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Abstract

In this paper we take up the question of a small dispersion limit for the Camassa–Holm equation. The particular limit we study
involves a modification of the Camassa–Holm equation, seen in the recent theoretical developments by Himonas and Misiołek, as
well as the first author, where well-posedness is proved in weak Sobolev spaces. This work led naturally to the question of how
solutions actually behave in these modified equations as time evolves. While the dispersive limit studied here is inspired by the work
of Lax and Levermore on the zero dispersion limit of the Korteweg–de Vries equation to the inviscid Burgers’ equation, here there
is no known Inverse Scattering theory. Consequently, we resort to a sophisticated numerical simulation to study two representative
(one smooth and one peakon), but by no means exhaustive, initial conditions in the modified Camassa–Holm equation. In both
cases there appears to be a strong limit of the modified Camassa–Holm equation to the Camassa–Holm equation as the dispersive
parameter tends to zero, provided that solutions have not evolved for too long (time sufficiently small). For the smooth initial
condition considered, this time must be chosen before the solution approaches steepening; beyond this time the computed solution
becomes increasingly complicated as the dispersive term tends towards zero, and there does not appear to be a limit. By contrast, for
the peakon initial condition this limit does appear to exist for all times considered. While in many cases the computations required
few discretization points, there were some very challenging cases (particularly for the small dispersion computations) where an
enormous number of unknowns were required to properly resolve the solution.
© 2009 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

In [6] Camassa and Holm found a nonlinear dispersive wave equation which possesses the remarkable property of
being completely integrable with soliton solutions that have “peaked” features. This wave equation,

∂tv + v∂xv + (1 − ∂2
x)

−1
∂x

[
v2 + 1

2
(∂xv)2

]
= 0, (1.1)

meant to simulate water waves in the limit of disappearing depth (please see Johnson [19] for a clarification of this
statement), was first derived by Fuchssteiner and Fokas [12] but is generally referred to as the Camassa–Holm (CH)
equation, while the peaked solitons are called “peakons.” These peakons are noteworthy because they do not have
the smoothness properties of, e.g., the solitons for the Korteweg–de Vries (KdV) or the Nonlinear Schrödinger (NLS)
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equations, but rather are quite singular being C0 but not C1. Despite their interesting features, one can easily imagine
that the weak smoothness properties of these solutions can pose severe difficulties for both rigorous analysis and
numerical simulation of the CH equation. For this reason it is natural to consider a “smoothing” of the CH equation
which might mollify these effects.

Inspired by the work of Lax and Levermore [21–24] who studied the inviscid Burgers’ equation,

∂tv + v∂xv = 0, (1.2)

and its dispersive regularization,

∂tv + v∂xv + ε∂3
xv = 0, (1.3)

the “weakly dispersive” KdV equation, we investigate in this paper a dispersive regularization of the CH equation, the
“modified Camassa–Holm” (mCH) equation,

∂tv + ε∂3
xv + v∂xv + (1 − ∂2

x)
−1

∂x

[
v2 + 1

2
(∂xv)2

]
= 0. (1.4)

Of course, this is not the only dispersive regularization that one can consider. In fact, the work of Abenda and Grava [2]
and Abenda, Grava, and Klein [1] presents the derivation and analysis of the Whitham modulation equations for the
CH equation. Our particular regularization is chosen as it enables one to study the well-posedness of the mCH equation
in weak Sobolev spaces (see Section 2). Our study is in response to the very natural question: How do solutions evolve
in this new, modified CH equation? More specifically, do solutions of (1.4) converge to solutions of (1.1) as ε → 0,
and, if so, on what time interval?

The same question was asked, and answered, by Lax and Levermore [22] in their study of the limit of the weakly
dispersive KdV equation (1.3) to the inviscid Burgers’ equation (1.2). However, they were able to appeal to the deep
and powerful technique of Inverse Scattering [3] and use it in a fundamental way to produce their analysis of the nature
of the convergence of solutions of (1.3) to (1.2). By contrast, this theory appears absent for the mCH equation, and thus
it seems one must resort to sophisticated numerical simulations to learn something about this limit. Additionally, the
question we have set for ourselves is far too broad and therefore we consider the more manageable task of studying two
(but by no means exhaustive) initial profiles in the limit as the dispersive parameter ε → 0. The profiles are a cosine
and a peakon, and the values of ε = 10−1, 10−3, 10−5, 0 are selected to investigate the small dispersion limit.

In both cases there appears to be an L∞ (at least) limit of the mCH equation to the CH equation as ε approaches
zero, provided that t is sufficiently small. For the smooth profile this t must be chosen before the solution approaches
steepening. Beyond this time the computed solution becomes increasingly complicated as ε approaches zero and there
does not appear to be a limit. By contrast, for the peakon profile this limit does appear to exist for all times considered
despite its severe lack of smoothness. While in many cases the computations required few discretization points, there
were some very challenging cases (particularly for ε = 10−5, 0) where an enormous number of unknowns were required
to properly resolve the solution.

The organization of the paper is as follows: in Section 2 we discuss theoretical results regarding solutions of both
the CH and mCH equations including the well-posedness theory and the peakon solutions. In Section 3 numerical
results are presented, including a discussion of the numerical method (Section 3.1), a convergence study (Section 3.2),
and a study of the evolution of two initial conditions (Sections 3.3 and 3.4) for mCH as ε approaches zero. Concluding
remarks are given in Section 4.

2. Theory

Before beginning the numerical investigation we recall some known theoretical results for the CH and mCH
equations. In particular, we review the well-posedness theory of the periodic problem in weak Sobolev spaces which
inspired the particular modification found in (1.4) as the dispersive correction to the CH equation. A good starting
point is the survey article by Molinet [26] on well-posedness results for CH on the line. For the specific case of CH
satisfying periodic boundary conditions the recent paper of Himonas and Misiołek [18] provides an excellent summary
of known results. In particular (see Theorem 1.1 of [18]), if the initial data v(x,0) is 2π-periodic and lies in the Sobolev
class Hs([0,2π]), then, if s > 3/2, (1.1) is locally well-posed in Hs([0,2π]) with solutions depending continuously on
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the initial data [11,17,25]. Furthermore, as the H1 norm of solutions to CH is conserved, these solutions exist globally
in time (see [16]).

Regarding the mCH equation far less is known. However, using the techniques of Bourgain [4,5], Himonas and
Misiołek showed that the mCH equation (ε = 1) is locally well-posed in Hs([0,2π]) for s > 1/2 [16]. Using the techniques
of Kenig, Ponce, and Vega [20], one of the authors has extended this result to s = 1/2 for small initial data [13,14].
Again, the H1 norm of solutions of the mCH equation is conserved [16].

In addition to the results given above, the CH equation admits a family of continuous, but not everywhere differen-
tiable, traveling solutions, the peakons. For any c > 0, given the initial data

ϕc(x) = c

∞∑
n=−∞

e−|x+2πn| = c
cosh(π − x)

sinh(π)
, (2.1)

on the interval [0,2π], (1.1) has the solution

vc(x, t) = c

∞∑
n=−∞

e−|x+2πn−ct|, (2.2)

see [6,8,9,27,17]. These peakons have all the properties of a soliton, including elasticity of collision between two
peakons of different velocities.

3. Numerics

In this section we briefly outline our numerical scheme, a fourth order Integrating-Factor Runge-Kutta technique
(see, e.g., [10]) coupled to a Fourier collocation spectral method [7]. Using this algorithm two initial conditions
(cosine and peakon) are evolved in the modified Camassa–Holm equation, (1.4), as ε → 0. Evidence is presented to
substantiate our claim that this algorithm produces reliable results, and then plots of the solution are displayed to
indicate the behavior of solutions as time evolves.

3.1. The scheme

Simply put, the numerical scheme is a Fourier spectral collocation of the spatial variable coupled to a fourth order
Integrating-Factor Runge-Kutta method for the time discretization [15,7,10]. In more detail, a grid of Nx evenly spaced
collocation points, xj, is specified on the interval [0,L] (L = 2π for the remainder of the paper) and the mCH equation,

(1.4), is enforced at each of these xj. In “wavenumber space,” derivatives and non-local operators such as (1 − ∂2
x)

−1

can be applied trivially (the latter with a division by (1 + k2) at each wavenumber).
Working in wavenumber space also has the effect of transforming the linear operator (−ε∂3

x) to scalar multiplication
by −ε(ik)3 so that the exact solution ûk(t) of the Fourier transformed linear mCH equation,

∂tûk = −ε(ik)3ûk,

can be written as

ûk(t) = Φk(t)ûk(0), Φk(t):=e−ε(ik)3t .

The Integrating-Factor method amounts to writing each unknown Fourier coefficient of the full mCH equation, (1.4),
as v̂k(t) = Φk(t)wk(t), and noting that the wk(t) satisfy

∂twk(t) = −Φk(−t)F̂k(Φk(t)wk(t)), (3.1)

where, from (1.4), F̂k is the Fourier transform of

F (v; t) = v∂xv + (1 − ∂2
x)

−1
∂x

[
v2 + 1

2
(∂xv)2

]
.

This system of ODEs, (3.1), which features no high-order derivatives (and thus no substantial stiffness), is now integrated
with a standard fourth order Runge-Kutta method from t = 0 to t = T in Nt time-steps of length dt = T/Nt.
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Table 1
Cauchy convergence results (fixed Nx = 512 and varying Nt) for solution of mCH equation with cosine initial data, dispersion parameter ε = 10−1,
and final time T = 0.5.

Nx Nt L∞ error

512 188 3.89501 × 10−10

512 250 3.61471 × 10−11

512 375 1.36232 × 10−11

512 500 2.30127 × 10−12

512 750 8.55982 × 10−13

512 1000 1.45439 × 10−13

The final specification is how the products in F̂k are computed. These are accomplished quickly on the “physical
side” with the Fast Fourier Transform (FFT) algorithm [15,7]. In order to stabilize the computations, dealiased products
are computed by using zero-padded arrays of length 2Nx.

3.2. Numerical simulations: convergence

Before proceeding with the numerical simulations we present some evidence that our algorithm is working correctly.
Tables 1 and 2 list, for the current (N(j) discretization points) and previous (N(j−1) discretization points) refinement
levels, the “L∞ error”

EN(j) :=
∣∣vN(j) − vN(j−1)

∣∣
L∞ , N(j) = N

(j)
t , N(j)

x . (3.2)

In Table 1 we have refined Nt with an Nx chosen so large that the spatial error is negligible, and vice versa for Table 2.
While measuring Cauchy convergence rather than convergence directly, for a convergent scheme, EN(j) must tend to

zero as N(j) = N
(j)
x and N(j) = N

(j)
t go to infinity. Furthermore, the numerical analysis of partial differential equations

[7] indicates that this rate should be

E
N

(j)
t

= O((N(j)
t )

−4
), E

N
(j)
x

= O(e−αN
(j)
x ), α > 0, (3.3)

for smooth solutions.
Tables 1 and 2 come from the simulation of the mCH equation with ε = 0.1, final time T = 0.5 (which is well before

any steepening of the solution, see Section 3.3), and initial condition v(x,0) = cos(x). A careful inspection of Table 1
using a linear least-squares fit to the logarithm of Nt versus the logarithm of the L∞ error reveals a slope of −4.636
which is in good agreement with (3.3). Regarding the spatial convergence, from Table 2 we see that if Nx is plotted
versus the logarithm of the L∞ error, the resulting graph displays linear behavior. In fact, a linear least-squares fit of Nx

to the logarithm of the L∞ error reveals a slope of −0.5191. These observations agree well with the prediction, (3.3),
of a spectral rate of convergence.

Table 2
Cauchy convergence results (fixed Nt = 1000 and varying Nx) for solution of mCH equation with cosine initial data, dispersion parameter ε = 10−1,
and final time T = 0.5.

Nx Nt L∞ error

12 1000 0.0457843
16 1000 0.00427541
24 1000 0.000255558
32 1000 9.90561 × 10−7

48 1000 2.67796 × 10−9

64 1000 3.63043 × 10−14
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Fig. 1. Evolution of cosine initial data for mCH with ε = 10−1 and 2π-periodic boundary conditions. Numerical parameters are Nx = 512 and
dt = 5 × 10−4.

Fig. 2. Evolution of cosine initial data for mCH with ε = 10−3 and 2π-periodic boundary conditions. Numerical parameters are Nx = 512 and
dt = 5 × 10−4.

3.3. Numerical simulations: cosine profile

To begin the numerical investigations, consider an initial profile shaped as a cosine. In an attempt to standardize
and nondimensionalize the results we will take, as we mentioned before, L = 2π, while also choosing unit amplitude
of the initial data, thus v(x,0) = cos(x). The cosine is a convenient starting point due to its smoothness and the fact that
its representation in Fourier space is concentrated entirely at wavenumbers k = ±1.

Beginning with a (relatively) large value of the dispersion parameter ε = 10−1, by choosing Nx = 512 and Nt = 12,000
one can realize an error, c.f. (3.2), of 7.98606 × 10−12 at the final time T = 6.0. Fig. 1 displays plots of the solution of
mCH with ε = 10−1 and cosine initial data at times t = 0.5, 1.0, 1.5, and 6.0. The computation could have been continued
for much longer, however, the simulation was ended here as it displays all of the essential features of this evolution
while giving a final time comparable to the length of the period interval. In all future runs we have endeavored to reach
this same final time for consistency, and only mention the final time if it differs from T = 6.0. Note that all subsequent
errors will be computed at the final time. In this simulation the profile steepens initially but this is then mollified by the
introduction of a rather large-scale oscillation. Here the features of the solution are smooth and easily resolved using
far fewer than the Nx = 512 points we have chosen.

Fig. 3. Magnification of Fig. 2(c) and (d) (mCH with ε = 10−3, 2π-periodic boundary conditions, Nx = 512, and dt = 5 × 10−4).
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Fig. 4. Evolution of cosine initial data for mCH with ε = 10−5 and 2π-periodic boundary conditions. Numerical parameters are Nx = 4096 and
dt = 5 × 10−4.

Fig. 5. Magnification of Fig. 4(c) and (d) (mCH with ε = 10−5, 2π-periodic boundary conditions, Nx = 4096, and dt = 5 × 10−4).

Next, the calculations above were reconsidered in the case ε = 10−3. Here one can achieve an error of 9.01067 × 10−9

with Nx = 512 and Nt = 12,000. Fig. 2 displays the solution of mCH with ε = 10−3 and cosine initial data at times t = 0.5,
1.0, 1.5, and 6.0. We note the markedly different behavior from the solution in the case ε = 10−1. Again, the solution
begins by steepening and appears to be smoothed when the slope becomes too steep. However, this oscillation is of
significantly higher frequency and eventually leads to a solution with quite a complicated structure. One could wonder
if these solutions are well-converged, but for this we appeal to the magnifications of the solutions at t = 1.5 and 6.0
displayed in Fig. 3. Here one sees that the high frequency content is genuine and not a numerical artifact.

Moving to mCH with ε = 10−5 and the cosine profile, an accuracy of 0.000359156 can be found with Nx = 4096
and Nt = 12,000. While this error is somewhat larger than that presented above, it is still quite acceptable at 10−4.
Fig. 4 exhibits the drastically different behavior for ε = 10−5. Once again we see the initial steepening followed by a
rapid dispersion of the sharp gradient. Again, the magnified pictures, Fig. 5, give evidence of the convergence of the
solutions. However, rather than progressing to a smooth profile as in the case ε = 10−1, the solution moves towards a
peaked profile. This appears to progress stably though it is clearly rather difficult to resolve.

Finally, we consider the evolution of the cosine profile in the CH equation (mCH with ε = 0). This was an extremely
challenging simulation which required Nx = 16,384 and Nt = 24,000 to achieve accuracy 0.00847588. Here the evolution
is remarkably different from the cases with ε > 0, see Fig. 6. Once again there is an initial steepening which is resolved

Fig. 6. Evolution of cosine initial data for mCH with ε = 0 and 2π-periodic boundary conditions. Numerical parameters are Nx = 16,384 and
dt = 2.5 × 10−4.
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Fig. 7. Magnification of Fig. 6(c) and (d) (mCH with ε = 0, 2π-periodic boundary conditions, Nx = 16,384, and dt = 2.5 × 10−4).

Fig. 8. Evolution of peakon initial data for mCH with ε = 10−1 and 2π-periodic boundary conditions. Numerical parameters are Nx = 1024 and
dt = 2.5 × 10−4.

into a small kink. This then progresses, at t = 6.0, to a different steepened/kink profile which is similar to that at t = 1.5
but with reversed symmetry. Please see Appendix A for full details of this evolution. Once again, the magnifications
in Fig. 7 show that this is a well-converged solution.

3.4. Numerical simulations: peakon profile

The second set of numerical experiments concern the evolution of a peakon initial profile, (2.1), in the mCH equation
which, for the CH equation, has the exact solution (2.2). For this series of trials the discontinuity in the first derivative
of the initial data has strong consequences for the numerical simulations. In particular, as the Fourier coefficients of
such functions decay quite slowly, one must anticipate that successfully resolving them will require a relatively large
number of collocation points. Additionally, as the rate of convergence of spectral methods depends in a fundamental
way on the smoothness of the underlying solution, there will not be the exponential rate of convergence observed in
Table 2.

The case ε = 10−1 was, quite surprisingly, another very difficult computation. While for time T = 1.0, one can realize
an error of 0.000572246 with Nx = 1024 and Nt = 4000, it was impossible to extend this calculation much beyond this
time, even with Nx = 16,384 points. Fig. 8 displays plots of the peakon solution evolving in mCH with ε = 10−1 for

Fig. 9. Evolution of peakon initial data for mCH with ε = 10−3 and 2π-periodic boundary conditions. Numerical parameters are Nx = 2048 and
dt = 2.5 × 10−4.
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Fig. 10. Evolution of peakon initial data for mCH with ε = 10−5 and 2π-periodic boundary conditions. Numerical parameters are Nx = 2048 and
dt = 2.5 × 10−4.

Fig. 11. Evolution of peakon initial data for mCH with ε = 0 and 2π-periodic boundary conditions. Numerical parameters are Nx = 2048 and
dt = 2.5 × 10−4.

t = 0.1, 0.2, 0.3, and 1.0; it is clear from these that the large dispersion quickly destroys any resemblance of the solution
to the original peakon.

The case ε = 10−3 was, once again, a challenging computation, however, we were able to extend it all the way to
T = 6.0 with a reasonable number of discretization points, Nx = 2048; with Nx = 2048 and Nt = 24,000 one can find an
error of 0.000257817. Fig. 9 depicts the evolution at the times t = 0.1, 0.3, 1.0, and 6.0. Here the initial profile appears
to “smooth” a little while, in contrast to mCH with ε = 10−1, retaining many of the basic features of the peakon.

Moving to the case ε = 10−5, the results look very similar to the ones outlined above in the case ε = 10−3. Again,
solutions could be found all the way to T = 6.0 with Nx = 2048 collocation points, however, the accuracy was somewhat
less refined as Nx = 2048 and Nt = 24,000 delivered an error of 0.00230018. Fig. 10 shows results of a peakon evolving
in mCH with ε = 10−5 at times t = 0.1, 0.3, 1.0, and 6.0. Here there is no appreciable smoothing of the solution and it
appears that the peakon is actually quite close to an exact traveling solution of the mCH equation for this value of the
dispersion.

To close we consider the peakon initial condition evolving in the CH equation. Once again, one can follow the
solution all the way to T = 6.0 with little difficulty though, again, Nx = 2048 and Nt = 24,000 are required to deliver an
error of 0.00278471. Fig. 11 presents results of a peakon evolving in CH at times t = 0.1, 0.3, 1.0, and 6.0. Here the
exact traveling solution appears to be evolving correctly in the CH equation. As a final note, since the peakons are
exact traveling solutions of the CH equation for this initial data, the exact error can be computed. These errors were
comparable to those computed from (3.2) giving us further confidence in both the numerical scheme and our method
for verifying it.

4. Conclusions

In this paper we have presented a sophisticated Fourier spectral collocation, Integrating-Factor, fourth order Runge-
Kutta method for approximating solutions of the modified Camassa–Holm equation, (1.4). This new algorithm has
been tested with two initial profiles (cosine and peakon) with quite different smoothness properties, and four values of
the dispersive parameter ε approaching, and including, zero.

To study the limit of mCH to CH as ε → 0 we now collect, for both profiles, plots of the solution at a time well before
the end of our simulations for each of ε = 10−1, 10−3, 10−5, and 0. These appear in Fig. 12 for the cosine profile, and in
Fig. 13 for the peakon profile. From these one can conclude that for this “sufficiently small” time there does appear to
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Fig. 12. Evolution of cosine initial data at t = 1.0 for mCH for varying ε and 2π-periodic boundary conditions.

Fig. 13. Evolution of peakon initial data at t = 1.0 for mCH for varying ε and 2π-periodic boundary conditions.

Fig. 14. Evolution of cosine initial data at t = 1.5 for mCH for varying ε and 2π-periodic boundary conditions.

be a limit in L∞ for all profiles. To decide what the appropriate notion of “smallness” should be for the time variable,
Fig. 14 displays plots of the cosine initial data at t = 1.5 for the four values of ε. These are past the “steepening” phase
that this solution undergoes for small ε. The solutions look quite different and we doubt that a limit exists as ε → 0
for t beyond steepening. However, the situation is quite different for the peakon initial data which has much weaker
smoothness. In Fig. 15 we reproduce the peakon evolution at t = 6.0 for three values of ε (recall that the peakon was
not properly resolved in mCH for ε = 10−1 at t = 6.0) and notice what appears to be L∞ convergence as ε → 0. Here,
as there is no steepening, perhaps one does not need to make a smallness assumption on t.

Fig. 15. Evolution of peakon initial data at t = 6.0 for mCH for varying ε and 2π-periodic boundary conditions.
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Fig. 16. Evolution of cosine initial data in CH for 2π-periodic boundary conditions (t = 0.3, . . ., 6.0, Nx = 16,384, dt = 2.5 × 10−4).
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Thus, in both cases there appears to be an L∞ limit of our mCH equation to the CH equation as ε → 0, provided
that t is sufficiently small. For the smooth profile it appears that this t must be chosen before the solution approaches
steepening. By contrast, beyond this time there appears to be no limit as ε → 0. However, for the peakon profile this
limit does appear to exist in L∞ for all times considered despite its lack of smoothness.

Appendix A. Evolution of cosine profile in CH equation

In this appendix, we present our full set of numerical results for the case of the cosine profile evolving in the CH
equation (see Section 3.3 and Figs. 6 and 7). In contrast to the other solutions presented in this paper, the evolution of
v from t = 1.5 to t = 6.0 in this configuration is by no means clear. In Fig. 16, a “kink” enters the solution, then grows,
gradually evolves to a “kinked sawtooth” configuration, and then progresses back to a steepened/kink profile. The
interesting feature of these final pictures is that they appear to be mirror images of the solution just before steepening,
say at t = 1.5. For instance, the placement of the kink and sharp gradient at t = 6.0 appear reversed from the solution at
t = 1.5. As before, the numerical parameters are Nx = 16,384 and dt = 2.5 × 10−4 (see Section 3.3).
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