T Available online at www.sciencedirect.com _—
. . Journal of
et ScienceDirect Differential
s 4 Equations
ELSEVIER Journal of Differential Equations 422 (2025) 106-151 _—

www.elsevier.com/locate/jde

A High—Order Perturbation of Envelopes (HOPE)
method for vector electromagnetic scattering by
periodic inhomogeneous media: Analytic continuation ~

David P. Nicholls *, Liet Vo

Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, 851 South Morgan
Street, Chicago, IL, 60607, USA

Received 12 June 2024; revised 11 November 2024; accepted 6 December 2024

Abstract

Electromagnetic waves interacting with three—dimensional periodic structures occur in many applications
of great scientific and engineering interest. These three dimensional interactions are extremely complicated
and subtle, so it is unsurprising that practitioners find their rapid, robust, and accurate numerical simulation
to be of paramount interest. Among the wide array of possible numerical approaches, the High—Order
Spectral algorithms are often preferred due to their surpassing fidelity with a moderate number of unknowns,
and here we describe an algorithm that fits into this class. In addition, we take a perturbative approach to
the problem which views the deviation of the permittivity from a reference value as the deformation and we
conduct a regular perturbation theory. This work concludes a line of research on these methods which began
with two-dimensional problems governed by the Helmholtz equation and moved to small perturbations in
the fully three-dimensional vector Maxwell equations. We now extend these latter results to large (real)
perturbations constituting a rigorous analytic continuation.
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(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Electromagnetic waves interacting with three—dimensional periodic structures occur in many
applications of great scientific and engineering interest. Many examples can be given from fields
as different as surface-enhanced spectroscopy [25], extraordinary optical transmission [9], cancer
therapy [10], and surface plasmon resonance (SPR) biosensing [17,20,23,31].

Because of their crucial role in these linear scattering applications, all of the classical numeri-
cal algorithms for the simulation of solutions to the governing partial differential equations have
been brought to bear upon this problem. Among these are the Finite Difference [39,22], Finite
Element [19,18], Discontinuous Galerkin [16], Spectral Element [8], and Spectral [15,37,38]
methods. While these are compelling choices, due to their volumetric character they require a
large number of unknowns (N = NN, N; for a three dimensional simulation) and require the
inversion of large, non—symmetric positive definite matrices (of dimension N x N). We point the
interested reader to [11,24] for recent developments.

Focusing on the particular example of SPR sensors [17,20,23,31] which is the focus of this
work, their utility and ubiquity follows from two key properties of an SPR, namely its extremely
strong and sensitive response. Quantitatively, over the range of tens of nanometers in incident
wavelength, the reflected energy can reduce from almost 100% by a factor of 10 or even 100
before ascending back to almost 100%. Clearly, to approximate such a structure with the required
fidelity, the numerical algorithm should produce surpassingly accurate results in a fast and robust
manner. For this reason, we will focus upon High—Order Spectral (HOS) methods [15,37,38]
which have exactly these features.

In regard to the classical approaches listed above, one standard method for generating SPRs is
via homogeneous layers of material, and it is clearly wasteful to discretize the bulk of each layer.
As a result, most prominent solvers feature interfacial unknowns with the understanding that in-
formation inside a layer can be computed from appropriate integral formulas. Boundary element
(BEM) [36] and boundary integral (BIM) [7,21] methods are two popular approaches and can
produce highly accurate solutions in a fraction of the time of their volumetric competitors.

In previous work [26,32] the authors investigated a new algorithm which has much in com-
mon with these HOS algorithms, but was inspired by the “High—Order Perturbation of Surfaces”
(HOPS) methods [29,30] which have proven to be so useful for layered media. A HOPS scheme
views the layer interfaces as perturbations of flat ones and then makes recursive corrections to the
scattering returns from this exactly solvable configuration [40]. However, our new “High—Order
Perturbation of Envelopes” (HOPE) schemes consider a more general permittivity function,
€(x, y, z), which does not necessarily have layered structure. Our approach follows the lead of
Feng, Lin, and Lorton [13,14] who adopted a perturbative philosophy by studying the permittiv-
ity as a perturbation of a trivial one, e.g.,

€x,y,z2)=€(1-38Ex,y,2)), €e€R, Ex+de,y+dy,2)=Ex,y,2),

where £ is a permittivity “envelope.” In [26] we focused upon the two—dimensional scalar prob-
lems of electromagnetic radiation in Transverse Electric (TE) or Transverse Magnetic (TM)
polarization. Building upon this work, in [32] we extended our results to the three-dimensional
vector electromagnetic case governed by the full Maxwell equations. These new methods have
computational advantages over volumetric solvers in some configurations (e.g., where the sup-
port of £ is small or where the set on which & significantly changes is small). In particular, we
considered an approximate indicator function which modeled the absence/presence of a material.
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There were several contributions of [26] including a new, and far-reaching, rigorous analysis.
In more detail, we proved not only that the domain of analyticity of the scattered field in § can be
extended to a neighborhood of the entire real axis (up to topological obstruction), see Fig. 1, but
also that this field is jointly analytic in parametric and spatial variables provided that £(x, y, 7)
is spatially analytic. In our subsequent paper [32] we extended a subset of these results to the
three dimensional vector time—harmonic Maxwell equations, in particular, that the scattered field
is analytic as a function of § and jointly analytic in both parametric and spatial variables if
E(x, v, z) is spatially analytic. In the current contribution we take up not only the issue of analytic
continuation to perturbations § of arbitrary (real) size, see Fig. 1, but also their joint analyticity
with respect to spatial variables, which completes the analysis of these HOPE methods as applied
to the Maxwell equations. As we shall see, this requires a significant enhancement of the existing
technology. In particular, in contrast to the constant—coefficient analysis of [32] which enabled
us to use rather explicit exact solution formulas, the theorem presented here required a novel
analysis of the weak formulation of the relevant variable coefficient Helmholtz problem presented
in Bao & Li [2]. It is noteworthy that this new analysis required an accounting of inhomogeneous
terms which are not considered in [2] and presented several unforeseen challenges. While this
theorem is not technically required to justify the numerical simulations presented in our previous
work [32] on scattering returns by periodic structures, it does definitively answer the question:
Does § need to be small? The answer is an emphatic “no,” provided that § is in the domain of
analyticity which includes a neighborhood of the entire real axis, see Fig. 1.

The rest of the paper is organized as follows. In § 2 we recall the governing equations and
discuss transparent boundary conditions in § 3. We describe the HOPE algorithm in § 4 and
begin our theoretical developments with a statement of the relevant function spaces in § 5. We
state and prove our results on parametric analytic continuation in § 6 and extend these to joint
analyticity in § 7. In § 8 we describe how the numerical algorithm from our companion work [32]
can be greatly enhanced by numerical analytic continuation which is justified by the theorems
proven here. We provide concluding remarks in § 9. The crucial elliptic estimates upon which
these results rely are established in Appendix A and Appendix B.

2. Governing equations

We consider materials whose electromagnetic response is modeled by the time—harmonic
Maxwell equations in three dimensions with a constant permeability © = o and no currents
or sources,

curl[E] —iwugH =0, curl[H]+iweE =0,
div[eE]=0, div[H]=0, 2.1
where (E, H) are the electric and magnetic vector fields, and we have factored out time depen-

dence of the form exp(—iwt) [2]. The permittivity €(x, y, z) is biperiodic with periods d, and
dy, and is specified by

eWey, z>h,
€(x,y,x)=1eW(x,y,2)e0, —h<z<h,
6<w)607 < _hs
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where €p is the permittivity of vacuum, e® W ¢ R and e(”)(x +dy,y +dy,2) =
€™ (x,y,2),and

lim € (x, v,2) = €™, lim e™(x, y,2) = e,
z—h— z—>(—h)+

For future use we define

[3S]

w
ki =o’cono=—, (K" =e"kj, meuw),
0

and cp = 1/,/€ppo is the speed of light in vacuum.
This structure is illuminated from above by plane—wave incident radiation of the form

Eme(x, v,2) = Aexp(iax +ify — i]/(”)Z),
H™(x,y,2) = Bexp(iax +iBy — iy®™2),

where
1
A-k=0, B=—-x«xA, |Al=|B|=1,
oo
and
o sin(6) cos(¢)
k=1 B |=k"] sin®)sin(g) |,
—y —cos(#)

where (6, ¢) are the angles of incidence.
3. Transparent boundary conditions

Following the lead of Bao & Li [2] we use Transparent Boundary Conditions at z = %+ to
both rigorously specify the appropriate far—field boundary conditions, and reduce the infinite
domain to one of finite size. These are specified with Dirichlet-Neumann Operators (DNOs)
which map the fangential traces of the scattered electric fields at z = £/ to the traces of the
scattered magnetic fields at z = =£A. Such operators are commonly called Capacity Operators
[2].

To summarize the developments of [2] (§ 3.2.2) we use the fact that H = m curl[E] and
define

where, for N, = (0,0, DT and N,, = (0,0, —1)7,
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U:=Ny, x (E*| _, xN,), U:=-
= 1w

(curl [E*]| _, x Nu),

W= Ny x (B __, x Ny), W= (curl [E*]|___, x Nu).

wito

Using the facts that

E = Escat+ Einc’ H= Hscat + Hinc, 7> h,
E = Escat’ H = Hscat’ 7 < —h,

and multiplying the definitions of {7}, T,} by —(iwuo), we specify the Transparent Boundary
Conditions

curl [(E — E“‘C)] X Ny — (iwpo)Tu[Ny x (E — E™) x N)]=0,  z=h,
curl[E] X Ny — (iwpug) T[Ny X (E X Ny)] =0, z=—h,
or
curl [E] X Ny — (iopo) Ty[Ny X (E X Ny)] = ¢, z=h,
curl[E] X Ny — (iopo) T[Ny X (E X Ny)] =0, z=—h,
where
¢ = curl [Eim] % Ny — (o) Tu[N, x (E™ x N, z=h. 3.1)

To find a formula for 7,, we note that, in the upper domain {z > h}, separation of variables
demands that upward propagating (o, 8)—quasiperiodic solutions of the Maxwell equations are

nX
Upq

o o0
EScat — Z Z ﬁp’qexp(ioz,,x+iﬂqy+iy1§’fq)(z—h)), pg=|1hq |,

p=—00g=—00 Z
Up.q

[33,40] where

ap=a+ (2n/dy)p, Bg=p+ (2r/dy)q.
()2 =i —a2 — B2, Im{y{™) =0, me fu,w).

In particular, for a dielectric (€™ e R*) we have

2 2 2 2 2 2

pm vV €Mk —aj =B o+ B = e™kg,
pa ) 2 2. g2 2
i alz, + ﬂg —eMEkg, a, + B > MK,

Using the relation
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Ux (x’ y) Escat,X(x’ v, h)
Uy(-xay) =U(xay):NuX(Escat(xvyrh)XNu): ESCﬁt,y(x’y’h) ’
0 0
we find that
g =Upgs ”Pq—qu

To resolve u; 4 We use the divergence—free condition in the upper layer to deduce that

(ap)iy , + (Biy.q + iy D5, =0.

We now make the assumption that we are away from Rayleigh Singularities (commonly referred
to as Wood’s Anomalies)

y\a#0, Vp.qel,
which gives
—apily, —,Bfty —a Ux —ﬂljy
.. % qUpq % 9V p.q
Upq= (u) = (u)
Yp.q Yp.q
Therefore we can express
7 x
Upg
Ay
ESet = Z Z Al_jlw | explapx +iByy + zylg",; (z —h)).
—00g=—00 7aP P.q :B‘IUI)’#
@)
Yp.q

Now, it is a simple matter to compute

U=H*"x N, =

X Ny)

1 )
" (curl [E”at] |z=h

azEscat,x(x’ v, h) — 3xEscath(x, v, h)
(r?ZEscat,y(x7 v, h) — ayEscat,z(x, v, h)

iwfo 0
For this we observe that

00 00 U;’q

Y

WES @y = Y D (ap) Ura expliapx + iByy),
p=—00g=—00 —apUp =Py Uﬁ q
T
prq

and
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o0 [e'e) Al;’q
WES (e, y =Y > (iBy) Una expliapx +iB,y),
p=—00g=—00 —opU —PyUpg
(u)
Yp.q
and
U;,
Ay
A, E*"(x,y,h) = Z Z (1)/15”3 AU[MI | explapx +iByy).
p=—00g=—00 —Upg—PyUng
(@)
Yoa
Therefore,
U=T,U]
(u) (wt ) 2 Ny
~ ~ (lyu ) p(”p(; {apU;,q—i_ﬂqU[}),q}
~ oo Z Z (lVISu;)Up gt (l/?f)) l“Pl};,q +,3401);,q] exp(ictpx + ify ).
p=—00g=—00 Yp.q
0
In a similar fashion
W =T,[W]
- (ZV(W)) (1?5; {%Wx +,3qu,4}

la),uo g

Z Z (l]/(w))W[); q (llgl)) Hap + ﬂq W[)”’q} eXp(iOtpx + llgqy)
0

At this point we can state our governing equations with full rigor. Eliminating the magnetic
field from (2.1) and gathering our full set of governing equations we find the following problem

to solve.
curl [curl [E]] — e VIZE =0,
— div [e(”)kgE] =0,
curl[E] x Ny — (fopo) Ty [Ny x (E X Ny)]=¢,
curl [E] X Ny — (iopg) T[Ny X (E X Ny)] =0,
E(x +dy,y+dy,z) =exp(iad, +ifdy)E(x,y,2),
where
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Domain of Analyticity

Im{d}

Re{d}
Fig. 1. The domain of analyticity (gray) in the complex plane of the field, (4.1), as a function of the perturbation parameter,

8. We demonstrate existence of disks (blue) of analyticity around arbitrary values py € R (green) which fills out the entire
gray region. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Q:=(0.dy) x (0,dy) x (=h, h),
I :=(0,dy) x (0,dy) x{z=h}, Tyu:=(0,dy)x (0,dy) x {z=—h}.
Remark 3.1. Equation (3.2b) is, of course, a simple consequence of the divergence operator

applied to (3.2a). However, we include it explicitly in order to highlight its importance in our
subsequent elliptic estimates and analyticity theory.

Remark 3.2. We point out that sufficiently regular solutions of (2.1) are solutions of (3.2a)—
(3.2b), and vice versa.

4. A High—Order Perturbation of Envelopes method

In our previous work [26,32] we pursued the solution of (3.2) not by a classical volumetric
approach, but rather by a perturbative one where we thought of our configuration as a small
deviation from a simpler, constant, structure,

€W (x,y,2) =E(1 = 8E(x, y,2)) =€ — 8(EE(x, y, 2)),

where § < 1. We showed that, provided that £ is sufficiently smooth, the solution depends an-
alytically on § and can be expressed as a convergent Taylor series. Now, it is known that the
coefficients of this series determine the solution throughout the entire domain of analyticity of
E which, we now show, is much larger than the disk of convergence of this series. In fact, it
contains the whole real line; see Fig. 1.

To investigate this claim we study perturbations of the form

e,y ) =&l -pE(x,y.2). peR,
by setting p = pg + & where py is arbitrary, but real, while § < 1. We then write

eV (x,y,2) =& — p&(x,y,72))
=&(1 — po€(x,y,2)) — 8(EE(x, ,2))
= EO(X» Y, Z) - S(Eg(xs Y, Z))s
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which defines the base permittivity envelope

EO(-xv y’ Z) = é(l - pog(x’ yv Z))

In contrast to our previous work [32], this base value is not constant, but rather dependent upon
all of the spatial variables, (x, v, z).
We posit that the field E = E(x, y, z; §) depends analytically upon § so that

oo
E=E(x,y,28) =Y Eix,y,2)8" (4.1)
=0

converges strongly in a function space. In this way we establish that the field, E, is analytic in
a disk about an arbitrary real value of p = pg € R. It is not difficult to see that these E;, must
satisfy

curl [curl [E(]] — &k3 E¢ = Eok Fy, in Q, (4.2a)
— div [EokéEg] = div [éokg Fg] , inQ, (4.2b)
curl [E¢] x Ny — (iopo)Ty[Ny x (E¢ X Ny)] = 8¢,00, at Ty, (4.2¢)
curl[E¢] X Ny — (iwoug) T[Ny X (E¢ X Ny)] =0, at 'y, (4.2d)
E¢(x +dy,y +dy,2) =expliad, +ifdy)E¢(x,y,2), (4.2¢)
where
€€(x,y,2)
FIZZFK(X,)”Z)Z__—EZ—I(X,)’»Z)’ (42f)
€(x,y,2)

and &y o is the Kronecker delta function.
There are many possibilities for the envelope function £(x, y, z) and each leads to a slightly
different perturbation approach. For instance, consider the function

tanh(w(z — a)) — tanh(w(z — b))
> )

q)a,b(z) =

with sharpness parameter w, which is effectively zero outside the interval (a, b) while being
essentially one inside (a, b), cf. [26]. We can approximate a slab of material (of permittivity €)
with thickness 2d and a gap of width 2g in vacuum by selecting [32]

e—¢€

e=1, €(x,y,z)=< z )cb_d,d(z){l—cb_g,g(x)}, p0=0, &=1.

See Fig. 2 with the choices d = 1/4, g = 1/10, and w = 50 on the cell [—1, 1] x [—1, 1].
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Envelope function &(z, z)

Permittivity function e(z, z)

0.8 0.8

0.6
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-0.4

-0.6 -0.6
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o f

-1 -0.5 0 0.5 1 -1 -0.5
T T

Fig. 2. Contour plots of £(x, z) (left) and eW(x,z) (right).

5. Function spaces

In this section, we present function spaces and theoretical notions that are necessary for our
analysis. Due to the very weak formulation of the Maxwell equations we employ, espoused
by Bao & Li [2], our function spaces are quite different from those used in our previous
work [26,32]. In fact we move to the functional framework outlined in Section 3.3.1 of [2] of
(o, B)—quasiperiodic H (curl) and H (div) functions. More specifically

H (curl) = H (curl, Q) = {u e L2()? | curl[u] € L*(Q)?,
¢t u(0,y,2) x ity =u(dy, y,2) X iy,

ePhu(x,0,7) x iy =u(x,dy,z) x ﬁy] ,

where 71, = (1,0,0) and 71, = (0, 1, 0), and

el ceury = el + lleurd [u]|f2 .
Additionally,
H(div) = H(div, Q) = [u e L(Q)° | div[u] € L*(Q),
ey (0, v,2) X iy =u(dy, y,2) X Ay,
ePhy(x,0,7) x iy =u(x,dy,7) x ﬁy} ,
and

el 3 aivy = llell3 2 + lldiv [l )13 -

Due to the particular structure of the inhomogeneous Maxwell equations, we can simplify the
statement and proof of our theorems by introducing the (€o(x, y, z)k%)—dependent space
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X = X (G, Q) = {u € H(curl, Q) | (2ok2u) € H (div, Q)} ,
with norm

2

2 2 = 12
ully = llu €0k, uH .
e = ey + RG]

In addition, we require interfacial versions of the spaces H(curl) and H(div) at the artificial
boundaries I', = {z = h} and 'y, = {z = —h}, namely

H™ ' (curl) = H~?(curl, T,)
- lu e H V2,3, curly, u e H™ V(0% uf = 0] ,
H~'2(div) = H™'2(div, T\)
= {u e H V2,3 dive, u € HV2 (0, uf = 0} _
We point out that the final condition in the definition of these spaces, u* = 0, is due to the fact

that the boundaries, I';,, are flat (see [2], page 64). For these, the norms can be computed [2]
from

’ 2

2
AX Ay 2 Ay A X
- ”p,q) + |ip.q]”+ )“P”P,q — Bqttp 4
[e1lf =dedy Y )
Ul g —172(curry -= Gxy 5 ’
p=—00g=—00 1 + Olp + ﬁq

2 2
AX Ay 2 ~AX A-y
) —dd Sl “p,q’ +ip.q] +)°‘p”p,q+:3q“p,q‘

el = ey D2 22 ——
p=—00g=—00 14 oy + ﬁq

We also recall the space of s-times continuously differentiable functions with Holder norm

[v|cs = max  max afa;vm‘

0<t+r<smef{x,y,z} Lo

We close with an essential result [12,27] required for our later proofs.

Lemma 5.1. Let g € C1(Q), u € H(curl, ), v € H(div, Q), where  is a subset of R3, then
gu € H(curl, Q) and gv € H(div, Q). Furthermore,

g2l prceurty < M) 1€le Il gy eury
gl g (aivy = M) [glcr vl i aivy »
where M is some positive constant.
Finally, we recall the following elementary result [28,26].
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Lemma 5.2. Let s > 0 be an integer, then there exists a constant S > 0 such that

N

(s + 1)? s J (s +1)2 )
]-X:(:)(S—J'Jrl)z(jﬂ)2 =5 ;)g(s—j+l)2(j_r+1)2(r+l)2 <S5

6. Analytic continuation

At this point we are in a position to establish analyticity of the full electric field in a neighbor-
hood of any real value py by demonstrating the analytic dependence of E = E(x, y, z; §) upon 8
sufficiently small. More specifically, we show that the expansion (4.1) converges strongly in an
appropriate function space.

For this we require an elliptic estimate for our inductive proof which is established in Ap-
pendix A. For future convenience, we define the following differential operators associated to
the Maxwell system

LoE := curl [curl [E]] — &(x, y, D)kZE, in Q,
B E :=curl[E] X Ny, — (iwpg) T[Ny X (E X Np)], at [y,

form € {u, w}. Asis well known [2], the issue of uniqueness of solutions to the Maxwell problem

LoV =0, in €, (6.1a)
—div [@kdV ] =0, inQ, (6.1b)
B,V =0, aty, (6.1¢)
B,V =0, at "y, (6.1d)
V(x+dc,y+dy,z) =expliad, +ifd))V(x,y,2), (6.1¢)

cf. (4.2), which should have only the trivial solution V = 0, is a subtle one and certain illu-
minating frequencies w (alternatively wavenumbers ko) will induce non—uniqueness in some
configurations. Unfortunately a precise characterization of the set of forbidden frequencies is
elusive and all that is known is that it is countable and accumulates at infinity [2]. To accommo-
date this state of affairs we define the set of permissible configurations

P :={(w, €9) | V =0 is the unique solution of (6.1)}. (6.2)
With this we can now state the following fundamental elliptic regularity result.

Theorem 6.1. If (w, &) € P, & € L®(RQ), (éok}F) € H(div, ), Q € H~1/2(div,T,,), and R €
H~1Y2(div, Ty,), then there exists a unique solution E € X (€y, Q) of

LoE =k} F, inQ, (6.3a)
— div [éokgE] = div [éong] : in Q. (6.3b)
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BMEIQ’ atru,
BwE:R, atrw,
E(-x +dX9y +dys Z) :exp(iadx +lﬂdy)E(-xv ys Z)7

satisfying

IE|x < C. <Héok§F” 1O 12 + ||R||H-./z(div)) ,

H (div)

where C, > 0 is a positive constant.

We can now prove the following analytic continuation result.

(6.3¢)
(6.3d)
(6.3¢)

(6.4)

Theorem 6.2. If (w, &) € P, €y € L®(RQ), and (€ /&) € C'(Q) then the series (4.1) converges

strongly. More precisely,
IElx < KB, V=0,

for some constants K, B > 0.

(6.5)

Proof. We prove the estimate (6.5) by induction. For £ = 0 the system (4.2) can be written as

LoEy=0, in 2,
— div [éokgEo] —0, inQ,
B.Ey=09, at',,
ByEy=0, at 'y,

Eo(x +ds. y +dy, 2) = explicedy + iBdy) Eo(x, y. 2).

We can apply Theorem 6.1 with F =0, Q = ¢, and R =0 to obtain (6.5)

”EZHX S Ce ”¢”H—I/2(div) =K.

Next, we assume that (6.5) is true for all £ < L and apply Theorem 6.1 to the system (4.2) for

Ep with F = —€(£/€9)Er—1 and Q = R =0. This gives

E/ly<C ‘HFH

lELIIx < Ce |€0kyFL .
< | @k (e /@E|,
< CoeM |E 70l || Gk3EL_y HH(diV)

< C,éM|E/ép|c1 KBE!
<KB",
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provided that
B> C.eM|E/eplcr s
and we are done. O

Remark 6.1. At this point we comment on the smoothness requirements we make on &(x, y, 7)
and €p(x, y,z) = €(1 — po€(x, y, z)). First, we ask that €y € L* which imposes a (completely
appropriate) boundedness requirement on £(x,y, z). However, we also ask that £(x,y,z)/
€o(x,y,z2) eC I which puts more complicated size requirements on po€(x,y, z) measured in
the C! norm. However, it is clear that | pol IE(x, y,2)|c1 cannot be large and must not be too
small.

From this we can derive the exponential order of convergence of this HOPE method. More
precisely, defining the L—th partial sum of (4.1)

L

EM(x,y,2;8) =) Eu(x,y,2)8",
=0

we obtain the following error estimate.

Theorem 6.3. If (w, €9) € P, €9 € L°(R2), and E is the unique solution of (3.2), under the
assumptions of Theorem 6.2 we have the estimate

HE _EL HX <2K(BS)LH,
for some constants K, B > 0, provided that |§| < 1/(2B).

Proof. Since

o0

E(x.y.2)— E'(x.y.2)= ) Eux.y. 28",
{=L+1

we have, by Theorem 6.2,
0o 0o
|- |, = HZH IEelx 8" < HZH KB's'.
By gathering terms and re—-indexing we have

K(BS)L+1
1-Bé

’

|- < KBo)-! S (B8’ =
=0

for |6 B| < 1, where we have used the elementary fact that
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provided that || < 1. If we choose, say |6 B| < 1/2 then

1

—<2’
1—(BS) —

and
HE _EL HX <2K(BS!. o

Remark 6.2. Returning to the consideration of smoothness properties of the permittivity en-
velope, £(x,y,z), we note that this information is reflected in the size of B as we have just
demonstrated in the previous two results: Larger |€|~1 demands smaller B and a more restricted
set of §. In addition, for the same value of § the convergence will be slower if B is larger. These
issues in the two dimensional setting are investigated in our previous work [26] and we refer the
interested reader to this.

7. Joint analyticity
In this section we show that the solution E (x, y, z; §) of (3.2) is jointly analytic with respect
to both parameter, §, and spatial variables, (x, y, z). For this we need an appropriate notion of

analyticity which we give in the following definition of C’.

Definition 7.1. Given an integer g > 0, if the functions f = f(x, y) and £ =E(x, y, 7) are real
analytic and satisfy the following estimates

8;8; f s " o!
T PN TS VR 12
950y0; P A
- J * < ,
R T W TR VN (R N e

for all r,z, s > 0 and constants Cy,Cg,n,0,¢ > 0, then f € C;’(Fm), m € {u,w}, and &£ €
C®(Q).
q

Here C(‘; is the space of real analytic functions with radius of convergence (specified by 7, 6,
and ¢) measured in the C? norm. It is clear that the incident radiation function ¢, (3.1), is jointly
analytic in x and y as we now explicitly state.

Lemma 7.1. The function ¢ (x, y) defined in (3.1) is real analytic and satisfies

870!
r 40!

nr 9[
r+D2@E+1)2

<Cy
H-1/2(div)

forallr,t >0 and some constants Cy, 1,0 > 0.

120



D.P. Nicholls and L. Vo Journal of Differential Equations 422 (2025) 106-151

Now we present the fundamental elliptic estimate which is required in our estimates. (It is
proven in Appendix B.)

Theorem 7.1. Given any integer g > 0, if (w, €9) € P, €p € C;(Q)r such that

97919° r ot s
— 2 &) <Cq L d ,
(r+1t+s)! o r+D2E+D2(s+1)2

forallr,t,s >0 and some constants C¢,,n,0,¢ > 0, and (éok(z)F) € C?(Q) such that

"9t o r 9! K
_xyz [Eok%F] <Cp n ¢ ,
(r+1t+s)! , (r+1D2@+1)2 (s +1)2

H (div)

forallr,t,s >0 and some constant Cr > 0, and Q € C*(I'y) and R € C®(T"y) satisfying

or ot r o!
X y' ch%ﬁ’
O gy CFDIEHD)
a"al‘y r 91
o = TR T
A H-12(div)

forall r,t >0 and some constants Cr, Cg > 0. Then, there exists a unique solution E € C”(Q)

of

LoE = &K F, in Q, (7.1a)
— div [éokgE] = div [éong] , inQ, (7.1b)
BLE =0, at Ty, (7.1¢c)
BwE =R, at Ty, (7.1d)
E(x+dy,y+dy, 2) =" TPhE(x y, 2), (7.1e)
satisfying
FUR G r o' K
D% gl o<, S (7.2)
(r+t+s)! r+D2@E+ D2 (s+1)2

forallr,t,s >0 where
C,=C(Cr+Cg+Cg) >0,
and C > 0 is a constant.
We now give the recursive estimate which is essential for our joint analyticity result.
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Lemma 7.2. Given any integer q > 0, if (w, €y) € P; €, (£/€) € C;’(Q), such that

oatas -c n" 6! ¢
it Cr+D2E+ D2 (s+ D2’
370105 n o' s
SR ACT ¥ oJF3 <Csre ,
it ot/ o oG D2+ D2 s+ 1)

forallr,t,s > 0 and some constants Cg,, Ceey- 1,0, ¢ > 0, and

3ra! 9 r ot s
_ % gl <kxpt—" € Vi<l
(r+1t+s)! X r+D2E+D2(s+1)2

forallr,t,s >0 and for some constants K, B > 0. Then,

979 o 5 r o' K
#[(gokg)FL:I <CKBL! n . . ¢ - (13)
r+t+s)! H(div) F+D>@E+D>(s+1)

forallr,t,s >0 and some constant C > 0.
Proof. Using Leibniz’s rule, we have that
8;8;85 \F 8’8§8s 2 (€ )N E
m[( 0 0) L] m[(fo 0)(—€(E/€0) L—l)]
o 8;8 [(5/_ e 2E ]
=———2 = €0)€ _
ICETEITE R
rltls! 3t_k as—t
=_—¢ [E/é€o]
<r+r+s>';§§<<r—n'a Dl — 0!
ol oy alr.
X (ﬁﬁE[EOkOEl‘_I] .
Using the inequality r!t!s! < (r 4+t + 5)!, we obtain
979! 93
oo (D]
’ H (div)
S () (£
<é 18/ ) | 52 [k B
—_ ) 1 (g — )2 AN
o0 =0 F—jNeE—~n!'E—-20 Jjr k! 2! H(div)

Continuing
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arat 98 r—j a)t)—k as—[

r t N
0
&[(golﬁ)p ] <emY YN L [£/&]
(r+t+s)! Hdiv) k=0 =0 r—jNeE-—~0!'s—20 cl
0O s
R [EokoEL—l
H(div)
r t N nrfj
<eM Cereop——
91‘7]( é-S*e
X
t—k+D2(—L+1)2
x K B! i ot ¢
G+D2k+D2E+1)2
r 9! N
<EMCgsKBE 3

r+ 12 @ +1)2% (s + 1)

r

r+1)? d (t + 1)
X;)<r—j+1)2(j+1>2§(z—k+1)2(k+1>2

y (s + 1)
x g GG—C+ D2 +1)2

nr 91 é-S
rFr+D2@E+D2(s+1D2

<EMCge)S’K B!
where S comes from Lemma 5.2. If we choose
C > EMCg e, S°,
the proof is complete. O

We conclude with our joint analyticity theorem.

Theorem 7.2. Given any integer g > 0, if (w, €9) € P; €9, (E/€9) € C[‘I"(Q), such that

979793

X7yUz

nr 9[ é-S
TV &
rrits)?

< (C: ,
DD+ D)2

- CS ) nr 0[ é-S
SO I+ 1) s+ DY

ratqs
x Y%y Yz

ca

for all r,t,s > 0 and some constants Cg,, Cgre,,1,0,¢ > 0. Then the series (4.1) converges
strongly. Moreover the E¢(x,y, z) satisfy the joint analyticity estimate
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ara{as r o! s
g <KB' - (7.4)
r+r+9! |, r+D2@¢+1D*(s+1)2

forall ¢,r, t,s >0 and constants K, B > 0.

Proof. We prove (7.4) by induction, beginning with £ = 0. Applying Theorem 7.1 with F =0,
0 = ¢, and R =0 we obtain

ol oS r '
%% g chb”_@_,
(r+1+s)! (r+ 1?2t + 1)?

for all r, t, s > 0 which establishes (7.4) with K := Cy.
Next we assume that (7.4) is valid for all £ < L. With £ = L we invoke Lemma 7.2 and apply
Theorem 7.1 with F = F;, Cr = CK B!, 0 =0, and R =0, to arrive at

079l s . r t s
iEL §CCKBL_1 n 4 ¢ ,
r+t+s)! r+D2E+D2(s+1)2

for all r, ¢, s > 0. The proof is complete by choosing B > CC. O
8. Numerical analytic continuation

In our companion paper [32] we described an algorithm which implements a numerical
approximation of the recursions (4.2). We demonstrated the rapid, stable, and highly accurate be-
havior an implementation of this method is able to achieve [32]. However, the code was severely
challenged by the large size of the perturbation parameter, § = 1, which is required to realize the
goal geometry (identically zero/one to indicate the absence/presence of a material). The reason
for this behavior is that this value of § is near the boundary of the disk of convergence of the
expansion (4.1) and we simply summed a truncation of this series in a straightforward manner,
a procedure we term “Taylor summation.” There are, of course, alternative approaches to ap-
proximating this sum, many of which attempt a numerical analytic continuation. Using the most
popular of these, Padé approximation [1], we now investigate how the convergence of the most
challenging of the computations found in [32] can be significantly enhanced using this technique,
a result which the theory of this manuscript justifies. We now provide a brief discussion of the
numerical method and demonstrate our results.

8.1. Implementation

In [32] we described a numerical HOPE algorithm which begins with a truncation of the
expansion (4.1) at order £ = L,

L

E(x,y,z:8)~ EX(x,y.2:8) =y E(x, y,2)8". @.1)
=0
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Each of the functions E, must approximately satisfy (4.2) which we enforce with a High—Order
Spectral (HOS) method [15,6,4,38]. Due to the quasiperiodic lateral boundary conditions, we
used a Fourier—Chebyshev method which approximates

Ny/2—1 Ny/2—1

T SR SR S TR S
p=—Ny/2q=—Ny/2r=0

and 7} is the r—th Cheybshev polynomial. To find the E ¢.p.q,r We adopt the collocation approach:
The equations (4.2) must be true at the gridpoints

{xj=j(d/N:)|0<j<Ny—1}, {yk=k(dy/Ny)|0<k<N,—1},
{zm =hcos(mm/N;) |0 <m < N_}.

This demands the solution of a system of linear equations which can be achieved in an efficient
and stable manner with the repeated use of fast Fourier and Chebyshev transforms [15,6,4,38].

In the theorems above we have demonstrated that the region of analyticity of the series (4.1)
contains the entire real axis. One way to not only access this extended region of analyticity, but
also realize improved rates of convergence inside the disk of analyticity centered at the origin,
is the classical technique of Padé approximation [1]. Padé approximation seeks to estimate the
truncated Taylor series f(§) = Zzg‘:o f¢8¢ by the rational function

M M m
[%}(3%—“ O _ Zmoon®® -y,

NG YN b

and

[%} (8) = [(5) + OEMHVH),

well-known formulas for the coefficients {a,,, b,,} can be found in [1]. These Padé approximants
have stunning properties of enhanced convergence, and we point the interested reader to § 2.2 of
[1] and the calculations in § 8.3 of [3] for a complete discussion.

8.2. The Method of Manufactured Solutions
To test our implementation, we utilized the Method of Manufactured Solutions (MMS) [5,

34,35]. For this consider the general system of partial differential equations subject to generic
boundary conditions

Pv=0, in €,
Bv=0, at 0Q2.

It is usually just as easy to implement a numerical algorithm to solve the nonhomogeneous ver-
sion of this set of equations
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Pv=F, in €,
Bv=J, at 0%2.

To validate our code we began with the “manufactured solution,” v, and set
Fy:=Pv, J,:=DBv.

Therefore, given {F,, J,} we had an exact solution of the nonhomogeneous problem, namely v.
While this does not prove an implementation to be correct, if the function v is chosen to imitate
the behavior of desired solutions (e.g., satisfying the boundary conditions exactly) then this gives
us confidence in our algorithm.

In the present setting we considered the representative Maxwell problem, cf. (3.2),

curl [curl [3]] — Vit =F,, in Q,
— div [eVi30] = div [V F,]. inQ,
curl [ﬁ] X Ny — (oup) Ty [Ny x (0 X N,)] = Oy, at "y,
curl [3] x Ny — (iwpo) Tw[Nw X (0 X Ny)] = Ry, at Ty,

U(x +dx, y +dy, z) =expliad, +ifdy)0(x, y, 2),
with
dx=dy=27[, h=5/2, ko=13, 6=¢=0,

and the (biperiodic) manufactured solution,

A ’
ix,y,2)=| A2 eiﬂtsx+iﬁt)'+il{v(;)z7

A3

ALy + A2B)

A=1. Ay=2 A
1=1, 2= 3= B
4 iy

We coupled this with (essentially) the choice of the envelope function mentioned above in § 4,

e—¢

€=0.9, 5(x,y,z)=< z )cb_d,d(z){l—q%h(x)},

where we selected
a=mn/2, b=3n/2, d=1/4, §=1.

For our test we supplied the “exact” input data, {F,, Q,, Ry} to our HOPE algorithm and com-
pared the output of this, v?PP™% | with v by computing the error
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oaa Error versus L Error versus L
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Fig. 3. Errors, (8.2), in HOPE simulation, with both Taylor and Padé summation, of a large deviation configuration (¢ =
1.6) with transition parameter w = 2 (left: smooth transition) and w = 200 (right: sharp transition) versus perturbation
order L. (Ny =Ny =N;=24,5=1.)

Error := |0 — 9"PP%| . (8.2)

To exhibit the behavior of our scheme we describe results in the “large deviation” (¢ = 1.6)
regime [32], which was further challenged by studying the effect of the sharpness of the tran-
sition from € to € in £(x, y, z; w) by choosing w = 2 (smooth transition) and w = 200 (sharp
transition).

We display our findings in Fig. 3 with transition parameter choices w = 2 (left: smooth tran-
sition) and w = 200 (right: sharp transition), for both Taylor and Padé summation. We chose
d=1and Ny = Ny, = N, =24, and note the steady and stable convergence of our method, both
with Taylor and Padé approximation. However, it is clear that Padé summation enables greatly
enhanced accuracy in each case. In particular, for w = 2 full precision (error on the order 10~!3)
is realized after only 20 terms with Padé while Taylor requires 35 orders for similar results. Ad-
ditionally, when w = 200 we achieved a relative error of 10~!3 by perturbation order L = 25
with Padé, while Taylor summation only ever realizes an error of 10~% by L = 40.

9. Conclusions

In this paper we have demonstrated how the solutions of the vector Maxwell equations in
three dimensions, which govern the scattering of incident radiation by a periodic structure, can
be analytically continued in perturbation parameter, §, beyond the disk of convergence centered at
the origin to a neighborhood of the entire real axis. Furthermore, we have demonstrated the joint
analyticity of these solutions with respect to all spatial variables provided that the permittivity
envelope itself is jointly analytic. These results complete the analysis of HOPE methods for
the study of analyticity properties of solutions to the relevant vector Maxwell equations. The
proof of these results demanded significant enhancements of the current analytical machinery, in
particular we required a new analysis of the weak formulation of the problem which takes into
account inhomogeneous terms which was not considered in the previous work of Bao & Li [2].
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Appendix A. The Proof of Theorem 6.1

Following Bao & Li [2] we dot the Maxwell equation (6.32) with w € H (curl) and integrate
over 2

/(curl [curl [E]]) - wdV — &} / E -wdV = f(éong) ~wdV.
Q Q Q
We now use the first vector Green theorem [2]

/u - (curl[o curl[v]]) dV =/ocurl [u]-curl[v] dV — %a(u x curl [v]) - vdS,

Q Q Q
to obtain (withu =w,v=E,and o = 1)
/curl [E]-curl[w] AV — f(i) x curl [E]) - N dS — kgfe@)E cwdV = /(éong) -wdV.
Q aQ Q Q
Using the triple product identity a - (b X ¢) =b - (¢ x a) we find
/curl[E] -curl[w] AV — ?g W - (curl[E] x N)dS —ké/é”E cwdV = /(éong) -wdV.
Q aQ Q Q

As E and w are (o, B)—quasiperiodic, the contributions from the boundary of €2 reduce to I';,
and Iy,

/curl [E]-curl[w] dV — / w- (curl[E] x N,)dS — / w - (curl [E] X Ny)dS
Q Iy Iy

—kgfe@)E-wdvzf(éong)-wdv.
Q Q

Using the boundary conditions at z = +h we find
/curl[E] ~curl [w] dV — ké/e“’)E ~wdV

Q Q
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—/u_) AGwpo)Tu[Ny x (E X N1+ Q} dS
Iy

— f W - {(iwpo) Tw[Nw X (E X Ny)l+ R} dS = f(gong) ~wdV.
Ty Q

We write this as
a(E, w) = L{w], (A.1)
where
a(E, w) = (curl [E], curl [w])g — k2 (e<”>E, w)Q
—(((opo) Tu[Nu x (E x Ny, wir, — ((ouo) Tw[Nw X (E X Ny)l, wr,,

and
Liw] = (@K F).w)_ +(Q,w)r, + (R wir, .

In these we use the duality pairings

(u,v)q ::/u~ﬁdV, (u,v)r, ::/u~ﬁdS.

Q T

We now seek a solution, E € H (curl), of this weak formulation by writing the E, w € H (curl)
in the form

E=u+Vu, w=0v+ Vv,

u,veH, u,veH(}, Vu, Vv e Ht.
In these we use the spaces H and H' defined in Bao & Li [2]
H = {ii € H(curl) | div[éii] =0in £,
—k2&oii - Ny + divr,, [(iopto) Tuliir, 1] = 0 at Fm} ,
Hi={ii|ﬁ=w,ueH3},

Hy={ueH' /udV:O
Q

Inserting these into our weak form we find
a(i +Vu,v+Vv)=L[v+ Vvl
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Using the fact that a(u, Vv) =0, [2], we have
a(ii, ) +a(Vu,v) +a(Vu, Vv) = L[V] + L[Vv],
which we solve in two phases: First for the terms involving Vv, and then for the remaining terms.
A.l. Finding a solution I: H*
We begin by determining # from
a(Vu,Vv) = L[Vv].
To proceed we note the following result.

Lemma A.1. We have

(Q,Vu)r, = (=divr, [Q], v)r,,
(R, Vv)r, = (=divr, [R], v)r

w?

((gong), W)Q = (— div [(éong)] , v)g + ((Eok3F) - N, v)r, + (k3 F) - N, v)r, .

Proof. From integration—by—parts,

(0, Voir, =/ 0. (Vr,D)dS
Ty

=fdivru [0 -] dS—/dinu [Q]vdS

Fu Fu

=[Q-'=d —/divru [QlodS

Ty

= <_diVFM [Q] ’ U)[‘u,

by the periodicity of the product Q - v. In a similar fashion we have

(F,Vv)g = /(éong) Vo dV

Q

- / div [(eong)ﬁ] dv — / div [(éong)] 5dV
Q Q

- f((éong) N)dS — / div| @k F)|5dv
0 Q
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- / div [(éong)] 5dV + /((éong) N dS + /((éong) "N dS
Q ry Iy

= (—@k3F), U)Q + (k3 F) - N, v)r, + (k3 F) - N,v)r,. O
Using the surface gradient notation
Vr, u = Ny x (Vu X Ny,),
and the fact that curl [Vu] = curl [Vv] = 0, we find that
a(Vu, Vv) = —k} (€Vu, Vv)g
—((Gope)Ty[Vr,ul, Vr,v)r, — (((owo)Tyw[Vr,ul, Vr,v)r,,
and
LIVvl = ((@k3F). Vo) _+(Q. Vi, v)r, + (R, Vr, o),
Using Lemma A.1 we discover

a(Vu, Vv) = k3 (div[éVu], v)g
— k3 (€oVu - Ny, v)r, — k3 (& Vu - Ny, v)r,

+ (divr, [(@po) Tu[Vr,ul], v)r, + (divr, [(@po) Tw[Vr,ul], v)r,,

and

L[Vv]=— (div [(éokSF)] , v)Q + ((B0k2F) - Ny, )1, + ((E0k3F) - Ny, v)r,
— (divr, [Q], v)r, — (divr, [R], V)1, -

In this way (cf. Lemma 3.24 of [2]) we see that a(Vu, Vv) = L(Vv) is the weak formulation of
the elliptic problem

K3 div [&Vul = — div | Gok3 P Q.
— ke Vu - Ny + divr, [(iwpo) Tu[Vr,ul] = @k F) - N — divr, [Q], Ty,
— k& Vu - Ny +divr, [(iwpo) Tw[Vr, ul] = (€0k§ F) - N — divr, [R], T,

which has a unique solution u € HO1 (2) [2] that satisfies

lull gy = Ce{|div[@idm]| ,+ |@ordr)- n,

Py + ”diVFu [Q]HH—I/Z

+[@idry v+ v, R,
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or

- 72
lullyy < Ce { |@idr)| iy T 1Q-12am) + llRllHuz(div)} ' (A2)

A.2. Finding a solution II: H

We continue by considering

a(ii, v) +a(Vu,v) = L[V],

which, as we have recovered u, we rewrite as
a(i,v) = L[v] —a(Vu,v).
Bao & Li [2] (Theorem 3.28) demonstrate that, save for a countable number of frequencies w

(alternatively wavenumbers k), there exists a unique solution u € H (curl). Furthermore, from
the inf—sup estimate of Bao & Li [2] (Equation (4.83))

- -

a(u,v)
sup

———— >yt lullgeany. Y u € H(curl),
oveH (curl) 101 a curt)

for some y; > 0, we have the inequality

a(”_ia {5) Z V1 ”’;”H(curl) ”T)”H(curl) .

Therefore, from the continuity estimate established in the proof of Theorem 3.28 from Bao & Li

(2],

la(i, 0)| < C 1l g curty 191 cur) »

we can show that

Vi llil g curty 191 2 eurty < la (i, 9)] < [L[V]] + la(Vu, V)]
=|(@&r.3)_|+1(Q o, |+ R, D), |
+C ”Vu”H(curl) ”ﬁ”H(curl) .

From Lemma 3.15 of [2] we have

|(id, D)1, | < C il =172 iy 191 172 iy »
so that
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- - - 12 -
71 il ety 1 ey = | @RGP 1512

+ (121 a-1/2¢aiv) + 1R g=172(ivy) 19 =172 cun)

+ Clluell g 190 a1 cury -

Lemma 3.16 of [2] establishes that, for a given yg > 0,

N2l =12 curty < Yo ikl g cur) -

so that

12! ”’Z”H(curl) I 6” H (curl)
=

Clearly, by canceling ||V|| g7 cur)- there exists a constant C, > 0 such that

|@ok3F)

L + 0 (121 g-1/2av) + IRl g-12(aivy) + C ||M||H(; ] 191l & curt) -

1 ey < Ce { j@xn)|,

Hidv) + 1Ol g-1/2(giv) + ||R||H1/2(d1v)} .

By combining this with (A.2) we find

-
IEI Hcurl) = Ce { H (ko F) ” H (div)

+ 19l g-123iv) + ||R||H1/z(div)} . (A.3)
Next, simply applying the L? norm to both sides of (6.3b) we obtain

.= 2 M =22
Hdw [EOkOE] HL2 - Hdw [eko F] HL2 ‘
Since we now know that E € H (curl) we have E € L2, and, since &, € L,

) _ 2 _ 2
k3|, < tolux K IEN L2 < 1éolio B IE N i cun)

Now, recalling the definition of the H (div) norm,

ei2E| e2E| aiv [eo2E] |
”60 0 ”H(div) - HEO 0 HLZ + H v [EO 0 ] 2
2
< (02 ki I E I cunp + HéongHH(div) .

Estimate (A.3) delivers (6.4).
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Appendix B. The Proof of Theorem 7.1
To establish Theorem 7.1 we work by induction on the orders of spatial derivatives, beginning
with the x—derivative, moving to the y—derivative, and concluding with the z—derivative. To begin

this project we start with the following result on analyticity in x.

Theorem B.1. Given any integer ¢ > 0, if (w, €9) € P, €o € C;”(Q), such that

for all r > 0 and some constants Cg,, n > 0, and (Eong) € C®(R2) such that

<C n

r

X [ =12
— EokOF] <Cp————,

! [ H(div) (r +1)2

0
7

for all r > 0 and some constant Cg > 0, and Q € C®(I'",) and R € C®(T'y) satisfying

ar r
) =Ceiiye
: H=1/2(div) r+1)

ar r
=R < CRniZ,
r! H—I/Z(div) (r + l)

forall r > 0 and some constants Cr, Cg > 0. Then, there exists a unique solution E € C”(Q2) of

LoE = &k§F, in Q,
— div |Gk} E | =div [&k3 F | in 2,
B.E =0, at Ty,
BywE =R, at Ty,

E(x+dy,y+d,,z) =t px vy 7),

satisfying

r
X

r!

r

n
<C,———, B.1
x-S HD? ®-D

forall r > 0 where

C,=C(Cr+Cg+Cg) >0,
and C > 0 is a constant.
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Proof. We prove this theorem by induction on r > 0. When » = 0 we apply Theorem 6.1 to
conclude that

IE]x < Co (HéokéFH 10N 12y + ||R||Huz(div)> <c..

H(div)

We now assume (B.1) for all » <7 and seek to establish this estimate at » = . Applying the
differential operator 9. /r! to (7.1) delivers

ar
Lo [—XE] = &ki X, in Q,
r!
A 28; - [= 42 .
—div | €0k = E | =div [eokOX,], in ,
r!
o’ ar
B |:_XE:|=_XQ9 atI'y,
r! r!
o’ o’
By |:—XE]=—"R, at [y,
r! r!

o . oy 00
SE@ +dy,y+dy,0) = e’“"”’ﬂdyr—fE(x, ¥, 2),

where

X, = | ;[EkzF]—i— 0. % g
NN P A 0 :

and [A, B] := AB — BA is the commutator. With this we can express
AB=BA+[A, B]=BA —[B, A].

From Theorem 6.1 we have

o -2 oy o)
_—E f Ce HE()k0Xf . - + _—R 5
r! X H (div) r! H-1/2(div) r! H~1/2(div)
while Lemma B.1 gives
or g . ! v v
—FE| <C,{Cr—=+C,C C c .
AU { Frr D e T e TR

We are done provided that

C,>2C.(CF+Cg+Cg). n=2C.C. O
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Lemma B.1. Given any integer q > 0, if (w, €g) € P, €g € C(‘]"(Q), such that

r
_EO

" <Cg

T
ca r+1D*

Jor all r > 0 and some constants C¢,, n > 0, and (Eok(z)F) € C®(2) such that

r

n

[z .2
= [eokdF] <Cp—,
! [ H(div) (r +1)2

’ 0

r

for all r > 0 and some constant Cp > 0. Assuming

% p
r!

r

U
<C,——,
xS r+1)?

forallr <7 then

n 5 nrfl
<Cp——+C C——.
H (div) F(f+ D2 ¢ GF+1)?2

7

|03 x7

Proof. We note that

Eoko 7!
so that,
_ o . 2 o
HE()kOX; - =< = [EokoF] + || Lo, = E .
H(div) — || 7! H(div) r H (div)

The first term can be bounded above by

7

Ui
C =PI
GENE

by assumption. Regarding the second term, we have, for any r > 0,

|:£0, a—x] E=1Lg |:a—xE] _ % [LolET]
r! r! r!

r

dy _ 20 9% _ 2
=curl (curl | = E || —€okg—E — — [curl [curl[E]] — eokOE]
r! r! r!

20y Oy 2

_ " L T-

= _GOkOFE =+ F I:G()kOE:I .
The Leibniz rule tells us that
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ar 0 ) o 3]
I:ACO’ F:|E —EOkO E+kOZ (r_])' 'E

Setting r = we can estimate

p F—1 F—j
a7 . ay af
H[ﬁo’r'} i 5;k0 <(r-1)‘ it
H (div) H(div)
F—1 F—j j
9 9
<MY | ——é&| |-
| =D | :
J= C H (div)
r j—1 aj
<k2M g -iw]
0 XL—JU—J—W M e
=l F—j=1 j
n Uk
<kMY C: C,
0 Z CE—j-1+ DI+ 12
!
<kIMCzC,S——,
G = 1?2

and we choose

C>kiMCgS. O
The next step is to prove analyticity jointly in x and y.

Theorem B.2. Given any integer ¢ > 0, if (w, €9) € P, €o € CZ’(Q), such that

8’8’
(r —I—t)’

<C- LL
Cr+D2 @+ DY

for allr,t > 0 and some constants Cg,, 1,0 > 0, and (Eok(z)F) € C¥(2) such that

nr 9t

S CF 2 727
Hdiv) r+D=¢+1

forall r,t > 0 and some constant Cr > 0, and Q € C®(I'y) and R € C* (') satisfying

137



D.P. Nicholls and L. Vo Journal of Differential Equations 422 (2025) 106-151

dy a5 0 c n 0!
< S
i P RV
8;3; c r]r o!
— Rii’
(r+n! H2 i) r+D2@+1)?2

forall r,t >0 and some constants Cr, Cg > 0. Then, there exists a unique solution E € C”(Q)

of
LoE = &Kk F, in Q,
— div [ak3 E | = div[ ki F]. in 2,
B.E = Q, at Ty,
BywE =R, at Ty,
E(x+dy, y+dy,2) =" POE(x, y,2),
satisfying
8;8; EH <C n—rL
r+ot |, T+ DT e+ D

forallr,t > 0 where
C,=C(Cr+Cg+Cg) >0,

and C > 0 is a constant.

(B.2)

Proof. We prove this theorem by induction on ¢ > 0. When ¢t = 0 we apply Theorem B.1 to
establish (B.2). We now assume (B.2) for all r > 0 and 7 < 7 and seek to establish this estimate

att =1. Applying the differential operator (3, 8;) /(r +1)!'to (7.1) delivers

9o’
£0|: Al E:| =€0k(2)Yr,,,

r+ 0!
rat
=2 %Y TR )
—div |:60k0—(r +t)!E] =div [GokoYr,t] ;

ol 80!
B, *E|= Q.
r+1)! (r+1)!

Bw[ 3! E}_ 3! N

r+0!" | o+
95 wdoripd, Ox0y
E(x+dy,y+d,, z) =t 1Y _p(x y ),
CrnfE ey td)=e i t® Yo
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where

T 1 O 37!
Yy =—— 1 —2 |&kiF Lo, > |E}.
" Eok(z){(r—{—t)! [600 ]+ G F o

From Theorem 6.1 we have

araf rat rat
e IS (R I e e ’
(r+1)! (div) (r+n! H-1/2(div) (r+n! H~1/2(div)
while Lemma B.2 gives
8;3;; n" et_ B n" pi-1
<c.{c _ c,C _
T Fahs Forla+? & i ir)y
n" ot " ot
+C _ +C _ .
D7 A+ T D 1)

We are done provided that

C,22C(Cr+Co+Cp), 622CC. D

Lemma B.2. Given any integer g > 0, if (w, €9) € P, €9 € C;’)(Q), such that

-c 77r 9t
T+ D2+ 1)

t
379!
€0

r+1)

‘C‘I

for all r,t > 0 and some constants Cg,, 1,0 > 0, and (Eok(z)F) € C?(Q) such that

; ; ) nr o'
eoki F <C —_—
| I:GO 0 =CF 5 5
r+ 1) paw DD
forall r,t > 0 and some constant Cr > 0. Assuming

oot r t
% gl <, T ¥
r+nt|, (r+ Dt +1)?

forallr >0andt <t then

r)r o B nr Qt_—l

_kzy_ <C e Cci_i
HGO il = e D2 A2 T T D2 G )2

Proof. Very similar to that of Lemma B.1 and therefore omitted. O
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We are now in a position to prove Theorem 7.1. Once again, we work by induction, this time
on s, the order of the z derivative acting on E. As before, at s = 0 we use Theorem B.2 to

establish (7.2). We now assume (7.2),

379507 s n 0! s ’
(r+1t+s)! X——%r+n2a+n2@+1ﬂ

forall r,t > 0 and all s < 5. We now examine this estimate at order s = §. From the definition of

the X—norm we have

2 2 2

ralas

X7y

(r+t+3)!

979! 93

x Yy %z

(r4+t+3)!

aratai
_kz x Y9y 9z
Tl O +1+3)!

379195
Curl LZ_E
r+1t+3)!

2

H (curl)
2

+

L2

H (div)

970105 ’

r+t+3)!

L2

< 2
araﬁas
div [Eokg%E]
r

o O

* O +1+3)!

+

12 +t+35)!

2

L2

CHEIEH

x %y 9z

r+1+43)

ratqs

x%yYz
(r+t+5)!
2

+

curl [E]

L? L?

37! 8’
e

Al sy

L2
2

ratas
Ve - k%——éf?léi——E
(r+1t+3)! 3

37095

(r+1+3)!

2

2
+

L2

= {1+1@0 &)

L2

970103
0 curl[E éokg
4y UL A jeoky

,
Xy
.2 (r+t+s)!

=: {1 + |€o|2C| kg}h + 5L+ L.

The estimate of /;: Using the notation E = (E*, EY, E )T we obtain

8798 ? 2

x Yy Yz

r+1+5)!

05030,y

r+1+5)!

879! 93

X7y z ¥4

(r+1+35)!

X

1=

L? L2 L?
arat aE—l 2 2 2

Xy'z X

(r+t+5!°

5—1
0043 ,

(r+t+5)!°

3r3t,3§_1

XTyz z

_rrE 5,
r+1t+3)!

L? L? L?
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=Z1+Zr+ Zs.
To estimate Z; and Z;, we notice that

cutl [E]= (dyE* — 0,EY, 3. E* — 0, E*, 9 E” — 3y E¥)
= (0yE*, =0, E%, 0cEY —0,E*) + (—0,E”, 3.E*,0),

we obtain
(—=0.EY,0,E*,0) =curl [E] — (0, E*, =0y E%, 0, E¥ — 0,E™).
Therefore,
ratas—I1
1/2 _ xXTyUz _ y X T
{ZI+Z2} - (r—i—t—i—E)'( 8ZE aazE 70) L2
aratai—l
< Lz_curl[E]

(r+t+35)! 2

Pl tqs5—1
X ) ]
m(aﬁa —0,E%, 0, EY — d,E")
! 2
8rat8§—l
< szcurl[E]

(r+1t+5s)! 2
aral+]8§7] ar+]8t3§71
x“y z z X Yz z
(r+1+3)! 12 r+r+90 |,

Latas—1 145—1

8;* 8;8; 8;8;* 03 .
r+t+3)! 12 (r+t+3)! L2

Using the inequality (r +¢ +5 — 1)! < (r + ¢ + 5)! and the inductive hypothesis, (B.3), we have

(Z +Zz}l/2 <C n" 6! Cf—l
T+ DI+ D2 G- 14 1)?

7,/r 9t+1 é-s_—l
+2C, =
F+D2@E+14+D2GE-14+1)2
r+1 Qt s—1
+2c, n _ ¢
rF+1+D2@¢+1D2GE—1+1)2

_c (164D @D 1GEHD? o+ D21+ D
Bl “+27; & T2 R
nr 91 ;S

CrF G+ Gr
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With this and using the inequalities

- 12
CED7 4 s
s
(t+ 1)?
m<1, tz(),
we obtain
4486+ 8n n" 0! s
Zi+ 2% <cC ,
it 2 =g, ¢ r+D2@+1)2 G+ 1?2
nr 0[ ;5
=C,

‘r+ D2+ DG+ D

where ¢ > (4 4+ 860 + 8n). Next, we estimate Z3 by using the fact that
0.E*=div[E] — 0, E* —9,E’.

Therefore,

9r 9! s—1
V2= | 2 ==500,0,0.E9)7
r+1t+3)!

L2
9T ot 857]

Y I div[E]
(r+1+3)!

r+lqt q5—1
X ayaz

r+1+3)!

rat+1qs5—1
IRIAREE

r+1t+3)!

x y

+

L2

L? L?

=: Wi+ Wy 4+ Ws.

While W5 and W3 can be directly controlled by using the inductive hypothesis (B.3), W; can be
estimated as follows:

- 72 tas—1
L [[é% 93 div[E]
okZ (r +1+5)! L
ratqs—1

<

min |y kg 12
- 1 (r+t+5-—DIG+1)? n" 6! IS
T min|élk} (41 45)! 520 T +D2E+D2GE+1)2
- 1 i nr 0t CE
T minlélkZ2 ¢+ D2+ D2+ 1)?

r 9[ K
=C, ) 2 2 —C 2
F+D2E+D2GE+1)

_kz x Yy Yz diviE
ok sy VLD

where ¢ > 4/(min |€g| kg), which completes our estimation of /.

142



D.P. Nicholls and L. Vo Journal of Differential Equations 422 (2025) 106-151

The estimate of /: We begin with the fact that

curl [8,E] = (zsyaZEZ —02EY, 92E* — 0,9 E%, 9,0, EY — ayazEX) .

So,
or ol s—1
n*= X2, curl [E]
(r+t+73s)! 12
8;3’857]
yYz
= mcurl[azE]
! 2
1+1g5—1 +14f 951
- 8;8y 07 £ oy ayag 0. E°
T (r+t+9)! .2 r+er+3)! " L2
1oz 451 195—1
art 3;8; y 3;8;+ 07 .
r4+t+35!° PR [T ¢ o
t a5—1 t as—1
0,05,07 2y 0,05,0; 2z
r+r+35!* o |+ D! : 12

= X1+ Xo+ X3+ Xa+ X5+ Xe.
The terms X and X5 are similar to Z3 while the terms X3 and X4 can be controlled by using the
same techniques as shown in bounding Z; and Z;. Since X5 and X¢ are quite similar to estimate,
we fix on the term Xs.
To begin this estimation, we can write the governing equation, LoE = Eok(%F ,as
—~AE + Vdiv[E] — kjéE = &k} F,

which implies that

IZEY = —E0k§ F¥ — k§e0E” — 92E” + 3,9, E* + 8,0, E-.

Therefore,
s—1
Xs— 8;8;8; 2 oy
r+r4+3!°* 12
arataf—l rataqs—l1 ar+28ta§—1
< Xy—l_'(gok%Fy) + LZ_‘@OIC(%E)’) + x—yz_' y

(r+1+39)! o D! P GRS L
8r+lat+18§—1 arat+185—l
x 9 % x x% 9% z
(r+1t+7%)! P (G2 ) ¢ L

=P+ P>+ P3+ P4+ Ps.
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It is clear that P; can be estimated by using the analyticity assumption on EokéF , and the terms
P3 and P4 can be controlled by the inductive hypothesis (B.3). On the other hand, the term P;s
can be estimated by using the same techniques we applied to Z3. It remains to bound P,. Using
Leibniz’s rule, for any 7, ¢, s > 0, we have

979503 Flils! a k 93¢
y =72
(r+1+s )v( B =7 +r+s)'ZZZ((r—p'(t—k)'(s—mz °k°>

0 k=0 £=0

i ok o
jr k! 2!

Using the triangle inequality, the fact that r!¢!(s — 1)! < (r + ¢ +5)!, the hypotheses on €y, and
the inductive hypothesis (B.3) we obtain

9ol 5—1

x 9y % )
———— (€ok{ E
4145 kB

L2

_ G-t !
(r +t4+9)! ZZZ

j=0k=0 £=0

r J at—k as 1-¢ a] ak 8;3
oGk _'FFE
DR G-T-D et )|,

ok g
2
jl k! 2! 2

o gk gree
€0k,
DR G- 1- 0|

Yyl

Jj=0k=0£{=0

rot s-1 91—k 1=t

=22 2 .G +1)2(t k+12G—1—+1)2

Jj=0k=0¢=0

n o ¢t
% Qe(j + D2 k+D2E+1)2
nr et ;-sfl
F+D2E+D2GE—-14+1)2

Sggcéo
r t 5—1 2 < 2
r+ 12+ 1) G-1+1)

X;)kzog(r JHD2GH+D2—k+ D2k + 12 G =1 =L+ D2+ 1)2

3 (E‘i‘ 1)2 nr 0! ;—A_'
2¢ D2+ DEE+1)?
nr 9[ cf
Sge(r-i- DZ @+ 12 G+ D2

<C,C¢S

for some ¢ > 4CgOS3.
The estimate of /3: We conclude with the computation

8)‘ 1 A
1/2 - 2 X7 y~z .
I, " = ki—————div[E
} Heoo(r+r+§)! g

L2
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t t
5 8;8y82 . e 8;8}82 £
Oo(r—i-t—i—s)'x 600(r+t+s)'y
L2 ’ L2
8’8{83
+ lekd = g g
r+t+5s)! 2
ar+lal‘ a§71 aral‘+18§7]
0 g%azEx + Eokg# LEY
(r+1t+5s)! 12 (r+t+s)! 2
ratas
+ éokg—a"ayaz L E?
r+t+5)! 2
=:L1+ L+ Ls.

The terms L; and L, are similar to Z; and Z,, and we estimate them in the same fashion. We
estimate L3 in the following way. We begin by noting that div [EokéE ] = —div [éok(%F ] implies
that

8. (Bok2 E%) = —div [gong] — 3, (Bok2E®) — 8, (20k2EY),
which also gives
k20, E7 = — div [éong] — 3y (E0kG E) — 8y (E0k3 E¥) — 8, (Eokd) E-. (B.4)

In anticipation of our future estimation of higher derivatives of this term we use the commutator
notation to express

ratas

00 [ ko E°] =2 k2ﬂ[a E¥)+ UL IPRIPY
rtt45) L0 TR0 e L CETET

where, by Leibniz’s Rule,

9700 115! ol otk gie
_XVE ekl | E = 2ok?
|:(r+t+ T e (r+t+s')ZZZ r—])'(t—k)'(s—ﬁ)'[oo]

=0k=0¢=0
87 9y ot g
x £ [0.E%] | — (éoky) ————08,E°
ke (r+1+5)!
9h J al k 83‘—@

P15 ! ;
IR ZZZ <(r — D=k G — 0! [601‘0])

j=0k=0 ¢=0

oy 9 o
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Continuing

[ 370! o5

S 60"0}3 F=

and finally,

[ 379405

Tl EO"g} b =

Journal of Differential Equations 422 (2025) 106-151

at—k

IS J
(r+r+s')zz(<r—n'<t o! [® OD

0 k=0

3! o’

87 9y 83 5 07030
LIRSS 4 _(z Xy z
x s [0.E%] (eoko)( it )!aZE .

rlt!s! 3’_k 95—t

r t s—1 r Jj
Z =72
r+1+3) ZZZ( -G -0 [€°k0]>

j=0k=0 ¢=0

37 0% a¢

r rfj atfk

FIHIS! - B
MR (r+t+s') ZZ ((r - - & —k)! [ k2]>

y <___
1 k! §!

rlirls! n o,
k
TR /g()((r—j)! [& 0])

3y 9y 0 . _ o, 079%d] .
X(ﬁﬁﬁ[az“ @R
rlt!s! a 9y k a5t
ek]
(’““”2%%(0—1)'0—@'@ e>'[°°

37 0% a!

P15 rot—1 —j
(r+z+s')zoz(<r—1)'<t

k=0

37 9% 3

rils) = - B
MECETE Z((r—])' [ Oké])

k)! [ €0 0])
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8] af ai
x| =22 [0.E%] ).
jlt el s!
With this commutator notation, (B.4) implies that

arat 35 arat aE rat 85
- 72 xXTyUz z xoyUz =~ 72 z XYz =72 z
—=0,F —7[ k BE:I— ——= €oki | 0. E
eoo(r—l—t—i-i)! ¢ r+1t+3)! (€0k9)0: |: €0 0:| ¢

r+t+3"
arat a§ ar+1atva§
= T div [fkdF | - 2 ek e |
r+t+5)! r+t+5s)!
arat+la§ ratas
__Fy z [g k(z)Ey] e [3z(50k§)Ez]
r+1t+3)! (r+1t+3)!
ara! 3’
— | 2 kg | 0. EF.
(r+1t+5s)!
Proceeding, we find
r ot as_ 9r ot 85 8r+1 t, s—1
Gk 0 B = = div [k F | - 2, kg B
(r+rt+5s)! (r+1t+5s)! (r+1t+5s)!
195—1 51
B 3;3;—&— 32 ratqs

maz E()k%Ey:I - ﬁi)z [az(gokg)EZiI

37095
— | E Gk2 |6 EC
[(r+t+§)! €0%0 | %

Using the product rule we find

% (2’(25?;46:55)! £ = _(ri%i;—ii)! div [éok‘%F ] - ?fi?—;ii)l, [3z(50k5)Ex]
- % éokgo.E* | - (;i—::;‘ [0: @) E”]
_ % |éokdo-E”| - (r)‘%j:)' |02 @okd) 7]
~ % | 0: Gokdo. 7 |
- [%@ké} 9. E°.

With this, we can estimate L3 as follows:
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a7t 9’
L3 = || &k ——2=—9,E*
(r+t+5)! 5
L
379! 9’
#Z'div[eong]
(r+t+ys)! 2
8;+la;az_§7] _ _ 8;+lata§7]
4|22 (o @rdE || 4| EkZBE"]
r+1 ) L ERIE P IEET ST S|
s—1 1 1
4 m _3 (Eokz)Ey- + m (eok Yo, EY ]
R T | O [ L b
CHEI R : arotos!
T T2 0k2) EX L[a‘kzaﬂ]
ooy Lo @RE] L2+ - Tt Lok -
379! 93
+ [7)‘ r < ',Eoké} 9, E*
r+t+3)! 12

=:U1+Uy+ U3 +Us+ Us + Ug + U7 + Us.

It is clear that U; can be bounded by using the analyticity assumption on Eong . Next, the terms

U,, Uy, Ug can be readily controlled by using the same techniques we used in bounding P,, with

the help of the Leibniz’s rule and the inductive hypothesis (B.3). On the other hand, Uz and Us

are similar, so we simply present the estimation of Us. (We turn to U7 and Uy in a moment.)
Using the Leibniz’s rule, we obtain

P rot 5—1 r Jj atfk 85_1_2 3){ ak ae
DI ] [EE e
Lt ! O (G5—=1—=2¢)2 1 k! 2
(r+t+s) iS00 =0 j) t=K'GE—-1-20 oo |l 7! k! 2! .2
Following the approach of Z, we obtain
k ot £ i ak+1 q¢
kel S I L
jrkrer™ 'k' e P IR S
'+1 Y i+1 Ak ¢
A o % gy
j! k‘ o 2 Jjl k! 2! 2
a] ak+1 8@ .
jt k! 2! 12
With this, we can bound Uj as follows
) D3I SLEL IS
Uz < [60 O:I
— MV (rt=k) _ 2
Ses|e D DG-T-0 .
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k k+1 j+1
818)} 4 aJa+ af . 8] 8 af .
X = curl[E] + |\ =——FE ; —<E
ke P VT e T o
a){'f'l 8§ af 8J +1 a[
ERARE Y 7)) PR A 2P
ik I o .

Using the analyticity assumption on €p and the inductive hypothesis (B.3), we get

Zzt:z gk 1=t
Uz < C:
e J+1)2(t—k+1)2(s_1—z+1)2
77'j ok {Z ) nj gk+1 CE
hf”V“+W@+Df%u+nHmuﬂw+m
n]+1 ek é_[
2 (J+2)2 (k+1)2 (g+1)2}
t g1k Cfflf(
<ZZZ 60 ]+1)2(t—k+1)2(s—1_g+1)2

j=0k=0£=0
nd ok Ce
(+D”kﬂﬂ@+w
r 9t {S_l
(r +1)2(t+1)2(s—1+1)2

x C,(1+26+27)

<C,Cq,(1+26 +27)

r t s5—1

r+ 1> +1)° 5 —1+1)?
XZ_;)/;)% r—j+D2G+ D2t —k+ D2k +1)2GE—1—L+ D2+ 1)?2

G+D* 7 o' ¢
2 r+D2+DEG+1)?

<C,Cz (1426 +2n) s3

nr 91 é-?
<C ,
T DI+ D2 G412

for some ¢ > 4Cg, (1 + 26 + 21)S°.
Finally, we observe that, by using Leibniz’s rule, U7 and Ug can be controlled in a similar
fashion. So, it suffices to estimate Ug, and for this we compute

t
<

(r+t+5s )' 2
P15 ! A L o] 0y o
(r+t+s‘)ZZZ (r=pra—mne- 5)‘[00] JUk 2! (2]
=0 k=0 ¢=0 L2
T Ly Pl a5 2 3] 0% 8}
Sy %y g2
(r—l—t—i—s')X(:)kX(:) (r—])'(t k)v[OO] jlk! 5![z ]L2
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-1

st S Al 3] 0! 83
R 2 r — ) [Goko] FFE_Zv[azEZ]
h = ! N NI -

Using the inductive hypothesis, (B.3), and following the same approach as used to address Us,
we get

U8 -C nr o! {E
T+ D+ D2+ DY

for some ¢ > 4Ce (1 +6 + 17)S3, and the proof is complete.
Data availability
Data will be made available on request.
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