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We present an efficient numerical method for simulating the scattering of electromagnetic fields by a multilayered
medium with random interfaces. The elements of this algorithm, the Monte Carlo–transformed field expansion
method, are (i) an interfacial problem formulation in terms of impedance-impedance operators, (ii) simulation
by a high-order perturbation of surfaces approach (the transformed field expansions method), and (iii) efficient
computation of the wave field for each random sample by forward and backward substitutions. Our perturbative
formulation permits us to solve a sequence of linear problems featuring an operator that is deterministic, and its
LU decomposition matrices can be reused, leading to significant savings in computational effort. With an extensive
set of numerical examples, we demonstrate not only the robust and high-order accuracy of our scheme for small to
moderate interface deformations, but also how Padé summation can be used to address large deviations. © 2022

Optica PublishingGroup
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1. INTRODUCTION

We consider the scattering of electromagnetic waves by a struc-
ture consisting of multiple layers that are separated by random
interfaces that are invariant in the y direction. Figure 1 shows
a representative cross section of one such structure in the x–z
plane. The material in each layer is characterized by its per-
meability and permittivity, and we suppose incident radiation
illuminates the structure from above with electric/magnetic
fields that are aligned with the invariant (y ) direction of the grat-
ing grooves. We are interested in efficiently finding the statistics
(mean and variance) of the resulting scattered fields in each layer.
The model arises from applications in physics and engineering
including remote sensing [1,2], oceanography [3,4], surface
plasmon resonances [5–8], and solar cells [9,10] to name just
a few.

Perturbation or Kirchoff theories may be applied to random
interface problems to obtain analytical solutions when the
interfacial deviations are sufficiently small and smooth [11–13].
Alternatively, a numerical approach one can take is to transform
the random domain into a deterministic one and to numerically
approximate the transformed stochastic problem with either
Monte Carlo simulations [14,15] or stochastic Galerkin meth-
ods [16,17]. Such numerical algorithms can be quite expensive
as, for instance, the Monte Carlo method requires a solution of
the full system of governing equations for each random sample,
and the size of such systems associated to the stochastic Galerkin

Fig. 1. Sample of a structure with three layers separated by random
interfaces with artificial boundaries.

method becomes enormous [16,17]. For other numerical
approaches to random surface problems, we refer the interested
reader to [18,19].

We propose an improvement of the Monte Carlo–
transformed field expansion (MCTFE) method [20] to avoid
the singularities generated by use of Dirichlet-to-Neumann
operators on the inner layers. The components of this new
MCTFE algorithm are (i) an interfacial problem formulation
in terms of impedance-impedance operators (IIOs), (ii) a
high-order perturbation of surfaces (HOPS) approach [the
transformed field expansions (TFE) method] for solving the
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model, (iii) efficient computation of the solution with forward
and backward substitutions. The proposed method is a high-
order spectral method and demonstrates high accuracy as is
characteristic of such methods [21–23]. It requires significantly
fewer unknowns compared to volumetric methods, making
it far more efficient for the interfacial problems we investigate
here. To make this more precise, this contribution focuses on
layer interfaces of the form

z= am + g m(x )= am + ε fm(x ), ε� 1, fm =O(1).

HOPS algorithms are particularly advantageous for such
problems, as they recover the Taylor coefficients in an ε expan-
sion of the scattered fields, which can then be summed for quite
arbitrary values of ε (sufficiently small). Additionally, using
IIOs to formulate the boundary conditions at the interfaces
separating the layers avoids artificial singularities and provides a
well-conditioned and stable algorithm for all wavenumbers.

Of paramount importance (see [20]), the method delivers
a deterministic differential operator, whose inverse can be pre-
computed for use at every Monte Carlo sample and perturbation
order. This clearly reduces the computational complexity by
an enormous amount, thereby enabling, with rather modest
effort, simulations that would be prohibitive for competing
algorithms, e.g., classical Monte Carlo [14,15] or stochastic
Galerkin [16,17], that require a full system solve for every reali-
zation. This contribution describes results found in the Ph.D.
thesis of one of the authors (K. Ulmer) [24], and we refer to both
[20] for a description of the MCTFE method as applied to a
single random interface (which does not have inner-layer singu-
larities), and to [25] for the development of the TFE method for
simulating IIOs on domains with deterministic interfaces.

The remainder of the paper is organized as follows: Section 2
discusses the mathematical problem, while in Section 3 we
present a novel surface formulation. Section 4 prescribes the
numerical algorithm and its computational complexity, and
Section 5 presents numerical results. Finally, Section 6 provides
a brief summary of our findings.

2. MATHEMATICAL MODEL

We now provide a brief specification of the governing
mathematical equations of the problem we consider.

A. Problem Formulation

Consider the scattering of electromagnetic waves by a structure
consisting of multiple layers with M-many periodic random
interfaces, invariant in the y direction; see Fig. 1 for one reali-
zation of such a structure. For a random sample ξ we define, for
1≤m ≤M, the mth interface:

0m(ξ)= {(x , z): z= am + g m(ξ ; x )}, g m(ξ ; x + d)= g m(ξ ; x ),

and, for 1≤m ≤M − 1, the mth layer:

�m(ξ)= {(x , z): am−1 + g m−1(ξ ; x ) < z< am + g m(ξ ; x )}.

The upper and lower layers are defined by �0(ξ)= {z>
a1 + g 1(ξ ; x )} and �M(ξ)= {z< aM + g M(ξ ; x )}, respec-
tively. The interface shapes are stationary Gaussian processes,

and n(m) denotes the upward pointing normal vector at interface
m.

Suppose an incident plane-wave in transverse-electric (TE)
or transverse-magnetic (TM) polarization illuminates the
structure from above, and its transverse component is given by

vinc(x , z, t)= e iωt e i(αx−γ (0)z)
= e iωtvinc(x , z),

where α = k(0) sin(θ), γ (0) = k(0) cos(θ), and θ is the angle
of incidence. In each layer, given the index of refraction n(m),
the wavenumber is given by k(m) = n(m)k0, where k0 =ω/c 0,
ω is the angular frequency of the incident wave, and c 0 is the
speed of light in the vacuum. We assume that the upper and
lower layers each consist of dielectrics so that n(0), n(M) ∈R.
While we focus upon TE polarization, TM polarization can be
accommodated in an analogous fashion with a slight change in
boundary conditions. Our goal is to find the statistics (mean and
variance) of the scattered fields, v(m)(ξ ; x , z), in each layer.

In TE polarization, the transverse component of the scattered
electric field v(m) is governed by the Helmholtz equation

1v(m)(ξ ; ·)+ (k(m))2v(m)(ξ ; ·)= 0, in�m(ξ).

The transverse component of the total electric field and its
normal derivative are both continuous, and the fields in each
layer are quasiperiodic [26], i.e.,

v(m)(ξ ; x + d , z)= e iαdv(m)(ξ ; x , z), 0≤m ≤M.

Therefore, the full set of governing equations for our model is

1v(m)(ξ ; ·)+ (k(m))2v(m)(ξ ; ·)= 0, (x , z) ∈�m(ξ), m = 0, ... , M,

v(0)(ξ ; ·)− v(1)(ξ ; ·)=−vinc, , z= a1 + g 1(ξ ; x ),

∂v(0)

∂n(1) (ξ ; ·)−
∂v(1)

∂n(1) (ξ ; ·)=−
∂vinc

∂n(1) , z= a1 + g 1(ξ ; x ),

v(m−1)(ξ ; ·)− v(m)(ξ ; ·)= 0, z= am + g m(ξ ; x ), m = 2, ... , M,

∂v(m−1)

∂n(m) (ξ ; ·)−
∂v(m)

∂n(m) (ξ ; ·)= 0, z= am + g m(ξ ; x ), m = 2, ... , M,

v(m)(ξ ; x + d , z)= e iαdv(m)(ξ ; x , z), m = 0, ... , M.
(1)

We are only missing a description of how the fields behave at
infinity, which we now presently supply.

B. Outgoing Wave Condition

The far-field behavior of waves scattered by a diffraction grating
is specified by the outgoing wave condition (OWC). In this
section, we make this precise for solutions in the upper layer,
�0(ξ), and note that a similiar analysis can be conducted in
the lower. To begin, we choose a > a1 + |g 1|L∞ and define
the artificial boundary {z= a} [20,25,27] (see Fig. 1). In the
domain {z> a}, the Rayleigh expansion [26,28] (for a fixed
random sample ξ ) expresses the scattered field in terms of the
arbitrary Fourier coefficients ψ̂p as

v(0)(ξ ; x , z)=
∞∑

p=−∞

ψ̂p e iαp x+iγ (0)p (z−a), (2)

where, for p ∈Z,

αp := α +

(
2π

d

)
p, γ (m)p =

√
(k(m))2 − α2

p , Im(γ (m)p )> 0.
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In the case that the mth layer is a dielectric, we have

γ (m)p =


√
(k(m))2 − α2

p , p ∈ P (m),

i
√
α2

p − (k(m))
2
, p /∈P (m),

where P (m)
:= {p ∈Z : α2

p ≤ (k
(m))2}. This expansion defines

the function ψ(ξ ; x ) := v(0)(ξ ; x , a), which we utilize
presently.

Enforcing continuity across the artificial boundary gives
a transparent boundary condition in terms of a Dirichlet-to-
Neumann operator (DNO). As its name suggests, this DNO
maps Dirichlet data to corresponding Neumann data at the
artificial boundary

T(0)
: v(0)(ξ ; x , a)→ ∂zv

(0)(ξ ; x , a).

From the Rayleigh expansions above, Eq. (2), we can show
that

∂zv
(0)(ξ ; x , a)=

∞∑
p=−∞

iγ (0)p ψ̂p e iαp x
=: T(0)

[ψ(ξ ; x )],

which defines the DNO, T(0). With this, the OWC can be
expressed as

∂zv
(0)(ξ ; ·)− T(0)

[v(0)](ξ ; ·)= 0, z= a .

In a similar manner, the OWC in the lower layer can be
enforced with

∂zv
(M)(ξ ; ·)− T(M)

[v(M)](ξ ; ·)= 0, z= b,

where T(M) is defined in an analogous manner as T(0).

C. Random Surfaces: The Karhunen–Loève
Expansion

We use the Karhunen–Loève expansion to represent the station-
ary Gaussian processes g̃ m(ξ ; x ), 1≤m ≤M, which describe
the interfaces separating each layer. We assume the surface devi-
ations are small by setting g m(ξ ; x )= εg̃ m(ξ ; x ), where ε� 1
and g̃ m(ξ ; x )=O(1) are stationary Gaussian processes with
continuous and bounded covariance functions. As a stationary
Gaussian process, each g̃ m(ξ ; x ) is jointly normal and has a
continuous and bounded (Gaussian) covariance function

C (m)(x , y )= c (m)(x − y )= (σ (m)0 )2e−|x−y |2/(lc )2 ,

where σ (m)0 is the standard deviation of the surface and lc is the
correlation length [29], each of which dictate the shape of the
interface.

Since c (m)(x ) is an even function and g̃ m(ξ, x ) is periodic, we
may expand the covariance function in a Fourier cosine series

c (m)(x )=
ĉ (m)0

2
+

∞∑
p=1

ĉ (m)p cos

(
2π px

d

)
.

We denote by K (m) the covariance operator for the mth layer:

K (m)φ(x ) :=
∫ d

0
c m(x − y )φ(y ) dy ,

and, by direct calculation, we have that K (m) has eigenvalues
λ
(m)
j = d ĉ (m)j /2, j > 0, with corresponding eigenfunctions

φ
(m)
j (x )=



√
1
d , j = 0,√
2
d cos

(
2 jπ x

d

)
, j > 2,when j is even,√

2
d sin

(
2 jπ x

d

)
, j > 1, when j is odd.

The Karhunen–Loève expansion of g̃ m(ξ ; x ), 1≤m ≤M, is
now given by

g̃ m(ξ ; x )= ḡ m(x )+
√
λ
(m)
0

√
1

d
ζ
(m)
0 (ξ)

+

∞∑
j=1

√
λ
(m)
j

√
2

d

[
ζ
(m)
2 j (ξ) cos

(
2(2 j )π x

d

)

+ ζ
(m)
2 j−1(ξ) sin

(
2(2 j − 1)π x

d

)]
,

where ḡ m(x ) is a deterministic function and ζ (m)j , j > 0, are
independent and identically distributed Gaussian random
variables with zero mean and unit covariance [20].

3. INTERFACIAL FORMULATION

As we now illustrate, the full set of governing equations Eq. (1)
can be reformulated entirely in terms of surface quantities due
to the homogeneous composition of each layer. The advantages
of this approach versus the volumetric formulation are obvious
in terms of reduced computational resources and accelerated
simulation times. Furthermore, as suggested by Kirsch and
Monk [30] (see also [31,32]), it is advantageous to accomplish
this reformulation in terms of IIOs, as it can be arranged for
these to exist for all choices of the layer wavenumbers, k(m), in
contrast to the DNOs used in alternative formulations [33–35].

To specify the classical IIOs due to Després [36],
let η ∈R+ define the (lower) surface impedances at
z= am+1 + g m+1(ξ ; x ), 0≤m ≤M − 1,

L (m)(ξ ; x ) :=−
∂v(m)

∂n(m+1)
− iηv(m), (3a)

L̃ (m)(ξ ; x ) :=−
∂v(m)

∂n(m+1)
+ iηv(m), (3b)

and the (upper) surface impedances at z= am + g m(ξ ; x ),
1≤m ≤M,

U (m)(ξ ; x ) :=
∂v(m)

∂n(m)
− iηv(m), (4a)

Ũ (m)(ξ ; x ) :=
∂v(m)

∂n(m)
+ iηv(m). (4b)

Following [31,32] we now formally define our IIOs and point
out that C 2 continuity of the interfaces is certainly enough to
justify our statements.
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Definition 1 For g 1(ξ ; x ) sufficiently smooth, the unique
quasiperiodic solution of

1v(0) + (k(0))
2
v(0) = 0, (x , z) ∈�0(ξ),

∂zv
(0)
− T(0)

[v(0)] = 0, z= a ,
−
∂v(0)

∂n(1)
− iηv(0) = L (0), z= a1 + g 1(ξ ; x ),

(5)

defines the IIO, Q, by Q[L (0)] := L̃ (0).
Definition 2 For g m(ξ ; x ) and g m+1(ξ ; x ), 1≤m ≤

M − 1, sufficiently smooth, the unique quasiperiodic solution of
1v(m) + (k(m))

2
v(m) = 0, (x , z) ∈�m(ξ),

∂v(m)

∂n(m)
− iηv(m) =U (m), z= am + g m(ξ ; x ),

−
∂v(m)

∂n(m+1) − iηv(m) = L (m), z= am+1 + g m+1(ξ ; x ),
(6)

defines the IIO, R , by

R (m)
[(

U (m)

L (m)

)]
=

[
R (m),uu R (m),ul

R (m),lu R (m),l l

] [
U (m)

L (m)

]
:=

[
Ũ (m)

L̃ (m)

]
.

Definition 3 For g M(ξ ; x ) sufficiently smooth, the unique
quasiperiodic solution of

1v(M) + (k(M))
2
v(M) = 0, (x , z) ∈�M(ξ),

∂v(M)

∂n(M)
− iηv(M) =U (M), z= aM + g M(ξ ; x ),

∂zv
(M)
− T(M)

[v(M)] = 0, z= b,

(7)

defines the IIO, S, by S[U (M)
] := Ũ (M).

Remark 1 It can be shown that the elliptic boundary value prob-
lems Eq. (5), Eq. (6), and Eq. (7) are all well posed so that all of the
IIOs are guaranteed to exist (cf. [31,32,37]).

By taking appropriate linear combinations of the boundary
conditions in Eq. (1), the governing equations can be written as

Ax= b, (8)

in terms of the impedances, {L,U}, which appear in x, and the
IIOs described above, which feature in A. (We note that the inci-
dent radiation is found in the right-hand side b.) Furthermore,
due to the well-posedness of the problems Eq. (5), Eq. (6), and
Eq. (7), the full system of equations, Eq. (1), is equivalent to
this interfacial formulation, Eq. (8). Please refer to Section 1 of
Supplement 1 for full details.

Remark 2 We point out that the choice of surface unknowns
in Eq. (3) and Eq. (4) was made for mathematical reasons: They
deliver well-defined operators (IIOs) throughout the spectrum of
illumination frequencies. Such choices are commonplace in the
non-overlapping domain decomposition literature [32], which
studies iteration schemes for solving the scattering problem Eq. (1)
where one set of transmission variables, e.g ., {L̃ (m), Ũ (m)

}, is used
to update the others, say, {L (m),U (m)

}. It can be shown that in the
one-dimensional case this iteration scheme will converge in a finite
number of steps if one chooses η= k(m) (in fact, the speed of light is
typically rescaled to unity so that η=ω is chosen) [32]. In higher
dimensions, the analysis is more subtle, and convergence in a finite
number of steps cannot be guaranteed, but optimal convergence rates
are typically found when η is chosen to be a small deviation from
k(m). Our nomenclature of the surface quantities as “impedances”

follows that in [31] where the authors judged this to be superior to
“transmission variables” or “Robin variables.” While the quantities
in Eq. (3) and Eq. (4) resemble physical quantities, they do not
generically have physical significance.

With this surface reformulation in place, all that remains to be
specified is how the IIOs (Q, R , S) are to be computed. All of the
classical volumetric approaches are available for this including
the finite difference method [38], the finite element method
[39], the discontinuous Galerkin method [40], the spectral
element method [41], and the spectral method [21,22] to name
a few. However, due to the homogeneous nature of the material
layers, a surface method will be greatly advantaged, and so we
pursue this here. While integral equation methods are popular
choices for this [42], we advocate a HOPS approach due to the
parameterized nature of the interfaces. More specifically, we
now describe a TFE method [43] for this computation.

A. Method of Transformed Field Expansions

Following [20,43], the TFE approach to simulating our IIOs
begins with a domain-flattening change of variables. This new
set of coordinates, first introduced by Phillips [44] and later
Chandezon [45], stabilizes the closely related field expansions
(FE) method devised by Bruno and Reitich [46], which will be
crucial in our simulations.

To begin, for each sample ξ , we consider the new coordinates
x ′ = x and, in each layer (0≤m ≤M),

z′ = am+1

(
(am + g m(ξ ; x ))− z

h(m) + g m(ξ ; x )− g m+1(ξ ; x )

)

+ am

(
z− (am+1 + g m+1(ξ ; x ))

h(m) + g m(ξ ; x )− g m+1(ξ ; x )

)
,

where h(m) := am − am+1, {a0 = a , g 0 ≡ 0}, and {aM+1 = b,
g M+1 ≡ 0}. Next, we define the transformed fields

w(m)(ξ ; x ′, z′) := v(m)(ξ ; x (x ′, z′), z(x ′, z′)),

for 0≤m ≤M.
For brevity we now focus upon the computation of the

inner-layer IIO, R (m), for any 1≤m ≤M − 1, and note that
similar considerations apply to the upper- and lower-layer IIOs,
S and Q. By the above change of variables, a straightforward
calculation shows that under the new coordinates, the governing
equations Eq. (6) become1

′w(m) + (k(m))
2
w(m) = F (m), am+1 < z′ < am,

∂z′w
(m)
− iηw(m) =U (m)

+ J (m),u, z′ = am,

−∂z′w
(m)
− iηw(m) = L (m) + J (m),l , z′ = am+1,

(9)

and the IIO satisfies

[
R (m),u[U (m), L (m)]
R (m),l [U (m), L (m)]

]
=

 (∂z′w
(m)
+ iηw(m))

∣∣∣
z′=am

(−∂z′w
(m)
+ iηw(m))

∣∣∣
z′=am+1


+

[
K (m),u

K (m),l

]
.

(10)

https://doi.org/10.6084/m9.figshare.20334714
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We refer the reader to Section 2 of Supplement 1 for a detailed
description of the functions F (m), J (m),u , J (m),l , K (m),u , and
K (m),l . Importantly, each depends at least linearly on g m so that,
if g m = εg̃ m , then each of these isO(ε).

Next, we recall that we have parameterized the layer interfaces
by ε and seek a solution of our transformed governing equations,
Eq. (9), in a Taylor series

w(m) =w(m)(ξ ; x ′, z′; ε)=
∞∑

n=0

w(m)n (ξ ; x ′, z′)εn . (11)

Given the known impedances

L (m)(ξ ; x ; ε)=
∞∑

n=0

L (m)n (ξ ; x )εn,

U (m)(ξ ; x ; ε)=
∞∑

n=0

U (m)
n (ξ ; x )εn,

we can uniquely solve Eq. (9) and express the IIOs as(
R (m),u[U (m), L (m)]

R (m),l [U (m), L (m)]

)
=

∞∑
n=0

(
R (m),un [U (m), L (m)]

R (m),ln [U (m), L (m)]

)
εn .

Upon inserting the expansion Eq. (11) forw into the (trans-
formed) governing equations, Eq. (9), we find

1′w(m)n + (k
(m))

2
w(m)n = F (m)

n , am+1 < z′ < am,

∂z′w
(m)
n − iηw(m)n =U (m)

n + J (m),un , z′ = am,

−∂z′w
(m)
n − iηw(m)n = L (m)n + J (m),ln , z′ = am+1,

(12)

and, from Eq. (11) placed in Eq. (10),[
R (m),un [U (m), L (m)]

R (m),ln [U (m), L (m)]

]
=

 (∂z′w
(m)
n + iηw(m)n )

∣∣∣
z′=am

(−∂z′w
(m)
n + iηw(m)n )

∣∣∣
z′=am+1



+

[
K (m),u

n

K (m),l
n

]
.

(13)

Here we use the convention that w(m)n ≡ 0 if n < 0. We
refer the reader to Section 3 of Supplement 1 for a detailed
description of the functions F (m)

n , J (m),un , J (m),ln , K (m),u
n , and

K (m),l
n .
With this HOPS approach in mind, we point out that our full

set of governing equations, Eq. (8), can be written as

A(ε)x(ε)= b(ε),

which, upon Taylor expansion, reads(
∞∑

n=0

Anε
n

)[
∞∑

n=0

xnε
n

]
=

∞∑
n=0

bnε
n .

Equating at each order n > 0, one discovers a formula for xn

A0xn = bn −

n−1∑
r=0

An−r xr . (14)

From this it is clear that the key to this regular perturbation
approach is the linear operator A0 and its inverse. As described
in Section 3 of Supplement 1, this operator is composed
of the order-zero (infinitesimal) IIOs, which we presently
investigate.

Remark 3 The flat-interface case is addressed by Eq. (14) with
ε= 0 corresponding to A0x0 = b0. This equation is equivalent to
the classical Fresnel equation [26], which delivers the transmission
and reflection coefficients in a multiply layered medium with flat
interfaces. To see this, one must use the inversion formulas

∂v(m)

∂n(m+1)
=−

1

2

{
L (m) + L̃ (m)

}
, v(m) =

1

2iη

{
L̃ (m) − L (m)

}
,

and

∂v(m)

∂n(m)
=−

1

2

{
U (m)
+ Ũ (m)

}
, v(m) =

1

2iη

{
Ũ (m)
−U (m)

}
,

which can be derived by adding and subtracting the equations in
Eq. (3) and Eq. (4), respectively. From these physically relevant
quantities (the surface fieldv(m) and surface curren, ∂v(m)/∂n(m))
one can readily recover the reflection and transmission coefficients
once it is observed that, due to the plane-wave incidence and
the flat interfaces, this system of equations need only be solved at
wavenumber p = 0.

B. IIO on a Domain with Infinitesimal Deformations

We have just observed that the crucial consideration in our
HOPS approach is the order-zero operator, A0, which features
the order-zero IIOs, Q0, R (m)0 , and S0. Again we fix upon the
inner layer case and recover an explicit form for R (m)0 by using
the fact that the order-zero problem corresponds to the IIO
problem on a domain with infinitesimal (vanishing) boundary
perturbations. More specifically we consider Eq. (12) at n = 0:

1′w
(m)
0 + (k

(m))
2
w
(m)
0 = 0, am+1 < z′ < am,

∂z′w
(m)
0 − iηw(m)0 =U (m)

0 , z′ = am,

−∂z′w
(m)
0 − iηw(m)0 = L (m)0 , z′ = am+1.

(15)

Before proceeding we make a trivial change of variables that
simply shifts the domain {am+1 < z′ < am} to {−h < z̃< h},
namely, x̃ = x ′ and

z̃=−h
{

am − z′

am − am+1

)
+ h

(
z′ − am+1

am − am+1

)
,

where h = (am − am+1)/2. If we let

u(m)0 (x̃ , z̃) :=w(m)0 (x ′(x̃ , z̃), z′(x̃ , z̃)),

then Eq. (15) becomes
1̃u(m)0 + (k

(m))
2
u(m)0 = 0, −h < z̃< h,

∂z̃u
(m)
0 − iηu(m)0 =U (m)

0 , z̃= h,

−∂z̃u
(m)
0 − iηu(m)0 = L (m)0 , z̃=−h .

The solutions of the Helmholtz equation are

https://doi.org/10.6084/m9.figshare.20334714
https://doi.org/10.6084/m9.figshare.20334714
https://doi.org/10.6084/m9.figshare.20334714
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u(m)0 =

∞∑
p=−∞

(
a (m)p cosh(iγ (m)p z̃)+ b(m)p

sinh(iγ (m)p z̃)

iγ (m)p

)
e iαp x̃ ,

while the boundary conditions give the following linear system[
am,p bm,p

am,p −bm,p

] [
a (m)p

b(m)p

]
=

[
Û (m)

0,p

L̂ (m)0,p

]
; (16)

formulas for the entries are specified in Section 4 of
Supplement 1. It can be shown that this system has a unique
solution that we now utilize to discover a form for the pth
Fourier coefficient of R (m)0 :

R (m)0,p

[
Û (m)

0,p

L̂ (m)0,p

]
=

[
ām,p b̄m,p

ām,p −b̄m,p

] [
am,p bm,p

am,p −bm,p

]−1 [
Û (m)

0,p

L̂ (m)0,p

]
.

It is not difficult to see that

R (m)0,p =
1

2

 ām,p
am,p
+

b̄m,p
bm,p

ām,p
am,p
−

b̄m,p
bm,p

ām,p
am,p
−

b̄m,p
bm,p

ām,p
am,p
+

b̄m,p
bm,p

 ,
which is readily verified to be unitary so that its inverse is its con-
jugate transpose. Furthermore, it has been shown [25,31,32,47]
that the operator R (m) is still unitary for nonzero bound-
ary deformations indicating that its computation will be
well-conditioned.

C. Reduction to Two-Point Boundary Value Problems

As both the fieldsw(m) and their nth order Taylor corrections are
quasiperiodic in the lateral variable we may expand them in gen-
eralized Fourier (Floquet) series

w(m)n (ξ ; , x ′, z′; ε)=
∞∑

p=−∞

ŵ(m)n,p (ξ ; z
′)e iαp x ′ .

Expanding the impedance data in a similar fashion,

L (m)n (ξ ; , x ′)=
∞∑

p=−∞

L̂ (m)n,p e iαp x ′ ,

and

U (m)
n (ξ ; , x ′)=

∞∑
p=−∞

Û (m)
n,p e iαp x ′ ,

and we may insert these forms into Eq. (12) to realize, at each
wavenumber p , the two-point boundary value problems

∂2
z′ŵ

(m)
n,p + (γ

(m)
p )

2
ŵ(m)n,p = F (m)

n,p , am+1 < z′ < am,

∂z′ŵ
(m)
n,p − iηŵ(m)n,p = Û (m)

n,p + J (m),ln,p , z′ = am,

−∂z′ŵ
(m)
n,p − iηŵ(m)n,p = L̂ (m)n,p + J (m),ln,p , z′ = am+1.

(17)
We note that for each random sample ξ and for each Taylor

order n, we have the same deterministic differential operator
on the left-hand side of Eq. (17), which we will presently use to
great effect in our numerical algorithm [20,27].

4. NUMERICAL ALGORITHM

At this point we can specify a rapid, accurate, and robust
numerical procedure for the simulation of scattering by random
diffraction gratings that satisfy Eq. (1), reformulated in terms of
interfacial unknowns and IIOs, Eq. (8), the latter of which are
computed by the TFE method.

A. Fourier–Chebyshev–Taylor Collocation Method

The only difficult aspect of our numerical algorithm is the
TFE method applied to the IIO problems, Eq. (9) and
Eq. (10), and for this we approximate the fields w(m) with a
Fourier–Chebyshev–Taylor form

w(m)(ξ ; x ′, z′; ε)≈

N∑
n=0

Nx /2−1∑
p=−Nx /2

Nz∑
l=0
ŵ
(m)
n,p,l e

iαp x ′Tl

(
2z′−am−am+1

am−am+1

)
εn,

where Tl is the l th Chebyshev polynomial [21,25]. To specify
equations for the ŵ(m)n,p,l , we begin by defining the Nx Fourier
collocation points

x ′j =
d j
Nx
, 0≤ j ≤ Nx − 1,

in the lateral (x ) direction, and the Nz + 1 Chebyshev colloca-
tion points

z′l =
(

am − am+1

2

)(
cos

(
lπ
Nz

)
− 1

)
+ am, 0≤ l ≤ Nz,

in the vertical (z) direction. We point out that the latter have
been transformed from the standard interval, [−1, 1], to
[am+1, am] of interest to us. To find the unknowns ŵ(m)n,p,l in an
internal layer 1≤m ≤M − 1, for instance, we demand that
the equation Eq. (17) be true at the collocation points (x ′j , z′l )
for each perturbation order 0≤ n ≤ N and at each of R-many
Monte Carlo samples, ξr , 0≤ r ≤ R . This results in the linear
algebra problem

A(m)p w̃(m)
n,p = f̃

(m)

n,p , w̃(m)
n,p , f̃

(m)

n,p ∈C
Nz+1, (18)

and

A(m)p =

{(
2

h
DNz

)2

+
(
γ (m)p

)2
I

}
∈C(Nz+1)×(Nz+1),

where DNz is the Chebyshev differentiation matrix [23] and
I is the (Nz + 1)× (Nz + 1) identity matrix. Please refer to
Section 5 of Supplement 1 for more detailed descriptions of the
discretized problems in each layer.

Of crucial importance is the fact that the matrix A(m)p is
deterministic (independent of the sample ξ ) and can be com-
puted and factored once for each wavenumber p . In this way
the dominant cost of our Monte Carlo sampling strategy can
be significantly reduced by simply storing the resulting Nx -
many LU factorizations and reusing them for each sample and
perturbation order.

https://doi.org/10.6084/m9.figshare.20334714
https://doi.org/10.6084/m9.figshare.20334714
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B. Monte Carlo Sampling and Computational
Complexity

To investigate the probability space of random interfaces, we
use the Monte Carlo sampling. For a (large) number of random
samples, the boundary value problem, Eq. (1), is solved for each
realization generated, and the statistics (mean and variance) of
the solution are computed. The Monte Carlo method is quite
simple but also very slow with a convergence rate O(

√
R) for R

samples [48]. The decision to use Monte Carlo sampling in our
numerical algorithm was made for reasons of simplicity and clar-
ity of presentation. However, it is important to note that more
efficient sampling techniques could be used, e.g., quasi-Monte
Carlo methods [48], coupled to variance reduction techniques
[29]. We view each of these as avenues of future research on this
topic.

In light of our observation that the discrete differential oper-
ator A(m)n,p can be formed, and LU factorized and stored once for
each choice of wavenumber p , the computational complexity of
the whole numerical algorithm is O(R Nx N2

z N2) by applying
forward and backward substitutions to obtain the solution of
Eq. (18) for each sample ξ and each perturbation order n. This
yields significant reduction in computational cost compared to
O(R Nx N3

z N2) computational complexity if this realization is
not made.

5. NUMERICAL RESULTS

At this point we can present numerical results to demonstrate
the stability and accuracy of our numerical algorithm as mea-
sured by the mean and variance of the energy defect, ē and σ 2

e ,
respectively. In a grating scattering problem the principle of con-
servation of energy states that the (scaled) total energy, reflected
plus transmitted, must be unity [26]. Thus, we can express a
measure of deviation from this law with the “energy defect”

e (ξ) :=
∑

p∈P (0)

γ (0)p

γ
(0)
0

∣∣∣∣∣
∞∑

n=0

ŵ(0)n,p(ξ ; a)ε
n

∣∣∣∣∣
2

+

∑
p∈P (M)

γ (M)p

γ
(0)
0

∣∣∣∣∣
∞∑

n=0

ŵ(M)n,p (ξ ; b)ε
n

∣∣∣∣∣
2

− 1, (19)

which, in the absence of approximation, should be zero.
For our tests we considered three-layer structures, featuring

M = 2 random interfaces, and restricted our attention to TE
polarization. The electromagnetic parameters were chosen to be

k(0) = 2π, k(1) = π, k(2) = 2π,

while we considered the geometric quantities

a = 1.1, b =−1.1, d = 9, 2h = 2.2.

Electromagnetic radiation of normal incidence (θ = 0) was
used to illuminate the structure for each of R = 104 Monte
Carlo samples. Initially Taylor summation was used to approxi-
mate the truncated Taylor series, though, as we shall describe,
comparisons with Padé summation were also made. In the fol-
lowing results we denote by εmachmachine zero in IEEE double
precision (roughly 2.2× 10−16).

A. Varying the Lateral and Horizontal Discretization

We began our experiments by varying the lateral and horizontal
discretizations, Nx and Nz, while leaving the correlation length,
perturbation size, and number of Taylor orders fixed at lc = 1,
ε= 0.1, and N = 20, respectively. From Tables 1 and 2 we
can clearly observe the robust convergence of the mean and
variance of the energy defect as the discretization parameters,
Nx and Nz, are refined. Furthermore, this rate of convergence is
exponential (down to machine zero) as one would expect from
our Fourier–Chebyshev approach.

B. Varying the Perturbation Size and Number of
Taylor Orders

We continued by varying the perturbation size ε and number
of Taylor orders N, while leaving the correlation length and
lateral/vertical discretizations fixed at lc = 1 and Nx = Nz = 25,
respectively. Tables 3 and 4 clearly demonstrate the stable
convergence of the mean and variance of the energy defect for
assorted values of the perturbation size ε as the number of Taylor
orders N is refined. Furthermore, as Fig. 2 displays, this rate
of convergence is exponential (down to machine zero) as one
would expect from our Taylor approach, and this rate improves
for smaller deformations ε.

C. Padé versus Taylor Summation

It has been observed in previous research on HOPS schemes
[43] that, while the disk of analyticity of the series Eq. (11) is of
finite radius, it includes a neighborhood of the entire real axis
(up to topological obstruction). For our numerical simulations
this has the effect that, for large values of ε, Taylor summation
fails. However, numerical analytic continuation techniques can
access this domain of extended analyticity, and Padé summation
has proven useful for this task. We recall that, given a function

Table 1. Absolute Value of the Mean of the Energy
Defect |ē| as the Lateral (Nx) and Vertical (Nz)
Discretizations Were Refined

a

Nx Nz = 23 Nz = 24 Nz = 25 Nz = 26

23 1.0501e-03 1.0814e-03 1.0802e-03 1.0827e-03
24 3.8155e-05 1.1569e-06 1.1161e-06 1.1277e-06
25 3.9156e-05 5.3976e-10 5.5434e-10 5.5156e-10
26 3.9349e-05 1.1695e-11 2.3820e-13 2.4384e-13

aCorrelation length, perturbation size, and number of Taylor orders fixed at
lc = 1, ε= 0.1, and N = 20, respectively.

Table 2. Standard Deviation of the Energy Defect σ 2
e

as the Lateral (Nx) and Vertical (Nz) Discretizations Were
Refined

a

Nx Nz = 23 Nz = 24 Nz = 25 Nz = 26

23 1.8407e-06 1.8379e-06 1.8221e-06 1.8365e-06
24 1.4026e-08 8.6896e-10 8.6678e-10 8.6775e-10
25 1.2821e-08 εmach εmach εmach

26 1.2812e-08 εmach εmach εmach

27 1.2818e-08 εmach εmach εmach

aCorrelation length, perturbation size, and number of Taylor orders fixed at
lc = 1, ε= 0.1, and N = 20, respectively.
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Table 3. Absolute Value of the Mean of the Energy
Defect |ē| as the Number of Taylor Orders N Was Varied
for Assorted Values of the Perturbation Size ε

a

ε N = 2 N = 4 N = 8 N = 16

0.01 2.5860e-07 8.9270e-11 5.8876e-12 5.8876e-12
0.05 1.8107e-04 1.8469e-06 4.0214e-09 3.9343e-09
0.1 2.8511e-03 1.0254e-04 1.3407e-07 6.2869e-08
0.2 4.6765e-02 3.2213e-03 2.5526e-05 4.6869e-06

aCorrelation length and lateral/vertical discretization fixed at lc = 1 and
Nx = Nz = 25, respectively.

Table 4. Standard Deviation of the Energy Defect σ 2
e

as the Number of Taylor Orders N Was Varied for
Assorted Values of the Perturbation Size ε

a

ε N = 2 N = 4 N = 8 N = 16

0.01 1.5934e-11 εmach εmach εmach

0.05 2.8624e-07 1.0078e-10 1.4301e-16 1.3036e-16
0.1 2.9170e-05 1.2568e-07 2.7749e-12 1.3858e-14
0.2 5.1089e-03 1.1718e-04 3.9580e-07 7.0365e-08

aCorrelation length and lateral/vertical discretization fixed at lc = 1 and
Nx = Nz = 25, respectively.

2 4 6 8 10 12 14 16
10-12

10-10
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10-6

10-4
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100

Fig. 2. Plot of the absolute value of the mean of the energy defect
|ē | as the number of Taylor orders N was varied for assorted values
of the perturbation size ε. Correlation length and lateral/vertical
discretization fixed at lc = 1 and Nx = Nz = 25, respectively.

f (z)=
∞∑

n=0

c nε
n,

the truncated Taylor series works magnificently in approximat-
ing f (z) at points of analyticity inside the disk of convergence.
The Padé approximant provides a means for approximating
f (z) at points of analyticity that are outside the disk of conver-
gence of the Taylor series [49]. The Padé approximant is defined
as the rational function

[L/M](z) :=

∑L
l=0 al zl

1+
∑M

m=1 bmzm
,

where

Table 5. Absolute Value of the Mean of the Energy
Defect |ē| as the Number of Taylor Orders N Was Varied
for Assorted Values of the Perturbation Size ε
Calculated via Taylor Summation

a

ε N = 23 N = 24 N = 25 N = 26

0.1 7.8669e-08 9.5712e-09 9.6114e-09 9.6099e-09
0.2 2.4983e-05 5.4705e-06 1.3548e-08 1.4908e-07
0.4 4.0993e-01 1.6469e+03 2.3238e+11 1.5042e+28

aCorrelation length and lateral/vertical discretization fixed at lc = 1 and
Nx = Nz = 26, respectively.

Table 6. Absolute Value of the Mean of the Energy
Defect |ē| as the Number of Taylor Orders N Was Varied
for Assorted Values of the Perturbation Size ε
Calculated via Padé Summation

a

ε N = 23 N = 24 N = 25 N = 26

0.1 6.9990e-09 9.5992e-09 9.6114e-09 9.6099e-09
0.2 2.5644e-06 1.3940e-07 1.3943e-07 1.3987e-07
0.4 1.2791e-03 2.3498e-06 1.7707e-06 1.7775e-06
0.6 2.5179e-02 1.8212e-04 6.7339e-06 6.5450e-06
0.8 1.2679e-01 8.4429e-03 1.6977e-05 2.0144e-05
1 3.6152e-01 1.1361e-01 2.6508e-03 1.5363e-03
1.1 9.3667e-01 9.3128e-01 1.0762e-02 6.0850e-03
1.2 1.6302 0.9515 0.0654 3.2271e-02

aCorrelation length and lateral/vertical discretization fixed at lc = 1 and
Nx = Nz = 26, respectively.

[L/M](z)=
N∑

n=0

c nzn
+O(zL+M+1), L +M = N.

In particular, we considered the equi-order Padé approximant
[M/M](z), where, for simplicity, we assumed that N is even
(so that M = N/2). We point out the work [49–51] as excel-
lent sources of information on Padé approximation, including
convergence results for the equi-order Padé approximants.

To showcase the capabilities of Padé approximation in the
current context, we revisited the calculations of the previous
section for much larger values of the interface perturbation ε.
All parameter values considered above were used again, save
(i) Nx = Nz was increased slightly to 26 and (ii) for ε < 1, we
selected a =−b = 2.1, while, for ε > 1, we set 2h = 3.2 and
chose a =−b = 4.1. The results given in Table 5 demonstrate
not only the convergence of Taylor summation for ε= 0.1, 0.2
(inside the disk of analyticity), but also its spectacular failure
at the value ε= 0.4 (clearly outside the disk of analyticity).
However, the data in Table 6 show that with Padé summation,
not only can excellent results be realized for this bigger value
of ε= 0.4, but also that meaningful results can be deduced for
the much larger values of ε= 1.1 and even 1.2. These results are
reinforced in Fig. 3, showing the divergence of our results with
Taylor summation outside the disk of analyticity, and Fig. 4,
which displays the enhancing effects of Padé approximation.
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Fig. 3. Plot of the absolute value of the mean of the energy defect
|ē | as the number of Taylor orders N was varied for assorted val-
ues of the perturbation size ε calculated via Taylor summation.
Correlation length and lateral/vertical discretization fixed at lc = 1 and
Nx = Nz = 26, respectively.
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Fig. 4. Plot of the absolute value of the mean of the energy defect |ē |
as the number of Taylor orders N was varied for assorted values of the
perturbation size ε calculated via Padé summation. Correlation length
and lateral/vertical discretization fixed at lc = 1 and Nx = Nz = 26,
respectively.

D. Plots of the Total Field for a Fixed Random
Sample

We close with plots of the total field in the top, middle, and
bottom layers, which are calculated and plotted in the original
coordinates (x (x ′, z′), z(x ′, z′)) for a fixed random sample.
The electromagnetic parameters and the geometric quantities
stated at the beginning of Section 5 (with the exception of the
artificial boundaries, which were set to a = 2.1 and b = 2.1)
along with ε= 0.1, Nx = 26, Nz = 26, N = 10, and lc = 1 were
used in the calculations of the total fields.

Recall that the total field is denoted by v and that the
transformed fields are defined by

Fig. 5. Plot of the total field in the top (v = v(0) + vinc), middle
(v = v(1)), and bottom (v = v(2)) layers, respectively, in original coor-
dinates, for the fixed random sample. The lateral discretization, vertical
discretization, and Taylor order were fixed at Nx = 26, Nz = 26,
and N = 10, respectively. The deformation parameter, period, and
correlation length are set to ε= 0.1, d = 9, and lc = 1, respectively.

w(m)(ξ ; x ′, z′) := v(m)(ξ ; x (x ′, z′), z(x ′, z′))

for m = 0, . . . , M. From top to bottom, Fig. 5 displays the
total field in the top layer (v = vinc

+ v(0)), middle layer
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(v = v(1)), and bottom layer (v = v(2)), respectively, in the
original coordinates for the fixed random sample.

6. CONCLUSION

We have presented a novel numerical method to efficiently
and accurately model the scattering of electromagnetic fields
by mulitply layered gratings with random interfaces. The
components of this algorithm, the MCTFE method, are (i)
an interfacial problem formulation in terms of IIO, (ii) simu-
lated by a HOPS approach (the TFE method), (iii) coupled to
efficient Monte Carlo sampling. Our high-order perturbative
formulation permits us to solve a sequence of linear problems
featuring an operator that is deterministic, which leads to sig-
nificant savings in computational effort. Through numerical
examples we demonstrated not only the robust and high-order
accuracy of our scheme for gratings with small to moderate
interface deformations, but also how Padé summation could be
used to address layer shapes that are large deviations from the
base, flat-interface configuration.
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