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Spectral data for travelling water waves:
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In this paper we take up the question of the spectral stability of travelling water
waves from a new point of view, namely that the spectral data of the water-wave
operator linearized about fully nonlinear Stokes waves is analytic as a function of a
height parameter. This observation was recently made rigorous by the author using
a boundary perturbation approach which is amenable to approximation by a stable
high-order numerical method. Using this algorithm, we investigate, for both super-
and sub-harmonic disturbances, the evolution of the spectrum, in particular the ‘first
collision’ of eigenvalues and the ‘smallest singularity’ in the perturbation expansion.
The former is studied in response to MacKay & Saffman’s (1986) work on the water-
wave problem which demonstrated that instability can only arise after the collision
of two eigenvalues of opposite Krein signature. However, we present results which
show, quite explicitly, that eigenvalue collision (even of opposite Krein signature)
is insufficient to conclude instability. With this in mind, we have identified a new
criterion for the loss of spectral stability, namely the appearance of a singularity in
the expansion of the spectral data (as a function of the height parameter mentioned
above). We give some heuristic reasons why this should be so, and then provide
complete numerical spectral stability results for four representative depths, two above
(h = ∞, 2) and two below (h = 1, 1/2) Benjamin’s (1967) critical value, hc ≈ 1.363,
above which the Benjamin–Feir instability emerges. We find that the strongest (two-
dimensional) instability appears to be among the long waves, but we notice that
there is a sharp difference between ‘shallow-water’ and ‘deep-water’ waves in that first
eigenvalue collision and smallest expansion singularity are synonymous for shallow
water, while this is not so in deep water where ‘windows of stability’ beyond the first
eigenvalue collision exist.

1. Introduction
One of the central unresolved questions in the study of free-surface ideal fluid

mechanics (the water-wave problem) is a comprehensive dynamic stability theory for
travelling wave solutions on a fluid of arbitrary depth. The rigorous justification
of the existence of travelling wave solutions to the water-wave equations began
with the work of Levi-Civita (1925) and Struik (1926) who proved the existence
of two-dimensional (one-dimensional surface) travelling solutions, in the absence of
capillarity, in deep and finite-depth water, respectively. Since this time, numerous
contributions have been made extending these results to gravity–capillary waves and
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fully three-dimensional waveforms; we refer the interested reader to the excellent
survey articles of Dias & Kharif (1999) and Groves (2007) for a full description of
these.

Regarding the dynamic stability of travelling water waves, there is a long and
distinguished history dating to the fundamental work of Benjamin & Feir (1967)
and Zakharov (1968) in the 1960s which led to the discovery of the Benjamin–Feir
instability (see § 2.7) and the Hamiltonian formulation of water waves, to name just
two ground-breaking results. Again, the survey article of Dias & Kharif (1999) is an
excellent guide to the long list of results in this direction which has typically focused
upon either small-amplitude long-waves in shallow water (where the Korteweg–de
Vries equation and its generalizations govern) or small waves in deep water (where
the Nonlinear Schrödinger equation and its relatives are applicable).

Regarding the full Euler equations, much less is known and most results have been
limited to numerical simulation. In particular, Longuet-Higgins explored the spectral
stability of travelling two-dimensional periodic wavetrains (the Stokes waves) in deep
water subject to two-dimensional super-harmonic (see Longuet-Higgins 1978a) and
sub-harmonic (see Longuet-Higgins 1978b) disturbances, respectively. In these, he
not only saw the Benjamin–Feir instability in the full equations (a fact which has
been subsequently rigorously justified by Bridges & Mielke 1995), but also found the
‘bubbles of instability’ which are the signature of many systems with Hamiltonian
structure. The spectral stability analysis which Longuet-Higgins carried out sought to
study the time evolution (in a reference frame moving uniformly with speed c) of the
quantity

u(x, t) = ū(x) + δeλt v(x), δ � 1,

where ū is the Stokes wave, v is an envelope and λ is the spectral parameter (Re{λ} > 0
indicates instability). Insertion of this form into the full Euler equations of free-surface
ideal fluid mechanics leads, to leading order, to an eigenproblem for the pair (λ, v(x))

L[v] = λv.

The final specification which must be made is the boundary conditions on the envelope
v. If v has the same periodicity as ū, this constitutes a super-harmonic disturbance,
otherwise it is sub-harmonic (which, as we will see, can be conveniently specified by
Bloch-periodic boundary conditions, see § 2.3). It is easy to see (§ 2.5) that the trivial,
‘flat water’, solution is neutrally stable (Re{λ} = 0), so that the interesting stability
question becomes the values of λ, in particular their real parts, for non-zero surface
deformations.

Longuet-Higgins’ approach to this problem was, given a particular choice of
ū, to approximate the action of L on a finite-dimensional subspace of periodic
functions, giving a matrix M , that was then passed to a numerical eigensolver which
produced eigenvalues and eigenvectors. While rather computationally expensive (M is
recomputed for every ū), Longuet-Higgins produced highly accurate approximations
of the eigenvalues as the (non-dimensionalized) amplitude, ak, of the Stokes wave
was increased to nearly the critical value. In this work, Longuet-Higgins verified
the existence of the Benjamin–Feir instability with his sub-harmonic calculations,
and showed that this dominates for small ak. He also found that for ak much
larger (nearly to the critical amplitude), there is a super-harmonic instability which
is much stronger. These results were subsequently generalized by McLean and
collaborators (see McLean et al. 1981; McLean 1982a, b) to include the possibility of
three-dimensional instabilities. In this work, it was shown that, while Benjamin–Feir
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dominates for small amplitude, for most moderate amplitudes the Stokes waves are
primarily unstable to three-dimensional perturbations. This work was continued all
the way to the critical wave of greatest amplitude by Kharif (1987) and Kharif &
Ramamonjiarisoa (1988) who showed that two-dimensional instabilities eventually
become dominant for very nonlinear waves. Further work in this same vein for finite
depth has also been carried out (see e.g. Francius & Kharif 2003, 2006).

In the midst of these numerical simulations of the 1980s, MacKay & Saffman (1986)
made a fundamental theoretical contribution to the resolution of the stability question.
Using the Hamiltonian structure of the water-wave equations found by Zakharov
(1968), they showed that spectral instability (Re{λ} > 0 for some λ ∈ spec(L)) could
only occur after a collision of eigenvalues on the imaginary axis. Furthermore, this
collision must be between two eigenvalues of opposite Krein signature. While very
revealing, these results are not conclusive as collision with opposite signature is not
sufficient to establish instability; please see § 2.8 for further discussion of these results.

In a series of recent papers, the author (partially in collaboration with F. Reitich) has
advanced the state-of-the-art in the stable and high-order computation of travelling
water waves and their spectral stability. The goal of the research described in this
paper is to use these novel computational methodologies to advance the understanding
of the stability of travelling water waves, and propose a new criterion for the onset of
instability. To begin, Nicholls & Reitich (2006) devised a reliable and highly accurate
algorithm for the computation of travelling water waves based upon boundary
perturbations (BP). These computations were inspired by their theoretical work
(see Nicholls & Reitich 2005) which showed that the BP recursions define strongly
convergent Taylor series (see (2.9)) for the problem unknowns (velocity potential,
free-surface shape and velocity). This BP method was demonstrated to be stable
and highly accurate, delivering physical quantities of interest (e.g. frequency, energy
density) to 13–14 digits of accuracy (see table 1 of Nicholls & Reitich 2006). The
travelling waveforms we use in the present analysis are generated by this very BP
approach.

Subsequently, the author (see Nicholls 2007b) has derived a BP algorithm for the
computation of the spectrum of the water-wave operator linearized about travelling
wave solutions. In this paper, the author proved that the spectral data, (λ, v), can
also be represented by strongly convergent Taylor series (see (2.10)), and investigated
the convergence of a BP algorithm to compute this spectral data. Once again, the
scheme was shown to be highly stable and accurate, and the author presented some
preliminary results on the crossing of eigenvalues. In the current work, we now take
these high-fidelity numerical algorithms as proven tools, and use them, for the first
time, to truly investigate the stability properties of travelling water waves. Here,
we present only two-dimensional results (Stokes waves subject to two-dimensional
perturbations), but in principle three-dimensional waveforms (e.g. short-crested waves)
subject to three-dimensional perturbations could be addressed. We leave this for future
work.

In the present paper, we have found that the full spectrum of the linearized water-
wave problem can be quickly and accurately simulated for the complete family of
Stokes waves of a given fundamental period. Using this method, we can rapidly
locate the ‘first eigenvalue crossing’ which MacKay & Saffman (1986) showed is a
necessary condition for spectral instability. However, we show that this first crossing
does not necessarily lead to instability as the eigenvalues may simply pass over one
another on the imaginary axis. While Longuet-Higgins (1978b) displays results of
eigenvalue crossing which do not give rise to a bubble of instability, this is only
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subsequent to other instabilities which have already arisen. Thus, we regard this
instance of eigenvalue crossing to be a novel result. Furthermore, according to the
formula of MacKay & Saffman (1986), we have found eigenvalue crossing of opposite
signature which does not lead to instability, a result which we believe is absent from
the literature and, thus, also quite novel.

In light of these findings, we propose a new criterion of instability independent
of eigenvalue crossing which accommodates the situation where ‘first crossing’ does
lead to instability. Our new criterion (Conjecture 3.2) is based upon observation
that our method ‘fails’ for sufficiently large choices of the perturbation parameter:
the expansions for the spectra λ no longer converge. Our numerics reveal that this
occurs due to a singularity of the expansion on the real axis, and we now conjecture
that encountering this singularity and the onset of instability are one and the same.
Using the method of Padé summation, we are able to approximate the first such
‘expansion singularity’ for a fine sampling of the Bloch periods (thereby constituting
a full investigation of super- and sub-harmonic disturbances). We do this for four
values of the depth, two above (h = ∞, 2) and two below (h = 1, 1/2) the critical value
hc ≈ 1.363 Benjamin (1967) identified for the onset of the Benjamin–Feir instability.
From these studies we show that, in all cases, the strongest instability appears to
be in the long-wave regime which, for deep water at least, can be interpreted as
the Benjamin–Feir instability. However, there is a discrepancy in the behaviour of
the spectrum as a function of the perturbation parameter as h increases past hc.
In short, for h < hc it appears that first eigenvalue crossing and smallest expansion
singularity are synonymous so that MacKay and Saffman’s criterion suffices. However,
for h > hc we notice that there are significant ‘windows of stability’ between the first
eigenvalue crossing and the smallest expansion singularity, even permitting collision
of eigenvalues of opposite signature before the onset of instability. These windows
of stability appear to be absent from the current stability literature for water waves,
and we view this as a particularly important contribution to the theory.

The rest of the paper is organized as follows. In § 2, we review the equations
governing the motion of the surface of an ideal fluid. With this, we present in § 2.1 a
change of variables which we have found very useful for both analysis and numerical
simulation of water waves. In § 2.2, we review the considerations necessary for the
spectral stability analysis of travelling waveforms, and in § 2.3 we discuss Bloch theory
in guiding our choice of boundary conditions. In § 2.4, we recall the BP recursions
which Nicholls & Reitich (2006) and Nicholls (2007b) utilized with great effect in
the study of Stokes waves. In § 2.5, we recollect the classical stability calculation
for trivial, ‘flat water’ solutions, and in § 2.6 we recall resonances in this problem
which are currently outside the scope of our algorithm. For completeness, we review
Benjamin’s calculations which display the onset of the Benjamin–Feir instability for
h > hc (§ 2.7), and MacKay & Saffman’s work on Krein signature of eigenvalues
(§ 2.8). In § 3, we present our new numerical results, more specifically for deep water
in § 3.2. Based upon these deep-water considerations, we formulate a new criterion for
instability in § 3.3, and explore these new ideas for three more depths in § 3.4. Finally,
we state our conclusions in § 4.

2. Governing equations
As mentioned above, we shall consider the motion of the free interface above

an ideal (inviscid, irrotational, incompressible) fluid under the influence of gravity.
Capillarity can be easily included if desired and, as we found in Nicholls & Reitich
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(2005, 2006) and Nicholls (2007a, b), it is essential when considering three-dimensional
waveforms and perturbations. If the fluid occupies the domain

Sh,η = {x ∈ R | − h < y < η(x, t)}

with mean depth h and free surface η = η(x, t), the equations of motion are known
to be (see Lamb 1993)

�ϕ = 0, in Sh,η, (2.1a)

∂yϕ(x, −h) = 0, (2.1b)

∂tη + ∂xη ∂xϕ − ∂yϕ = 0, at y = η, (2.1c)

∂tϕ +
1

2
|∇ϕ|2 + gη = 0, at y = η, (2.1d)

where ϕ = ϕ(x, y, t) is the velocity potential (v = ∇ϕ), and g is the constant of gravity.
Water of infinite depth can be accommodated by replacing (2.1b) with

∂yϕ → 0 as y → −∞, (2.1e)

and these equations are also supplemented with initial conditions

η(x, 0) = η0(x), ϕ(x, η0(x), 0) = ξ0(x), (2.1f)

where it suffices (by elliptic theory) to specify ϕ only at the surface. Boundary
conditions must also be enforced to guarantee the existence of a unique solution
which, for the study of Stokes waves, are periodic boundary conditions with respect
to some lattice Γ ⊂ R, i.e.

η(x + γ, t) = η(x, t), ϕ(x + γ, y, t) = ϕ(x, y, t) ∀γ ∈ Γ ;

this lattice generates the conjugate lattice of wavenumbers (see Mielke 1997),

Γ ′ := {k ∈ R | k · γ ∈ (2π)Z, ∀γ ∈ Γ }.

In this paper we consider non-dimensionalized quantities and, as such, choose Γ = 2πZ
which gives Γ ′ = Z.

If we change coordinates to a reference frame translating uniformly with speed
c ∈ R in the x-direction, then the governing equations become (for water of finite
depth)

�ϕ = 0, in Sh,η, (2.2a)

∂yϕ(x, −h) = 0, (2.2b)

∂tη + c ∂xη + ∂xη ∂xϕ − ∂yϕ = 0, at y = η, (2.2c)

∂tϕ + c ∂xϕ +
1

2
|∇ϕ|2 + gη = 0, at y = η, (2.2d)

η(x, 0) = η0(x), (2.2e)

ϕ(x, η0(x), 0) = ξ0(x), (2.2f)

again with periodic boundary conditions.
Finally, we can greatly reduce the size of the problem domain, Sh,η, for (2.2) with

the introduction of a ‘transparent boundary condition’ at a hyperplane y = − a,
−h � −a < − |η|L∞ (see Nicholls & Reitich 2005, 2006). This boundary condition
is not only important for computational considerations (significantly reducing the
domain to be discretized), but also permits a uniform statement of the water-wave
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problem over all depths including the infinite-depth case. As we saw in Nicholls
& Reitich (2005, 2006) and Nicholls (2007b), we can equivalently state (2.2) (for
arbitrary depth) as

�ϕ = 0, in Sa,η, (2.3a)

∂yϕ − T [ϕ] = 0, at y = −a, (2.3b)

∂tη + c ∂xη + ∂xη ∂xϕ − ∂yϕ = 0, at y = η, (2.3c)

∂tϕ + c ∂xϕ +
1

2
|∇ϕ|2 + gη = 0, at y = η, (2.3d)

η(x, 0) = η0(x), (2.3e)

ϕ(x, η0(x), 0) = ξ0(x), (2.3f)

where

T (a)[ψ] =
∑
k∈Γ ′

|k| tanh((h − a) |k|)ψ̂ke
ikx,

and ψ̂k is the k-th Fourier coefficient of ψ(x). If we define D: = − i∂x , then the
operator T can be written as the Fourier multiplier

T [ψ] = |D| tanh((h − a) |D|)[ψ].

In the case of infinite depth, we have T = |D|.

2.1. Change of variables

We have found the change of variables

x ′ = x, y ′ = a

(
y − η(x, t)

a + η(x, t)

)
, t ′ = t, (2.4)

very useful in the rigorous analysis (see Nicholls & Reitich 2001a , 2003, 2004a , 2005;
Nicholls 2007b) and numerical simulation (see Nicholls & Reitich 2001b, 2004b) of
water waves in two and three dimensions. We note that these coordinates are known
as σ coordinates in the atmospheric science community (see Phillips 1957) and the C

method in electromagnetics (see Chandezon, Maystre & Raoult 1980; Li et al. 1999).
As we have already shown (see Nicholls & Reitich 2005, 2006), using this change of
variables and setting

u(x ′, y ′, t ′) := ϕ(x ′, (a + η)y ′/a + η, t ′)

results in (dropping primes) the transformation of (2.3) to

�u(x, y) = F (x, y; η, u), in Sa,0, (2.5a)

∂yu(x, −a) − T [u(x, −a)] = J (x; η, u), (2.5b)

∂tη(x, t) + c ∂xη(x, t) − ∂yu(x, 0, t) = Q(x; η, u), (2.5c)

∂tu(x, 0, t) + c ∂xu(x, 0, t) + gη(x, t) = R(x; η, u), (2.5d)

where the right-hand sides are explicitly given in Nicholls & Reitich (2005, 2006)
and share the important feature of being O(η). These are supplemented with the
initial conditions (2.3e) and (2.3f), and periodic boundary conditions each of which is
trivially transformed.
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2.2. Spectral stability analysis

The spectral stability analysis that we have in mind is fully described in Nicholls
(2007b), but we briefly outline it here for completeness. To begin, consider a travelling
wave solution of (2.1), i.e. a steady solution

(ū, η̄, c̄) = (ū(x, y), η̄(x), c̄)

of (2.5). With this, we seek solutions to the full problem (2.5) in a frame travelling
with speed c = c̄ of the form

u(x, y, t) = ū(x, y) + δũ(x, y, t), η(x, t) = η̄(x) + δη̃(x, t),

where δ � 1 measures the magnitude of the small perturbation of the travelling state.
Inserting this into (2.5) we find, to order O(δ), that the perturbations ũ and η̃ satisfy

�ũ = Fu(ū, η̄)[ũ] + Fη(ū, η̄)[η̃], in Sa,0, (2.6a)

∂yũ(x, −a) − T [ũ(x, −a)] = Ju(ū, η̄)[ũ] + Jη(ū, η̄)[η̃], (2.6b)

∂t η̃(x, t) + c̄ ∂xη̃(x, t) − ∂yũ(x, 0, t) = Qu(ū, η̄)[ũ] + Qη(ū, η̄)[η̃], (2.6c)

∂t ũ(x, 0, t) + c̄ ∂xũ(x, 0, t) + gη̃(x, t) = Ru(ū, η̄)[ũ] + Rη(ū, η̄)[η̃], (2.6d)

where u and η variations are denoted by subscripts; the precise forms for the right-
hand side are, again, recorded in Nicholls (2007b).

We now posit ‘spectral stability’ forms for ũ and η̃

ũ(x, y, t) = eλt v(x, y), η̃(x, t) = eλt ζ (x),

so that the values of λ determine the spectral stability of the travelling waves (ū, η̄):
(a) Re{λ} > 0 for any λ implies spectral instability,
(b) Re{λ} � 0 for all λ implies weak spectral stability,
(c) Re{λ} < 0 for all λ implies strong spectral stability.

Inserting these into (2.6), we find that v and ζ satisfy

�v = Fu(ū, η̄)[v] + Fη(ū, η̄)[ζ ], in Sa,0, (2.7a)

∂yv(x, −a) − T [v(x, −a)] = Ju(ū, η̄)[v] + Jη(ū, η̄)[ζ ], (2.7b)

[λ + c̄ ∂x] ζ (x) − ∂yv(x, 0) = Qu(ū, η̄, λ)[v] + Qη(ū, η̄, λ)[ζ ], (2.7c)

[λ + c̄ ∂x] v(x, 0) + g ζ (x) = Ru(ū, η̄, λ)[v] + Rη(ū, η̄, λ)[ζ ]. (2.7d)

2.3. Bloch theory

The final specification we make for our spectral stability problem (2.7), which we now
write abstractly as

A(x, y)[(v, ζ )] = λ(v, ζ ), (2.8)

is the boundary conditions which v and ζ must satisfy. For this, we use the ‘Generalized
Principle of Reduced Instability’ (essentially, Floquet theory, see Deconinck & Kutz
2006) developed by Mielke (1997), inspired by the Bloch theory of Schrödinger
equations with periodic potentials (see Reed & Simon 1978). This method allows
perturbations

(v, ζ ) ∈ H 2(R × [−a, 0]) × H 2(R),

or even

(v, ζ ) ∈ H 2
lu(R × [−a, 0]) × H 2

lu(R),
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which lie in the Sobolev spaces built upon the class of uniformly local L2 functions
(see Mielke 1997). Mielke’s method reduces this general setting to the study of the
‘Bloch waves’, e.g.

ζ (x) = eip·xZ(x),

where Z ∈ H 2(R/Γ ) and Γ is the lattice of periodicity for the linear operator
A = A(ū(x, ·), η̄(x), c̄) in the x variable.

Since Z ∈ H 2(R/Γ ), it suffices to consider p ∈ P (Γ ′), the fundamental cell of
wavenumbers (e.g. if Γ = (2π)Z, then Γ ′ = Z, and P (Γ ′) = [0, 1]). Thus, (2.8) delivers
the spectral problem (see Mielke 1997)

Ap[(V, Z)] = λ(V, Z),

where Ap is the ‘Bloch operator’

Ap[(V, Z)] := e−ip·xA[eip·x(V, Z)].

The crucial spectral identity (see Mielke 1997, Theorems 2.1 and A.4) is

L2–spec(A) = L2
lu–spec(A) = closure

( ⋃
p∈P (Γ ′)

spec(Ap)

)
.

Thus, we can obtain information about stability with respect to all of these
perturbations by simply considering

(V, Z) ∈ H 2((R/Γ ) × [−a, 0]) × H 2(R/Γ )

with p ∈ P (Γ ′) appearing as a parameter (see Mielke 1997).
As remarked in Nicholls (2007b), this analysis is equivalent to requiring that the

functions v(x, y) and ζ (x) satisfy the ‘Bloch-boundary conditions’

v(x + γ, y) = eipγ v(x, y), ζ (x + γ ) = eipγ ζ (x), ∀γ ∈ Γ.

Notice that if p is a rational number, then these functions will be periodic with
respect to the lattice Γ . Such functions can be expanded as

ζ (x) =
∑
k∈Γ ′

ζ̂ke
i(k+p)x, v(x, y) =

∑
k∈Γ ′

v̂k(y)ei(k+p)x,

(see McLean et al. 1981; McLean 1982a , b) which is important in our numerical
implementation.

2.4. Transformed field expansions

In recent work (see Nicholls & Reitich 2005), we showed that steady solutions of
(2.5) exist in branches dependent on a perturbation parameter ε ∈ R, giving rise to
the strongly convergent expansions

ū(x, y, ε) =

∞∑
n=1

ūn(x, y)εn, η̄(x, ε) =

∞∑
n=1

η̄n(x)εn, c̄(ε) =

∞∑
n=0

c̄nε
n. (2.9)

We have subsequently shown (see Nicholls 2007b) that the linearized quantities
(v, ζ, λ) also depend (strongly) analytically upon ε and can similarly be expanded as

v(x, y, ε) =

∞∑
n=0

vn(x, y)εn, ζ (x, ε) =

∞∑
n=0

ζn(x)εn, λ(ε) =

∞∑
n=0

λnε
n. (2.10)
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Remark 2.1. To clarify this notion of ‘strong convergence’, we remark that
Theorem 4.2 in Nicholls & Reitich (2005) states that, for some positive constants C

and B , and integer s > 1/2,

‖ūn‖Hs+2 � C
Bn

(n + 1)2
, ‖η̄n‖Hs+5/2 � C

Bn

(n + 1)2
, |c̄n−1| � C

Bn−1

(n + 1)2
,

where Hs is the Sobolev space of functions with s-many L2 derivatives. Furthermore,
under certain conditions of non-resonance (see § 2.6), Theorem 5.2 in Nicholls (2007b)
shows that, for some positive constants K and D,

‖vn‖Hs+2 � K
Dn

(n + 1)2
, ‖ζn‖Hs+5/2 � K

Dn

(n + 1)2
, |λn| � K

Dn

(n + 1)2
.

The objective of this spectral stability analysis is to ‘follow’ the eigenvalues λ= λ(ε)
as ε is varied, particularly any which may move into the positive real half-plane
giving rise to a dynamic instability. At this point, we comment that the parameter ε

is not uniquely defined and, in fact, two choices at least are widely used. The classical
choice first used by Stokes in the 1880s is determined by enforcing the condition that
η̄n be orthogonal to η̄1 which, computationally, is very natural. However, Schwartz
(1974) pointed out that this parameterization introduced an artificial singularity into
the expansion causing divergence of the series (2.9) for amplitudes lower than that of
the critical Stokes wave. He advocated a new parameterization, which we name after
him, that is essentially parameterization by waveheight (see Schwartz 1974; Roberts
1983; Marchant & Roberts 1987; Nicholls & Reitich 2006). In this paper, ε will
always refer to this Schwartz parameterization.

Inserting the expansions, (2.10), into (2.7), we realize the ‘Transformed Field
Expansions’ (TFE) recursions for the spectral data

�vn = Fn, in Sa,0, (2.11a)

∂yvn(x, −a) − T [vn(x, −a)] = Jn, (2.11b)

[λ0 + c̄0 ∂x] ζn(x) − ∂yvn(x, 0) = Qn − λnζ0(x) −
n−1∑
l=1

λn−lζl(x), (2.11c)

[λ0 + c̄0 ∂x] vn(x, 0) + g ζn(x) = Rn − λnv0(x, 0) −
n−1∑
l=1

λn−lvl(x, 0), (2.11d)

together with Bloch periodicity, where the right-hand sides are given in Nicholls
(2007b). These TFE recursions not only permit the direct estimation of the quantities
{vn, ζn, λn}, but also, as we shall see, lead to a stable high-order algorithm for the
numerical study of dynamic stability of travelling water waves.

2.5. Zeroth order

Before proceeding to the description of our algorithm, we summarize the discussion
given in Nicholls (2007b) of solutions to (2.11) at order zero. In this case, the right-
hand side of (2.11) is zero, and we find that solutions of (2.11a), (2.11b) and the
Bloch-boundary conditions are

v0(x, y) =
∑

k

Ak

cosh(|k + p| (y + h))

cosh(|k + p| h)
ei(k+p)x.
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The boundary conditions imply that

ζ0(x) =
∑

k

ζ̂0,ke
i(k+p)x,

while (2.11c) and (2.11d) give

Mkwk = 0 ∀k ∈ Γ ′, (2.12)

for the matrix/vector pair

Mk :=

(
λ0 + ic̄0(k + p) − |k + p| tanh(|k + p| h)

g λ0 + ic̄0(k + p)

)
, wk :=

(
ζ̂0,k

Ak

)
. (2.13)

Clearly, (2.12) only delivers non-trivial solutions when the matrix Mk is singular for
some wavenumber k ∈ Γ ′; this occurs when the determinant function

Λ(k, p; λ0, c̄0, g, h) := (λ0 + ic̄0 · (k + p))2 + g |k + p| tanh(h |k + p|), (2.14)

is equal to zero. Given that (p, c̄0, g, h) are fixed , for a given κ ∈ Γ ′, we solve for the
unique (up to sign) λs

0(κ), s = ± 1, such that Λ(κ, p; λs
0, c̄0, g, h) = 0, i.e.

λs
0(κ) = i

[
−c̄0 · (κ + p) + sωκ+p

]
, (2.15)

where

ω2
k := g |k| tanh(h |k|). (2.16)

Since all of the λs
0(κ) are purely imaginary, we recover the classical weak stability

result for trivial (flat) travelling water waves. In this case, we find solutions of (2.12)
of the form

ζ̂0,κ = τ |κ + p| tanh(|k + p| h), Aκ = τ (λ0 + ic̄0 · (κ + p)),

for any τ ∈ C which, together with λ0 = λs
0, are the starting point for our algorithm.

2.6. Resonance

We now turn to the restriction of our theory, namely that certain ‘resonant’
configurations must be excluded. To see why this is the case, recall that, to start
our algorithm, for a fixed set of parameters (Γ, p, c̄0, g, h) we can select, for every
κ ∈ Γ ′, a unique (up to sign) value λs

0(κ), (2.15), such that

Λ(κ, p; λs
0, c̄0, g, h) = 0

(see (2.14)). As we saw in (Nicholls 2007b) if Λ(k, p) = 0 for all k = κ, then (2.11)
can be uniquely solved at any order n. Viewing p as the adjustable ‘configuration
parameter’ we define the set of permissible, ‘non-resonant’ p, for a fixed κ , by

Ωκ (Γ ) := {p ∈ P (Γ ′) | Λ(k, p; λs
0, c̄0, g, h) = 0 ∀ k ∈ Γ ′\{κ}} . (2.17)

As we shall see in § 3, the resonant quasi-periods p ∈ Ωκ (Γ ) are excluded from our
computations. While this is a shortcoming of our approach, we regard it as a minor
one. First, this set is not very large (in two dimensions on water of infinite depth, there
are only three values (p =0, 1/4, 3/4) in the continuum [0, 1) see Nicholls 2007b).
Additionally, we have been able to choose values of p quite close to the resonant
values and, we believe, gleaned useful information about these resonances. Finally,
these resonant values would give rise to particularly strong instabilities which are
independent of the travelling wave shape (as they appear at perturbation order zero),
and thus require a more subtle analysis which we leave to future research. Instead,
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we focus upon the non-resonant configurations featuring a dependence upon the
travelling waveform which we can detect.

2.7. The Benjamin–Feir instability

Before turning to our numerical results, we briefly discuss two crucial contributions
to the theory of stability of travelling water waves: the Benjamin–Feir instability
(see Benjamin 1967; Benjamin & Feir 1967) and the work of MacKay & Saffman
(1986) on Krein signature of eigenvalues of the linearized problem. We focus upon
the former in this subsection and defer a discussion of the latter until § 2.8. As this
is background material and not the original work of the author, we present a brief
outline and refer the interested reader to the original papers.

Based upon numerous and careful experimental observations, Benjamin and Feir
came to the conclusion that periodic wavetrains in deep water were unstable to
‘sidebands’ of the wavetrain frequency. To mathematize this, they considered a small
amplitude (a � 1) travelling wave of the form

H = η̄ + a cos(ζ ) + ka2P cos(2ζ ),

Φ =
ωa

k

cosh(k(y + h))

sinh(hk)
sin(ζ ) + ωa2Q

cosh(2k(y + h))

sinh(2hk)
sin(2ζ ),

(H and Φ are meant to approximate travelling wave solutions η and ϕ of (2.1)) where

ζ = kx − ωt, η̄, P , Q ∈ R,

(see Benjamin 1967) which is the Stokes expansion to order two. They then considered
perturbations of this travelling wave of the form

η = H + ιη̃, ϕ = Φ + ιϕ̃,

ι � 1, with the Benjamin–Feir-type perturbation

η̃ = η̃1 + η̃2,

where

η̃j = εj cos(ζj ) + ka {Aj cos(ζ + ζj ) + Bj cos(ζ − ζj )} + O(k2a2εj ).

Here

ζj = k(1 ± κ)x − ω(1 ± δ)t − γj ,

κ, δ = O(ka), and

δ

κ
=

1

2
(1 + 2khcsch(2kh)) =: λ.

In their analysis εj = εj (t), γj = γj (t) are slowly varying functions of time to be
determined. An appropriate form for ϕ̃ can also be provided (see Benjamin 1967)
and, up to order O(ωk2a2εj + ω2ka2εj ) the boundary conditions (2.1c) and (2.1d),
linearized about (H, Φ), imply the evolution equations

dε1,2

dt
=

1

2
ωk2a2X(kh) sin(θ(t))ε2,1, (2.18)

where X(kh) is given in (30) of Benjamin (1967), and

dθ

dt
= ωk2a2X(kh)

{
1 +

ε2
1 + ε2

2

2ε1ε2

cos(θ)

}
− ωδ2Y (kh) (2.19)

comes from the sum of the evolution equations for γj (t), and Y (kh) is given in (36)
of Benjamin (1967).
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Explicit solutions of (2.18) can be written down, and an analysis of (2.19) reveals
that εj (t) are periodic and finitely bounded if

2k2a2X(kh) < δ2Y (kh).

However, if

2k2a2X(kh) � δ2Y (kh),

then the εj will grow as t → ∞, with exponential growth if strict inequality holds.
Since Y (kh) > 0 and δ can be chosen arbitrarily small, the matter of stability hinges
on the sign of X(kh),

X(kh) � 0 if and only if kh � 1.363

implies instability. Typically, as we have done in this paper, non-dimensionalization
chooses k = 1, and thus the critical depth for the onset of the Benjamin–Feir instability
is hc ≈ 1.363.

2.8. Krein signature

We conclude our theoretical discussions with an overview of MacKay & Saffman’s (see
MacKay & Saffman 1986) results on Krein signature of colliding eigenvalues. These
authors focus upon the Hamiltonian formulation of water waves due to Zakharov
(1968) which states that (2.1) are equivalent to

∂tη = δξHZ, ∂tξ = −δηHZ,

where ξ (x, t) := ϕ(x, η(x, t), t) is the velocity potential at the free surface, and the
Hamiltonian is given by HZ = K + V , the sum of the kinetic and potential energies

K =
1

2

∫ ∫ η

−h

|∇ϕ|2 dy dx, V =

∫
1

2
gη2 dx.

They further point out that travelling waves are critical points of the functional
HZ,c := HZ − c · P , where

P :=

∫
η∇xϕ dx

is the momentum. We note that this point of view was used by Craig & Nicholls
(2000) in their proof of existence of travelling water waves.

MacKay & Saffman (1986) note that the motion of the eigenvalues associated
with an equilibrium of a Hamiltonian, Hc (not necessarily equal to HZ,c), are well
understood. In particular, if λ is a non-zero, purely imaginary, simple eigenvalue for
the problem linearized about the equilibrium, then the second variation of Hc at the
equilibrium is either positive or negative definite; this sign is the Krein signature of λ,
and it is conserved in the absence of collision with another eigenvalue. A consequence
of conservation of energy applied to eigenvalues of the same Krein signature is
MacKay & Saffman’s result.

Theorem 2.2. (MacKay & Saffman 1986) If two simple, pure imaginary eigenvalues
of the same Krein signature collide at a point other than zero, then they cannot leave
the imaginary axis.

Using the fact that Krein signature is conserved up to collision, MacKay & Saffman
(1986) point out that for the use of this theorem, one should compute this signature at
ε =0. Here it is easy to find the energy (to second order) explicitly and one discovers
that it is a positive multiple of the difference between the speed of the reference frame
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and the speed of the perturbation in this frame. Thus, the energy (and consequently
the signature) is negative if the perturbation moves in the same direction but slower
than the frame, and positive otherwise.

3. Numerical results
In this section, we outline a numerical method to simulate the recursions (2.11) and

then, using the resulting Taylor coefficients {vn, ζn, λn}, deduce information regarding
the spectrum as a function of ε. In particular, we show quite explicitly the existence of
eigenvalue crossing before instability and present new results on singularities of these
series. We speculate that spectral instability arises at the smallest (in absolute value)
singularity of (2.10) in ε which is further hypothesized to be real valued. We display
simulations for four values of the depth, h = ∞, 2 > hc ≈ 1.363, and h = 1, 1/2 < hc,
where hc is the critical depth discussed in § 2.7. We find that this distinction will be
important in our new criterion of stability, in particular whether eigenvalue collision
is sufficient to conclude spectral instability or not.

3.1. Numerical method

Our numerical scheme is a Fourier (collocation)/Chebyshev (tau)/Taylor algorithm
(see Gottlieb & Orszag 1977; Canuto et al. 1988; Nicholls & Reitich 2001b, 2006)
applied to the system of (2.11). Briefly, this amounts to approximating the unknowns
(v, ζ, λ) by

v(N,Nx,Ny )(x, y, ε) :=

N∑
n=0

Nx/2−1∑
k=−Nx/2

Ny∑
l=0

v̂k,l
n Tl

(
2y + a

a

)
ei(k+p)xεn, (3.1a)

ζ (N,Nx )(x, ε) :=

N∑
n=0

Nx/2−1∑
k=−Nx/2

ζ̂ k
n ei(k+p)xεn, (3.1b)

λ(N)(ε) :=

N∑
n=0

λnε
n, (3.1c)

where Tl is the l-th Chebyshev polynomial. We determine the (v̂k,l
n , ζ̂ k

n , λn) from (2.11)
(together with the solvability and uniqueness considerations outlined in Appendix A
of Nicholls 2007b) and the Fourier collocation (x variable) and Chebyshev tau (y
variable) methods. Of course, all of this depends on the faithful computation of the
basic travelling wave (ϕ̄, η̄, c̄) which we perform using the stable high-order TFE
method developed in Nicholls & Reitich (2006). In the experiments of this section,
we have set a = 1/2 (a = 1/10 for h = 1/2), N = 30, Nx = 64 and Ny = 32 for the
computation of both the travelling waveform (ϕ̄, η̄, c̄) and the perturbation (v, ζ, λ).
These algorithms for the simulation of both the travelling wave and the spectrum
of the linearized operator have been thoroughly investigated and verified in the
publications (Nicholls & Reitich 2006) and (Nicholls 2007b), respectively. In light of
these studies, we view our numerical results presented below as accurate and robust.

Before proceeding, we note that there is an alternative method to sum the Taylor
series (in ε) appearing in (3.1). It is well known that Padé approximants (see Baker &
Graves-Morris 1996) have remarkable properties of approximation for a large class of
functions when applied to their Taylor series, not only within their disk of convergence,
but also well outside (provided that there are no obstructing singularities present). In
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a practical implementation, this generally means that a Padé approximation will not
only converge faster where the Taylor series converges, but it may even converge for
values of ε where the Taylor series diverges. We have found this technique useful in
a wide range of applications (see Nicholls & Reitich 2003, 2004b), and we use it here
again. For a full accounting of the advantageous computational complexity of this
new scheme, we refer the interested reader to the discussion in Nicholls (2007b).

3.2. Deep water

We now present a representative sample of new results on the evolution of the
spectrum (as a function of ε) of the linearized water-wave operator about fully
nonlinear travelling wave solutions of the full water-wave equations (2.5). To begin, we
consider the well-studied case of infinitely deep water (h = ∞). For this and all future
simulations, we consider the case of unit gravity (g = 1) and nonlinear Stokes waves
periodic of period 2π and basic wavenumber k̄ = 1, thus η̄0(x) = cos(k̄x) = cos(x) and
c̄0 = 1 in (2.9).

For these simulations, we studied 128 = 2 × Nx = 2 × 64 (−32 = − Nx/2 � k �
Nx/2 − 1 =31, and s = ± 1) eigenvalues λ and their corresponding eigenfunctions
(ζ, v) with Nx = 64 Fourier modes and Ny = 32 Chebyshev coefficients. This study was
repeated for a sampling of quasi-periods p ∈ [0, 1) with spacing �p = 1/100, excluding
the ‘resonant’ values of p = 0, 1/4, 3/4 (see § 2.6). In figure 1, we display a plot of the
value of ε where the first crossing of eigenvalues occurs for each value of p sampled.
This plot is very much in the spirit of the one we produced in Nicholls (2007b) save
that here we use the Schwartz parameterization rather than Stokes’ choice (see § 2.4).
Here we notice several things: first, that as p → 0 eigenvalues collide for very small
values of ε. These small-amplitude eigenvalue crossings correspond to the Benjamin–
Feir instability which results from long-wave modulations and occurs at low steepness.
Additionally, at the values p = 1/4, 3/4, it appears that eigenvalue collision possibly
occurs for small value of ε. Also, crossings for ε � 1 occurs as p → 1, but, as the
spectral data is periodic with period 1 (see Mielke 1997), this is to be expected. In
contrast with these particular values, for all other values of p there is a ‘window’ of ε

where no collision occurs, indicating that even for moderately nonlinear waves there
is stability with regard to these quasi-periods.

With this plot in mind, one can wonder if eigenvalue collision always gives
rise to instability, i.e. does eigenvalue crossing always result in the spectral pair
moving into the positive/negative imaginary planes? In figure 2, we provide an
answer in the negative: eigenvalue collision does not always result in instability. For
the case p = 1/10, we show in figure 2(a) – again, in the spirit of a figure from
Nicholls (2007b) – the approach of two eigenvalues which begin (at ε = 0) at

λ1
0(1) = i

[
−(1)(1 + 1/10) + ω1+1/10

]
≈ −0.05119i,

λ−1
0 (−1) = i

[
−(1)(−1 + 1/10) − ω−1+1/10

]
≈ −0.04868i

(see (2.15)). As shown in Nicholls (2007b), we can realize a great degree of accuracy
(essentially machine precision) in the simulation of these eigenvalues for ε almost to
the point of collision. However, as we near this final point, our scheme loses accuracy
so that we are only sure of a few digits of accuracy. Significantly, beyond this point
we cannot continue our calculation reliably as neither Taylor summation nor Padé
approximation of (2.10) consistently produces finite values for larger ε. This led us
to conjecture that the first collision of eigenvalues and the breakdown of our code
occurred simultaneously. However, upon closer investigation of quasi-periods outside
of the Benjamin–Feir regime, we discovered that this was not necessarily the case. In
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Figure 1. Plot of the real part of εc , the value of the perturbation parameter where the first
eigenvalue crossing occurs, versus p for deep water (h = ∞). The underlying Stokes wave is
2π-periodic and Schwartz’s parameterization is utilized.
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Figure 2. Plot of two eigenvalues, λ(ε), versus ε for two different values of the quasi-period
(p = 1/10, 2/10) in water of infinite depth. (a) The eigenvalues λ1

0(1) and λ−1
0 (−1) are plotted

and the computation cannot be continued past their collision. (b) The eigenvalues λ1
0(20) and

λ−1
0 (12) are displayed, but these computations can be continued beyond the collision despite

the fact that they have opposite Krein signature. The underlying Stokes wave is 2π-periodic
and Schwartz’s parameterization is utilized.

figure 2(b), we display results of a similar calculation with p = 2/10 and two points
of the spectrum which, at ε = 0, are (see (2.15))

λ1
0(20) = i

[
−(1)(20 + 2/10) + ω20+2/10

]
≈ −15.706i,

λ−1
0 (12) = i

[
−(1)(12 + 2/10) − ω12+2/10

]
≈ −15.693i.

In this instance, the two eigenvalues pass over each other and do not move off the
imaginary axis. Notice also that they do not form a ‘bubble of instability’, as was
noticed for other eigenvalue collisions by Longuet-Higgins (1978a, b). Clearly, in this
instance, eigenvalue crossing did not cause our numerical simulation to break down
and did not result in instability; a new criterion is required.
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Remark 3.1. As mentioned earlier, the results of MacKay & Saffman (1986) show
that eigenvalue collision is not sufficient for instability. They showed, via the theory
of Hamiltonian systems, that this collision must additionally be between eigenvalues of
opposite Krein signature (though they did not claim that this is a sufficient condition).
For the spectral parameter λs

0(κ), MacKay & Saffman (1986) tell us that the signature
is positive if sκ � −1, while it is negative if sκ � 2. From this, it is easy to compute
that λ1

0(20) and λ−1
0 (12) have opposite signatures (negative and positive, respectively)

indicating that this criterion is also insufficient.

3.3. A new test for instability: expansion singularities

The results displayed in figure 2(b) indicate that a new test is required for the onset
of instability to replace eigenvalue collision. One possibility that we advocate below
is inspired, in fact, by the observations of the behaviour of our numerical scheme in
the case p = 1/10 shown in figure 2(a). The failure of our numerical method in this
case was due to taking ε ‘too large’ not only for Taylor summation (meaning that ε

is outside the disk of analyticity of our expansion) but, more importantly, also for
Padé approximation indicating the presence of a singularity (or singularities) on the
real axis. With this in mind, we reflect upon the expansion (2.10), particularly that
for λ(ε). On the one hand, we know that λ(0) is purely imaginary (implying that λ0 is
pure imaginary) and, furthermore, in the case of a non-resonant configuration, λ(ε)
is purely imaginary for ε sufficiently small. This implies that λn is purely imaginary
for all n, a fact that is borne out (to machine precision) in our numerical simulations.
On the other hand, at the onset of instability Re{λ(ε)} > 0 requiring some (and most
likely all) Re{λn} > 0, a seeming contradiction. The only resolution of this disparity
is that the expansion for λ(ε), (2.10) must fail when instability arises. Of course, the
expansion may fail before the onset of instability, but this seems highly improbable
and thus we conjecture.

Conjecture 3.2. In the absence of resonance (i.e. p ∈ Ωκ (Γ )), the following are
equivalent:

(a) There is a value εi ∈ R for which

Re{λs(ε; κ)} = 0, ∀ε < εi, κ ∈ Γ ′,

and

Re{λs(ε; κ)} > 0, for some ε > εi, and some κ ∈ Γ ′.

This implies spectral instability for ε > εi .
(b) There is a singularity of λ(ε) at ε = εi ∈ R. This implies divergence of our series

(2.10) for ε > εi .

Remark 3.3. To state the conjecture more clearly, when an eigenvalue pair leaves the
imaginary axis, the expansion for λ(ε), (2.10), must fail since Re{λn} = 0. We conjecture
that the converse is also true, that failure of (2.10) implies eigenvalue pairs leaving the
imaginary axis, and thus spectral instability.

We point out that this conjecture does not exclude the possibility that for a
particular p, Re{λ(ε)} = 0 for all ε � 0, i.e. spectral stability for all travelling waves
with respect to all disturbances of a given quasi-period. This conjecture permits the
behaviour displayed in figure 2(b) while agreeing with the intuition gained by noting
that Re{λn} =0 for all n in the absence of resonance.

In light of this conjecture, we display in figure 3 the values of ε of the smallest
singularity (which we always found to be real) of the expansion of λ(N), (3.1c), versus
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Figure 3. Plot of the real part of εp , the value of the perturbation parameter where the first
singularity in the expansion of λ(ε) occurs, versus p for deep water (h = ∞); the imaginary
part of εp was always found to be zero to machine precision. The underlying Stokes wave is
2π-periodic and Schwartz’s parameterization is utilized.

p. In figure 4, we have superimposed the first crossing values for comparison. We
have included two plots apiece which vary the singularity cancellation parameter τ

from 10−4 to 10−8. To explain τ , we note that our method for locating singularities
is, given the Padé approximation

λ(N)(ε) ≈ p(N/2)(ε)

q (N/2)(ε)
=

∑N/2
n=0 anε

n∑N/2
n=0 bnεn

,

to find the roots of p(N/2) and q (N/2)

ZN := {ε ∈ C | p(N/2)(ε) = 0}, PN := {ε ∈ C | q (N/2)(ε) = 0},

and choose among the ε in

SN (τ ) := {ε ∈ PN | |ε − εz| > τ, ∀εz ∈ ZN},

which is the set of denominator zeros not cancelled by numerator zeros to tolerance
τ . We point out that by utilizing this tolerance parameter τ , we can exclude spurious
zero/singularity pairs which either should exactly cancel in infinite precision or arise
due to numerical noise. For a complete discussion of the efficacy of this approach
in locating singularities of functions, we refer the reader to § 2.2 of Baker & Graves-
Morris (1996).

We point out that figure 4(a) indicates that first eigenvalue crossing and expansion
singularities are synonymous for p near zero and one. However, there are sizeable
gaps for other values of p, most notably near p =1/4, 3/4. We interpret this to
mean that near p = 0 (the Benjamin–Feir regime) infinitesimal waves are unstable.
By contrast, it would appear that the resonant configurations p = 1/4, 3/4 do not
give rise to spectral instability from ε = 0, but rather evolution of the spectrum on
the imaginary axis for a certain non-zero range of ε. A definitive conclusion on this,
however, is beyond the current scope of our formulation and we leave this for future
work.

Remark 3.4. Before leaving these deep water results, we draw a comparison with
the work of Longuet-Higgins, in particular the results on sub-harmonic stability in
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Figure 4. Plot of the real parts of εc (the value of the perturbation parameter where the first
eigenvalue crossing occurs) and εp (the value of the perturbation parameter where the first
singularity in the expansion of λ(ε) occurs) versus p for deep water (h = ∞); the imaginary
parts of εc and εp were always found to be zero to machine precision. The underlying Stokes
wave is 2π-periodic and Schwartz’s parameterization is utilized.

0 0.2 0.4 0.6 0.8 1.0
10–4

10–3

10–2

10–1

100

p

R
e(

ε)

First crossing and smallest singularity versus p

Crossing

Singularity

(a)

τ = 10–4

0 0.2 0.4 0.6 0.8 1.0
10–4

10–3

10–2

10–1

p

(b)

τ = 10–8

First crossing and smallest singularity versus p

Figure 5. Plot of the real parts of εc (the value of the perturbation parameter where the first
eigenvalue crossing occurs) and εp (the value of the perturbation parameter where the first
singularity in the expansion of λ(ε) occurs) versus p for water of depth h =2; the imaginary
parts of εc and εp were always found to be zero to machine precision. The underlying Stokes
wave is 2π-periodic and Schwartz’s parameterization is utilized.

Longuet-Higgins (1978b). In this work, a small selection of spectra (between 4 and
16 eigenvalues) is followed in the cases p = 1/2 (figures 1 & 2), p = 1/4 (figure 4)
and p = 1/8 (figures 5 & 6). Longuet-Higgins (1978b) shows the onset of instability at
ak ≈ 0.22 for p = 1/2, ak ≈ 0.11 for p = 1/4 and ak ≈ 0.050 for p =1/8. This compares
with the results we report in figure 3(b) (with τ = 10−8) of ε ≈ 0.087 for p = 0.5,
ε ≈ 0.088 for p = 0.255 (recall that p = 1/4 is excluded due to resonance) and ε ≈ 0.043
for p =0.125. The apparent disparity between the results can be explained by realizing
that, since his study considers far fewer eigenvalues, Longuet-Higgins’ results can only
constitute an upper bound for our results. Of course, our numerics provide only an upper
bound for the true set of singular values; however, as our spectrum is far more complete,
it is necessarily more accurate.

For example, while Longuet-Higgins only presents results for four eigenvalues in his
study of the p = 1/2 case, our value reflects the singularity structure of 128 eigenvalues.
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Figure 6. Plot of the real parts of εc (the value of the perturbation parameter where the first
eigenvalue crossing occurs) and εp (the value of the perturbation parameter where the first
singularity in the expansion of λ(ε) occurs) versus p for water of depth h = 1; the imaginary
parts of εc and εp were always found to be zero to machine precision. The underlying Stokes
wave is 2π-periodic and Schwartz’s parameterization is utilized.

In fact, our study of the eigenvalues λ1(0) and λ−1(1), corresponding to n=1/2 and
n= 3/2, respectively in figure 1 of (Longuet-Higgins 1978b), are qualitatively the same
for values of ε up to the first singularity value of ε ≈ 0.087. By contrast, in the case
p = 1/8, Longuet-Higgins shows 16 eigenvalues and his results match ours much more
closely.

Remark 3.5. Returning once again to the notion of a ‘bubble of instability’, since this
is a phenomenon observed subsequent to the onset of instability (i.e. after a collision of
eigenvalues which results in their leaving the imaginary axis), our algorithm can find
the ‘beginning’ of such a bubble but cannot study it further. In fact, our figures probably
do show the onset of bubbles of instability; however, a different tool (e.g. the method
of Longuet-Higgins) is needed to confirm this.

3.4. Finite depth

In this section, we extend the calculations of first eigenvalue crossing and smallest
expansion singularity to three other representative depths h = 2, 1, 1/2. The first, as
with the previous value h = ∞, is deeper than Benjamin’s critical value hc ≈ 1.363,
while the latter two are shallower and, as we shall see, there is radically different
behaviour in this regime. We note, before beginning, the increasing challenge of
computing travelling wave solutions as the depth is decreased (moving towards the
solitary wave regime); however, we feel confident that our numerics are sufficiently
well resolved to draw meaningful conclusions.

For the case h = 2, we present in figure 5 our results for eigenvalue crossing and
smallest singularity as a function of the Bloch period p. Here, we explicitly excluded
the value p =0, but included all the other values p = j/100 for j = 1, . . . , 99. We
see once again that the first eigenvalue crossing and smallest expansion singularities
appear, for smallest ε, in the limit p → 0 indicating that the Benjamin–Feir long-wave
instability is dominant. Additionally, we see that away from p =0, 1, there are regions
of ε beyond the first crossing where the first singularity in the expansion has yet to
be reached (e.g. for 0.15 < p < 0.8 in figure 5). This ‘window of stability’ is similar to
the one we found for deep water in the previous section.



358 D. P. Nicholls

0 0.2 0.4 0.6 0.8 1.0
10–6

10–5

10–4

10–3

10–2

p

R
e(

ε)

First crossing and smallest singularity versus p

Crossing
Singularity

(a)

τ = 10–4

0 0.2 0.4 0.6 0.8 1.0
10–6

10–5

10–4

10–3

10–2

p

(b)

τ = 10–8

First crossing and smallest singularity versus p

Figure 7. Plot of the real parts of εc (the value of the perturbation parameter where the first
eigenvalue crossing occurs) and εp (the value of the perturbation parameter where the first
singularity in the expansion of λ(ε) occurs) versus p for water of depth h =1/2; the imaginary
parts of εc and εp were always found to be zero to machine precision. The underlying Stokes
wave is 2π-periodic and Schwartz’s parameterization is utilized.

In figures 6 and 7, we display results for first crossing and smallest singularity versus
quasi-period, p, in the cases h = 1, 1/2. We contrast these with the results for deeper
water given in figures 4 and 5. On the one hand, it once again seems that p → 0
gives the dominant instability, i.e. instability for the smallest value of ε. While this
may no longer be identifiable with the Benjamin–Feir instability, it does seem that
Stokes waves are most unstable to long-waves among two-dimensional disturbances.
On the other hand, the ‘window of stability’ disappears in these shallow-water results
as first crossing and smallest expansion singularity appear at the same value of the
perturbation parameter ε. This is in marked contrast with the deep-water case and
presents another novel finding of our computational approach.

Remark 3.6. Before closing, we comment on the physical interpretation of the results
just presented. The key consideration is the meaning of the quantity ε which, as stated in
§ 2.4, is the waveheight parameterization of Schwartz (1974). Thus, each of the figures
presented above can be used directly to decide if a travelling wave of a particular
waveheight (which gives the degree of nonlinearity) is stable or unstable. Simply stated,
once waves become sufficiently steep (nonlinear), they are unstable.

4. Conclusions
We have used a new viewpoint on the spectral stability problem (following spectral

data as they vary with a perturbation parameter) to study the onset of instability
in Stokes waves as their height is increased. Our study accommodates both super-
and sub-harmonic disturbances and ranges over a sampling of four fluid depths, two
above and two below the critical depth identified by Benjamin (1967) for the onset
of the Benjamin–Feir instability. We have demonstrated with explicit calculations
(in the deep water regime) the inadequacy of ‘eigenvalue collision’ as a diagnostic
for determining instability, even collision of opposite Krein signature. In its place,
we have conjectured that the ‘smallest singularity’ in the expansion of the spectral
datum λ(ε) might be more appropriate. Using this new measure, we have studied the
instabilities of Stokes waves to two-dimensional perturbations and found that long-
wave disturbances are dominant. However, we have also discovered a fundamental
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difference in the onset of instability for shallow waves compared to deep ones (as
compared to Benjamin’s critical depth hc ≈ 1.363): for shallow water eigenvalue
collision and smallest eigenvalue singularity are one and the same, while for deep
water there are wide ‘windows of stability’ beyond the first eigenvalue crossing before
the first expansion singularity is reached.

The author gratefully acknowledges support from the NSF through grant No. DMS-
0537511.
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