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The accurate simulation of scattering of electromagnetic waves in three dimensions by a 
diffraction grating is crucial in many applications of engineering and scientific interest. 
In this contribution we present a novel High-Order Perturbation of Surfaces method for 
the numerical approximation of vector electromagnetic scattering by a doubly periodic 
layered medium. For this we restate the governing time harmonic Maxwell equations as 
vector Helmholtz equations which are coupled by transmission boundary conditions at 
the layer interface. We then apply the method of Transformed Field Expansions which 
delivers a Fourier collocation, Legendre–Galerkin, Boundary Perturbation approach to solve 
the problem in transformed coordinates. A sequence of numerical simulations demonstrate 
the efficient and robust spectral convergence which can be achieved with the proposed 
algorithm.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The accurate simulation of scattering of electromagnetic waves in three dimensions by a diffraction grating is crucial 
in many applications of engineering and scientific interest. Examples include surface enhanced Raman scattering [72], ex-
traordinary optical transmission [28], surface enhanced spectroscopy [50], photovoltaic devices [1], and surface plasmon 
resonance biosensing [38,47]. Clearly, the ability to numerically simulate such configurations with speed, accuracy, and ro-
bustness is of the utmost importance to many disciplines. In this contribution we present a novel High-Order Perturbation of 
Surfaces (HOPS) method for the numerical approximation of vector electromagnetic scattering by a periodic doubly layered 
medium.

Volumetric approaches to these problems are pervasive in the engineering literature. More specifically Finite Difference 
[46], Finite Element [42], Discontinuous Galerkin [40], Spectral Element [27], and Spectral [32,71] methods are all widely 
used by practitioners. However, such methods are clearly disadvantaged with an unnecessarily large number of unknowns 
for the piecewise homogeneous problems we consider here. In addition, the faithful enforcement of outgoing wave condi-
tions is problematic for these approaches typically necessitating approximations such as the Perfectly Matched Layer [4,5]
or exact, non-reflecting boundary conditions [41,39,44,30,54,12] which spoil the sparseness properties of the relevant linear 
systems.
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For these reasons, surface methods are an ideal choice as they are orders of magnitude faster when compared to volu-
metric approaches due to the greatly reduced number of degrees of freedom required to resolve a computation. In addition, 
far-field boundary conditions are enforced exactly through the choice of the Green function. Consequently, these methods 
are a very appealing alternative which are gaining favor with practitioners. The most prevalent among these interfacial algo-
rithms are those based upon Boundary Integral Equations (BIEs) [24,69], but these face difficulties. Most have been resolved 
in recent years through (i.) the use of sophisticated quadrature rules to deliver High-Order Spectral (HOS) accuracy; (ii.) the 
design of preconditioned iterative solvers with suitable acceleration [33]; (iii) new strategies to accelerate the convergence 
of the periodized Green function [13,11] (or avoiding its periodization entirely [9,22]); and (iv.) new approaches to deal with 
the Rayleigh singularities (widely known in the literature as “Wood’s anomalies”) [3,7,21]. As a result they are a compelling 
alternative for many problems of applied interest, however, two properties render them disadvantaged for the parameterized
problems we consider as compared with the methods we advocate here: (i.) For geometries specified by the real value, ε, 
(here the deviation of the interface shapes from trivial), a BIE solver will provide a solution for a single value of ε. If this is 
changed then the solver must be initiated again; (ii.) the dense, non-symmetric positive definite systems of linear equations 
that must be solved with each simulation. As specific examples where such considerations arise, we point the interested 
reader to the work of the second author, F. Reitich, T. Johnson, and S.-H. Oh. on (i.) simulating “reflectivity maps” associated 
to multilayer plasmonic devices [61] and (ii.) determining the minimal configuration required to excite surface plasmons 
with shallow gratings [55]. In the former, the parameterized nature of the configuration and the associated reflectivity map 
would require a BIE to be restarted with each new data point (unlike the scheme we advocate here). In the latter, the 
geometry shape was, by design, a very small perturbation of a flat-interface configuration. For a BIE method the cost of 
simulating this is the same as that of approximating a grating with a large deformation, while a perturbative algorithm 
(such as the one we discuss in this paper) can run much more quickly.

In contrast, a High-Order Perturbation of Surfaces (HOPS) methodology effectively addresses these concerns. These for-
mulations have the advantageous properties of BIE formulations (e.g., surface formulation, reduced numbers of degrees of 
freedom, and exact enforcement of far-field boundary conditions) while being immune to the shortcomings listed above: (i.) 
Since HOPS approaches are built upon expansions in the deformation parameter, ε, once the Taylor coefficients are known 
for the problem unknowns, one simply sums these for any choice of ε to recover the solution rather than beginning a new 
simulation; (ii.) the perturbative nature of the scheme is built upon the flat-interface solution which is trivially solved in 
Fourier space by inverting a sparse operator at each wavenumber. We point out that the initial smallness assumption on 
the deformation parameter, ε, can be dropped in light of the analytic continuation results in [58,34] which demonstrate 
that the domain of analyticity contains a neighborhood of the entire real axis. Therefore, with appropriate numerical ana-
lytic continuation methodologies (e.g., Padé approximation [10]) to access this region of analyticity, quite large and irregular 
perturbations can be simulated. We direct the interested reader to [15,17,20,57,60] for numerical demonstrations.

There are several approaches to HOPS simulation of partial differential equations posed on irregular domains, but they 
all trace their beginnings to low-order calculations such as those of Rayleigh [67] and Rice [68]. The first high-order incarna-
tions appeared in the early 1990s with the introduction of the methods of Operator Expansions (OE) by Milder [48,49,51,52]
and Field Expansions (FE) by Bruno and Reitich [14–16]. Each has been enhanced by various authors, but the most signifi-
cant was the stabilization of these methods by one of the authors and Reitich with the Transformed Field Expansions (TFE) 
algorithm [56–60]. Beyond this, these HOPS schemes have been extended in a number of directions. Of particular interest to 
this contribution we mention bounded obstacle configurations [19,62,29], the full vector Maxwell equations [18,53,64] and 
a rigorous numerical analysis [63].

In addition to these, the authors have initiated a comprehensive study of the TFE recursions for linear wave scattering 
and their extension to multiple (three) layers in two dimensions [36] and multiple (arbitrary numbers of) layers in three di-
mensions [35]. However, these investigations fixed upon the scalar Helmholtz equations which only govern electromagnetic 
wave propagation in two dimensions under Transverse Electric or Transverse Magnetic polarization [65]. In this contribu-
tion we examine the much more difficult problem of simulating electromagnetic radiation scattered by a crossed grating 
in three dimensions in general polarization. This demands that we not only solve the vector Helmholtz equations in three 
dimensions, but also accommodate the more subtle interfacial boundary conditions of continuity of tangential fields with 
appropriate jumps in the normal direction. To this one must also add divergence-free constraints while imposing appro-
priate outgoing wave conditions to avoid pollution of solutions. We demonstrate how this can be achieved in the doubly 
layered scenario for which the TFE recursions have yet to be derived and implemented. Of particular note, we describe a 
novel, spectrally accurate, modified Legendre–Galerkin approach to the vertical discretization where the standard basis is 
enriched with additional connecting basis functions across the layer boundary.

In addition to the novelty of our new algorithm for this model, we also point out that our approach will be the method 
of choice for simulating the technologically relevant case of homogeneous layers separated by an interface which is a slight 
to moderate deviation of flat. In this case volumetric approaches will not be competitive due to their onerous operation 
counts and memory requirements, while BIE approaches (which have the same memory constraints as our TFE method) 
will take longer as their computational cost in this setting will be significantly greater. The combination of (i.) dense, 
non-symmetric positive-definite matrix inversion, and (ii.) the algorithmic and operational complications of evaluating the 
Green function (both its periodization and accounting for the Rayleigh singularities) render such approaches non-competitive 
for the problems we consider here.
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The article is organized as follows: In Section 2 the governing equations for linear electromagnetic waves interacting with 
a periodic doubly layered structure are carefully formulated, together with the appropriate interfacial boundary conditions. 
The TFE method is described in Section 3, and the modified Legendre–Galerkin scheme, which we implemented for the 
vertical discretization, is discussed in Sections 4 and 5. A sequence of numerical experiments are presented in Section 6
which demonstrate the stability and accuracy we can achieve in simulations of configurations containing not only smooth 
and small interfaces, but also rough and large ones as well.

2. Governing equations

In this section we describe the governing equations of linear electromagnetic waves scattered by a doubly layered 
medium. Consider a grating structure with crossed periodic interface located at

z “ gpx, yq, gpx ` d1, y ` d2q “ gpx, yq,

where z is the vertical coordinate, and x and y are the lateral coordinates. Dielectrics occupy each of the two domains

S1
g :“ tz ą gpx, yqu, S2

g :“ tz ă gpx, yqu,

with constant permittivities and permeabilities, tεm, μmu (m “ 1, 2), in each of the layers. The structure is illuminated from 
above by time-harmonic (with frequency ω) plane-wave incidence of the (reduced) form

Hinc
“ Aeipαx`β y´γ zq, ∇ ¨ Hinc

“ 0, (1a)

Einc
“ Beipαx`β y´γ zq, ∇ ¨ Einc

“ 0, (1b)

where

A ¨ pα,β,´γ q
T

“ 0, B “ ´
1

iωε1
∇ ˆ A.

We follow the convention that bold-faced characters denote vectors and plain-faced are scalars, so that, for instance, A “
pAx, A y, AzqT .

In this setting electromagnetic radiation is governed by the time-harmonic forms of Faraday’s and Ampere’s Laws

∇ ˆ E ´ iωμH “ 0, (2a)

∇ ˆ H ` iωεE “ 0, (2b)

respectively, which govern the reduced electric, E, and magnetic, H, fields. We consider μ “ μ0, the permeability of the 
vacuum, and the permittivity a piecewise constant

ε “

#

ε1, in S1
g,

ε2, in S2
g .

As there are no sources (current or charge), applying the divergence operator to (2) and using the fact that the divergence 
of a curl is zero, reveals Gauss’ Law for Magnetism and Gauss’ Law

div rμ0Hs “ 0, div rεEs “ 0, (3)

respectively, inside each layer. By applying the curl operator to (2) and using (3) one can see that each field satisfies the 
vector Helmholtz equations

�E ` k2E “ 0, �H ` k2H “ 0, (4)

where k2 “ ω2εμ. We decompose the total magnetic and electric fields into reflected (layer 1) and transmitted (layer 2) 
components in the following way

E “

#

E1 ` Einc, in S1
g,

E2, in S2
g,

H “

#

H1 ` Hinc, in S1
g,

H2, in S2
g,

and note that each of the tEm, Hmu also satisfy the vector Helmholtz equations, (4).
At this point we remark that it is sufficient to solve for the magnetic fields, Hm , as the electric fields, Em , can be recovered 

from (2b),

Em “ ´
1 ∇ ˆ Hm.
iωεm
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We could, of course, select the electric field as our unknown and recover the magnetic field from (2a). However, as we 
shall see, the magnetic field enjoys better smoothness properties across the grating interface (its normal component is 
continuous) than the electric field.

With this choice we select (4) as the governing equations for our unknowns Hm in the bulk and now must specify 
boundary conditions for these. First, the periodicity of the grating interface demands quasiperiodicity of the fields, [65],

Hmpx ` d1, y ` d2, zq “ eiαd1`iβd2 Hmpx, y, zq.

Additionally, the scattered fields must be “outgoing” (upward propagating in S1
g and downward propagating in S2

g ) which 
we make precise in Section 2.1.

For interfacial boundary conditions, an application of Stokes’ Theorem to (2a) and (2b) yields the continuity of tangential
components of the electric and magnetic fields in the absence of interface sources (currents and charges)

N ˆ

´

E1 ` Einc
´ E2

¯

“ 0, at 	, (5a)

N ˆ

´

H1 ` Hinc
´ H2

¯

“ 0, at 	, (5b)

where N “ p´Bx g, ́ By g, 1qT is an upward pointing normal and 	 denotes the interface

	 :“ tpx, y, zq | z “ gpx, yqu.

Using (2b), the first of these, (5a), can be written in terms of the magnetic field as

N ˆ

´

∇ ˆ H1 ` ∇ ˆ Hinc
´ τ∇ ˆ H2

¯

“ 0, at 	, (6)

where

τ :“ ε1

ε2
“

k2
1

k2
2

.

The divergence theorem applied to (3) delivers the jump relations in the normal components of the fields

N ¨

´

ε1E1 ` ε1Einc
´ ε2E2

¯

“ 0, at 	, (7a)

N ¨

´

H1 ` Hinc
´ H2

¯

“ 0, at 	, (7b)

where we have used μ “ μ0 to simplify the latter. From these we discover that the change in permittivity across 	 induces 
a jump in the normal component of the electric field, while the constant value of the permeability yields a magnetic field 
with continuous normal component.

However, as noted in [23], there is redundancy in these conditions so we appeal to the work of [45,43] who demonstrate 
that for a sufficiently regular interface (Lipschitz continuous is smooth enough) the divergence free conditions in the bulk, 
(3), can be guaranteed by simply enforcing them at the interface

div rεmEms “ 0, div rHms “ 0, at 	. (8)

We have now presented eight interfacial boundary conditions, but six should suffice for the six unknowns in (4). For our 
developments we find it most convenient to select (5b), (6), (7b), and the difference of the latter equation in (8) between 
H1 and H2.

Gathering all of these equations, we now focus on the following problem

�H1 ` k2
1H1 “ 0, in S1

g, (9a)

�H2 ` k2
2H2 “ 0, in S2

g, (9b)

N ˆ pH1 ´ H2q “ ´N ˆ Hinc, at 	, (9c)

N ¨ pH1 ´ H2q “ ´N ¨ Hinc, at 	, (9d)

N ˆ p∇ ˆ H1 ´ τ∇ ˆ H2q “ ´N ˆ ∇ ˆ Hinc, at 	, (9e)

div rH1s ´ div rH2s “ 0, at 	, (9f)

OWCrH1s “ 0, z Ñ 8, (9g)

OWCrH2s “ 0, z Ñ ´8, (9h)

where “OWC” stands for the outgoing (upward/downward propagating) wave condition which we make precise presently [2].
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Fig. 1. A depiction of the layered grating structure with artificial boundaries at z “ a and z “ b.

Remark 1. An inspection of the mathematically careful literature shows that while our formulation is largely standard, the 
appearance of two of our surface conditions, (9d) and (9f), while true, are somewhat unusual. However, a more careful 
reading of these papers typically reveals that the bulk divergence-free conditions (3), or their surface versions (8), are 
used in rather subtle and implicit ways at important points of the analysis. One of our goals in this work is to make all 
of this explicit in the problem statement with a view towards efficient and high-order numerical simulation (rather than 
rigorous analysis). Our choice was one of many we could have made, and it was simply the one most convenient for our 
implementation.

2.1. Transparent boundary conditions

The usual procedure when implementing the TFE method is to truncate the unbounded problem domain to a bounded 
one using a transparent (non-reflecting) boundary condition. For this we introduce artificial boundaries above and below 
the structure, and enforce boundary conditions to solve (9) equivalently. Introducing the planes

z “ a ą |g|L8 , z “ b ă ´ |g|L8 ,

we define the domains

Sa :“ tz ą au, Sb :“ tz ă bu,

S1,a
g :“ tgpx, yq ă z ă au, S2,b

g :“ tb ă z ă gpx, yqu;
see, e.g., Fig. 1. Transparent boundary conditions can be enforced with Dirichlet–Neumann Operators (DNOs) from the 
Rayleigh expansions [67] in the following way. More specifically, it is known [65] that

H1px, y, zq “

8
ÿ

p“´8

8
ÿ

q“´8

t̂p,qeipαp x`βq y`γ
p1q
p,q pz´aqq, z ą a,

and

H2px, y, zq “

8
ÿ

p“´8

8
ÿ

q“´8

ŝp,qeipαp x`βq y`γ
p2q
p,q pb´zqq, z ă b,

where, for p, q P Z,

αp :“ α ` p2π{d1qp, βq :“ β ` p2π{d2qq,

and

γ
pmq
p,q :“

$

&

%

b

k2
m ´ α2

p ´ β2
q , pp,qq P Um,

i
b

α2
p ` β2

q ´ k2
m, pp,qq R Um,

m “ 1,2,

and the set of propagating modes is

Um :“ tp,q P Z | α2
p ` β2

q ă k2
mu, m “ 1,2.

It is not difficult to see that these solutions satisfy the Dirichlet conditions

H1px, y,aq “

8
ÿ

p“´8

8
ÿ

q“´8

t̂p,qeipαp x`βq yq
“: tpx, yq,

H2px, y,bq “

8
ÿ

p“´8

8
ÿ

q“´8

ŝp,qeipαp x`βq yq
“: spx, yq.
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From these we can compute the Neumann data at the artificial boundaries,

BzH1px, y,aq “

8
ÿ

p“´8

8
ÿ

q“´8

piγ
p1q
p,q qt̂p,qeipαp x`βq yq,

BzH2px, y,bq “

8
ÿ

p“´8

8
ÿ

q“´8

p´iγ
p2q
p,q qŝp,qeipαp x`βq yq,

and thus we define the DNOs

T1rts :“
8
ÿ

p“´8

8
ÿ

q“´8

piγ
p1q
p,q qt̂p,qeipαp x`βq yq,

T2rss :“
8
ÿ

p“´8

8
ÿ

q“´8

p´iγ
p2q
p,q qŝp,qeipαp x`βq yq,

which are order-one Fourier multipliers.
Using these DNOs at the artificial boundaries we write (9) equivalently on the bounded domain tb ă z ă au,

�H1 ` k2
1H1 “ 0, in S1,a

g , (10a)

�H2 ` k2
2H2 “ 0, in S2,b

g , (10b)

N ˆ pH1 ´ H2q “ ´N ˆ Hinc, at 	, (10c)

N ¨ pH1 ´ H2q “ ´N ¨ Hinc, at 	, (10d)

N ˆ p∇ ˆ H1 ´ τ∇ ˆ H2q “ ´N ˆ ∇ ˆ Hinc, at 	, (10e)

div rH1s ´ div rH2s “ 0, at 	, (10f)

BzH1 ´ T1rH1s “ 0, at z “ a, (10g)

BzH2 ´ T2rH2s “ 0, at z “ b, (10h)

which are our governing equations.

3. Transformed field expansions

We are now in a position to describe our TFE method. As always, the algorithm begins with a domain flattening change of 
variables [56] (also known as σ -coordinates [66] in the geophysical literature and the C-method [25] in the electromagnetics 
community). Subsequently, a boundary perturbation expansion is conducted, resulting in a recurrently defined set of vector 
Helmholtz problems which must be solved at every perturbation order desired.

3.1. The change of variables

To begin we define the change of variables

x1
“ x, y1

“ y,

z1 “ a

ˆ

z ´ g

a ´ g

˙

, g ă z ă a, a ą |g|L8 ,

z2 “ b

ˆ

g ´ z

g ´ b

˙

, b ă z ă g, b ă ´ |g|L8 ,

and the transformed fields

Umpx1, y1, zmq :“ Hmpxpx1
q, ypy1

q, zpx1, y1, zmqq, m “ 1,2.

With this change of variables, a ponderous computation (see Appendix A) transforms (10) to the following system of equa-
tions
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�1U1 ` k2
1U1 “ R1, in 0 ă z1 ă a, (11a)

�2U2 ` k2
2U2 “ R2, in b ă z2 ă 0, (11b)

�U x � “ I1, at z1 “ z2 “ 0, (11c)

�U y � “ I2, at z1 “ z2 “ 0, (11d)

�U z � “ I3, at z1 “ z2 “ 0, (11e)

�Bx1 U z �τ ´ �pG{CqBzU x �τ “ Q 1, at z1 “ z2 “ 0, (11f)

�By1 U z �τ ´ �pG{CqBzU y �τ “ Q 2, at z1 “ z2 “ 0, (11g)

�Bx1 U x � ` �By1 U y � `
a

a ´ g
BzU z

1 ´
b

b ´ g
BzU z

2 “ J , at z1 “ z2 “ 0, (11h)

Bz1 U1 ´ T1rU1s “ B1, at z1 “ a, (11i)

Bz2 U2 ´ T2rU2s “ B2, at z2 “ b, (11j)

where

Rm :“ 1

G2
m

pBx1 Rx
m ` By1 R y

m ` Bzm Rz
m ` R0

mq, m “ 1,2,

and

I1 :“ ´
`

pBx1 gqAz
` Ax˘

ϕ ´ pBx1 gq�U z �,

I2 :“ ´
`

pBy1 gqAz
` A y˘

ϕ ´ pBy1 gq�U z �,

I3 :“ ppBx1 gqAx
` pBy1 gqA y

´ Az
qϕ ` pBx1 gq�U x � ` pBy1 gq�U y �,

ϕ :“ epiαx`iβ y´iγ gpx,yqq,

and

J :“ pBx1 gq
a

a ´ g
BzU x

1 ´ pBx1 gq
b

b ´ g
BzU x

2 ` pBy1 gq
a

a ´ g
BzU y

1 ´ pBy1 gq
b

b ´ g
BzU y

2 ,

B1 :“ ´pg{aqT1rU1s,

B2 :“ ´pg{bqT2rU2s,

and

� K � :“ K1 ´ K2, � K �τ :“ K1 ´ τ K2.

The Laplacian operator �m is defined by

�m “ B
2
x1 ` B

2
y1 ` B

2
zm

, m “ 1,2.

We refer the reader to Appendix A for the specific formulas for the right hand sides Rs
m and Q m , (A.2) and (A.7), respectively.

3.2. A high-order perturbation of surfaces method

To specify our HOPS approach we consider an interface deformation of the form

gpx, yq “ ε f px, yq, ε ! 1,

and insert this into the transformed equations (11). In a forthcoming publication it will be shown that the transformed 
fields depend analytically upon the parameter ε so that the following expansions are valid

Um “

8
ÿ

n“0

Um,npx, y, zqεn, m “ 1,2.

From (11) we find at each perturbation order that
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�1U1,n ` k2
1U1,n “ R1,n, in 0 ă z1 ă a, (12a)

�2U2,n ` k2
2U2,n “ R2,n, in b ă z2 ă 0, (12b)

�U x
n � “ I1,n, at z1 “ z2 “ 0, (12c)

�U y
n � “ I2,n, at z1 “ z2 “ 0, (12d)

�U z
n � “ I3,n, at z1 “ z2 “ 0, (12e)

�Bx1 U z
n �τ ´ �BzU x

n �τ “ rQ 1,n, at z1 “ z2 “ 0, (12f)

�By1 U z
n �τ ´

�
BzU y

n
�

τ
“ rQ 2,n, at z1 “ z2 “ 0, (12g)

�Bx1 U x
n � ` �By1 U y

n � ` �BzU z
n � “ J̃n, at z1 “ z2 “ 0, (12h)

Bz1 U1,n ´ T1rU1,ns “ B1,n, at z1 “ a, (12i)

Bz2 U2,n ´ T2rU2,ns “ B2,n, at z2 “ b. (12j)

Again, we refer the reader to Appendix A for formulas for the right hand sides Rm,n , Is,n , rQ m,n , rJn , and Bm,n .
Considering the quasiperiodicity of solutions, we propose the following generalized Fourier (Floquet) series expansions

tUm,n,Rm,nupx, y, zq “

8
ÿ

p“´8

8
ÿ

q“´8

tUp,q
m,n,Rp,q

m,nupzqeipαp x`βq yq,

tIs,n, rQ m,n, rJn,Bm,nupx, yq “

8
ÿ

p“´8

8
ÿ

q“´8

tI p,q
s,n , rQ p,q

m,n,
rJ p,q

n ,Bp,q
m,nueipαp x`βq yq.

Inserting these expansions into (12), and using the fact that pγ pmq
p,q q2 “ k2

m ´ α2
p ´ β2

q , the governing equations are reduced 
to the one-dimensional boundary value problems

B
2
z1

Up,q
1,n ` pγ

p1q
p,q q

2Up,q
1,n “ Rp,q

1,n , in 0 ă z1 ă a, (13a)

B
2
z2

Up,q
2,n ` pγ

p2q
p,q q

2Up,q
2,n “ Rp,q

2,n , in b ă z2 ă 0, (13b)

�U x,p,q
n � “ I p,q

1,n , at z1 “ z2 “ 0, (13c)

�U y,p,q
n � “ I p,q

2,n , at z1 “ z2 “ 0, (13d)

�U z,p,q
n � “ I p,q

3,n , at z1 “ z2 “ 0, (13e)

iαp �U z,p,q
n �τ ´ �BzU x,p,q

n �τ “ rQ p,q
1,n , at z1 “ z2 “ 0, (13f)

iβq �U z,p,q
n �τ ´ �BzU y,p,q

n �τ “ rQ p,q
2,n , at z1 “ z2 “ 0, (13g)

iαp �U x,p,q
n � ` iβq �U y,p,q

n � ` �BzU z,p,q
1,n � “ rJ p,q

n , at z1 “ z2 “ 0, (13h)

Bz1 Up,q
1,n ´ iγ

p1q
p,q Up,q

1,n “ Bp,q
1,n , at z1 “ a, (13i)

Bz2 Up,q
2,n ` iγ

p2q
p,q Up,q

2,n “ Bp,q
2,n , at z2 “ b. (13j)

We point out that the unique solvability of the full problem (9) [23,26,6] delivers a unique solution to (13).

4. Weak formulation

In this section, we construct a weak formulation of (13) by decomposing solutions into two parts

Up,q
m,n “ rUp,q

m,n ` qUp,q
m,n, m “ 1,2.

We choose the first term, rUp,q
m,n , to solve (13) with Rp,q

m,n identically zero, and the second term, qUp,q
m,n , to solve (13) with I p,q

s,n , 
rQ p,q

m,n , rJ p,q
n , and Bp,q

m,n all zero. For the sake of simplicity we drop the indices tp, q, nu, and point out that it is not difficult to 
see that

rUm “ Cmeiγ pmqz
` Dme´iγ pmqz, m “ 1,2,

where the coefficients

Cm “ pC x
m, C y

m, C z
mq

T , Dm “ pDx
m, D y

m, Dz
mq

T

can be explicitly computed from the boundary conditions.
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It remains to investigate the equations for qUm which can be solved by a High-Order Spectral (HOS) method [71]. As 
both our Fourier discretization of the lateral variables, px, yq, and the Taylor approximation of the perturbation quantity, ε, 
are spectrally accurate, it is natural to select a HOS approach to discretize the vertical variable in order to maintain high 
accuracy. Among HOS approaches, the Legendre–Galerkin methodology [71] appealed to us due to its ease of implementation 
and stability properties. We have used it in our previous work [36,35] and were impressed with its performance; for this 
reason we have selected it again in these developments.

However, we have not found the “standard” approaches appearing in the literature useful for our layered media problems 
and have devised our own “enriched” approach [37,36,35]. To describe this we state that a classic weak formulation of (13)
for qUm can be specified by: Find V P rH1prb, asqs3 such that

pκ2V,�q ´ pBzV,Bz�q ` p1 ´ τ q

¨

˚

˚

˝

´

Bz qU x
2p0q ´ iαp qU z

2p0q

¯

ϕ̄xp0q
´

Bz qU y
2 p0q ´ iβq qU z

2p0q

¯

ϕ̄ yp0q

0

˛

‹

‹

‚

“ pR,�q ´ iγ p1q
qU1paq�̄paq ´ iγ p2q

qU2pbq�̄pbq, @� P rH1
prb,asqs

3,

where I1 :“ p0, aq, I2 :“ pb, 0q,

tV,R, κu “

#

tqU1,R1, γ
p1qu, z P I1,

tqU2,R2, γ
p2qu, z P I2.

Here the vector pairing on the interval pa, bq is defined by

pu,vq :“
ż b

a

¨

˝

u1 v̄1
u2 v̄2
u3 v̄3

˛

‚ dx,

where the overbar denotes complex conjugation.
To construct a Legendre–Galerkin method as in [36,35], we define the finite-dimensional function space XNz Ă

rH1prpb, aqsqs3 by

XNz :“ t�m P rP N y pImqs
3

| Bz�1paq ´ iγ p1q�1paq “ 0, Bz�2pbq ` iγ p2q�2pbq “ 0,m “ 1,2u,

where P Nz is the space of polynomials of degree less than Nz . The Legendre–Galerkin formulation is: Find UNz P XNz such 
that

pκ2UNz ,�Nz q ´ pBzUNz ,Bz�Nz q ` p1 ´ τ q

¨

˚

˚

˝

´

Bz qU x
2,Nz

p0q ´ iαp qU z
2,Nz

p0q

¯

ϕ̄x
Nz

p0q
´

Bz qU y
2,Nz

p0q ´ iβq qU z
2,Nz

p0q

¯

ϕ̄
y
Nz

p0q

0

˛

‹

‹

‚

“ pINz R,�Nz q ´ iγ p1q
qUNz paq�̄Nz paq ´ iγ p2q

qUNz pbq�̄Nz pbq, @�Nz P XNz ,

where INz is the projection operator onto P Nz . Using integration by parts on each subdomain Im , an equivalent variational 
formulation is derived: Find UNz P XNz such that

pκ2UNz ,�Nz q ` pB
2
z UNz ,�Nz q `

¨

˚

˚

˚

˝

´

Bz qU x
1,Nz

p0q ´ τBz qU x
2,Nz

p0q ´ iαppqU z
1,Nz

p0q ´ τ qU z
2,Nz

p0qq

¯

ϕ̄x
Nz

p0q
´

Bz qU y
1,Nz

p0q ´ τBz qU y
2,Nz

p0q ´ iβqpqU z
1,Nz

p0q ´ τ qU z
2,Nz

p0qq

¯

ϕ̄
y
Nz

p0q

Bz

´

qU z
1,Nz

p0q ´ qU z
2,Nz

p0q

¯

ϕ̄z
Nz

p0q

˛

‹

‹

‹

‚

“ pINz R,�Nz q, @�Nz P XNz .

5. A Legendre–Galerkin numerical method in enriched spaces

To apply the spectral Legendre–Galerkin approach [70,71] we consider basis functions which are combinations of Legen-
dre polynomials L jpzq. For z P I1, we define

ψ s
1, jpzq :“ p1 ` iqL j

ˆ

2z ´ a

a

˙

` a1, j L j`1

ˆ

2z ´ a

a

˙

` b1, j L j`2

ˆ

2z ´ a

a

˙

, j “ 1, . . . , Nz ´ 2,

s P tx, y, zu, such that
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Bz�1, jpaq ´ iγ p1q�1, jpaq “ 0, �1, jp0q “ 0,

where

�1, jpzq :“ pψx
1, j,ψ

y
1, j,ψ

z
1, jq

T .

Similarly, for z P I2, we define

ψ s
2, jpzq :“ p1 ` iqL j

ˆ

b ´ 2z

b

˙

` a2, j L j`1

ˆ

b ´ 2z

b

˙

` b2, j L j`2

ˆ

b ´ 2z

b

˙

, j “ 1, . . . , Nz ´ 2,

s P tx, y, zu, such that

Bz�2, jpbq ` iγ p2q�2, jpbq “ 0, �2, jp0q “ 0,

where

�2, jpzq “ pψx
2, j,ψ

y
2, j,ψ

z
2, jq

T .

Note that these Legendre–Galerkin basis functions vanish at the transition layer at z “ 0. For this reason, we introduce 
additional (enriched) basis functions which have the value p1 ̀ iq at z “ 0:

ηs
pzq :“

#

ηs
1pzq “ c1z ` p1 ` iq, 0 ď z ď a,

ηs
2pzq “ c2z ` p1 ` iq, b ď z ď 0,

s P tx, y, zu, where

Bzη
s
1paq ´ iγ p1qηs

1paq “ 0, Bzη
s
2pbq ` iγ p2qηs

2pbq “ 0.

We readily find

c1 “
iγ p1q

p1 ` iq ´ iγ p1qa
, c2 “

´iγ p2q

p1 ` iq ` iγ p2qb
.

With these we construct the basis functions defined on tb ă z ă au

ψ̃ jpzq “

#

ψx
1, jpzq, 0 ă z ă a,

0, b ă z ă 0,
j “ 0, . . . , Nz ´ 2,

and

ψ̃Nz` j´1pzq “

#

0, 0 ă z ă a,

ψx
2, jpzq, b ă z ă 0,

j “ 0, . . . , Nz ´ 2,

and

ψ̃2Nz` j´2pzq “

#

ψ
y
1, jpzq, 0 ă z ă a,

0, b ă z ă 0,
j “ 0, . . . , Nz ´ 2,

and

ψ̃3Nz` j´3pzq “

#

0, 0 ă z ă a,

ψ
y
2, jpzq, b ă z ă 0,

j “ 0, . . . , Nz ´ 2,

and

ψ̃4Nz` j´4pzq “

#

ψ z
1, jpzq, 0 ă z ă a,

0, b ă z ă 0,
j “ 0, . . . , Nz ´ 2,

and

ψ̃5Nz` j´5pzq “

#

0, 0 ă z ă a,

ψ z
2, jpzq, b ă z ă 0,

j “ 0, . . . , Nz ´ 2,

and finally,

ψ̃6Nz´6 “ ηx, ψ̃6Nz´5 “ ηy, ψ̃6Nz´4 “ ηz.
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Setting N̄ “ 6Nz ´ 4, we write our numerical approximation

uNz pzq :“
N̄

ÿ

j“0

û jψ̃ jpyq,

and seek

u “ pû0, û1, . . . , ûN̄ q
T ,

where we are given

f “ p f̂0, . . . , f̂6Nz´7q
T , f̂ j :“ pIN f , ψ̃ jq, j “ 0, . . . , N̄.

Here, f stands for the right hand side Rm in (13).
We define the matrices

pAm,sql j “ pB
2
yψ̃pm´1`2ps´1qqpNz´1q` j, ψ̃pm´1`2ps´1qqpNz´1q`lqIm

` pγ
pmq
p,q q

2
pψ̃pm´1`2ps´1qqpNz´1q` j, ψ̃pm´1`2ps´1qqpNz´1q`lqIm ,

where 0 ď l, j ď Nz ´ 2, 1 ď m ď 2, and 1 ď s ď 3. We set the column vectors

a12 “ pB
2
z ψ̃6Nz´6, ψ̃ jqI1 ` pγ

p1q
p,q q

2
pψ̃6Nz´6, ψ̃ jqI1 ,

b12 “ pB
2
z ψ̃6Nz´6, ψ̃Nz` j´1qI2 ` pγ

p2q
p,q q

2
pψ̃6Nz´6, ψ̃Nz` j´1qI2 ,

c13 “ pB
2
z ψ̃6Nz´5, ψ̃2Nz` j´2qI1 ` pγ

p1q
p,q q

2
pψ̃6Nz´5, ψ̃2Nz` j´2qI1 ,

d13 “ pB
2
z ψ̃6Nz´5, ψ̃3Nz` j´3qI2 ` pγ

p2q
p,q q

2
pψ̃6Nz´5, ψ̃3Nz` j´3qI2 ,

e14 “ pB
2
z ψ̃6Nz´4, ψ̃4Nz` j´4qI1 ` pγ

p1q
p,q q

2
pψ̃6Nz´4, ψ̃4Nz` j´4qI1 ,

f14 “ pB
2
z ψ̃6Nz´4, ψ̃5Nz` j´5qI2 ` pγ

p2q
p,q q

2
pψ̃6Nz´4, ψ̃5Nz` j´5qI2 ,

and row vectors

a21 “ pB
2
z ψ̃ j, ψ̃6Nz´6qI1 ` pγ

p1q
p,q q

2
pψ̃ j, ψ̃6Nz´6qI1 ` Bzψ̃ jp0qψ̃6Nz´6p0q,

b21 “ pB
2
z ψ̃Nz` j´1, ψ̃6Nz´6qI2 ` pγ

p2q
p,q q

2
pψ̃Nz` j´1, ψ̃6Nz´6qI2 ´ τBzψ̃Nz` j´1p0qψ̃6Nz´6p0q,

c31 “ pB
2
z ψ̃2Nz` j´2, ψ̃6Nz´5qI1 ` pγ

p1q
p,q q

2
pψ̃2Nz` j´2, ψ̃6Nz´5qI1 ` Bzψ̃2Nz` j´2p0qψ̃6Nz´5p0q,

d31 “ pB
2
z ψ̃3Nz` j´3, ψ̃6Nz´5qI2 ` pγ

p2q
p,q q

2
pψ̃3Nz` j´3, ψ̃6Nz´5qI2 ´ τBzψ̃3Nz` j´3p0qψ̃6Nz´5p0q,

e41 “ pB
2
z ψ̃4Nz` j´4, ψ̃6Nz´4qI1 ` pγ

p1q
p,q q

2
pψ̃4Nz` j´4, ψ̃6Nz´4qI1 ` Bzψ̃4Nz` j´4p0qψ̃6Nz´4p0q,

f41 “ pB
2
z ψ̃5Nz` j´5, ψ̃6Nz´4qI2 ` pγ

p2q
p,q q

2
pψ̃5Nz` j´5, ψ̃6Nz´4qI2 ´ Bzψ̃5Nz` j´5p0qψ̃6Nz´4p0q,

for 0 ď j ď Nz ´ 2. Moreover, we set

a22 “ pB
2
z ψ̃6Nz´6 ` κ2ψ̃6Nz´6, ψ̃6Nz´6q ` Bzψ̃6Nz´6p0`

qψ̃6Nz´6p0`
q ´ τBzψ̃6Nz´6p0´

qψ̃6Nz´6p0´
q,

a33 “ pB
2
z ψ̃6Nz´5 ` κ2ψ̃6Nz´5, ψ̃6Nz´5q ` Bzψ̃6Nz´5p0`

qψ̃6Nz´5p0`
q ´ τBzψ̃6Nz´5p0´

qψ̃6Nz´5p0´
q,

a44 “ pB
2
z ψ̃6Nz´4 ` κ2ψ̃6Nz´4, ψ̃6Nz´4q ` Bzψ̃6Nz´4p0`

qψ̃6Nz´4p0`
q ´ Bzψ̃6Nz´4p0´

qψ̃6Nz´4p0´
q,

a24 “ ´iαp1 ´ τ qψ̃6Nz´4p0qψ̃6Nz´6p0q,

a34 “ ´iβp1 ´ τ qψ̃6Nz´4p0qψ̃6Nz´5p0q.

Here, Bzψ̃np0´q and Bzψ̃np0`q stand for the left and right derivatives at 0, respectively. The Legendre–Galerkin scheme 
demands the 6Nz ´ 3 equations:

Mu “ f,

where M is a block matrix

M “

ˆ

A B
C D

˙

.
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The block matrix A is defined as

A “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

A1,1 0 . . . 0
0 A2,1

A1,2
...

... A2,2
A1,3 0

0 . . . 0 A2,3

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

and the block matrices B and C are defined as

B “

¨

˚

˚

˚

˚

˚

˚

˝

a12 0 0
b12 0
0 c13 0
0 d13 0
0 0 e14
0 0 f14

˛

‹

‹

‹

‹

‹

‹

‚

,

and

C “

¨

˝

pa21qT pb21qT 0 0 0 0
0 0 pc31qT pd31qT 0 0
0 0 0 0 pe41qT p f41qT

˛

‚ .

Finally the upper-triangular matrix D is given by

D “

¨

˝

a22 0 a24
0 a33 a34
0 0 a44

˛

‚ .

6. Numerical simulations

We now present a variety of numerical experiments utilizing our implementation of the algorithm described above which 
demonstrate the stability, speed, and accuracy of our methodology. To begin, we demonstrate the performance of our solver 
for the boundary value problem (13) at the heart of our numerical method using an exact solution. Subsequently we display 
the fidelity of our full scattering solver for (10) using the “energy defect” as an indicator of convergence [65].

6.1. Simulations of a boundary value problem

We began by investigating our scheme’s numerical approximation of solutions to the reduced problem, (13), which is at 
the core of our full solver. Utilizing the algorithm proposed in Section 5, we looked for numerical convergence to solutions 
of the following one-dimensional reduced problem

B
2
z u ` k2

uu “ fu, 0 ă z ă a, (14a)

B
2
z v ` k2

v v “ fv , b ă z ă 0, (14b)

up0q “ vp0q, (14c)

Bzpu1p0q ´ τ v1p0qq “ iαpu3p0q ´ τ v3p0qq, (14d)

Bzpu2p0q ´ τ v2p0qq “ iβpu3p0q ´ τ v3p0qq, (14e)

Bzpu3p0q ´ v3p0qq “ 0, (14f)

Bzupaq ´ iγ p1qupaq “ 0, (14g)

Bzvpbq ` iγ p2qvpbq “ 0, (14h)

where

u “ pu1, u2, u3q
T , v “ pv1, v2, v3q

T ,

k2
u “ ppku1q

2, pku2q
2, pku3q

2
q

T , k2
v “ ppkv1q

2, pkv2q
2, pkv3q

2
q

T ,

fu “ p fu1, fu2, fu3q
T , fv “ p f v1, f v2, f v3q

T .
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Fig. 2. Relative L2 error in u, (16), of our Legendre–Galerkin approximation of (14) in configuration (15) versus number of basis functions Nz on a log-linear 
scale.

Since the differential operator and boundary conditions in (14) are the same as those in (13), the proposed model provides 
a good indicator of convergence for our modified Legendre–Galerkin method.

As a test of convergence we considered the following functions and parameters

u1 “ pz ´ aq
2
pz ` bq

2, u2 “ sinpzqpz ´ aq
2
pz ` bq

2,

u3 “ exppzqpz ´ aq
2
pz ` bq

2,

v1 “ pz ´ aq
2
pz ` bq

2, v2 “ sinpzqpz ´ aq
2
pz ` bq

2,

v3 “ exppzqpz ´ aq
2
pz ` bq

2,

a “ 5, b “ ´2, τ “ 1.5, γ p1q
“ 1 ´ i, γ p2q

“ 2 ` i,

pku1,ku2,ku3q “ p1.25,2.25,3.25q, pkv1,kv2,kv3q “ p2.55,3.55,4.55q. (15)

Upon using (14a) and (14b) we can define appropriate fu and fv so that these represent an exact solution.
To test numerical convergence, we defined the relative L2 error

}uex ´ uNz }L2

}uex}L2
, (16)

where uex is the exact solution and Nz is the number of Legendre–Galerkin basis functions. In Figs. 2 and 3 we display the 
spectral rate of convergence which our Legendre–Galerkin method achieved in this simplified setting. The numerical results 
illustrate that, given Nz chosen large enough, the proposed modified spectral method can successfully resolve the vector 
Helmholtz equations with the underlying interfacial boundary conditions.

6.2. Simulations of a layered medium: the Maxwell equations

We also performed numerical experiments of a periodic doubly layered medium whose scattering returns are governed 
by the full vector Maxwell equations in three dimensions, (10). Unlike the simplified problem in Section 6.1, exact solutions 
are not available. Hence, we utilized the widely accepted diagnostic of error measurement, the energy defect [65,14]. More 
precisely, if one considers the Rayleigh expansions in the upper and lower layers

H1px, y, zq “

8
ÿ

p“´8

8
ÿ

q“´8

pH1,p,qeipαp x`βq y`γ p1qzq,

H2px, y, zq “

8
ÿ

p“´8

8
ÿ

q“´8

pH2,p,qeipαp x`βq y´γ p2qzq,

quantities of great interest are the efficiencies
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Fig. 3. Relative L2 error in v, (16), of our Legendre–Galerkin approximation of (14) in configuration (15) versus number of basis functions Nz on a log-linear 
scale.

ep,q
1 :“ γ

p1q
p,q

γ

ˇ

ˇ

ˇ

pH1,p,q

ˇ

ˇ

ˇ

2

|A|
2

, pp,qq P U1,

ep,q
2 :“ γ

p2q
p,q

γ

ˇ

ˇ

ˇ

pH2,p,q

ˇ

ˇ

ˇ

2

|A|
2

, pp,qq P U2,

where A is the amplitude of the incident wave, (1). With this definition in hand, it is clear why these efficiencies are of 
such interest as they quantify the energy fraction in each mode which propagates away from the grating. If all materials in 
the structure are lossless (km P R), energy is conserved which is expressed as

ÿ

pp,qqPU1

ep,q
1 ` τ

ÿ

pp,qqPU2

ep,q
2 “ 1.

Hence, we define the “energy defect” as

δd :“ 1 ´
ÿ

pp,qqPU1

ep,q
1 ´ τ

ÿ

pp,qqPU2

ep,q
2 ,

which will be zero for an exact solution [65].
We conducted a sequence of simulations to show the spectral convergence of our proposed Legendre–Galerkin method 

(in the energy defect measure), and checked the performance of our numerical methods. To begin, we set the following 
configuration:

a “ 4, b “ ´3, pα,β,γ q “ p

b

1{2,

b

1{3,1.2845q, d1 “ d2 “ 2π,

A “ p
?

3,
?

3,
?

3q, pγ p1q, γ p2q
q “ p1.2845,2.0330q,

pk1,k2q “ p1.5758,2.2285q, gpx, yq “ ε cospxq cospyq. (17)

To characterize the performance of our methods we defined the parameters N (perturbation order) and tNx, N y, Nzu (the 
number of basis functions in tx, y, zu directions). In the first experiment we chose

Nx “ N y “ 16, Nz “ 20, (18)

and varied N . In Fig. 4 we display the energy defect versus the number of perturbation orders, N , retained for the configura-
tion (17) and the parameter choices (18). The figure shows the spectral convergence of the energy defect as the perturbation 
order is refined. We also see that the energy defect decays more rapidly to machine precision as the value of ε is reduced.

In Fig. 5 we display results of simulations of configuration (17) with parameter choices

N “ 12, Nx “ N y “ 18, (19)
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Fig. 4. Energy defect versus perturbation order, N , for smooth interface configuration (17) and parameter choices (18).

Fig. 5. Energy defect versus perturbation order, N , for smooth interface configuration (17) and (18).

while varying the vertical discretization parameter, Nz . This clearly shows the spectral convergence of the energy defect as 
this vertical discretization parameter is refined.

In Figs. 6–9 we present the real parts of the scattered solution Hx and H z from configuration (17) with parameter choices 
(18) where ε “ 0.05. Figs. 6 and 8 present the numerical approximations of Hx and H z above the interface, tz “ gpx, yqu, 
and Figs. 7 and 9 display the numerical solutions of Hx and H z below the interface, tz ă gpx, yqu.

To continue, we investigate the possibility of using our new algorithm for deformations of large size. To examine this, 
we used the following configuration:

a “ 2, b “ ´2, pα,β,γ q “ p

b

1{2,

b

1{3,1.2845q, d1 “ d2 “ 2π,

A “ p
?

3,
?

3,
?

3q, pγ p1q, γ p2q
q “ p1.2845,2.0330q,

pk1,k2q “ p1.5758,2.2285q, gpx, yq “ ε cospxq cospyq, (20)

with numerical parameters pNx, N y, Nzq “ p24, 24, 50q. In Fig. 10, we display numerical simulations with ε “ 1. As exhibited 
in [57,59], simple Taylor summation in perturbation order N does not work well for large or rough deformations. However, 
if Padé approximation [10] is utilized then outstanding results can be achieved showing that large deformations can be 
readily simulated.
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Fig. 6. Plot of the real part of the scattered field Re[Hx] above the interface in configuration (17) with parameters (18); for this we chose ε “ 0.05 and 
N “ 12. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 7. Plot of the real part of the scattered field Re[Hx] below the interface in configuration (17) with parameters (18); for this we chose ε “ 0.05 and 
N “ 12.

To close, we conducted a numerical simulation with a very rough interface defined with the aid of the following “saw-
tooth” profile

f Lpxq “

#

´
2
π x ` 1, 0 ď x ď π,

2
π x ´ 3, π ď x ď 2π,

where f L possesses only Lipschitz regularity [59,60]. For our numerical experiments we used its Fourier series representation

f Lpxq “

8
ÿ

k“1

8

π2p2k ´ 1q2
cospp2k ´ 1qxq,

which we truncated after wavenumber P “ 20,

f L,P pxq “

P
ÿ

k“1

8

π2p2k ´ 1q2
cospp2k ´ 1qxq.

For these simulations we chose the following parameters:

a “ 2, b “ ´2, pα,β,γ q “ p0.2,0.15,0.35q, d1 “ d2 “ 2π,
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Fig. 8. Plot of the real part of the scattered field Re[H z] above the interface in configuration (17) with parameters (18); for this we chose ε “ 0.05 and 
N “ 12.

Fig. 9. Plot of the real part of the scattered field Re[H z] below the interface in configuration (17) with parameters (18); for this we chose ε “ 0.05 and 
N “ 12.

A “ p
?

3,
?

3,
?

3q, pγ p1q, γ p2q
q “ p0.35,0.55453q,

pk1,k2q “ p0.43012,0.60828q, gpx, yq “ ε f Lpxq cospyq, (21)

with numerical parameters pNx, N y, Nzq “ p60, 18, 18q. In Fig. 11 we display results of our experiment with this rough 
interface and ε “ 0.01, 0.05, 0.1. Evidently, our new method is applicable to configurations with even Lipschitz smoothness, 
provided that sufficient resolution is utilized.

7. Conclusions

We have studied a HOPS algorithm for vector electromagnetic scattering by a periodic, doubly layered medium. In re-
formulating the time-harmonic Maxwell’s equations, a system of vector Helmholtz equations was considered, together with 
appropriate interfacial boundary conditions. We introduced the TFE algorithm to the resulting problem for the first time, 
which required that we derive a sequence of one-dimensional, boundary value problems to be solved at each perturbation 
order in our expansion. Accurate numerical simulations of these TFE recursions were demonstrated with a Legendre–
Galerkin method based on a novel weak formulation. These simulations included not only small and smooth interfaces 
in the periodic structure, but also large and rough ones as well. The numerical simulations showed the spectral convergence 
which our new algorithm can achieve, and our developments clearly point towards several extensions of great importance. 
In particular, our approach will be generalized to accommodate surface currents which are one popular approach to mod-
eling two-dimensional materials such as graphene and black phosphorous which are of such great interest to engineers at 
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Fig. 10. Energy defect versus perturbation order, N , for smooth interface configuration with large deformation (20).

Fig. 11. Energy defect versus perturbation order, N , for rough interface configuration (21).

the moment [31,8]. This extension will not be straightforward as more subtle boundary conditions between layers must 
be considered, and hence the algorithmic differences will be significant. In addition, the natural extension to an arbitrary 
number of layers is clearly in view, and will be considered in a forthcoming article. For a potential roadmap we point the 
reader to [35] where we achieved this in the simpler context of the Helmholtz equation.
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Appendix A. Derivation of the transformed equations

In this appendix we provide a full derivation of the transformed equations (11) presented in Section 3.1. By the chain 
rule, we find

Bx “ Bx1 ` pBxzmqBzm , m “ 1,2,
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By “ By1 ` pBy zmqBzm , m “ 1,2,

Bz “ pBzzmqBzm , m “ 1,2.

With this we can write

pa ´ gq∇x,y “ pa ´ gq∇x1,y1 ´ p∇x1,y1 gqpa ´ z1qBz1 ,

pa ´ gqBz “ aBz1 ,

and

pb ´ gq∇x,y “ pb ´ gq∇x1,y1 ´ p∇x1,y1 gqpz2 ´ bqBz2 ,

pb ´ gqBz “ bBz2 ,

where ∇x,y “ pBx, Byq and ∇x1,y1 “ pBx1 , By1 q. Defining

C1 “ pa ´ gq, Dx
1 “ ´Bx gpa ´ z1q, D y

1 “ ´By gpa ´ z1q, G1 “ a,

and

C2 “ pg ´ bq, Dx
2 “ ´Bx gpb ´ z2q, D y

2 “ ´By gpb ´ z2q, G2 “ ´b,

we deduce that

CmBx “ CmBx1 ` Dx
mBzm ,

CmBy “ CmBy1 ` D y
mBzm ,

CmBz “ GmBzm ,

for m “ 1, 2.

A.1. The Helmholtz equation

As in [35], we rewrite the Laplace operator as

C2
m� “ ∇x1,y1 ¨ rC2

m∇x1,y1 s ´ p∇x1,y1 Cmq ¨ rCm∇x1,y1 s ` Bzm rCm Dm ¨ ∇x1,y1 s

´ pBzm Dmq ¨ rCm∇x1,y1 s ` ∇x1,y1 ¨ rCm DmBzm s ´ p∇x1,y1 Cmq ¨ rDmBzm s

` Bzm r|Dm|
2
Bzm s ´ pBzm Dmq ¨ rDmBzm s ´ p∇x1,y1 Cmq ¨ rCm∇x1,y1 s ´ p∇x1,y1 Cmq ¨ rDmBzm s ` G2

mB
2
zm

,

where Dm :“ pDx
m, D y

mq. Then the governing problem becomes

0 “ C2
m�mUm ` C2

mk2
mUm

“ ∇x1,y1 ¨ pC2
m∇x1,y1 Umq ` Bzm pCm Dm ¨ ∇x1,y1 Umq ` ∇x1,y1 ¨ pCm DmBzm Umq

´ p∇x1,y1 Cmq ¨ pDmBzm Umq ` Bzm p|Dm|
2
Bzm Umq ´ p∇x1,y1 Cmq ¨ pCm∇x1,y1 Umq ` G2

mB
2
zm

Um ` C2
j k2

mUm,

where Um stands for the x, y, or z components of Um “ pU x
m, U y

m, U z
mqT . Setting C2

mpxq “ G2
m ` Fmpxq we deduce that

�mUm ` k2
mUm “

1

G2
m

pBx1 Rx
m ` By1 R y

m ` Bzm Rz
m ` R0

mq, (A.1)

where

Rx
m “ ´FmBx1 Um ´ Cm Dx

mBzm Um, (A.2a)

R y
m “ ´FmBy1 Um ´ Cm D y

mBzm Um, (A.2b)

Rz
m “ ´Cm Dx

mBx1 Um ´ pDx
mq

2
Bzm Um ´ Cm D y

mBy1 Um ´ pD y
mq

2
Bzm Um, (A.2c)

R0
m “ pBx1 CmqpDx

mBzm Um ` CmBx1 Umq ` pBy1 CmqpD y
mBzm Um ` CmBy1 Umq ´ Fmk2

mUm. (A.2d)
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A.2. Artificial boundary conditions

For the conditions at the artificial boundaries, tz “ au and tz “ bu, of (10), we note that

Bzm Um ´
Cm

Gm
TmrUms “ 0,

and obtain

Bzm Um ´ TmrUms “ ´
g

Mm
TmrUms, (A.3)

for M1 “ a and M2 “ b.

A.3. Interfacial boundary conditions

Regarding the transmission boundary conditions at z “ gpx, yq in (10),

N ˆ pH1 ´ H2q “ ´N ˆ Hinc,

implies that

p´By1 gq�U z � ´ �U y � “
`

pBy1 gqAz
` A y˘

ϕ,

p´Bx1 gq�U z � ´ �U x � “
`

pBx1 gqAz
` Ax˘

ϕ.

Furthermore

N ˆ p∇ ˆ pH1 ´ τH2qq “ ´N ˆ p∇ ˆ Hinc
q,

implies that

p´By gqpBx � H y �τ ´ By � Hx �τ q ` pBx � H z �τ ´ �Bz Hx �τ q “ pBy gqpiαA y
´ iβ Ax

qϕ ´ piαAz
` iγ Ax

qϕ, (A.4a)

and

pBx gqpBx � H y �τ ´ By � Hx �τ q ` pBy � H z �τ ´ �Bz H y �τ q “ ´pBx gqpiαA y
´ iβ Ax

qϕ ´ piαAz
` iγ A y

qϕ. (A.4b)

Noting that, for any scalar function K ,

Bx � K �τ “ Bx1 pK1 ´ τ K2q `

ˆ

Dx
1

C1
Bz1 K1 ´ τ

Dx
2

C2
Bz2 K2

˙

“ Bx1 � K �τ `

�
Dx

C
Bz K

�
τ

,

By � K �τ “ By1 pK1 ´ τ K2q `

˜

D y
1

C1
Bz1 K1 ´ τ

D y
2

C2
Bz2 K2

¸

“ By1 � K �τ `

�
D y

C
Bz K

�
τ

,

�Bz K �τ “
G1

C1
Bz1 K1 ´ τ

G2

C2
Bz2 K2 “

�
G

C
Bz K

�
τ

,

we rewrite (A.4) as

p´By1 gq

ˆ

Bx1 �U y �τ `

�
Dx

C
BzU y

�
τ

´ By1 �U x �τ ´

�
D y

C
BzU x

�
τ

˙

`

ˆ

Bx1 �U z �τ `

�
Dx

C
BzU z

�
τ

´

�
G

C
BzU x

�
τ

˙

“ pBy gqpiαA y
´ iβ Ax

qϕ ´ piαAz
` iγ Ax

qϕ, (A.5)

and

pBx1 gq

ˆ

Bx1 �U y �τ `

�
Dx

C
BzU y

�
τ

´ By1 �U x �τ ´

�
D y

C
BzU x

�
τ

˙

`

ˆ

By1 �U z �τ `

�
D y

C
BzU z

�
τ

´

�
G

C
BzU y

�
τ

˙

“ ´pBx gqpiαA y
´ iβ Ax

qϕ ´ piβ Az
` iγ A y

qϕ. (A.6)

Since z1 “ z2 “ 0 at z “ gpx, yq, we have
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Dx
1 “ p´Bx1 gqa, D y

1 “ p´By1 gqa, Dx
2 “ pBx1 gqb, D y

2 “ pBy1 gqb.

Hence, we can simplify (A.5) and (A.6) as

Bx1 �U z �τ ´

�
G

C
BzU x

�
τ

“ Q 1,

By1 �U z �τ ´

�
G

C
BzU y

�
τ

“ Q 2,

where

Q 1 :“ pBy1 gqpiαA y
´ iβ Ax

qϕ ´ piαAz
` iγ Ax

qϕ ´

�
Dx

C
BzU z

�
τ

` pBy1 gq

ˆ

Bx1 �U y �τ `

�
Dx

C
BzU y

�
τ

´ By1 �U x �τ ´

�
D y

C
BzU x

�
τ

˙

, (A.7a)

Q 2 :“ p´Bx1 gqpiαA y
´ iβ Ax

qϕ ´ piβ Az
` iγ A y

qϕ ´

�
D y

C
BzU z

�
τ

´ pBx1 gq

ˆ

Bx1 �U y �τ `

�
Dx

C
BzU y

�
τ

´ By1 �U x �τ ´

�
D y

C
BzU x

�
τ

˙

. (A.7b)

The divergence free boundary condition

CmBx Hx
m ` CmBy H y

m ` CmBz H z
m “ 0,

transforms to

Bx1 U x
m ` By1 U y

m `
Gm

Cm
Bzm U z

m “ ´
Dx

m

Cm
Bzm U x

m ´
D y

m

Cm
Bzm U y

m.

Hence, we deduce that

Bx1 U x
1 ` By1 U y

1 `
a

a ´ g
Bz1 U z

1 “
pBx1 gqa

a ´ g
Bz1 U x

1 `
pBy1 gqa

a ´ g
Bz1 U y

1 ,

Bx1 U x
2 ` By1 U y

2 `
b

b ´ g
Bz2 U z

2 “
pBx1 gqb

b ´ g
Bz2 U x

2 `
pBy1 gqb

b ´ g
Bz2 U y

2 .

For the other interfacial boundary condition, we simply find that

N ¨ �H� “ ´N ¨ Hinc

implies that

´Bx1 g�U x � ´ By1 g�U y � ` �U z � “ pBx1 gqϕ ` pBy1 gqϕ ´ Azϕ.

Consequently, the transmission boundary conditions in (10) become

�U x � “ p´Bx1 gq�U z � ` pp´Bx1 gqAz
´ Ax

qϕ, (A.8a)

�U y � “ p´By1 gq�U z � ´ ppBy1 gqAz
` A y

qϕ, (A.8b)

�U z � “ pBx1 gq�U x � ` pBy1 gq�U y � ` ppBx1 gqAx
` pBy1 gqA y

´ Az
qϕ, (A.8c)

Bx1 �U z �τ ´

�
G

C
BzU x

�
τ

“ Q 1, (A.8d)

By1 �U z �τ ´

�
G

C
BzU y

�
τ

“ Q 2, (A.8e)

Bx1 U x
1 ` By1 U y

1 `
a

a ´ g
Bz1 U z

1 “
pBx1 gqa

a ´ g
Bz1 U x

1 `
pBy1 gqa

a ´ g
Bz1 U y, (A.8f)

Bx1 U x
2 ` By1 U y

2 `
b

b ´ g
Bz2 U z

2 “
pBx1 gqb

b ´ g
Bz2 U x

2 `
pBy1 gqb

b ´ g
Bz2 U y

2 . (A.8g)
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A.4. Boundary perturbation

Considering our specification that gpx, yq “ ε f px, yq, it can be shown that the following expansions converge strongly

Um “

8
ÿ

n“0

Um,npx, y, zqεn, for m “ 1,2.

In light of this (A.1) becomes

�mUm,n ` k2
mUm,n “

1

G2
m

pBx1 Rx
m,n ` By1 R y

m,n ` Bzm Rz
m,n ` R0

m,nq “: Rm,n,

where

Rx
m,n “ p2Mm f qBx1 Um,n´1 ` MmψmpBx1 f qBzm Um,n´1 ´ f 2

Bx1 Um,n´2 ´ f pBx1 f qψmBzm Um,n´2,

R y
m,n “ p2Mm f qBy1 Um,n´1 ` MmψmpBy1 f qBzm Um,n´1 ´ f 2

By1 Um,n´2 ´ f pBy1 f qψmBzm Um,n´2,

Rz
m,n “ MmpB1x f qψmBx1 Um,n´1 ` MmpBy1 f qψmBy1 Um,n´1 ´ f pBx1 f qψmBx1 Um,n´2 ´ f pBy1 f qψmBy1 Um,n´2

´ ψ2
m

´

pBx1 f q
2

` pBy1 f q
2
¯

Bzm Um,n´2,

R0
m,n “ ´MmpBx1 f qBx1 Um,n´1 ´ MmpBy1 f qBy1 Um,n´1 ` 2Mm f k2

mUm,n´1 `

´

pBx1 f q
2

` pBy1 f q
2
¯

ψmBzm Um,n´2

` pBx1 f q f Bx1 Um,n´2 ` pBy1 f q f By1 Um,n´2 ´ f 2k2
mUm,n´2

for

M1 “ a, M2 “ b, ψ1 “ a ´ z1, ψ2 “ b ´ z2.

For the boundary condition (A.3), we write

Bzm Um,n ´ TmrUm,ns “ ´
f

Mm
TmrUm,n´1s, for m “ 1,2.

We now consider the transmission boundary conditions (A.8), and, upon setting

ϕn :“ eipαx1`β y1q p´iγ f qn

n! ,

we write (A.8a) and (A.8b) as

�U x
n � “ p´Bx1 f q�U z

n´1 � ´ pBx1 f qAzϕn´1 ´ Axϕn,

�U y
n � “ p´By1 f q�U z

n´1 � ´ pBy1 f qAzϕn´1 ´ A yϕn,

and (A.8c) as

�U z
n � “ pBx1 f qpU x

1,n´1 ´ U x
2,n´1q ` pBy1 f qpU y

1,n´1 ´ U y
2,n´1q

` pBx1 f qAxϕn´1 ` pBy1 f qA yϕn´1 ´ Azϕn.

We reformulate (A.8d) and (A.8e) as

pBx1 U z
1,n ´ τBx1 U z

2,nq ´

ˆ

a

a ´ g
Bz1 U x

1,n ´ τ
b

b ´ g
Bz2 U x

2,n

˙

“ Q 1,n, (A.9a)

pBy1 U z
1,n ´ τBy1 U z

2,nq ´

ˆ

a

a ´ g
Bz1 U y

1,n ´ τ
b

b ´ g
Bz2 U y

2,n

˙

“ Q 2,n, (A.9b)

where

Q 1,n “ pBy1 f qpiαA y
´ iβ Ax

qϕn´1 ´ piαAx
` iγ Ax

qϕn `

ˆ

aBx1 f

a ´ g
Bz1 U z

1,n´1 ` τ
bBx1 f

g ´ b
Bz2 U z

2,n´1

˙

` pBy1 f q

ˆ

p´Bx1 f qa

a ´ g
Bz1 U y

1,n´2 ´ τ
pBx1 f qb

g ´ b
Bz2 U y

2,n´2 ´
p´By1 f qa

a ´ g
Bz1 U x

1,n´2 ` τ
pBy1bqb

g ´ b
Bz2 U x

2,n´2

˙

` pBy1 f q

´

Bx1 U y
1,n´1 ´ τBx1 U y

2,n´1 ´ By1 U x
1,n´1 ` τBy1 U x

2,n´1

¯

,

and
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Q 2,n “ p´Bx1 f qpiαA y
´ iβ Ax

qϕn´1 ´ piβ Az
` iγ A y

qϕn ´

ˆ

p´By1 f qa

a ´ g
Bz1 U z

1,n´1 ´ τ
pBy1 f qb

g ´ b
Bz2 U z

2,n´1

˙

´ pBx1 f q

ˆ

p´Bx1 f qa

a ´ g
Bz1 U y

1,n´2 ´ τ
pBx1 f qb

g ´ b
Bz2 U y

2,n´2 ´
p´By1 f qa

a ´ g
Bz1 U x

1,n´2 ` τ
pBy1bqb

g ´ b
Bz2 U x

2,n´2

˙

´ pBx1 f q

´

Bx1 U y
1,n´1 ´ τBx1 U y

2,n´1 ´ By1 U x
1,n´1 ` τBy1 U x

2,n´1

¯

.

Multiplying (A.9) by pa ́ gqpb ́ gq we rearrange these equations

pBx1 U z
1,n ´ τBx1 U z

2,nq ´ pBz1 U x
1,n ´ τBz2 U x

2,nq “ rQ 1,n,

pBy1 U z
1,n ´ τBy1 U z

2,nq ´ pBz1 U y
1,n ´ τBz2 U y

2,nq “ rQ 2,n,

where

rQ 1,n “
1

ab
p f pa ` bqpBx1 U z

1,n´1 ´ τBx1 U z
2,n´1q ´ af Bz1 U x

1,n´1 ` τbf Bz2 U x
2,n´1

´ f 2
Bx1 U z

1,n´2 ` τ f 2
Bx1 U z

2,n´2 ` abQ 1,n ´ pa ` bq f Q 1,n´1 ` f 2 Q 1,n´2q,

and

rQ 2,n “
1

ab
p f pa ` bqpBy1 U z

1,n´1 ´ τBy1 U z
2,n´1q ´ af Bz1 U y

1,n´1 ` τbf Bz2 U y
2,n´1

´ f 2
By1 U z

1,n´2 ` τ f 2
By1 U z

2,n´2 ` abQ 2,n ´ pa ` bq f Q 2,n´1 ` f 2 Q 2,n´2q.

If we multiply (A.8f) by pa ́ gq{a and (A.8g) by pb ́ gq{b, respectively, and simplify the divergence free conditions we 
find

Bx1 U x
1,n ` By1 U y

1,n ` Bz1 U z
1,n

“ pBx1 f qBz1 U x
1,n´1 ` pBy1 f qBz1 U y

1,n´1 `
f

a
Bx1 U x

1,n´1 `
f

a
By1 U y

1,n´1,

and

Bx1 U x
2,n ` By1 U y

2,n ` Bz2 U z
2,n

“ pBx1 f qBz2 U x
2,n´1 ` pBy1 f qBz2 U y

2,n´1 `
f

b
Bx1 U x

2,n´1 `
f

b
By1 U y

2,n´1.

By subtracting these equations, we complete the interfacial boundary condition

Bx1 pU x
1,n ´ U x

2,nq ` By1 pU y
1,n ´ U y

2,nq ` pBz1 U z
1,n ´ Bz2 U z

2,nq “ J̃n,

where

J̃n :“ pBx1 f qpBz1 U x
1,n´1 ´ Bz2 U x

2,n´1q ` pBy1 f qpBz1 U y
1,n´1 ´ Bz2 U y

2,n´1q

`

ˆ

f

a
Bx1 U x

1,n´1 ´
f

b
Bx1 U x

2,n´1

˙

`

ˆ

f

a
By1 U y

1,n´1 ´
f

b
By1 U y

2,n´1

˙

.

In conclusion, we arrive at the following equations:

�1U1,n ` k2
1U1,n “ R1,n, in 0 ă z ă a, (A.10a)

�2U2,n ` k2
2U2,n “ R2,n, in b ă z ă 0, (A.10b)

�U x
n � “ I1,n, at z1 “ z2 “ 0, (A.10c)

�U y
n � “ I2,n, at z1 “ z2 “ 0, (A.10d)

�U z
n � “ I3,n, at z1 “ z2 “ 0, (A.10e)

�Bx1 U z
n �τ �BzU x

n �τ “ rQ 1, at z1 “ z2 “ 0, (A.10f)

�By1 U z
n �τ �BzU y

n �τ “ rQ 2, at z1 “ z2 “ 0, (A.10g)

�Bx1 U x
n � ` �By1 U y

n � ` �BzU z
n � “ J̃n, at z1 “ z2 “ 0, (A.10h)

Bz1 U1,n ´ T1rU1,ns “ B1,n, at z1 “ a, (A.10i)

Bz2 U2,n ´ T2rU2,ns “ B2,n, at z2 “ b, (A.10j)
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where

I1,n :“ p´Bx1 f qpU z
1,n´1 ´ U z

2,n´1q ´ pBx1 f qAzϕn´1 ´ Axϕn,

I2,n :“ p´By1 f qpU z
1,n´1 ´ U z

2,n´1q ´ pBy1 f qAzϕn´1 ´ A yϕn,

I3,n :“ pBx1 f qpU x
1,n´1 ´ U x

2,n´1q ` pBy1 f qpU y
1,n´1 ´ U y

2,n´1q

` pBx1 f qAxϕn´1 ` pBy1 f qA yϕn´1 ´ Azϕn

and

B1,n “ ´
f

a
T1rU1,n´1s,

B2,n “ ´
f

b
T2rU2,n´1s.
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