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1. Introduction

ABSTRACT

Neuronal populations throughout the brain achieve levels of synchronous electrophysiological activity
as a consequence of both normal brain function as well as during pathological states such as in epileptic
seizures. Understanding this synchrony and being able to quantitatively assess the dynamics with which
neuronal oscillators across the brain couple their activity is a critical component toward decoding such
complex behavior. Commonly applied techniques to resolve relationships between oscillators typically
make assumptions of linearity and stationarity that are likely not to be valid for complex neural signals.
In this study, intracranial electroencephalographic activity was recorded bilaterally in both hippocampi
and in anteromedial thalamus of rat under normal conditions and during hypersynchronous seizure
activity induced by focal injection of the epileptogenic agent kainic acid. Nonlinear oscillators were first
extracted using empirical mode decomposition. The technique of eigenvalue decomposition was used
to assess global phase synchrony of the highest energy oscillators. The Hilbert analytical technique was
then used to measure instantaneous phase synchrony of these oscillators as they evolved in time. To
test the reliability of this method, we first applied it to a system of two coupled Réssler attractors under
varying levels of coupling with small frequency mismatch. The application of these analytical techniques
to intracranially recorded brain signals provides a means for assessing how complex oscillatory behavior
in the brain evolves and changes during both normal activity and as a consequence of diseased states
without making restrictive and possibly erroneous assumptions of the linearity and stationarity of the
underlying oscillatory activity.

© 2009 Elsevier B.V. All rights reserved.

This frequency locking may be extended beyond 1:1 locking into
more complex ratios (e.g. 2:1, 3:2, etc.). A further refinement of

Synchronous oscillatory activity has been found to be a critical
component in both normal brain states such as binding of visual
information (Roelfsema et al., 1997; Fries et al., 2001) as well as
pathological states such as Parkinson’s disease (Levy et al., 2000;
Hutchison et al., 2004; Berendse and Stam, 2007), schizophre-
nia (Gallinat et al., 2004), Alzheimer’s disease (Jeong, 2004) and
epilepsy (Medvedev, 2002; Le Van Quyen et al., 2003; Dominguez
et al,, 2005). However, detecting synchronization behavior in the
brain represents an extraordinarily difficult problem in neurolog-
ical science. One of the major issues that arises is determining
which features of the signal are to be used in assessing synchrony.
For example, synchronization may be simply defined as frequency
locking of two signals over some suitably small time window.
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frequency locking is phase synchrony detection. Two signals for
example may be consistently synchronized with the same or dif-
ferent frequencies but a constant phase shift. In an analysis of this
sort, it is first necessary to identify a useful and accurate method
for extracting phase from a potentially noisy and multi-component
signal and then to examine the phase relationships between two
or more of such signals. Although various statistics have been
proposed for the detection of phase synchrony from multiple elec-
trodes placed at varying degrees of neuronal resolution (i.e. depth,
subdural and/or surface), many of these methods rely on several
assumptions that render them inappropriate for detecting syn-
chrony in the brain. All electrophysiological signals besides single
cell recordings are a summation of activity from areas surrounding
the electrode. In particular, local field potentials (LFPs) represent
a sum of dendritic activity that may be inhibitory or excitatory
(inhibitory or excitatory post-synaptic potentials, respectively).
Thus, waveforms obtained from these areas will be necessarily
multi-component.
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All phase synchrony measures rely on prior extraction of phase
from the time series, thus one critical step in synchrony analysis
is phase determination. Once phase is extracted from a set of sig-
nals, the strength of phase coherence between all signals must be
measured. A number of statistics have been proposed as a means
to measure the strength of phase relationships including mean
phase coherence (Mormann et al., 2003), a phase-locking statistic
based on wavelet analysis (Lachaux et al., 1999), synchronization
time-matrix methods (Lai et al., 2007), enhanced wavelet methods
(Roux et al., 2007), and cross-correlation and mutual information
measures (Netoff and Schiff, 2002). Many of these methods, while
useful, suffer from shortcomings including mixing of amplitude
and phase correlations, assumptions on linearity of the underly-
ing signal, and potentially detecting spurious synchrony due to use
of a bivariate measure when the signal itself actually represents
multiple oscillators with dynamic synchronous behavior. For a non-
stationary signal, the most useful method of phase calculation will
extract phase values instantaneously. The Hilbert analytic signal
method is capable of providing such a measure of phase, but only
for mono-component signals. Thus, a prior step to phase calculation
will involve some form of filtering of the data.

Most often, filtering of these signals involves either clinically
determined ranges (e.g. alpha, beta, etc.) or Fourier spectrum
derived bandwidths. Although these bandwidths determined a pri-
ori may, in many cases, yield useful narrow-band signals, it would
be more advantageous for a filtering algorithm to make no assump-
tions as to the underlying components of the signal under study.
Since neurological signals represent nonlinear, nonstationary time
series, any analysis method applied to recordings made during nor-
mal or pathological brain activity must be capable of retaining these
features. Most currently employed methods make assumptions on
the phase, frequency and waveform characteristics of the signal
without regard to the underlying dynamics of the signal itself.

Besides the ubiquitous Fourier transform method for filtering
multi-component signals, other approaches, including wavelet-
based and Hilbert transform methods, have been employed to
decompose signals to detect phase synchrony. However, as dis-
cussed in the next section, many of these methods fail to accurately
decompose nonlinear and/or nonstationary signals. Furthermore,
almost all of the commonly employed decomposition algorithms
assume something about the waveform shape or frequency band-
width of interest a priori. A technique introduced by Huang et al.
(1998) termed “empirical mode decomposition” (EMD) filters a
multi-component signal into a series of oscillators representing the
(adaptively determined) characteristic time-scales of the individual
components without a priori assumptions of linearity. This method
is employed in the current study and discussed further in Section
2.

An ideal analysis method would be capable of extracting proper
waveforms adaptively from the time series without the need to
build complicated mathematical models derived from first prin-
ciples (a daunting task for modeling dynamics beyond anything
but a small population of neurons). Finally, once the signals have
been adaptively filtered, various features of the underlying dynam-
ics must be properly extracted and compared for synchrony. Many
methods used for obtaining synchrony information from brain sig-
nals do not define the type of underlying oscillators and thus may
not be capable of distinguishing the true form of synchrony (if
any) present. For example, synchronous behavior can arise as a
result of critical detuning between two self-sustained oscillators;
alternatively, some neural synchrony may arise as a result of a
single self-sustained oscillator driving another system that would
not otherwise be capable of oscillatory behavior. Furthermore,
many synchrony measures cannot clearly differentiate between
frequency and phase synchronized oscillators. For example, two
signals may appear to be synchronized due to a measure that

detects only frequency locking; this spurious synchrony may actu-
ally represent the faithful transmission of an oscillatory signal to
another brain area with a phase delay. Thus, the frequency syn-
chrony measured is actually a measure of the same oscillation as it
moves spatially. While this is an important dynamic, it does not
completely capture the spatiotemporal properties of the signal.
Clearly, an ideal synchrony measure would be able to differentiate
between these different types of synchrony.

A relatively recent technique combining well-known results in
linear algebra and mean-field theory has been proposed to obtain
significant synchrony clusters within bivariate phase data mea-
sures. In other words, this method proposes to extend simple
bivariate measures of phase coherence to a multivariate measure.
This method, termed the “eigenvalue decomposition method”, uti-
lizes directional statistical features of the phase dynamics between
any two oscillatory signals to define significantly synchronized
clusters of oscillators (Bialonski and Lehnertz, 2006; Allefeld and
Bialonski, 2007). This type of analysis relies on the common
assumption that there are several mean fields of globally coupled
phase oscillators within the signal set. This approach figures promi-
nently in our new analysis.

We present here an analytic process applied to intracranial EEG
information recorded in multiple deep brain nuclei bilaterally in the
rat that merges the techniques of empirical mode decomposition,
Hilbert analytic signal method, mean phase coherence measures
and finally eigenvalue decomposition to ultimately identify com-
plex instantaneous synchronous behavior. This method allows for
the possibility of multiple underlying oscillators and can potentially
detectdynamic changes in phase synchrony that may be spatiotem-
porally nonstationary. Such a procedure may provide important
new insights as a seizure or any other complex neurological process
in the brain evolves in time and space.

2. Materials and methods
2.1. Surgical procedure and data acquisition

Male Sprague-Dawley rats, 48-57 days old and weighing
approximately 225-280g were used in this study. Experiments
were conducted in accordance with the National Institutes of
Health for the care and use of laboratory animals. Rats were
anesthetized by a mixture of ketamine (70 mg/kg) and xylazine
(2mg/kg) delivered intraperitoneally. All procedures were per-
formed in a Kopf stereotactic frame (KOPF Model 900, CA, USA).
Stereotactic targets were calculated using a stereotactic rat brain
atlas (Paxinos and Watson, 2006). Lambda, bregma and sagit-
tal sutures were used as landmarks to navigate to the desired
stereotactic points. The skull was perforated using a high speed
stereotactic drill (Micromotor™ Drill, Stoelting Co, IL USA) with
1.2-2 mm diameter drill tips. Bipolar electrodes surrounding a sin-
gle stainless steel injection cannula in one integrated electrode
assembly (C315G-MS 303: PlasticsOne, Roanoke, VA, USA) were
stereotactically implanted into the CA3 region of the left hip-
pocampus (—3.5 mm bregma, 2.8 mm lateral, 3.7 mm deep). Bipolar
recording electrodes (without cannula) were implanted into the
contralateral hippocampus and anteromedial thalamus (—1.8 mm
bregma, 0.3 mm lateral, 6.1 mm deep). After injection of epilepto-
genic chemicals into the CA3 region of the left hippocampus, the
internal cannula insert was withdrawn and a 100 pwm diameter
stainless steel insert was threaded through the cannula to provide
one side of the recording pair. The reference electrode used was
the skull stabilization screw most proximal to the electrode assem-
bly. After conclusion of the experiment, histological verification of
electrode placement and tissue damage was assessed via formalin
fixation and subsequent Nissl staining. We used a chemical induc-
tion model of epilepsy in order to induce a physiological state that
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has been classically described as “hypersynchronous”. Each experi-
ment involved recording one half hour of baseline activity followed
by focal injection of 3-5 nmol kainic acid into the CA3 region of the
left hippocampus.

2.2. Empirical mode decomposition

Traditional spectral decompositions applied to time series usu-
ally involve an assumption that the underlying signal dynamics
consist of a linear superposition of complex exponentials. How-
ever, these radial basis functions are always assumed a priori rather
than obtained adaptively from the signal. If the signal of inter-
est contains more than just pure low frequency sine and cosine
functions, the resulting power spectrum obtained from Fourier
analysis, for example, will contain spurious power readings and
energy spreading that actually represent nonlinearities in the data.
This is because nonlinearities in the data will be represented within
the Fourier power spectrum as higher-order harmonics since the
transform itself utilizes a superposition of trigonometric functions.
However, once the transform has been implemented, it is diffi-
cult to distinguish true power-frequency readings from spurious
energy spreading due to nonlinearities inherent within the sys-
tem. Furthermore, Fourier transform methods require piecewise
stationarity of the time series under study. Thus any time-varying
frequency content (usually present within EEG data) will be aver-
aged out in the power spectrum. Although calculation of Fourier
spectrograms, involving computation of the Fourier power spec-
trum over short time windows and plotting these power readings
over time, has been proposed as a means to detect nonstationar-
ity, this method still relies on linearity of the time series. Ideally, a
decomposition method would be capable of extracting underlying
oscillators from a seizure signal without any assumptions of the
underlying waveform or characteristic time-scales of the oscilla-
tors. Recently, Huang et al. (1998) introduced EMD, a method for the
extraction of (potentially nonlinear and nonstationary) oscillators
from any time series in an adaptive fashion.

The EMD can be characterized as an adaptive, data driven
decomposition that results in a series of intrinsic mode functions
(IMFs) that together comprise the underlying oscillations (or basis
functions) within a dataset. The basis functions are determined
from the dynamics of the signal itself. Any time series may be
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represented as a linear combination of oscillators:

N
X0 =Y agi(e). )
j=1

In Fourier decomposition, for example, each ¢;(t) is a sine or cosine
with a corresponding Fourier coefficient, a;, for each ¢;(t). In order
to improve the decomposition of a time series to account for non-
stationarity, other decompositions such as wavelet analysis have
been applied; however, while they allow for nonstationarity, the
basis functions are, again, determined before the decomposition
and thus may be inappropriate for nonlinear signals. The proper-
ties of nonlinearity and nonstationarity are very likely intrinsic to
neurological signaling rather than merely artifacts of noise, instru-
mentation or other experimentally imposed conditions, thus it is
vital to capture these properties in the applied analysis.

The EMD has been mainly applied to hydrologic (Sinclair
and Pegram, 2005), atmospheric (Salisbury and Wimbush, 2002),
oceanic (Schlurmann, 2002) and geologic (Zhang et al., 2003) time
series, but it is widely believed to be applicable to any time series.
The method can be briefly outlined as follows: The decomposition
begins by identifying all maxima and minima of the dataset fol-
lowed by interpolation between the extrema using a cubic spline
to obtain a maximum envelope emax(t) and a minimum envelope
emin(t). Next, the average of the envelopes m(t) =[emax(t) + €min(t)]/2
is computed and subtracted from the original data x(t) to obtain
a residual r(t)=x(t) —m(t). This process is then repeated on the
residual in an iterative fashion to obtain a series of IMFs. Because
this is a numerical approximation scheme, the procedure must be
refined by sifting the data through iteration of the first few steps
(prior to subtraction of the mean) to obtain a zero-mean amplitude-
and frequency-modulated signal which may be called a “proper
rotation” or an IMF. Practically, the sifting process is optimized
according to the particular dataset by defining an appropriate stop-
ping criterion using, for example, number of sifts (Huang et al.,
1998), accumulated energy (Chen and Feng, 2003), or confidence
limit criteria (Huang et al., 2003). After the sifting and iteration pro-
cedure is complete, one obtains a series of modes plus the “trend”
that represents the remainder of the decomposition when further
sifting will not result in a proper IMF.
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Fig. 1. Hilbert analytic signal. (A) Three seconds of an unfiltered seizure signal demonstrates the ambiguous nature of phase determination from the analytic signal. (B)
Three seconds of the corresponding signal after filtering via EMD. Due to the nature of the construction of IMFs, phase can be clearly measured from the analytic signal. Axes
represent the real (abscissa) versus the imaginary (ordinate) component of the analytic signal.
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2.3. Analytic signal method

There are a number of methods available for calculating phase
but the most appropriate to use for instantaneous phase mea-
surements from narrowband signals is the Hilbert analytic signal
method (Gabor, 1946). This method is only appropriate in the case
of a narrowband signal because multi-component signals will yield
a trajectory in the complex plane that has multiple centers of rota-
tion. For an unambiguous determination of phase, the complex
trajectory of the analytic signal must have only a single center of
rotation, thus this method requires prior filtering of the signal. As
we shall see, the IMFs produced by the EMD have precisely this
property.

In an EMD, if each IMF is taken as its own time series, one then
obtains a group of analytic signals whose amplitude and phase are
defined instantaneously via the following relation:

si(t) = x;(t) + iH;(x;(t)) = Aj(t)e}w) 2

with

AD = 07+ Hj(Xj(t))Z)l/z and (1) — tan"! [(Im(Sj(t))} (3)

Re(s;(1))

where H;(t) is the Hilbert transform of the jth IMF. This technique
is a well-known method to obtain the analytic representation of a
time series. According to the Cauchy-Riemann equations, if the real
component of a signal is known, the corresponding imaginary com-
ponent may be obtained via the Hilbert transform. This can then
be equated via Euler identities to a value determining the analytic
phase ¢(t) and amplitude A(t), as shown in Eq. (3). In general, the
Hilbert transform is a convolution that will shift the signal’s phase
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Fig. 2. Clustering in two coupled Roéssler attractors validates eigenvalue decompo-
sition. (A) Uncoupled, (B) moderate coupling and (C) fully coupled.

by m/2:

HIx(t)] = pv/ x(T)h(t — 7)dT), (4)

o0

where pv indicates that the integral should be taken as the Cauchy
principal value because the function h(t)=1/mt is not integrable
and thus the convolution integral will not converge. One of the
major limitations of merely performing a Hilbert transform for
determination of instantaneous phase and frequency is that the
bandwidth of interest must be defined a priori. This means that
one must not only artificially restrict the analysis but, more impor-
tantly, if the signal contains a multi-component or time-varying
spectrum, the resulting signal will contain multiple centers of
rotation in the phase space reconstruction. Each rotation center
represents another oscillator; for example, a sine wave reconstruc-
tion in the complex plane will have a single center, represented
as an isolated circle. Any signal with multiple underlying oscillator
components will have multiple centers of rotation. Furthermore,
if the signal is nonstationary, this will be reflected in the com-
plex plane as multiple windings around each component center.
This suggests that the instantaneous phase determined in this
way may vary, depending on which of the dominant rotations
we choose. Although trial-and-error could yield useful results on
which of the various rotations represents the proper phase to
use for further analysis, it would be more useful to be capable
of directly extracting and visualizing the underlying frequency
components contributing to the multiple centers of rotation. The
EMD process described above allows for determination of a proper
phase by isolating underlying basis functions (IMFs) that yield
phase space rotations with only one center and an unambigu-
ous phase measure. Fig. 1 demonstrates the trajectory of a signal
submitted to Hilbert transform without prior filtering and for
an IMF obtained from empirical mode decomposition, depicting
the necessity for prior filtering for proper usage of the Hilbert
transform in obtaining an analytic signal with an unambiguous
phase.

2.4. Eigenvalue decomposition method

Once the highest energy IMFs are obtained from each channel
within a data segment, it is desirable to determine the strength
of synchrony between oscillators. To accomplish this, each IMF is
treated as a row vector and compiled into an m x n matrix, where m
is the number of IMFs obtained from the analysis and n is the length
of the time series. This set of time series represents the significant
oscillators decomposed from the original time series via EMD. Next,
the mutual phase coherence is calculated (Mormann et al., 2003);
this quantity is defined as

N
R = explilult) = $mi()], (5)
k=1

m+#n

where “exp” represents the exponential, “i” is ,/—1, and each ¢(t)
is the phase of the analytic signal pair (indicated by subscripts m
and n) sampled at each discrete time instant from k=1 to N (the
number of time points in the series). The mean phase coherence
values are normalized and range from O to 1 with maximum mean
phase coherence obtained at 1. Because this matrix thus obtained is
square symmetric, one can perform an eigenvalue decomposition
to project the mean phase coherence values for the entire set of
oscillators onto a set of vectors representing the preferred direction
of the mean phase field. These preferred directions are the principal
eigenvectors. For any eigenvalue-eigenvector pair, a phase corre-
lation value may be assigned as the strength of the connection of
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a given eigenvalue and the coefficient of each IMF within the asso-
ciated eigenvector. Furthermore, each eigenvalue is ordered, with
the largest eigenvalue representing the most strongly correlated
cluster with the participation of each oscillator in a given clus-
ter quantified by the value of the eigenvector. Specifically, one can
assign the strength of the connection (participation) between the
phases of any two IMFs within a single group via the square root of
each eigenvalue (A,) multiplied by the component-wise square of
the associated eigenvector (1/12):

VIME] (6)

For example, if a matrix of completely unsynchronized oscillators
is analyzed in this way, one would obtain A1 =A,=...=A;=1 with
1n=(0,...,0,1,0,...,0)and no clusters would be identified in Eq.
(6). If a set of fully synchronized oscillators is analyzed, one would
obtain a single eigenvalue, whose value is identical to the num-
ber of oscillators with v;=(1, ..., 1) and a single cluster in Eq. (6).
Finally, for a set of oscillators with varying levels of synchrony, one
would obtain a set of (strictly positive) eigenvalues. Those eigen-

0.6

values above one are considered significant and the components of
their eigenvectors identify participation in the corresponding clus-
ter calculated via Eq. (6). This threshold is set because, if a set of
uncorrelated eigenvalues becomes more correlated, any increase
in the eigenvalue must be offset by a corresponding decrease in
other eigenvalues (as the sum of the eigenvalues is conserved). The
eigenvalue decomposition method as cluster analysis is introduced
and described in detail in Allefeld and Bialonski (2007).

3. Results
3.1. Synchronized Rossler model

To test the reliability of the algorithm described in this thesis,
we constructed a set of time series drawn from two coupled Rossler
oscillators. These chaotic oscillators were studied by Rosenblum et
al. (1996) and shown to have characteristic phase synchronization
properties at specific parameters. The model itself is represented
by two nearly identical Réssler oscillators coupled via a parame-
ter C with frequencies w1 and w,. Both the coupling constant and
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Fig.3. 10 second samples of recorded LFP data. (Top) Prior to kainic acid exposure and (bottom) after kainic acid exposure. (A) Focal hippocampus. (B) Anteromedial thalamus.

(C) Contralateral hippocampus. (D) Subdural recording over contralateral hemisphere.
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frequency mismatch will affect the level of synchronization.

dx

U T2 -2zt C(x2,1 —X1,2)

d

CT}; =w1,2X1,2 + 0.15‘)/1,2 (7)
dz

a =0.2 +Z1’2(X1’2 -10)

As described in the abovementioned paper, by keeping the
frequency mismatch constant we can vary the coupling parame-
ter to achieve a state of synchronous (C=0.035), nonsynchronous
(C=0.01) and nearly synchronous (C=0.027) oscillation between
the two systems. For our simulation, we used w{ =1.5 and w;, =2.0.
For simplicity, we used the output of xqi, x5, ¥1, and y, as the
input time series for the analysis. This is an advantageous com-
bination because the x;-y; and x,-y, pairs are expected to be
synchronized regardless (because they are drawn from the same
system) while the combinations coming from the two different
systems (x1-Xy and y;-X) will be expected to have varying syn-
chronization levels depending on the value of C. Fig. 2 shows
the eigenvalue decomposition matrix obtained for the nonsyn-
chronized (A), almost synchronized (B) and fully synchronized (C)
regimes. This matrix serves as the output of the entire algorithm
described previously. That is, each time series (x1, X2, 1, y2) was
submitted to empirical mode decomposition and the intrinsic mode
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sphere contralateral to seizure induction. Gradient scale indicates participation
strength. Red box demarcates significant clusters (whose eigenvalues are greater
than one). (For interpretation of the references to color in this figure legend, the
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functions were processed through the eigenvalue decomposition
and assigned a participation value according to the preferred direc-
tion of phase within each eigenvector. In part A the oscillators being
to separate themselves into distinct clusters with no interaction
between the two systems; i.e. with the x;-y; pair participating in
one cluster (with the same frequency) and the x,-y, pair partici-
pating in another cluster. In part B the participation values for each
of the obtained oscillators is diffuse with no clear synchrony for any
oscillator as the coupling parameter attempts to bring all frequen-
cies closer together. In part C, the oscillators are fully synchronized
(despite an initial frequency mismatch) and all participate in one
cluster.

3.2. Experimental data analysis

Depth recordings of brain activity were made from the CA3
region of the hippocampus bilaterally as well as in the anterome-
dial thalamus (targeted stereotactically) and over the surface of
one hemisphere (contralateral to the hippocampus focally injected
with kainic acid) in four rats. Both baseline and induced seizure
activity were recorded for subsequent analysis. Fig. 3 shows a 10-s
sample prior to kainic acid (KA) exposure (top) and after KA expo-
sure (bottom). As can be readily seen, electrical activity recorded
after KA exposure is higher in frequency and amplitude than pre-
exposure activity. Furthermore, this activity can be seen at all four
electrode sites. Visual inspection suggests a high degree of syn-
chrony between all four electrode sites. Furthermore, the signals
originating in both hippocampi appear more similar in waveform
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Fig. 5. Largest participation cluster phase differences. (A) Pre-exposure: the largest
eigenvalue participation cluster in the interictal sample contained two thalamus (T)
IMFs and one contralateral hippocampus (CH) IMF. (B) Post-exposure: the largest
eigenvalue participation cluster in the ictal sample contained two focal hippocam-
pus (FH) IMFs, one thalamus (T) IMF, and two contralateral hippocampus (CH) IMFs.
Areas where the phase difference is constant (indicated by parentheses) represent
synchronous epochs.
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to one another than to anteromedial thalamus or the subdural sig-
nal. It should be noted that all recordings represent brain activity
in an anesthetized rat, as these are all acute in vivo studies. Thus,
recordings made in these anesthetized animals show some level of
pre-seizure synchrony most likely due to the activity of the anes-
thetic on the brain.

Seizures are generally thought to represent aberrantly synchro-
nized neural activity. Therefore, we sought to develop an algorithm
to accurately assess and quantify this synchrony. The most rele-
vant features of an oscillating signal to use for synchrony analysis
are the phase or frequency. However, the raw signal must be fil-
tered in some way prior to measuring these quantities. The EMD
accomplishes this task without any assumptions as to the under-
lying waveforms. Once the signals have been decomposed in this
way, the highest energy oscillators were selected for further syn-

chrony analysis. A low threshold for IMF exclusion was utilized to
determine selected oscillators (in order to eliminate as few as pos-
sible) by calculating the mean squared energy (MSE) amplitude and
ignoring those intrinsic mode functions whose MSE fell below one
standard deviation above the mean energy. In general, this cut-
off eliminated intrinsic mode functions that consisted primarily of
instrumentation noise.

The Hilbert analytic signal was constructed for each IMF in order
to calculate the instantaneous phase for all selected IMFs. Then, the
mean phase coherence was calculated for the entire matrix of phase
values from each 10-s sample. Finally, the eigenvalue decomposi-
tion was performed on this new mean phase coherence matrix to
identify significantly synchronized clusters. A summary of all val-
ues of the participation index for these samples is shown in Fig. 4:
(A) pre-exposure and (B) post-exposure samples corresponding to
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those in Fig. 2. The red box indicates those clusters which are identi-
fied as significant (eigenvalues greater than 1). In general, interictal
and baseline cluster analyses reveal overall fewer clusters than the
same analysis for seizure samples. For the representative analysis
samples shown in Fig. 3, the pre-exposure sample revealed four
significant clusters while the post-exposure sample showed six.
In order to highlight the instantaneous synchronous rela-
tionship between oscillators participating in a given cluster, the
difference between the phases for each oscillator pair in the most
significant cluster (highest eigenvalue) was calculated and plotted
in Fig. 5. These plots demonstrate the phase dynamics of the entire
cluster. Because these oscillators are noisy, there are a number of
phase slips (i.e. a change in the phase difference of 2rr). However,

those areas where the phase difference remains approximately
constant represent regions of synchronization. These regions of
approximately constant phase were defined when the ratio of the
two phases was between 1 and 1.3 (i.e. when the slope of the
phase difference was approximately constant). Several of these
areas of phase synchronization are highlighted in the figure by
parentheses. Oscillators originating from the subdural electrode
were not included in this analysis because these signals repre-
sent a summation of all activity within the (large) hemispheric
dipole. Therefore, much of the activity recorded on that channel
is contained within recordings made from subcortical sites. Thus,
any synchrony between these oscillators and those obtained from
depth sites is likely to be spurious because there will be high
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synchrony between identical oscillators. The post-exposure sam-
ple shows not only more oscillators, but also more regions of phase
synchrony than the pre-exposure samples. Furthermore, the phase
synchrony is not constant between any two brain areas. Instead,
the synchrony changes between different brain nuclei over time.
Fig. 6 further illustrates these synchronous epochs by superimpos-
ing two participating oscillators in a given cluster. Clearly, those
times where the oscillators overlap in phase (not necessarily in
amplitude) represent synchronous epochs. To summarize the fre-
quencies of instantaneous phase synchrony, periods of time at
which the frequencies of two oscillators were locked during a full
half hour of recording is plotted in Fig. 7. These plots demon-
strate a combined average frequency between two oscillators
during episodes of frequency locking. Each nucleus pair (focal hip-
pocampus, anteromedial thalamus or contralateral hippocampus)
is represented by a different color, with green indicating frequency
locking episodes between the focal hippocampus and antero-
medial thalamus, yellow indicating anteromedial thalamus and
contralateral hippocampus frequency locking and frequency lock-
ing between the two hippocampi indicated in red. It must be noted
that the frequencies represent a combined average between two
oscillators during significantly synchronized episodes as obtained
by the eigenvalue decomposition. By comparing the pre-exposure
to post-exposure plots, it is evident that the pre-exposure fre-
quencies are lower and that the distribution of frequency locking
episodes among the nuclei is more uniform. The post-exposure
frequencies are higher and also show more variability. Further-
more, the density of synchronous episodes is much higher during
seizure episodes. To further illustrate these synchronization events,
a representative seizure and the corresponding synchronization
frequencies are shown in Fig. 8. Only the top cluster of synchro-
nization is shown in this plot for clarity. It is evident from this
plot that there is an increase in focal hippocampus to antero-
medial thalamus synchrony as the seizure begins, followed by
an increase in anteromedial thalamus to contralateral hippocam-
pus synchrony as the seizure evolves and finally, an increase in

focal hippocampus to contralateral hippocampus synchrony as
the seizure ended. This general pattern of change in synchroniza-
tion among nuclei was generally (though not always) observed
consistently within this animal. However, different animals dis-
played unique synchronization patterns reflecting variability in
seizure dynamics across animals similar to that seen in human
seizures.

4. Discussion

Synchronized activity is implicated at all levels of neural activity
in both pathological and normal states. It may be that both long-
and short-range synchronization throughout the brain is a normal
component of sensory and cognitive processing and that patholog-
ical states represent a derangement of this normal synchronization
behavior. However, in order to characterize this synchrony in either
pathological or normal states, it is necessary first to define a mea-
sure that is capable of detecting any form of synchrony that may
arise. It is suggested here that prior filtering of a time series by
a means that presupposes the underlying waveform and/or fre-
quency content of the signal may eliminate important features of
the signals underlying phase synchrony dynamics. Therefore, it is
proposed that a dynamic filter such as empirical mode decomposi-
tion is first employed in order to isolate any underlying oscillators.
However, one important consideration in utilizing this technique
is whether these intrinsic mode functions represent actual physi-
ological oscillators or merely depict the phase dynamics of one or
more physiological oscillators. This limitation is unlikely to inter-
fere with synchrony analysis, but it may cause problems with
direct physical interpretation of the oscillators obtained from the
decomposition. Nevertheless, no other decomposition method to
our knowledge is capable of yielding true physical oscillators at
this point as all of them rely on some assumption as to the oscil-
lator waveforms underlying the signal and usually involve fitting
the time series to some a priori determined wave (e.g. a sine
wave).
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Since Penfield and Jasper reported in 1954 that pathologically
synchronized activity may underlie seizures, numerous experi-
ments have been performed to attempt to identify this activity
in seizure networks. However, it is, as yet, unclear if seizures can
be simply described as a highly synchronized state or if there are
more complex synchronized and desynchronized neural dynam-
ics underlying the generation, maintenance and propagation of
seizure activity. It has been suggested that a seizure represents a
‘resetting’ of neural signaling that has degenerated to a disordered
state of wrongly synchronized and desynchronized local neural
networks. Using mean phase coherence as a measure of phase syn-
chrony, Mormann et al. (2003) recently reported that there is a
state of decreased synchronization just prior to an epileptic seizure
that is marked by a high degree of variability in synchronization
followed by a return to baseline (relatively high) levels of syn-
chronization. This variability, however, might represent an increase
in the number of oscillators, each of which participates in a syn-
chronous relationship with one or more of the other oscillators. As
our study suggests, seizures tend to contain many more oscillators
than the pre-ictal or interictal state. Furthermore, the synchronic-
ity between these oscillators is not constant. Instead, the synchrony
seems to shift between the oscillators within and between subcor-
tical nuclei participating in the seizure circuit. A measure such as
mean phase coherence alone is unable to distinguish this fine spa-
tiotemporal synchrony and thus merely shows high variability in
the synchrony value.

In a study utilizing and comparing various measures of phase
synchrony, including mutual information, cross-correlation and
phase correlation, Netoff and Schiff (2002) also observed a decrease
in phase synchrony just prior to chemically induced epilepto-
genic events in the CA1 region of hippocampus slice preparations.
However, many of these measures mix amplitude and phase
correlations. Amplitude correlation might suggest more neurons
participating in the synchronous oscillator, while phase correla-
tions suggest that neurons already participating in the oscillations
are becoming more synchronized. Both types of correlations are
important, but they represent different results and thus must be
distinguished from one another. A decrease in synchrony as mea-
sured by a computation that mixes amplitude and phase might
represent a decrease in the absolute number of neurons par-
ticipating or an actual decrease in the synchrony, or both. This
suggests that there may be a more complex fine structure underly-
ing the seizure dynamics that may be explored via phase analysis.
However, the phase synchronization measurements used in ear-
lier studies did not always give the same significance level for
phase synchronization; furthermore, applying the measurements
to broad-band and narrow-band filtered time series data gave dif-
ferent results. Thus, these results highlight the importance of the
chosen algorithm for extracting frequency, phase and phase syn-
chrony measures for accurate determination of phase information.

There is a general consensus that seizure dynamics repre-
sent some form of pathological synchrony in various brain areas.
However, there is no general agreement on how this synchrony
arises (e.g. by decreased inhibitory feedback or increased exci-
tatory input) or even how to measure and detect this proposed
synchronous behavior. Synchrony in seizure dynamics may arise as
aresult of two or more self-sustained oscillators interacting to pro-
duce a pathological synchronous state. This possibility requires that
the individual oscillators’ frequency detuning (mismatch) is suffi-
ciently small such that the oscillators’ phase dynamics may align.
Alternatively, the proposed synchronous state may arise as a result
of stochastic resonance between two or more oscillators. A final
alternative explanation may be that one or more oscillators arise

within a pathological neural network that then serve as a driving
force for anatomically or functionally connected networks, giving
rise to seizure propagation. Any or all of these types of synchronous
behavior may be responsible for seizure dynamics.
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