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The Method of Transformed Field Expansions (TFE) has been demonstrated to be a robust
and highly accurate numerical scheme for simulating solutions of boundary value and free
boundary problems from the sciences and engineering. As a Boundary Perturbation
Method it builds highly accurate solutions based upon exact solutions in a simple, canon-
ical, geometry and corrects these via Taylor series to fit the actual geometry at hand. The
TFE method has significantly enhanced stability properties when compared with other
Boundary Perturbation approaches, however, this comes at the cost of requiring a full vol-
umetric discretization as opposed the surface formulation that other methods can realize.
In this paper we outline two techniques for ameliorating this shortcoming, first by employ-
ing a Legendre Spectral Element Method to implement efficient, graded meshes, and sec-
ond by utilizing an Artificial Boundary with a Transparent Boundary Condition placed
quite close to the boundary of the domain. In this contribution we focus on the specific
problem of simulating the Dirichlet–Neumann operator associated to Laplace’s equation
on a periodic cell (which arises in the water wave problem). While the details of our results
are specific to this problem, the general conclusions are valid for the wider class of prob-
lems to which the TFE method can be applied. For each technique we discuss implementa-
tion details and display numerical results which support the conclusion that each of these
techniques can greatly reduce the computational cost of using the TFE method.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Boundary value and free boundary problems arise in all areas of the sciences and engineering, from fluid mechanics (e.g.,
water waves and Hele–Shaw flows [1]) to solid mechanics (e.g., Stefan problems, crystal growth [2]) to acoustics and elec-
tromagnetics [3]. In many cases the irregular domain shape is a relatively small perturbation of a much simpler (e.g., sep-
arable) geometry, which suggests that a perturbative technique is a profitable line of inquiry in such problems. Boundary
Perturbation Methods (BPM) are precisely such a class of methods and have been shown to be accurate and reliable within
their domain of applicability [4–6].

A shortcoming of some classical formulations is their subtle dependence upon significant cancellations to ensure their
convergence [7–9] and, in response to this, the author (in collaboration with F. Reitich) devised a new stabilized approach
dubbed the Method of Transformed Field Expansions (TFE) [7–9]. This approach not only delivered a simple and rigorous
proof of analyticity properties which justify the necessary perturbation expansions, but also provided a stable and high-order
algorithm for the computation of field and surface quantities of interest.
. All rights reserved.
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However, the enhanced stability of the TFE method comes at the cost of requiring a full volumetric discretization of the
problem domain in contrast to other popular BPM which simply demand a surface discretization. Clearly, for problems with
large domains this cost can be prohibitive and renders the TFE approach completely non-competitive. The point of this con-
tribution is to outline two methods for ameliorating the costs associated with this discretization thereby rendering the TFE
method a viable alternative. In this contribution we focus on the specific problem of simulating the Dirichlet–Neumann
operator associated to Laplace’s equation on a periodic cell (which arises in the water wave problem). While the details
of our results are specific to this problem, the general conclusions are valid for the wider class of problems to which the
TFE method can be applied [10–17].

The first involves a fortuitous and sparse distribution of a small number of discretization points based upon a priori knowl-
edge of the exact solution. For instance, solutions of Laplace’s equation are known to decay exponentially fast in the distance
away from the boundary. This suggests that a Finite Element Method featuring elements which become exponentially large
away from the boundary should be able to effectively capture the features of the solution while keeping the total number of
problem unknowns quite low. In the first part of this paper we follow this line of inquiry almost exactly, save to utilize a
Legendre Spectral Element Method (SEM) [18] in place of a generic h- or p-Finite Element Method to take advantage of
the high accuracy which these SEM can achieve in regions of smoothness of the solution.

The second idea is an approach which has already been introduced to this problem [19,10,11] and has been used success-
fully in a number of other applications, particularly electromagnetics and linear acoustics [20–26]. In short we introduce an
‘‘artificial’’ boundary between the surface and the furthest extent of the domain and enforce an appropriate boundary con-
dition there. Clearly, if the Artificial Boundary (AB) is chosen quite close to the surface of the domain, and if a ‘‘Transparent
Boundary Condition’’ (which enforces an exact condition) is specified there, then this can be an enormously beneficial do-
main decomposition. In fact we find that such a boundary can be introduced, and the required exact boundary condition fits
naturally into our spectral formulation. The question we address here is how close can the AB be brought to the surface of the
domain without a significant loss of accuracy. As we shall show, the AB can generically be brought almost to the point of
touching the domain boundary, while in the special case of a small boundary deformation it can be quite remarkably spec-
ified beyond the point of cavitation.

The organization of the paper is as follows: In Section 2 we recall the governing equations of the motion of the free-sur-
face of an ideal fluid under the influence of gravity on a deep ocean and the role that Dirichlet–Neumann operators can play
in a surface formulation. In Section 3 we recall some of the basic facts concerning the class of Boundary Perturbation Meth-
ods, specifically the Method of Transformed Field Expansions (Section 3.1) which we examine here in detail. In Section 4 we
detail our Legendre Spectral Element Method and outline how it can be used to solve large-domain boundary value problems
very efficiently; results of numerical experiments versus an exact solution (given in Section 4.1) are presented in Section 4.2.
In Section 5 we discuss our Artificial Boundary approach for domain truncation to address the same problem. Again, numer-
ical results are given in Section 5.1. Finally, a discussion of other approaches is presented in Section 5.2, and concluding re-
marks are given in Section 6.

2. Governing equations

A physically motivated problem which clearly demonstrates the need for efficient enforcement of far-field boundary con-
ditions is the water wave problem on a deep ocean. We focus our attention on one of the central difficulties of the analytical
and numerical simulation of this model, the task of computing the Dirichlet–Neumann operator (DNO) which we introduce
below. As we shall see, this operator encodes all of the depth dependent effects and is therefore, for our present purposes, the
only quantity of interest.

The Euler equations of free-surface ideal fluid flow constitute a highly accurate model for the evolution of a large body of
water (e.g., an ocean or lake) under the influence of gravity. To be more precise, consider the domain
Please
metho
Sh;g :¼ fðx; yÞ 2 Rd�1 � Rjh < y < gðx; tÞg;
where h is the mean fluid depth, d = 2,3 is the problem dimension, and g is the shape of the free surface deformation from the
rest state y = 0. The equations of motion are [1]
Du ¼ 0 in Sh;g; ð1aÞ
@yu ¼ 0 at y ¼ �h; ð1bÞ
@tg� @yuþrxg � rxu ¼ 0 at y ¼ g; ð1cÞ

@tuþ ggþ 1
2
jruj2 ¼ 0 at y ¼ g; ð1dÞ
where u is the velocity potential (the velocity is given by~u ¼ ru) and g is the gravitational constant. In the lateral direction
we specify the classical periodic boundary conditions,
uðxþ c; y; tÞ ¼ uðx; y; tÞ; gðxþ c; tÞ ¼ gðx; tÞ; 8 c 2 C;
where C is a lattice in Rd�1. This latticeC generates a conjugate lattice C0 of wavenumbers (e.g., if C = LZ �MZ then C0 = (2p/
L)Z � (2p/M)Z). In terms of this notation we can express the Fourier series of a function as
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Please
metho
f ðxÞ ¼
X
k2C0

f̂ keik�x;
where f̂ k is the k-th Fourier coefficient of f.
Zakharov [27] restated the problem (1) as a Hamiltonian system with the surface quantities g(x, t) and

n(x, t) :¼ u(x,g(x, t), t) as the canonical variables. Craig and Sulem [5] made this characterization much more explicit with
the introduction of the DNO. To define the DNO, consider the rather generic elliptic problem inspired by (1)
Dv ¼ 0 in Sh;r; ð2aÞ
vðx;rðxÞÞ ¼ nðxÞ; ð2bÞ
@yvðx;�hÞ ¼ 0; ð2cÞ
vðxþ c; yÞ ¼ vðx; yÞ 8 c 2 C; ð2dÞ
where v is to be determined from given boundary shape r and Dirichlet data n. Provided that r is sufficiently smooth (2) will
have a unique solution [28,29] whose normal derivative, m(x), can be computed at the surface y = r. This mapping, G, of the
Dirichlet data n to Neumann data m is precisely the DNO:
GðrÞ½n� :¼ ½rv �y¼r � N ¼ @yvðx;rðxÞÞ � rxr � rxvðx;rðxÞÞ; ð3Þ
where N = (1, �rxr)T is an exterior normal. Given this definition of the DNO, a straightforward application of the chain rule
transforms (1) to
@tg ¼ GðgÞ½n�; ð4aÞ

@tn ¼ �gg� 1

2 1þ jrxgj2
� � jrxnj2 � ðGðgÞ½n�Þ2

h

�2ðrxn � rxgÞGðgÞ½n� þ jrxnj2jrxgj2 � ðrxn � rxgÞ2
i
; ð4bÞ
c.f. [5].

3. Boundary Perturbations

Having restated the Euler Eq. (1) in terms of surface variables (4) via the specification of Zakharov [27] and Craig and Su-
lem [5], a critical numerical concern is the robust computation of the DNO. As we stated in the Introduction, if the surface
deformation, r(x), is not too large then a perturbative method is natural and, as we shall see, can deliver highly accurate
solutions in a robust fashion. With this philosophy in mind several Boundary Perturbation Methods (BPM) have been devised
to compute the DNO (or equivalent operators) including the method of ‘‘Operator Expansions’’ (OE) [30,4,31–33,5,34–39],
the method of ‘‘Field Expansions’’ (FE) [6,40–45], and the Method of ‘‘Transformed Field Expansions’’ (TFE) [7–9,19,10]. While
the two former methods can be shown to be highly accurate within their domain of applicability with extremely favorable
operation counts (typically the fastest known for the problem in question), they have each been shown to be unstable for
many geometries of applied interest. More specifically, if the surface shape, r(x), is large and/or rough, thereby requiring
a large number of terms in the underlying perturbation expansions, subtle cancellations present in the OE and FE formula-
tions become evident and (otherwise negligible) round-off errors are magnified to order one and larger [7,9,19].

In [7] the author and Reitich devised the TFE approach, which we study in this publication, to remedy these instabilities.
This effort was completely successful and delivers a method which is not only highly accurate (spectrally accurate if r(x) is
analytic) but also stable and robust. The one trade-off for this enhanced stability is that the TFE method requires a discret-
ization of the depth variable (e.g., the y-coordinate in (2) above) whereas the OE and FE approaches are surface methods
(requiring only a lateral discretization). It is precisely this issue which we address in this contribution posed as two specific
questions:

1. If the vertical dimension is large (i.e., h� 1) can the known structure of the solution be used to partition this dimension
so that a solution can be rapidly computed?

2. Can the computational domain be significantly truncated with an ‘‘Artificial Boundary’’ (AB) to reduce the computational
cost while retaining the fidelity of the solution? If this can be accomplished how close can the AB be brought to the sur-
face of the domain?

Before addressing these questions we recall the TFE method.

3.1. Transformed Field Expansions

The theorems of Calderón [46], Coifman and Meyer [47], Craig et al. [37], and Nicholls and Reitich [7] demonstrate that
the DNO is analytic with respect to boundary perturbations so that if r(x) = e f(x), the expansion
cite this article in press as: D.P. Nicholls, Efficient enforcement of far-field boundary conditions in the Transformed Field Expansions
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Please
metho
GðrÞ½n� ¼ Gðef Þ½n� ¼
X1
n¼0

Gnðf Þ½n�en; ð5Þ
converges strongly in an appropriate Sobolev space if f is sufficiently smooth. The TFE recursions find convenient formulas
for the Gn which can then be used to find highly accurate approximations of the DNO via
GNðef Þ½n� :¼
XN

n¼0

Gnðf Þ½n�en: ð6Þ
The TFE method for (2) begins with a change of variables
x0 ¼ x; y0 ¼ h
y� rðxÞ
hþ rðxÞ

� �
; ð7Þ
which transforms the domain Sh,r to Sh,0. Given (2) and (7), the transformed field quantity
uðx0; y0Þ :¼ v x0;
y0ðhþ rðx0ÞÞ

h
þ rðx0Þ

� �
;

satisfies, upon dropping primes,
Du ¼ Fðx; y; r;u;hÞ in Sh;0; ð8aÞ

uðx;0Þ ¼ nðxÞ; ð8bÞ

@yuðx;�hÞ ¼ 0; ð8cÞ

uðxþ c; yÞ ¼ uðx; yÞ 8 c 2 C; ð8dÞ
where
F ¼ divx½Fx� þ @yFy þ F0: ð8eÞ
The x-derivative, y-derivative, and homogeneous parts of F are given by:
Fx ¼ �
2
h
rrxu� 1

h2 r2rxuþ hþ y
h
rxr@yuþ hþ y

h2 rrxr@yu; ð8fÞ

Fy ¼
hþ y

h
rxr � rxuþ hþ y

h2 rrxr � rxu� ðhþ yÞ2

h2 jrxrj2@yu; ð8gÞ
and
F0 ¼
1
h
rxr � rxuþ 1

h2 rrxr � rxu� hþ y

h2 jrxrj2@yu: ð8hÞ
Additionally, the DNO transforms to
GðrÞ½n� ¼ @yuðx;0Þ þ Hðx;r;u; hÞ; ð9aÞ
where
H ¼ �1
h
rGðrÞ½n� � rxr � rxuðx;0Þ � 1

h
rrxr � rxuðx;0Þ þ jrxrj2@yuðx;0Þ; ð9bÞ
c.f. [7]. The important fact about this particular gathering of terms is that F and H are OðrÞ.
With (8) and (9) in hand, if we set r(x) = ef(x), the TFE method now instructs us to make the following Taylor series expan-

sions for the field and DNO
uðx; y; eÞ ¼
X1
n¼0

unðx; yÞen; Gðef Þ½n� ¼
X1
n¼0

Gnðf Þ½n�en: ð10Þ
Upon insertion of (10) into (8), we find that the un must satisfy
Dun ¼ Fnðx; y; hÞ in Sh;0; ð11aÞ
unðx;0Þ ¼ dn;0nðxÞ; ð11bÞ
@yunðx;�hÞ ¼ 0; ð11cÞ
unðxþ c; yÞ ¼ unðx; yÞ 8 c 2 C; ð11dÞ
where dn,m is the Kronecker delta,
cite this article in press as: D.P. Nicholls, Efficient enforcement of far-field boundary conditions in the Transformed Field Expansions
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Please
metho
Fn ¼ divx½Fx;n� þ @yFy;n þ F0;n; ð11eÞ

Fx;n ¼ �
2
h

frxun�1 �
1

h2 f 2rxun�2 þ
hþ y

h
rxf@yun�1 þ

hþ y

h2 frxf@yun�2; ð11fÞ

Fy;n ¼
hþ y

h
rxf � rxun�1 þ

hþ y

h2 frxf � rxun�2 �
ðhþ yÞ2

h2 jrxf j2@yun�2; ð11gÞ
and
F0;n ¼
1
h
rxf � rxun�1 þ

1

h2 frxf � rxun�2 �
hþ y

h2 jrxf j2@yun�2: ð11hÞ
In these and future formulas any function with a negative index should be replaced by zero. Furthermore, the expansion of G
(10), inserted into (9) yields
Gnðf Þ½n� ¼ @yunðx;0Þ þ Hnðx; hÞ; ð12aÞ
where
Hn ¼ �
1
h

fGn�1ðf Þ½n� � rxf � rxun�1ðx;0Þ �
1
h

frxf � rxun�2ðx;0Þ þ jrxf j2@yun�2ðx;0Þ; ð12bÞ
see [7].

4. A Legendre Spectral Element Method for TFE

At this point we are in a position to specify precisely how we will numerically approximate the DNO. For the numerical
implementation of our TFE method we follow the high-order/spectral philosophy of Nicholls and Reitich [8]. As we remarked
earlier, we will approximate the DNO, G, by the truncated Taylor series (6), and for simplicity we will focus on the d = 2
dimensional problem and set the period of our profiles to be L = 2 p. As we saw, to compute the DNO the TFE procedure re-
quires first the simulation of the Taylor orders of the field, un, before the Gn can be approximated.

Beginning with the elliptic problem satisfied by un, (11), we note that the periodic boundary conditions mandate that
unðx; yÞ ¼
X1

k¼�1
ûn;kðyÞeikx;
while the remaining three equations translate to the following two-point boundary value problem for ûn;k:
@2
y ûn;kðyÞ � jkj2ûn;kðyÞ ¼ bF n;kðy; hÞ � h < y < 0; ð13aÞ

ûn;kð0Þ ¼ dn;0 n̂k; ð13bÞ
@yûn;kð�hÞ ¼ 0: ð13cÞ
We now have a wide array of numerical methods and philosophies at our disposal to simulate solutions of (13). In our pre-
vious work [7,8] we advocated a classical Chebyshev tau approach [48] which seeks approximate solutions of the form
ûNy

n;k :¼
XNy

l¼0

ûn;k;lTl
2yþ h

h

� �
; ð14Þ
where Tl is the lth Chebyshev polynomial, and the coefficients ûn;k;l are chosen so that the boundary conditions are satisfied
exactly. There are (Ny � 1) – many more conditions realized by inserting the form (14) into (13a) and equating at like poly-
nomial orders. This generates a dense system of linear equations to be solved which would generically require OðN3

yÞ oper-
ations. However, as described in [48], the bulk of these can be cleverly recombined to give a pentadiagonal system with
dense sub-blocks associated to the (two) boundary conditions. When combined with the availability of the OðNy logðNyÞÞ fast
Chebyshev transform (realized via the Fast Fourier Transform algorithm [48]), the entire system of equations can be solved
very rapidly in OðNy logðNyÞÞ operations. This approach has been a wildly successful cog in the TFE framework to the point
that one may wonder if any other approaches need be considered.

However, one weakness of the Chebyshev tau method described above is its global nature: The entire domain [�h,0] is
discretized simultaneously. The fortuitous choice of Chebyshev basis functions typically ensures that the ‘‘minimal’’ number
of coefficients ûn;k;l need be chosen, however, as the size of the domain increases, Ny must increase as well. It is an inevita-
bility that for a large enough domain, an approach with some type of local character will give superior performance. With
this in mind we introduce the Legendre Spectral Element Method (SEM) below.

As it is quite clearly explained in Section 2.4 of [18], the SEM shares many characteristics with classic Galerkin h- and p-
Finite Element Methods (FEM). Among these, for the h-version, a partition of the domain into elements, e.g.,
½�h;0� ¼
[E
e¼1

½ae; be�:
cite this article in press as: D.P. Nicholls, Efficient enforcement of far-field boundary conditions in the Transformed Field Expansions
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Lagrangian interpolation formulas on each element, and basis functions which have local support. In similarity with p-ver-
sion FEM, high-order polynomials are used as local basis functions to take advantage of high accuracy for smooth solutions.
As [18] point out, SEM have the additional feature that, due to the use of Gaussian quadrature, the sparseness of discretiza-
tion operators is due not only to the local support of the basis functions, but also the integration rules utilized.

To summarize the developments of [18] for an application of an SEM to the boundary value problem (13a), the differential
equation must be posed weakly via integration by parts with the Dirichlet condition imposed essentially while the Robin
condition is enforced naturally. Each element [ae,be] is mapped to the reference domain [�1,1] and the approximate solution
expressed there in terms of Lagrange interpolation polynomials, pl(s), based upon the Gauss–Lobatto–Legendre (GLL) points
Please
metho
ue
NðsÞ ¼

XNy

l¼0

ue
l plðsÞ; s 2 ½�1;1�
(which include the endpoints so that continuity can be explicitly enforced). Local mass and stiffness matrices are easily con-
structed and assembled into global mass and stiffness matrices using well-known FEM technology. SEM possess many fea-
tures which make them particularly appealing for BVP with smooth solutions including mass and stiffness matrices with
sparseness properties which are easy to exploit, high order accuracy, and the ability to adaptively refine in both polynomial
order (p-refinement) and spatial discretization (h-refinement). It is this latter property that we exploit here.

To begin we point out that solutions of (13a) and (2) decay exponentially fast as y decreases to negative infinity. In the
case of a flat interface (r(x) � 0) this can be seen directly from the exact solution
v0ðx; yÞ ¼
X1

k¼�1
n̂k

coshðjkjðyþ hÞÞ
coshðjkjhÞ eikx;
and for more general geometries this is a well-known property of solutions of Laplace’s equation [29]. So, in the case that h is
large (but finite), an equally spaced partition of [�h,0] is clearly very wasteful as the solution is nearly constant (zero) over
most of the partition. A much more efficient idea is to distribute the partition endpoints exponentially to match the behavior
of the exact solution (away from the boundary), and this is precisely the approach we advocate here.

To be specific, in the global (single element) ‘‘Chebyshev tau method’’ we approximate the transformed field u(x,y) by
uN;Nx ;Ny

Cheby ðx; yÞ :¼
XN

n¼0

XNx=2�1

k¼�Nx=2

XNy

l¼0

ûn;k;lTl
2yþ h

h

� �
eikxen: ð15Þ
In the local (multi-element) ‘‘Legendre SEM’’ we approximate u(x,y) by
uN;Nx ;Ny ;E
Leg ðx; yÞ :¼

XN

n¼0

XNx=2�1

k¼�Nx=2

XNy

l¼0

XE

e¼1

~un;k;l;eplðseÞeikxen; ð16Þ
where se is in the reference interval [�1,1] after having been mapped from [ae,be]. In either case, once the u are approxi-
mated, G can be simulated by
GN;Nx :¼
XN

n¼0

XNx=2�1

k¼�Nx=2

bGn;keikxen; ð17Þ
and (12).

4.1. Exact solutions

In the case of non-trivial interface shape, y = r(x), there are no known exact solutions of (2). To carry out a convergence
study for our algorithm to compute the DNO, we utilize the following principle: In building a numerical solver for the homo-
geneous PDE and boundary conditions:
Lu ¼ 0 in X;

Bu ¼ 0 at @X;
it is often, as it is here, no more difficult to construct an algorithm for the corresponding inhomogeneous problem:
Lu ¼ R in X;

Bu ¼ Q at @X:
Selecting an arbitrary function w, we can compute
Rw :¼ Lw; Qw :¼ Bw;
cite this article in press as: D.P. Nicholls, Efficient enforcement of far-field boundary conditions in the Transformed Field Expansions
d, J. Comput. Phys. (2011), doi:10.1016/j.jcp.2011.07.029

http://dx.doi.org/10.1016/j.jcp.2011.07.029


D.P. Nicholls / Journal of Computational Physics xxx (2011) xxx–xxx 7
and now have an exact solution to the problem
Please
metho
Lu ¼ Rw in X

Bu ¼ Qw at @X;
namely u = w. In this way we can rigorously test our inhomogeneous solver for which the homogeneous solver is a special
case. However, one does need to be careful to consider w which have the same ‘‘behavior’’ as solutions u of the inhomoge-
neous problem and here we find w such that Rw � 0.

For the exact solution consider the function
upðx; yÞ :¼ coshðjpjðyþ hÞÞ
coshðjpjhÞ eipx; p 2 Z;
which satisfies (2a), (2c) and (2d) (i.e.Rw � 0 in the language above). If we now choose a boundary deformation r(x) we can
specify Dirichlet data
npðxÞ :¼ coshðjpjðrþ hÞÞ
coshðjpjhÞ eipx;
(i.e.Qw) which has the exact Neumann data:
mpðxÞ :¼ @yup � ð@xrÞ@xup
� �

y¼rðxÞ ¼ jpj sinhðjpjðrþ hÞÞ
coshðjpjhÞ � ð@xrÞðipÞ

coshðjpjðrþ hÞÞ
coshðjpjhÞ

� 	
eipx:
With this {np,mp} pair (we will always select p = 2 in this contribution) it is now easy to test the convergence of simulations of
the DNO.

4.2. Numerical results: Legendre SEM

To assess the utility of our new approach we present numerical simulations compared to these specially constructed ex-
act solutions which provide, for given Dirichlet data, the corresponding exact Neumann data. We test these numerical meth-
ods for surface deformations, r = ef, of varying sizes e for the fixed, large, depth h = 1000. We show how the new Legendre
SEM can be used to great effect to reduce the computational effort of the TFE approach without sacrificing accuracy or
stability.

To fix upon a particular problem we consider the problem of simulating the DNO on a domain of (nondimensional) length
L = 2p and depth h = 1000. We choose an analytic (sinusoidal) boundary deformation
rðxÞ ¼ ef ðxÞ ¼ e cosðxÞ;
to guarantee that the series (10) will converge extremely rapidly. To distribute the endpoints (ae,be) we have chosen a simple
exponential distribution where equally spaced points
ym ¼ m
ð�hÞ � 0

M

� �
¼ �mh

M
; m ¼ 0; . . . ;M;
are mapped to
~ym ¼ 1� egjym j;
where we chose, rather arbitrarily, g = 0.03 for the simulations presented here. Clearly, some (possibly many) of these are
mapped outside the domain [�h,0] and these are discarded. Regardless of the distribution of points, we always choose
the endpoints y = 0, �h to enforce the boundary conditions explicitly. There is nothing special about the transformation
we have chosen, and many others could be used and similar results realized.

To make an effective comparison of our new and old approaches we set ourselves the task of computing the DNO with
accuracy 10�10 in the fastest time possible. The computations were performed in C++ on the author’s dual quad-core Mac
Pro desktop system, however, we nondimensionalize time (by the best time we could achieve with the Chebyshev tau meth-
od, TC) so that the results are ‘‘universal.’’

To begin we considered the quite small perturbation amplitude e = 0.01. For both the Chebyshev tau and Legendre SEM
simulations we chose Nx = 32 equally spaced gridpoints along the x-interval, and N = 4 Taylor orders in the expansion of the
field and DNO, both of which were sufficient to resolve these to machine precision. For the Chebyshev tau solver we were
forced to choose Ny = 256 to realize 2.77 � 10�10 accuracy; the average time for this simulation was TC = 32.49 s (over 10
runs). In Table 1 we summarize results of our Legendre SEM with varying choices of Ny and E with times scaled to the average
Chebyshev cost (32.49 s). From this data it is easy to see that we can realize five-fold savings by using our unequally spaced
Legendre SEM versus our old Chebyshev tau method without any degradation in the accuracy attained.

To further test these conclusions we present in Tables 2 and 3 the results of computations with the value of e raised to the
more challenging values of 0.1 and 0.5, respectively. For consistency (and to keep the computation times as reasonable as
possible) we have fixed the number of gridpoints used by the Chebyshev tau method at Ny = 256 and chosen as our ‘‘target
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Table 1
Numerical parameters, relative errors, and average timings (over 10 samples) for Legendre SEM simulation of the DNO with e = 0.01,
h = 1000, and L = 2p. The average times are nondimensionalized by the time, TC = 32.49 s, for a Chebyshev tau simulation with Nx = 32,
Ny = 256, and N = 4.

Nx Ny E N Relative error Scaled average time

32 16 5 4 1.30785 � 10�10 0.2086
32 14 6 4 2.00419 � 10�10 0.1780
32 12 8 4 6.30483 � 10�11 0.1543
32 10 14 4 1.50742 � 10�11 0.1516
32 8 22 4 1.29823 � 10�10 0.1535
32 6 65 4 1.87644 � 10�10 0.3749

Table 2
Numerical parameters, relative errors, and average timings (over 10 samples) for Legendre SEM simulation of the DNO with e = 0.1,h = 1000,
and L = 2p. The average times are nondimensionalized by the time, TC = 91.3821 s, for a Chebyshev tau simulation with Nx = 32, Ny = 256,
and N = 8.

Nx Ny E N Relative eror Scaled average time

32 16 5 8 1.67436 � 10�9 0.1772
32 14 6 8 1.74445 � 10�9 0.1502
32 12 8 8 2.82997 � 10�10 0.1310
32 10 14 8 3.98266 � 10�11 0.1314
32 8 22 8 2.2048 � 10�10 0.1341
32 6 65 8 4.80333 � 10�10 0.3153

Table 3
Numerical parameters, relative errors, and average timings (over 10 samples) for Legendre SEM simulation of the DNO with e = 0.5, h = 1000,
and L = 2p. The average times are nondimensionalized by the time, TC = 324.975 s, for a Chebyshev tau simulation with Nx = 32, Ny = 256,
and N = 28.

Nx Ny E N Relative error Scaled average time

32 16 5 28 2.1256 � 10�8 0.1778
32 14 6 28 2.18663 � 10�8 0.1511
32 12 8 28 3.39867 � 10�9 0.1315
32 10 14 28 7.60097 � 10�11 0.1301
32 8 22 28 1.66424 � 10�9 0.1332
32 6 65 28 7.43621 � 10�9 0.3125
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error tolerance’’ the relative error realized by the Chebyshev method (10�9 with N = 8 for e = 0.1, and 10�9 for N = 28 for
e = 0.5). This resulted in reference times TC = 91.3821 s and TC = 324.975 s, respectively. These data indicate that our new
method behaves very much as it does in the e = 0.01 case, enabling five- to seven-fold reductions in computational time over
the Chebyshev tau method.

Remark 1. Before closing this section we mention that the TFE method we describe here is, by no means, the only BP method
which could be brought to bear on this problem. For instance, the Field Expansions (FE) method of Bruno and Reitich [6] can
be applied and, for sake of comparison, we now report averaged computing times for this algorithm applied to the three
computations above.

In the case e = 0.01 we can realize errors on the order of 10�10 with Nx = 32 (no vertical discretization is required) and
N = 4 in scaled time 1.9 � 10�4. This remarkable execution time (roughly 1000 times faster than our Legendre SEM)
highlights the truly advantageous behavior of the FE approach within its domain of applicability. For e = 0.1 we repeat this
experiment with Nx = 32 and N = 8 and find scaled time 2.1 � 10�4, which is, once again, astonishingly fast.

Finally, we report on the case e = 0.5 with N = 28. Here, with Nx = 32 we can only achieve error 10�3, and this requires
numerical analytic continuation via Padé summation (Taylor summation gives no accuracy) [49,8]. With Nx = 64 we obtain
an error of 10�7, while with Nx = 128 we get worse results, 10�4; the catastrophic cancellation errors inherent to this method
are beginning to emerge. A brief search of the parameter space indicates that the best error one can achieve is 10�8, thereby
failing to meet our precision specification, with Nx = 46 which wonderfully illustrates the necessity of utilizing the TFE
approach.
5. Near-field Transparent Boundary Conditions for TFE

The advantageous redistribution of mesh endpoints is not the only way we can use knowledge of the far-field solution of
(2) to approximate solutions more efficiently. In fact, an alternative approach has previously been used by the author for not
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only this purpose, but also to impose boundary conditions at infinity (‘‘far field’’) at finite (‘‘near field’’) values [19,10,11]. The
idea is to introduce an ‘‘Artificial Boundary’’ (AB) at a location within the domain Sh,r, and impose a Transparent (exact)
Boundary Condition there. Of course this approach will enable huge computational savings if the AB can be brought quite
close to the interface y = r(x) as very few unknowns will be required to resolve the field, and it is the goal of this section
to study just how close this choice may be made.

Before beginning we note that this idea of imposing an exact boundary condition at an Artificial Boundary has been ex-
plored by a number of other authors for different numerical discretization methods. For instance, in connection with the Fi-
nite Element Method we quote the work of Feng [50], Han and Wu [20], Keller and Givoli [21–23], the surveys of Givoli
[51,25], and our own work [52–54], and the references therein.

We recall the developments of [11] by considering a hyperplane y = �a, with �h < �a < �jrjL1 , for the Artificial Bound-
ary. We augment our original generic elliptic problem (2) with compatibility conditions at y = � a:
Please
metho
Dv ¼ 0 in Sa;r; ð18aÞ
vðx;rðxÞÞ ¼ nðxÞ; ð18bÞ
Dw ¼ 0� h < y < �a; ð18cÞ
vðx;�aÞ ¼ wðx;�aÞ; ð18dÞ
@yvðx;�aÞ ¼ @ywðx;�aÞ; ð18eÞ
@ywðx;�hÞ ¼ 0; ð18fÞ
vðxþ c; yÞ ¼ vðx; yÞ 8 c 2 C; ð18gÞ
wðxþ c; yÞ ¼ wðx; yÞ 8 c 2 C; ð18hÞ
and note that solutions of (2) and (18) are equivalent, i.e., v matches on Sa,r and v = w on �h < y < �a. To state our Transpar-
ent Boundary Condition we note that the problem (18c), (18f), and (18h) has solution
wðx; yÞ ¼
X1

k¼�1
ak

coshðjkjðyþ hÞÞ
coshðjkjðh� aÞÞ e

ikx: ð19Þ
Furthermore, if we denote the Dirichlet data w(x, �a), provided in (18d), by the generic function w(x) then we can write (19)
as
wðx; yÞ ¼
X1

k¼�1
ŵk

coshðjkjðyþ hÞÞ
coshðjkjðh� aÞÞ e

ikx;
where ŵk are the Fourier coefficients of w(x). Additionally, we can compute the DNO at the hyperplane y = � a, T, by the
formula
T½w� ¼ @ywðx;�aÞ ¼
X1

k¼�1
ŵkjkj tanhðjkjðh� aÞÞeikx:
We can find a unique solution v(x,y) to the Eqs. (18a), (18b) and (18g) provided we can produce the normal derivative of v at
y = � a. This is furnished by (18e) and the DNO T. Thus, our original elliptic problem (2) is equivalent to the following system
posed on the truncated domain Sa,r:
Dv ¼ 0 in Sa;r; ð20aÞ
vðx;rðxÞÞ ¼ nðxÞ; ð20bÞ
@yvðx;�aÞ � T½vðx;�aÞ� ¼ 0; ð20cÞ
vðxþ c; yÞ ¼ vðx; yÞ 8 c 2 C: ð20dÞ
Our new approach to efficient calculation of Laplace’s equation on large (h� 1) domains is now is clear: Provided that one
can compute T quickly and accurately, simply set the AB as close to the interface y = r(x) as possible to minimize the number
of discretization points Ny in the y-coordinate.

Following the developments of Section 3.1 we once again make a domain transforming change of variables
x0 ¼ x; y0 ¼ a
y� rðxÞ
aþ rðxÞ

� �
;

c.f. (7), resulting in an inhomogeneous problem similar to (8) for the transformed field
uðx0; y0Þ :¼ v x0;
y0ðaþ rðx0ÞÞ

a
þ rðx0Þ

� �
:
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We spare the reader the details of the resulting problem (see [55,11]) save to note that in (8) and (9), h is replaced by a (e.g.,
the right hand side is F(x,y; r,u,a)), and (8c) more specifically changes, upon dropping primes, to
Please
metho
@yuðx;�aÞ � T½uðx;�aÞ� ¼ Jðx;r;u; aÞ :¼ 1
a
rT½uðx;�aÞ�:
Again, upon setting r(x) = ef(x), we expand the transformed field and DNO in Taylor series in e, c.f. (10)
uðx; y; eÞ ¼
X1
n¼0

unðx; yÞen; Gðef Þ½n� ¼
X1
n¼0

Gnðf Þ½n�en;
and each of these {un,Gn} satisfy problems similar to (11) and (12). Once again h is simply replaced by a in (11) and (12) (e.g.,
the right hand side is replaced by Fn(x,y;a)), while (11c) becomes
@yunðx;�aÞ � T½unðx;�aÞ� ¼ JnðxÞ :¼ 1
a

fT½un�1ðx;�aÞ�:
Assuming once again that d = 2 and L = 2p, the periodic boundary conditions force the un to have the form
unðx; yÞ ¼
X1

k¼�1
ûn;kðyÞeikx;
where the ûn;k satisfy
@2
y ûn;kðyÞ � jkj2ûn;kðyÞ ¼ bF n;kðy; aÞ � a < y < 0; ð21aÞ

ûn;kð0Þ ¼ dn;0 n̂k; ð21bÞ
@yûn;kð�aÞ � jkj tanhðjkjðh� aÞÞûn;kð�aÞ ¼ bJn;kðaÞ; ð21cÞ
c.f. (13).

5.1. Numerical results: Transparent Boundary Condition

The problem (21) fits exactly into the framework outlined in Section 4 so that the Chebyshev tau and Legendre SEM ap-
proaches outlined there are available to us. As the depth of the truncated domain will be chosen quite small we anticipate
that a small number of vertical discretization points will be required so that our original Chebyshev tau approach will be
extremely fast and stable. In this section we focus upon this approach and study the limit as a! jrjL1 .

In Tables 4 and 5 we report on results of a convergence study for the h = 1000, L = 2p DNO computation with exact solu-
tion discussed in Section 4.2. Again, we have selected the cosine profile, f(x) = cos(x), and begin with the rather small value of
the perturbation parameter, e = 0.01. As we see in Table 4, for a sufficiently large we can always find a value of Ny for which
we can realize our target relative error tolerance 10�10 (e.g., Ny = 48 when a = 10, Ny = 24 when a = 5, etc.). We also report on
the errors we can realize with an extremely small number of Chebyshev coefficients, Ny = 8. Here we can only trust two digits
of accuracy when a = 10, while we steadily gain improvement as a is decreased to 1/2, where we realize errors of 10�9.

In Table 5 we study the effect of taking a even smaller, down to the point of cavitation (in the untransformed coordinates)
and beyond. Here we see that, with only Ny = 8 Chebyshev coefficients, we can compute solutions with relative error of 10�12

for values of a all the way to a = e = 0.01. Unsure of what this means theoretically, we continued our computations for values
of a < e and were shocked to learn that for values of a = 0.007, 0.006, 0.005 we were still finding solutions accurate to 10�11,
and passable solutions (errors of the order 10�9) for a = 0.002, an amazing one-fifth the size of the deformation.

To test the robustness of this observation that the AB may be selected at the point of cavitation and beyond we have re-
peated the above computations in the more challenging cases e = 0.1 and e = 0.5. For these configurations it was necessary to
Table 4
Numerical parameters, location of Artificial Boundary (y = �a) and relative errors for Chebyshev tau simulation of the
DNO with e = 0.01, h = 1000, and L = 2p.

Nx Ny E N a Relative error

32 8 1 4 10.0 0.0445198
32 48 1 4 10.0 1.13526 � 10�9

32 8 1 4 5.0 0.00303637
32 24 1 4 5.0 4.22408 � 10�12

32 8 1 4 2.0 1.91894 � 10�5

32 16 1 4 2.0 4.10509 � 10�12

32 8 1 4 1.0 1.81372 � 10�7

32 12 1 4 1.0 5.03859 � 10�12

32 8 1 4 0.5 1.12494 � 10�9

32 12 1 4 0.5 4.11685 � 10�12
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Table 5
Numerical parameters, location of Artificial Boundary (y = �a) and relative errors for Chebyshev tau simulation of the
DNO with e = 0.01, h = 1000, and L = 2p.

Nx Ny E N a Relative error

32 8 1 4 0.2 4.62913 � 10�12

32 8 1 4 0.1 4.03905 � 10�12

32 8 1 4 0.05 4.08725 � 10�12

32 8 1 4 0.02 4.42811 � 10�12

32 8 1 4 0.01 5.58921 � 10�12

32 8 1 4 0.007 1.71914 � 10�11

32 8 1 4 0.006 1.99822 � 10�11

32 8 1 4 0.005 8.52513 � 10�11

32 8 1 4 0.004 2.58466 � 10�10

32 8 1 4 0.003 5.35013 � 10�10

32 8 1 4 0.002 4.31209 � 10�9

Table 6
Numerical parameters, location of Artificial Boundary (y = �a) and relative errors for Chebyshev tau simulation of the
DNO with e = 0.1, h = 1000, and L = 2p.

Nx Ny E N a Relative error

32 12 1 8 1.0 3.81104 � 10�11

32 12 1 8 0.5 2.54616 � 10�11

32 12 1 8 0.2 2.52369 � 10�11

32 12 1 8 0.1 2.54207 � 10�11

32 12 1 8 0.05 7.25166 � 10�10

32 12 1 8 0.04 5.79425 � 10�9

Table 7
Numerical parameters, location of Artificial Boundary (y = �a) and relative errors for Chebyshev tau simulation of the
DNO with e = 0.5, h = 1000, and L = 2p.

Nx Ny E N a Relative error

32 18 1 28 2.0 1.09205 � 10�11

32 18 1 28 1.0 7.88692 � 10�12

32 18 1 28 0.7 5.20779 � 10�10

32 18 1 28 0.6 1.69535 � 10�8

32 18 1 48 0.6 2.89295 � 10�10

32 18 1 52 0.6 1.29075 � 10�10

32 18 1 52 0.5 6.03476 � 10�7

32 24 1 100 0.5 2.37799 � 10�7
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take {Ny = 12, N = 8} and {Ny = 18,N = 28} for e = 0.1 and e = 0.5, respectively. In Tables 6 and 7 we record results of our exper-
iments as we took e ? a. We see that in the case e = 0.1 we can still realize our target accuracy for choices of a in a neigh-
borhood close to e, however, we are unable to quite reach 10�10 error for a� e. The situation is even more restrictive when
e = 0.5 where a = 0.6 can be accommodated, however, an enormous number of Taylor terms must be retained N = 52 before
an acceptable error can be found. In the case a = e we are unable to compute with an error less than 10�7 even with 100
Taylor terms.

5.2. Other algorithms

At this point one can wonder about the possibility of computing DNO via other algorithms. Before commenting on this
possibility let us gather some facts regarding the TFE approach gathered from the settled science on the subject [7–
9,19,10,56,57]:

1. Boundary Perturbation Methods (BPM) take advantage of the analyticity properties of the problem unknowns with
respect to shape deformations (parametrized, e.g., by the variable e) [7]. These properties are used to justify the strongly
convergent Taylor series expansions of quantities of interest, e.g. (10), and guarantee that truncations of these will con-
verge to the solution exponentially quickly within the disk of convergence of the Taylor series [57]. In this sense they are
high-order/spectral (HOS) methods [48].

2. Regions of analyticity outside the disk of convergence of the Taylor series oftentimes exist. In fact, for DNO, it was shown
in [9] that this region contains the entire real axis (up to geometric obstruction, i.e. jej < h).
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3. In infinite precision, with a suitable analytic continuation strategy, very large values of e can be simulated. In fact, for DNO
with h =1, any real value of e is permitted.

4. In finite precision there are two obstacles which prevent convergence:
(a) Instabilities in some BPM algorithms: One important conclusion of the line of research [7–9] was that the classical

BPM of ‘‘Field Expansions’’ (FE) and ‘‘Operator Expansions’’ (OE) require strong cancellations for their convergence.
When a small number of Taylor orders are sufficient for a desired accuracy these effects are not noticed. However,
when many orders are required (e.g., e is large and/or f is ‘‘rough’’) this can be problematic and even prevent the
attainment of a desired accuracy (see, e.g., the results of the simulation reported in Remark 1 in the case e = 0.5).
The approach we advocate here, Transformed Field Expansions (TFE), does not depend upon strong cancellations for
its convergence. In general, highly accurate estimates of very high order terms can be stably and accurately obtained.
The only practical limitation to the size of e is placed by the instabilities of the numerical analytic continuation pro-
cedure; see the next point.

(b) Instabilities in Padé approximation: Bruno and Reitich [42] showed that classical Padé approximation techniques are
very ill-conditioned, while enhancements are difficult to construct and problem-specific.

5. As we commented in Remark 1, there are configurations of practical interest which are beyond the reach of classical BPM
(e.g., OE and FE) but within the domain of applicability of our new method TFE. The cost of this new approach is a vol-
umetric discretization which, as we have demonstrated in this contribution, can be significantly ameliorated.

Given that we must perform a volumetric discretization to achieve our target accuracy in certain configurations, one can
ponder the possibility of abandoning BPM altogether and resorting to a more classical approach, e.g., Finite Difference (FD),
Finite Volume (FV), Finite Element Methods (FEM), etc. For this comparison we point out that our implementation is a HOS
method not only in perturbation parameter, but also in the spatial variables x (Fourier collocation) and y (Chebyshev tau or
Legendre SEM). We now appeal to the extensive and well–known literature regarding the comparison between HOS methods
and classical approaches such as FD, FV, and FEM, e.g. Gottlieb and Orszag [48], Fornberg [58] (Chapter 7); Boyd [59] (Chapter
1); Deville et al. [18]; and Hesthaven et al. [60].

For instance, Boyd [59] tells us:

1. ‘‘When many decimal places of accuracy are needed, the contest between pseudospectral algorithms and finite difference
and finite element methods is not an even battle but a rout: pseudospectral methods win hands–down.’’

2. ‘‘. . . even when only a crude accuracy of perhaps 5% is needed, the high order of pseudospectral methods makes it possible
to obtain this modest error with about half as many degrees of freedom, . . . spectral methods. . . are memory-minimizing.’’

We also point out two significant difficulties which would be encountered by a FD, FV or FEM implementation which our
method handles in an elegant and high-order fashion:

1. Non-trivial geometry: The domain of definition of our problem is Sh,r which is, obviously, quite irregular at the upper
domain. Our TFE approach handles this irregularity by mapping the domain to the separable geometry Sh,0. Without a
similar mapping the FD method would be greatly challenged to maintain any accuracy as structured gridpoints will fall
outside of the domain of definition of the problem. A FEM can handle this type of geometry with curved elements, how-
ever, extreme care must be taken to implement these correctly to maintain an appropriate order of accuracy; a significant
difficulty compared with the straightforward approach used here.

2. Transparent Boundary Condition: In order to be competitive with our TFE approach, any other volumetric method must be
able to accommodate the artificial boundary at y = �a and implement the Transparent Boundary Condition, (20c), there
Please
metho
@yvðx;�aÞ � T½vðx;�aÞ� ¼ 0:
However, the operator T is a Fourier multiplier and cannot be implemented exactly in either the FD, FV or FEM frameworks.
In fact a sizeable literature exists regarding the coupling of these transparent boundary conditions to FEM (see, e.g. [20–
23,51,24,25,52,61,53,54]) and approximations of these (e.g. [50,62,63]). However, the implementations are complicated,
expensive, and fraught with subtleties.

In order to provide some data to support the assertions made above regarding the superiority of our HOS approach, we
implement our DNO solver using one of these standard volumetric solvers (Finite Differences) and compare. To give this sol-
ver every possible advantage we remove the two difficulties above (complications due to non-trivial geometries and the
faithful implementation of the Transparent Boundary Condition) and simply consider (13). That is, a Fourier method is used
in the x-discretization to handle the Transparent Boundary Condition, and a domain mapping coupled to a boundary pertur-
bation approach is used to address the complex geometry. We now perform an approximation of the DNO
(h = 0.01,e = 0.001) via two algorithms for solving the two–point boundary value problem (13): The Chebyshev tau method
we have advocated above, and a standard centered second-order Finite Difference scheme. We once again set as our goal a
relative error of 10�10 and realized 7.6 � 10�11 with our Chebyshev tau solver using parameter values Nx = 32, Ny = 8, N = 4, in
average (over 10 iterations) time TC = 0.13 s. By comparison, the second-order Finite Difference approach required Nx = 32,
Ny = 800,N = 4 to realize a relative error of 9.94 � 10�10 in averaged (over 10 iterations) time TFD = 134.7 s which is roughly
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1000 times slower! While this is one randomly selected example, it does show the extremely advantageous properties of
HOS methods (such as our TFE algorithm) within their domain of applicability.

6. Conclusions

In this paper we have shown how the stable and high-order Transformed Field Expansions method for the simulation of
boundary value and free boundary problems can be significantly enhanced in the case of very large domains. For such prob-
lems the standard Chebyshev tau approach is quite wasteful as many discretization points are distributed far away from the
domain surface where, in many applications of interest, there are exponentially small changes in the solution. We advocated
two approaches to addressing this issue: exponentially distributed gridpoints, and Artificial Boundaries close to the domain
surface coupled to Transparent Boundary Conditions. Each approach was shown to be vastly more efficient without any com-
promise in stability or accuracy.
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