/10, ḡ = 0.025, λmin = 0.300, and λmax = 0.800

0.3 0.4 0.5 0.6 0.7 0.8
0

0.5

1

1.5

Fig. 9 Final Slice of Reflection and Transmission Maps at ε = εmax for a silver nanorod shaped by the
analytic profile, (4.8), in vacuum

Plots of the RM and TM are displayed in Fig. 8. In Fig. 9 we show the final slice (ε = εmax )
of each of these, together with the Fröhlich value of the LSPR, (3.9), as a dashed red line.
Here we see how even a relatively moderate value of the deformation parameter (one tenth
of the rod radius) can produce a sizable shift in the LSPR location.

We revisit these calculations with three fundamental changes to the configuration (4.9):
(i) boundary perturbation of twice the size (εmax = ḡ/5), (ii) water as the host dielectric
(nu = nwater), and (iii) doubled boundary deformation in water. To summarize the effects
of these changes, we present in Fig. 10 a collection of the final slices of RM and TM at
ε = εmax . Here we see that not only does an increase in the deformation size move the LSPR
further away from the Fröhlich value, but also placing the nanorod in water spreads out the
LSPR response in a significant way. Importantly, these results are easily generated with our
method and show how useful our approach can be in the evaluation and design of nanorod
structures.
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Fig. 10 Final slices of Reflection Maps and Transmission Maps for a silver nanorod shaped by the analytic
profile, (4.8). a ε = ḡ/10 in vacuum; b ε = ḡ/5 in vacuum; c ε = ḡ/10 in water; d ε = ḡ/5 in water

4.4.2 A Low-Frequency Cosine Deformation

Continuing with the FE recursions, we consider the 2π-periodic, low-frequency sinusoidal
profile

f (θ) = cos(2θ), (4.11)

see Fig. 11. Once again we consider the physical configuration (4.9) with numerical param-
eters (4.10).

Plots of the RM and TM are displayed in Fig. 12. In Fig. 13 we show the final slice
(ε = εmax ) of each of these, together with the Fröhlich value of the LSPR, (3.9), as a dashed
red line. As before, even a small perturbation in the deformation can move the LSPR shift in
a noticeable way.

Once again, we study these calculations with three fundamental changes to the configu-
ration (4.9): (i) boundary perturbation of twice the size (εmax = ḡ/5), (ii) water as the host
dielectric (nu = nwater), and (iii) doubled boundary deformation in water. To summarize the
effects of these changes, we present in Fig. 14 a collection of the final slices of RM and TM
at ε = εmax . Once again, we see that not only does an increase in the deformation size move
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Fig. 11 Plot of the cross-section
of a metallic nanorod (occupying
Sw) shaped by r = ḡ + ε cos(2θ)

(ε = ḡ/5) housed in a dielectric
(occupying Su ) under plane-wave
illumination with wavenumber
(α, −γ u). The dash-dot blue line
depicts the unperturbed
geometry, the circle r = ḡ (Color
figure online)

Fig. 12 Reflection Map and Transmission Map for a silver nanorod shaped by the sinusoidal profile, (4.11),
in vacuum. Here εmax = ḡ/10, ḡ = 0.025, λmin = 0.300, and λmax = 0.800
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Fig. 13 Final Slice of Reflection and Transmission Maps at ε = εmax for a silver nanorod shaped by the
sinusoidal profile, (4.11), in vacuum
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Fig. 14 Final slices of Reflection Maps and Transmission Maps for a silver nanorod shaped by the sinusoidal
profile, (4.11). a ε = ḡ/10 in vacuum; b ε = ḡ/5 in vacuum; c ε = ḡ/10 in water; d ε = ḡ/5 in water

the LSPR further away from the Fröhlich value, but also placing the nanorod in water spreads
out the LSPR response (though not as severely as for the analytic profile), while giving rise
to a “double-peak” in water.

4.4.3 A Higher Frequency Cosine Deformation

Once again with the FE approach, we conclude with the 2π-periodic sinusoidal profile of
slightly higher frequency

f (θ) = cos(4θ), (4.12)

see Fig. 15. Once again we consider the physical configuration (4.9) with numerical param-
eters (4.10).

Plots of the RM and TM are displayed in Fig. 16. In Fig. 17 we show the final slice
(ε = εmax ) of each of these, together with the Fröhlich value of the LSPR, (3.9), as a dashed
red line. Unsurprisingly, we notice how even a moderate value of the deformation parameter
delivers a sizable shift in the LSPR location.

Once again, we study these calculations with three fundamental changes to the configu-
ration (4.9): (i) boundary perturbation of twice the size (εmax = ḡ/5), (ii) water as the host
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Fig. 15 Plot of the cross-section
of a metallic nanorod (occupying
Sw) shaped by r = ḡ + ε cos(4θ)

(ε = ḡ/5) housed in a dielectric
(occupying Su ) under plane-wave
illumination with wavenumber
(α, −γ u). The dash-dot blue line
depicts the unperturbed
geometry, the circle r = ḡ (Color
figure online)

Fig. 16 Reflection Map and Transmission Map for a silver nanorod shaped by the sinusoidal profile, (4.12),
in vacuum. Here εmax = ḡ/10, ḡ = 0.025, λmin = 0.300, and λmax = 0.800
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Fig. 17 Final Slice of Reflection and Transmission Maps at ε = εmax for a silver nanorod shaped by the
sinusoidal profile, (4.12), in vacuum
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Fig. 18 Final slices of Reflection Maps and Transmission Maps for a silver nanorod shaped by the sinusoidal
profile, (4.12). a ε = ḡ/10 in vacuum; b ε = ḡ/5 in vacuum; c ε = ḡ/10 in water; d ε = ḡ/5 in water

dielectric (nu = nwater), and (iii) doubled boundary deformation in water. To summarize the
effects of these changes, we present in Fig. 18 a collection of the final slices of RM and TM at
ε = εmax . In this third case we see that an increase in the deformation size moves the LSPR
further away from the Fröhlich value, and placing the nanorod in water not only spreads out
the LSPR response, but also creates a “bifurcation” in the response.

Before closing we illustrate the enhanced accuracy and stability which can be realized
with the TFE recursions. The FE approach delivers high-fidelity results over a wide range of
parameter choices including all of the simulations presented here, however, there is a limit to
the accuracy which can be achieved. This is due to subtle cancellations in the FE recursions
which render the computations ill-conditioned for extreme configurations [43,45]. In contrast,
while having a slightly elevated operation count, the TFE formulas stably deliver accurate
solutions in configurations where the FE counterparts display disappointing performance. To
highlight this latter issue we examine the highly oscillatory sinusoidal profile

f (θ) = cos(8θ), (4.13)

for which we could not uniformly resolve the solution with our FE approach at ε = ḡ/10.We
focus upon the particular value λ = 0.3875 for the water/silver configuration we investigated
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Table 1 L2 norm of Ũ N , QN , versus perturbation order, N , for the water/silver configuration with f (θ) =
cos(8θ) with FE and TFE algorithms

N QFE
N

∣∣
∣QFE

N − QFE
N−4

∣∣
∣ QTFE

N

∣∣
∣QTFE

N − QTFE
N−4

∣∣
∣

0 1.210354021216885 1.210354021216792

4 2.644285028038841 0.837088 2.633537216442172 0.847836

8 2.563745050094514 0.08054 2.386786362653798 0.246751

16 13.7218584661541 11.1581 2.225590119856692 0.161196

20 4.804761546058774 8.9171 2.227441479239038 0.00185136

24 4.10503488514615 0.699727 2.227341193552773 0.000100286

earlier. In Table 1 we report the L2 norm of Ũ ,

QN :=
∥
∥
∥Ũ N

∥
∥
∥
L2

, (4.14)

as a function of perturbation order, N , to sixteen digits. We see that not only does the FE
algorithm deliver rather poor results (no more than one digit of accuracy), but also that our
TFE recursions give us a reasonable approximation (three to four digits of accuracy).

5 Conclusion

In this contribution we have developed a novel computational methodology to study the
LSPRs which can be induced in silver nanorods with visible light, and how they change as
the shapes of these rods are varied analytically away from perfectly cylindrical. Our HOPS
approach, while closely related to the work of Bruno and Reitich [7], differs in a number
of ways beginning with its two-dimensional character and formulation in terms of DNOs
first described in [37] which permits the immediate simulation by any of classical (OE or
FE) or stabilized (TFE) HOPS methods. In this contribution we provided not only a detailed
prescription of the algorithm, but also validated the scheme. With numerical experiments we
showed the remarkable efficiency, fidelity, and high-order accuracy one can achieve with an
implementation of this algorithm.
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