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Abstract We present a high-order spectral element method for solving layered media scat-
tering problems featuring an operator that can be used to transparently enforce the far-field
boundary condition. The incorporation of this Dirichlet-to-Neumann (DtN) map into the
spectral element framework is a novel aspect of this work, and the resulting method can
accommodate plane-wave radiation of arbitrary angle of incidence. In order to achieve this,
the governing Helmholtz equations subject to quasi-periodic boundary conditions are rewrit-
ten in terms of periodic unknowns. We construct a spectral element operator to approximate
the DtN map, thus ensuring nonreflecting outgoing waves on the artificial boundaries intro-
duced to truncate the computational domain. We present an explicit formula that accurately
computes the Fourier coefficients of the solution in the spectral element discretization space
projected onto the boundary which is required by the DtNmap. Our solutions are represented
by the tensor product basis of one-dimensional Legendre–Lagrange interpolation polynomi-
als based on the Gauss–Lobatto–Legendre grids. We study the scattered field in singly and
doubly layered media with smooth and nonsmooth interfaces.We consider rectangular, trian-
gular, and sawtooth interfaces that are accurately represented by the body-fitted quadrilateral
elements. We use GMRES iteration to solve the resulting linear system, and we validate our
results by demonstrating spectral convergence in comparison with exact solutions and the
results of an alternative computational method.

B Misun Min
mmin@mcs.anl.gov

Ying He
yinghe@math.ucdavis.edu

David P. Nicholls
davidn@uic.edu

1 Department of Mathematics, University of California, Davis, CA 95616, USA

2 Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL 60439,
USA

3 Department of Mathematics, Statistics, and Computer Science, University of Illinois
at Chicago, Chicago, IL 60607, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-015-0158-5&domain=pdf


J Sci Comput (2016) 68:772–802 773

Keywords Spectral element method · Transparent boundary condition · Dirichlet-to-
Neumann map · Periodic layered media · Scattering

1 Introduction

Scattering problems involving layered media arise in many engineering applications in elec-
tromagnetics, optics, and acoustics. Over the years, robust and accurate simulation capability
has received increased attention as a cost-effective tool for predictivemeasurement and analy-
sis of modern physical systems. Highly accurate boundary treatment and flexibility to treat
complex geometries are essential for solving layered media scattering problems arising in a
broad range of applications.

Many competing numerical methods have been developed for these scattering problems,
such as the boundary integral and boundary element methods [1,2]. These surface methods
require discretization only at the layer interfaces, thus significantly reducing the number of
unknowns to compute.With the correct choice of the Green’s function, the far-field boundary
conditions can be enforced exactly, and these methods can deliver highly accurate solutions
with reducedoperation counts. Suchmethods face a number of drawbacks, however, including
the fact that inhomogeneities away from the layer interfaces cannot be accommodated and
high-order accuracy can be realized only with specially designed quadrature nodes, because
of singularities in the Green’s function. Moreover, these methods typically give rise to a
dense linear system of equations whose solution requires preconditioned iterative methods
featuring accelerated matrix–vector products (e.g., fast multipole methods [3]).

As an alternative, boundary perturbation methods have been explored. Bruno and
Reitich [4–6] studied the method of field expansions, and Milder [7–12] studied the method
of operator expansions. These methods also pose surface unknowns, thereby enjoying the
favorable operation counts of surface integral methods, while avoiding the subtle quadrature
rules, dense linear systems, and algorithms for matrix–vector product acceleration. However,
these algorithms depend on strong cancellations that can result in ill-conditioning [17–19].
Nicholls and Reitich proposed an enhanced boundary perturbation algorithm, referred to as
the method of transformed field expansions (TFE) [13,20], which does not rely on strong
cancellations. In this approach, the resulting recursions can be used for a direct, rigorous
demonstration of the strong convergence of the relevant perturbation expansions in an appro-
priate function space. Furthermore, these formulas were proven to be a stable and accurate
numerical scheme for simulating scattering problems defined on layered periodic gratings.
This was later generalized to the case of irregularly bounded obstacles [14,15], multiply
layered media for vector electromagnetic scattering [21], and a rigorous numerical analy-
sis was provided in [13]. However, this method is limited when complex geometries and
nonhomogeneous media are considered.

To address the limitations of these boundary methods, we consider a high-order spectral
element method for layered media problems [22]. Of particular interest, in this paper we
describe for the first time how a boundary operator, which transparently enforces the far-
field boundary condition, can be incorporated into the spectral element framework. This is
very much in the spirit of the DtN-FE method of Han and Wu [23] and Keller, Givoli, and
Grote [24–29] and Nicholls and Nigam [30–32]. The relevant operator is the Dirichlet-to-
Neumann (DtN) map [17–19], which, in our formulation, produces the normal derivative
of the truncated Fourier series of the Dirichlet data on an artificial boundary introduced
to truncate the computational domain [20]. We present a novel formula for computing the
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Fourier data in spectral element discretization space, in particular, we consider incident waves
at arbitrary angles impinging on various types of periodic gratings, resulting in quasi-periodic
solutions of the scalar Helmholtz equation. We rewrite our governing equation in a form that
eliminates the quasi-periodicity and solve the reformulated scalar Helmholtz equation with
periodic, Dirichlet, and transparent boundary conditions.We solve various example problems
and demonstrate our computational results with validation. We note that the resulting linear
system is not Hermitian positive definite and thus we resort to the generalized minimum
residual (GMRES) method [36] for its solution.

This paper is organized as follows. In Sect. 2, we define the governing equations for
our model problems and provide formulations. Section 3 discusses the spectral element
discretization, while Sect. 4 presents the computational results and their validation. Section 5
summarizes our conclusion.

2 Problem Formulation

A downward-propagating time-harmonic incident plane wave of frequency ω can be
expressed in complex form as

Ūinc(x, y, t) = Uinc(x, y)e
−iωt = eiκ·xe−iωt = ei(αx−βy)e−iωt ,

where the wave vector κ = (α,−β) with β > 0 defines the propagation direction. This will
solve the scalar wave equation in a homogeneous medium with velocity c,

∂2Ū

∂t2
− c2ΔŪ = 0, (1)

if |κ|2 = α2 + β2 = ω2/c2 =: k2. More generally, time-harmonic solutions of (1) can be
written as

Ū (x, y, t) = U (x, y)e−iωt ,

and the reduced field U (x, y) satisfies a scalar Helmholtz equation at each frequency ω:

ΔU + k2U = 0. (2)

To consider polychromatic waves, one can simply sum over different frequencies:

Ū (x, y, t) = 1

2π

∫ ∞

−∞
e−iωtU (x, y) dω.

Thus it suffices to work in the “frequency domain” by solving the Helmholtz equation as we
do here.

2.1 Model Problems

In this paper we focus on singly and doubly layeredmedia in two spatial dimensions as shown
in Fig. 1. We define the unbounded domains,

Ω+
0 = {y > g(x)} and Ω−

0 = {y < g(x)}, (3)

with wave numbers k± = ω/c± in Ω±
0 , respectively. For the layer interface we consider a

bounded, measurable, d–periodic function g(x + d) = g(x) which specifies

Γg = {(x, y) ∈ R
2 |y = g(x) } (4)
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Fig. 1 Geometric illustration of the model problems. a Model 1: single layer. b Model 2: double layer

that gives the shape of the d-periodic grating structure. Here we note that the total reduced
field is quasi-periodic [35]:

U (x + d, y) = eiαdU (x, y).

For the single-layer model shown in Fig. 1a, a homogeneous Dirichlet boundary condition
is specified on Γg , denoted ΓD , and the scattered waves must be outgoing as y → +∞.
The Dirichlet boundary can be interpreted as an impenetrable lower layer medium while the
single-layer would be interpreted as the upper layer having most of scattering phenomena.
Thus the single-layer model can be also considered as double-layered medium. For the
double-layer model shown in Fig. 1b, the total field is required to be continuous across the
scatterer interface Γg , and the scattered waves must be outgoing as y → ±∞.

These model problems can be described by the Helmholtz equation with proper boundary
conditions as follows.
Model 1. The total field U in the single layer Ω0 := Ω+

0 satisfies

ΔU + k2U = 0 on Ω0, (5)

U (x + d, y) = eiαdU (x, y) on Ω0, (6)

U (x, y) = 0 on ΓD . (7)

Model 2. The total field U in the double layer Ω0 := Ω+
0 ∪ Ω−

0 satisfies

ΔU + k2U = 0 on Ω0, (8)

U (x + d, y) = eiαdU (x, y) on Ω0, (9)

where k = k± on Ω±
0 .

2.2 Periodic Formulation

In normal incidence (α = 0) the solution U is x-periodic, however, for oblique incidence
(α �= 0) the solution is quasi-periodic in the x-direction. In our algorithm implementation, it
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is more convenient to handle periodic boundary conditions. Thus we introduce a new variable
u by

u(x, y) = e−iαxU (x, y), (10)

where u is periodic for any α from the fact that

u(x + d, y) = e−iα(x+d)U (x + d, y) = e−iα(x+d)eiαdU (x, y) = u(x, y).

Plugging (10) into Eqs. (5) and (8), we find

Δu + (k2 − α2)u + 2iα
∂u

∂x
= 0. (11)

We note that the first-order derivative term in Eq. (11) results from the quasi-periodicity of the
solutionU with α �= 0. This quasi-periodic term introduces new operators to our formulation
in addition to the usual Helmholtz operator.

2.3 Transparent Boundary Conditions

Separation of variables applied to the Helmholtz equations yields the following periodic
solutions, which are valid away from the interface (outside the grating grooves):

u±(x, y) =
∞∑

p=−∞

{
Ape

iβ±
p y + Bpe

−iβ±
p y

}
ei(αp−α)x , (12)

where αp = α + 2πp
d and (β±

p )2 = (k±)2 −α2
p for integer p. Defining the set of propagating

modes
K

± :=
{
p ∈ Z | (k±)2 − α2

p > 0
}

,

we have

β±
p =

√
(k±)2 − α2

p, p ∈ K
± and β±

p = i
√

α2
p − (k±)2, p /∈ K

±.

Assuming incident plane-wave radiation Uinc = ei(αx−βy) in Ω+
0 and Uinc ≡ 0 in Ω−

0 , we
have uinc = e−iβy in Ω+

0 and uinc ≡ 0 in Ω−
0 . The total field thus u can be expressed as

u =
{
uinc + u+

scat in Ω+
0

u−
scat in Ω−

0

. (13)

The scattered field is also of the form (12); however, the outgoing wave condition eliminates
either Ap or Bp , so that

u+
scat =

∞∑
p=−∞

û+
scat,pe

i(αp−α)x eiβ
+
p y, u−

scat =
∞∑

p=−∞
û−
scat,pe

i(αp−α)x e−iβ−
p y, (14)

which are the well-known Rayleigh expansions [16,33].
Now, we discuss a boundary operator that enforces the outgoing wave transparently at a

boundary at finite distance from the interface. Consider the model problems defined on the
finite computational domains, as shown in Fig. 1:

Ω+ = {g(x) < y < b, 0 ≤ x ≤ d} and Ω− = {a < y < g(x), 0 ≤ x ≤ d}.
Here we define a hyperplane Γ = {(x, y) ∈ R

2, 0 ≤ x ≤ d, y = c∗} such that Γ ∩Γg = ∅,
where the constant c∗ can represent either a or b for our model problems. Without loss of
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generalitywe focus on c∗ = b inΩ+ and drop the+ superscript. Taking the normal derivative
of uscat on Γ , we define the operator T by

T [uscat] |y=c∗ := ∂uscat
∂n

|y=c∗= n · ∇uscat |y=c∗ ,

where n = (nx , ny) is the outward unit normal vector. From (14), the Dirichlet-to-Neumann
(DtN) map T can be expressed as

T [uscat]
∣∣∣
y=c∗ = ny

∂uscat
∂y

∣∣∣
y=c∗ = ny

∞∑
p=−∞

(iβp)ûscat,pe
i(αp−α)x eiβpc∗

, (15)

where n = (0,−1) is outward to {y > b}. We note that ûscat,peiβpc∗
is related to the one-

dimensional Fourier coefficient of uscat on Γ . Solutions of (11) and their normal derivatives
are continuous across Γ , and the DtN map enforces this feature exactly by

T [u − uinc] = ∂(u − uinc)

∂n
or

∂nu − T [u] = ∂y(uinc) − T [uinc] =: ρ.

2.4 Governing Equations

Defining Γ + = Γ ⊂ Ω+
0 (if c∗ = b) and Γ − = Γ ⊂ Ω−

0 (if c∗ = a), we can summarize
our governing equations for our model problems as follows.
Model 1. For the single-layer case, with Ω = Ω+, our governing equations are

Δu + (k2 − α2)u + 2iα
∂u

∂x
= 0 on Ω, (16)

u(x + d, y) = u(x, y) on Ω, (17)

∂nu − T+[u] = ρ on Γ +, (18)

u = 0 on ΓD . (19)

Model 2. For the double layer case, with Ω = Ω+ ∪ Ω− ∪ Γg , our governing equations are

Δu + (k2 − α2)u + 2iα
∂u

∂x
= 0 on Ω, (20)

u(x + d, y) = u(x, y) on Ω, (21)

∂nu − T+[u] = ρ on Γ +, (22)

∂nu − T−[u] = 0 on Γ −. (23)

2.5 Variational Formulation

In this section, we derive the variational formulations of our governing equations for the
model problems (16)–(19) and (20)–(23). Consider a test function υ ∈ H1

per(Ω) where

H1
per(Ω) := {

ϕ ∈ H1(Ω) | ϕ(x + d, y) = ϕ(x, y)
}
, (24)

and H1(Ω) is the classical Hilbert space of L2(Ω) functions with one weak derivative in
L2(Ω). Multiplying (16) and (20) by υ and integrating the results over Ω , whose boundary
is denoted by ∂Ω , we have
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∫
Ω

∇u · ∇υdΩ −
∫

∂Ω

n · ∇uυdS −
∫

Ω

(k2 − α2)uυdΩ −
∫

Ω

2iα
∂u

∂x
υdΩ = 0. (25)

The surface integrations with the boundary conditions applied on the single layer are
∫

∂Ω

n · ∇uυdS =
∫

Γ +
T+[u]υdΓ −

∫
Γ +

ρυdΓ −
∫

ΓD

n · ∇uυdΓ, (26)

and those for the double layer are
∫

∂Ω

n · ∇uυdS =
∫

Γ +
T+[u]υdΓ −

∫
Γ +

ρυdΓ +
∫

Γ −
T−[u]υdΓ. (27)

We seek a solution u ∈ H1
per(Ω), shown to exist in [34], such that

a(u, υ) = 〈ρ, υ〉 for all υ ∈ H1
per(Ω), (28)

where the sesquilinear form for each model is defined as follows.
Model 1. From (25) and (26), we have

a(u, υ) =
∫

Ω

(
∇u · ∇υ − (k2 − α2)uυ − 2iα

∂u

∂x
υ

)
dΩ −

∫
Γ +

T+[u]υdΓ. (29)

Model 2. From (25) and (27), we have

a(u, υ) =
∫

Ω

(
∇u · ∇υ − (k2 − α2)uυ − 2iα

∂u

∂x
υ

)
dΩ −

∫
Γ +

T+[u]υdΓ

−
∫

Γ −
T−[u]υdΓ. (30)

The linear functional 〈·, v〉 in (28) is defined for both models as follows:

〈ρ, υ〉 =
∫

Γ +
ρυdΓ.

In particular, we define the following notation for the volume integrations:

A(u, υ) =
∫

Ω

∇u · ∇υdΩ, B(u, υ) =
∫

Ω

uυdΩ, C(u, υ) =
∫

Ω

∂u

∂x
υdΩ, (31)

and for the surface integrations:

T (u, υ) =
∫

Γ

T [u]υdΓ, F(ρ, υ) =
∫

Γ +
ρυdΓ. (32)

Here Γ = Γ + and T = T+ for the single-layer geometry, and Γ = Γ + ∪ Γ − and
T = {T+, T−} for the double-layer case. We note that in the upper layer

T (u, υ) = ny

∞∑
p=−∞

iβpû p

∫
Γ

eidpxυdx

= ny

∞∑
p=−∞

iβpû p

∫
Γ

e−idpxυdx = ny

∞∑
p=−∞

iβpû pυ̂p, (33)
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where dp = 2πp
d = αp − α in Eq. (15). On the other hand, we have

T (υ, u) = ny

∞∑
p=−∞

iβpυ̂pû p = ny

∞∑
p=−∞

(iβp)û pυ̂p, (34)

so there is no easily identified symmetry in the operator T .

3 Spectral Element Discretization

Wedenote our computational domain asΩ = ∪E
e=1Ω

e, whereΩe represents nonoverlapping
body-conforming quadrilateral elements. Let us define a finite-dimensional approximation
space VN ⊂ H1(Ω) such that VN = span{ψi j (ξ, η)}Ni, j=0.With this choice of approximation
space, we consider a local approximate solution ue(x, y) ∈ VN , or simply ue, that has the
representation

ue(x, y) =
N∑

i, j=0

uei jψi j (ξ, η). (35)

The basis coefficients uei j are the nodal values u
e(xi , y j ) on Ωe, and the basis ψi j (ξ, η) =

�i (ξ)� j (η), or simply ψi j , has a tensor product form of the one-dimensional N th-order
Legendre–Lagrange interpolation polynomials given as

�i (ξ) = [
N (N + 1)−1(1 − ξ2)L ′

N (ξ)
]
/ [(ξ − ξi )LN (ξi )] for ξ ∈ [−1, 1], (36)

based on theGauss–Lobatto–Legendre (GLL) quadrature nodes ξi with the N th-order Legen-
dre polynomial LN and its derivative L ′

N . We map each physical coordinate (x, y) ∈ Ωe

onto the reference domain (ξ, η) ∈ I = [−1, 1]2 through the Gordon–Hall mapping [22]
and formulate the computational scheme on the reference domain.

Let us denote our numerical solution u on Ω by the vector

u := (u1, u2, ..., ul̂ , ..., un) :=
(
u1, u2, ..., ue, ..., uE

)T
, (37)

ue :=
(
ue1, u

e
2, ..., u

e
l , ..., u

e
(N+1)(N+1)

)T :=
(
ue00, u

e
10, ..., u

e
i j , ..., u

e
NN

)T
, (38)

where n = E(N+1)2 is the total number of basis coefficients, and l̂ = 1+i+ j (N+1)+(e−
1)(N + 1)2 and l = 1+ i + j (N + 1) translate the two-index coefficient representation into
a vector form, with the leading index i . In Fig. 2, we show a mesh with two elements E = 2
including the GLL grids for N = 3 on Ω = Ω1 ∪ Ω2. Figure 2a illustrates a local ordering
of a solution vector u based on the two-index expression in an unassembled representation
for the coincident grids, u13i = u20i (i = 0, ..., 3), appearing redundantly. In Fig. 2b, we
demonstrate the same solution vector in a global ordering in an assembled representation
using only the distinct nodes, denoted by

u = (u1, u2, ..., un̄)
T . (39)

The size (n̄ < n) of the solution vector u in the assembled representation is reduced after
eliminating the redundancy from the coincident grids. In practice, our implementations are
based on elementwise computations using the data structure in the local ordering. The global
ordering is used when it is more convenient to describe our method in this paper.
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Fig. 2 Illustration of a solution vector in a local numbering and a global numbering, using an example mesh
with (E, N ) = (2, 3):Ω = Ω1∪Ω2 and theGLLnodes (◦). aLocal numbering (unassembled representation).
b Global numbering (assembled representation)

3.1 Stiffness Matrices

To obtain the stiffness matrix, we consider the following inner product in Eq. (31):

A(u, υ) =
∫

Ω

∇u · ∇υdΩ =
∫

Ω

(
∂u

∂x

∂υ

∂x
+ ∂u

∂y

∂υ

∂y

)
dΩ, (40)

where the partial derivatives are expressed by the chain rule for x = x(ξ, η) and y = y(ξ, η)

on Ωe:

∂u

∂x

∂υ

∂x
=

(
∂u

∂ξ

∂ξ

∂x
+ ∂u

∂η

∂η

∂x

)(
∂υ

∂ξ

∂ξ

∂x
+ ∂υ

∂η

∂η

∂x

)

= ∂u

∂ξ

∂υ

∂ξ
Gξξ
xx + ∂u

∂η

∂υ

∂η
Gηη
xx + ∂u

∂ξ

∂υ

∂η
Gξη
xx + ∂u

∂η

∂υ

∂ξ
Gξη
xx , (41)

∂u

∂y

∂υ

∂y
=

(
∂u

∂ξ

∂ξ

∂y
+ ∂u

∂η

∂η

∂y

)(
∂υ

∂ξ

∂ξ

∂y
+ ∂υ

∂η

∂η

∂y

)

= ∂u

∂ξ

∂υ

∂ξ
Gξξ
yy + ∂u

∂η

∂υ

∂η
Gηη
yy + ∂u

∂ξ

∂υ

∂η
Gξη
yy + ∂u

∂η

∂υ

∂ξ
Gξη
yy , (42)
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introducing the short notations for the geometric factors as Gξξ
xx = ∂ξ

∂x
∂ξ
∂x , G

ηη
xx = ∂η

∂x
∂η
∂x ,

Gξη
xx = ∂ξ

∂x
∂η
∂x , G

ξξ
yy = ∂ξ

∂y
∂ξ
∂y , G

ηη
yy = ∂η

∂y
∂η
∂y , and Gξη

yy = ∂ξ
∂y

∂η
∂y . Using the expansion (35) for

u, υ ∈ VN , we derive the discrete operator for (40) including (41)–(42) as

AN (u, υ) =
E∑

e=1

N∑
î, ĵ=0

N∑
i, j=0

ῡe
î ĵ

(∫
I

∂ψi j

∂ξ

∂ψî ĵ

∂ξ
Ḡ11 Jdr + ∂ψi j

∂ξ

∂ψî ĵ

∂η
Ḡ12 Jdr

)
uei j

+
E∑

e=1

N∑
î, ĵ=0

N∑
i, j=0

ῡe
î ĵ

(∫
I

∂ψi j

∂η

∂ψî ĵ

∂ξ
Ḡ21 Jdr + ∂ψi j

∂η

∂ψî ĵ

∂η
Ḡ22 Jdr

)
uei j (43)

where Jdr = Jdξdη. On each local element, the Jacobian J and the geometric factors,
defined by

Ḡ11 = (Gξξ
xx + Gξξ

yy ), Ḡ12 = (Gξη
xx + Gξη

yy ), (44)

Ḡ21 = (Gξη
xx + Gξη

yy ), Ḡ22 = (Gηη
xx + Gηη

yy ), (45)

are introduced from the coordinate transformation and computed from the following relation:

J =
∣∣∣∣∣

∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

∣∣∣∣∣ from
(

∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

)(
∂ξ
∂x

∂ξ
∂y

∂η
∂x

∂η
∂y

)
≡

(
1 0
0 1

)
. (46)

We apply the numerical quadrature on the GLL nodes for the integrations in Eq. (43) as

∫
I

∂ψi j

∂ξ

∂ψî ĵ

∂ξ
Ḡ11dr =

N∑
k,m=0

Ḡ11
km Jkmwkwml

′
i (ξk)l j (ηm)l ′

î
(ξk)l ĵ (ηm), (47)

∫
I

∂ψi j

∂ξ

∂ψî ĵ

∂η
Ḡ12dr =

N∑
k,m=0

Ḡ12
km Jkmwkwml

′
i (ξk)l j (ηm)lî (ξk)l

′
ĵ
(ηm), (48)

∫
I

∂ψi j

∂η

∂ψî ĵ

∂ξ
Ḡ21dr =

N∑
k,m=0

Ḡ21
km Jkmwkwmli (ξk)l

′
j (ηm)l ′

î
(ξk)l ĵ (ηm), (49)

∫
I

∂ψi j

∂η

∂ψî ĵ

∂η
Ḡ22dr =

N∑
k,m=0

Ḡ22
km Jkmwkwmli (ξk)l

′
j (ηm)lî (ξk)l

′
ĵ
(ηm), (50)

where Ḡ(·)
km and Jkm represent the geometric values and the Jacobian at the nodal points,

respectively, and wk and wm are the one-dimensional GLL quadrature weights. Note that
Ḡ12
km = Ḡ21

km . We now have (40) in a discrete form as the following:

AN (u, υ) =
E∑

e=1

(ῡe)T
[
Dξ

Dη

]T [
G11 G12

G21 G22

]e [Dξ

Dη

]
ue (51)

=
E∑

e=1

(ῡe)TDTGeDue =
E∑

e=1

(ῡe)TAeue, (52)

where the differentiationmatrices with respect to ξ and η,Dξ andDη, respectively, are written
as

Dξ = I ⊗ D̂ and Dη = D̂ ⊗ I
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in a tensor product form of the one-dimensional differentiation matrix D̂ki = l ′i (ξk) and
the identity matrix I in R(N+1)×(N+1). The entries of the one-dimensional differentiation
matrix are D̂i j = LN (ξi )

LN (ξ j )(ξi−ξ j )
(i �= j); D̂00 = − (N+1)N

4 ; D̂NN = (N+1)N
4 ; D̂i i = 0

(0 < i < N ), which is skew-centrosymmetric D̂i j = −D̂N−i,N− j . Equation (51) involves
the pointwise multiplication of the nodal values ue = [uel ] by each diagonal component of

G(·) = [G(·)
l ] = diag{Ḡ(·)

km Jkmwkwm} for l = k + (N + 1)(m − 1) on the nodal points on
each local element Ωe. Let us denote the stiffness matrix on Ω asA, using the local stiffness
matrices Ae, represented by

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

A1

. . .

Ae

. . .

AE

⎤
⎥⎥⎥⎥⎥⎥⎦

with Ae = DTGeD. (53)

Then we can write Eq. (51) simply as

AN (u, υ) = v̄TAu. (54)

Here we note that the matrix A is symmetric from the fact that

(Ae)T = (DTGeD)T = DT (Ge)TD = DT (Ge)D = Ae. (55)

3.1.1 Arithmetic Operations

The matrix A is never explicitly formed. We perform matrix–matrix multiplication acting
only on the block diagonal matrices Ae. We begin with the tensor product–based derivative
evaluations (51) that can be recast as matrix–matrix products on each element:

uξ := (I ⊗ D̂)ue := D̂[u]e, (56)

uη := (D̂ ⊗ I)ue := [u]eD̂T , (57)

where ue is a vector arranged in columnwise consecutive entries of uei j , advancing with the
leading index (i) as shown in (38). In (56), ue is treated as an (N + 1) × (N + 1) matrix,
denoted by [u]e as

[u]e =
⎡
⎢⎣

ue00 ue01 ... ue0N
...

...
. . .

...

ueN0 ueN1 ... ueNN

⎤
⎥⎦ . (58)

This requires 2E(N+1)3 operations onΩ . The pointwise multiplications with the geometric
factors ux = G11uξ + G12uη and uy = G21uξ + G22uη require 6E(N + 1)2 operations.
Thenwe compute the summation of transposed derivative operators,Dξux +Dηuy , involving
4E(N+1)3+E(N+1)2 operations. Thus the total operation forAu is 6E(N+1)3+7E(N+
1)2. The leading-order storage requirement for the factored stiffness matrix is 3E(N + 1)2,
because of the relation G12 = G21 on Ωe.
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3.1.2 Direct Stiffness Summation

The solution vector in (54) is based on the unassembled representation, recalling Fig. 2a,
without applying the continuity at the element interface between neighboring elements. To
construct the solution vector continuous across element interfaces on the coincident nodal
values,

(xi j , yi j )
e = (xî ĵ , yî ĵ )

ê → uei j = uê
î ĵ
for e �= ê, (59)

we introduce a Boolean connectivity matrix Q [22] that maps the global representation u to
the local representation u, and its transpose QT that maps the local representation u to the
global representation u. Then we can define the following:

u = Qu and u∗ = QT u. (60)

The action of Q on u returns the copy entries of u on the coincident nodes, referred to as
the scatter operation. The action of QT on u returns u∗ with the sum entries of u on the
coincident nodes, referred to as the gather operation. The interior nodes are unchanged from
both of the actions. Using these matrices, we can rewrite Eq. (54) for the continuous solution
u as

AN (u, υ) = v̄TQTAQu = v̄T Āu. (61)

For a continuous solution u in the local ordering representation, the following equivalence
holds:

QTAQu ⇐⇒
(
QQT

)
Au. (62)

We note that the gather-scatter operationQQT can be viewed as a single operation, involving
summation of the variables on the shared interface nodes and redistribution of them to their
original locations within one communication. The operation is referred to as direct stiffness
summation, or simply dssum. In this paper, we use the following notation for the gather-scatter
operation:

dssum := QQT . (63)

In practical implementations, wewrite our algorithms in an element-based format by utilizing
matrix–vector products evaluated independently on each local element. Thus it is natural to
consider the dssum approach and perform the local-to-local transformation as in the right-
hand side of (62), that is, dssum(Au). We build a local-to-global mapping array to handle
the actions of Q and QT without constructing Q and QT explicitly. A detailed description
of the algorithms and parallel implementations can be found in Chapter 4 and Chapter 8 of
[22].

3.2 Mass Matrices

To obtain the mass matrix, we consider the following inner product:

B(u, υ) =
∫

Ω

uυdΩ, (64)
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which can be discretized as

BN (u, υ) =
E∑

e=1

N∑
î, ĵ=0

N∑
i, j=0

ῡe
i j

(∫
Ωe

ψi jψî ĵ dΩ

)
uei j

=
E∑

e=1

N∑
î, ĵ=0

N∑
i, j=0

ῡe
i j

(∫
I
ψi jψî ĵ J dr

)
uei j

=
E∑

e=1

N∑
î, ĵ=0

N∑
i, j=0

ῡe
i j

⎛
⎝ N∑

k,m=0

Jkmwkwmli (ξk)l j (ηm)lî (ξk)l ĵ (ηm)

⎞
⎠ uei j

=
E∑

e=1

(ῡe)T Je
(
M̂ ⊗ M̂

)
ue =

E∑
e=1

(ῡe)TBeue, (65)

where M̂ = diag{wk} is the one-dimensional mass matrix and Je = [Jell ] = diag{Jkm} for
l = k + (N + 1)(m − 1). We can denote the mass matrix B, using the local mass matrices
Be, as

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

B1

. . .

Be

. . .

BE

⎤
⎥⎥⎥⎥⎥⎥⎦

with Be = Je(M̂ ⊗ M̂), (66)

which is fully diagonal. Then we can write Eq. (65) simply as

BN (u, υ) = v̄TBu. (67)

For a continuous solution, Eq. (67) in the assembled representation can be expressed as

BN (u, υ) = v̄TQTBQu = v̄T B̄u. (68)

3.3 The Quasi-Periodic Matrix

We consider the following inner product for the quasi-periodic operator in Eq. (25):

C(u, υ) =
∫

Ω

∂u

∂x
υdΩ, (69)

which can be discretized as

CN (u, υ) =
E∑

e=1

N∑
î, ĵ=0

N∑
i, j=0

ῡe
i j

(∫
Ωe

∂ψi j

∂x
ψî ĵ dΩ

)
uei j

=
E∑

e=1

N∑
î, ĵ=0

N∑
i, j=0

ῡe
i j

(∫
I

∂ψi j

∂x
ψî ĵ J dr

)
uei j

=
E∑

e=1

N∑
î, ĵ=0

N∑
i, j=0

ῡe
i j

⎛
⎝ N∑

k,m=0

Jkmwkwml
′
i (ξk)l j (ηm)lî (ξk)l ĵ (ηm)

⎞
⎠ uei j
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=
E∑

e=1

(ῡe)T Je
(
M̂ ⊗ M̂D̂

)
ue =

E∑
e=1

(ῡe)T Je
(
M̂ ⊗ Ĉ

)
ue

=
E∑

e=1

(ῡe)TCeue. (70)

By convention, (69) could be referred as a convective operator in computational fluids. In
this context, this relates to the quasi-periodic term in (11) for oblique incidence (α �= 0).
Thus we refer to it as a quasi-periodic operator, because the operator is a derivative, resulting
from imposing the periodicity for the quasi-periodic solution in (10). Then, we define the
quasi-periodic matrix C on Ω using the local quasi-periodic matrices as

C =

⎡
⎢⎢⎢⎢⎢⎢⎣

C1

. . .

Ce

. . .

CE

⎤
⎥⎥⎥⎥⎥⎥⎦

with Ce = Je(M̂ ⊗ Ĉ). (71)

We can write Eq. (70) simply as

CN (u, υ) = v̄TCu. (72)

For the continuous solution, Eq. (72) in the assembled representation can be expressed as

CN (u, υ) = v̄TQTCQu = v̄T C̄u. (73)

3.4 Spectral Element Dirichlet-to-Neumann Operator

In this section, we formulate a spectral element discretization for the Dirichlet-to-Neumann
(DtN) map T . For simplicity we consider the operator T in the upper layer, Ω+

0 and assume

that the (ξ, η) coordinates of the element are aligned with (x, y). Let us denoteΓ = ∪Ê
ê=1Γ

ê,

where Γ ê = Ω ê ∩ ∂Ω are nonoverlapping boundary surfaces on the local elements Ω ê. We
define a DtN-to-local mapping array that contains the indices of the transparent boundary
surface nodes (i, j, ê) to the local index (i, j, e) := DtN-to-local(i, j, ê). We note that these
nodes in y fall on the index either with j = 0 or with j = N , which will be represented
simply by a fixed index as j = jb.

3.4.1 DtN Matrix T

We can represent our approximate solution on Γ ê in the form of (35) as

uê(x, b) =
N∑

i, j=0

uêi j li (ξ)l j (η(b)) =
N∑
i=0

uêi jb li (ξ). (74)

From Eqs. (32)–(33), we have

T (u, υ) =
∫

Γ

T [u]υdΓ =
∞∑

p=−∞
iβpû p

∫
Γ

eidpxυdx, (75)

123



786 J Sci Comput (2016) 68:772–802

where dp = 2πp
d and û p are the one-dimensional Fourier coefficients of u(x, b) on Γ given

as

û p = 1

d

∫ d

0
u(x ′, b)e−idpx ′

dx ′ ≈ 1

d

Ê∑
ê=1

∫
Γ ê

uê(x ′, b)e−idpx ′
dx ′. (76)

Plugging (76) into (75) with a finite expansion of T [u] (|p| ≤ P) and applying (74), we have

T N (u, υ) =
P∑

p=−P

iβp

⎛
⎝ 1

d

Ê∑
ê=1

∫
Γ ê

uê(x ′, b)e−idpx ′
dx ′

⎞
⎠

⎛
⎝ Ê∑

ē=1

∫
Γ ē

eidpxυdx

⎞
⎠

=
P∑

p=−P

iβp

⎛
⎝ 1

d

Ê∑
ê=1

N∑
i=0

uêi jb

∫
Γ ê

li (ξ)e−idpx ′
dx ′

⎞
⎠

⎛
⎝ Ê∑

ē=1

∫
Γ ē

eidpxυdx

⎞
⎠ .

Choosing υ = lî (ξ) with a different index set of î on each Ω ê and defining the following,

sê,pi = 1√
d

∫
Γ ê

li (ξ)e−idpx ′
dx ′ and sē,−p

î
= 1√

d

∫
Γ ē

lî (ξ)eidpxdx, (77)

we can express (75) in a simplified form as

T N (u, υ) =
Ê∑

ê=1

N∑
i=0

uêi jb

⎡
⎣ P∑

p=−P

iβps
ê,p
i

⎛
⎝ Ê∑

ē=1

sē,−p

î

⎞
⎠
⎤
⎦ =

Ê∑
ê=1

N∑
i=0

uêi jb T
ê
î i
. (78)

Here we note that sê,−p
i is the complex conjugate of sê,pi from the following:

sê,pi = 1√
d

∫
Γ ê

li (ξ)e−idpxdx = 1√
d

∫
Γ ê

li (ξ)eidpxdx = sê,−p
i .

Thus we need only to compute sê,pi for p ≥ 0 to obtain

T ê
î i

= i

⎛
⎝β0s

ê,0
i

Ê∑
ē=1

sē,0
î

+
P∑

p=1

[
βps

ê,p
i + β−ps

ê,p
i

] Ê∑
ē=1

sē,p
î

⎞
⎠ , (79)

where βp = β−p only if α = 0; βp �= β−p for α �= 0. Therefore, no particular relation can be
found between βp and β−p in general. Here T ê

î i
is a complex number, so we can alternatively

write (78) as

T N (u, υ) =
Ê∑

ê=1

N∑
i=0

uêi jb T
ê
î i

=
Ê∑

ê=1

N∑
i=0

uêi jb

[
(T ê

î i
)real + i(T ê

î i
)imag

]
.

Now, we can map the values of T ê
î i
into a matrix Te =

[
Te
l̂l

]
for l̂ = î + (N + 1) j and

l = i + (N + 1) j from the DtN-to-local mapping (î, j, e) := DtN-to-local(î, jb, ê) and
(i, j, e) := DtN-to-local(i, jb, ê). Similarly, {uêi jb } can be mapped to the local data {uei j }.
Note that the entries of Te are zeros if the indices are not indicating the DtN boundary nodes.
We now have Eq. (78) in the local representation form as
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T N (u, υ) =
E∑

e=1

(υe)TTeue = vTTu = vT (Tr + iTi)u, (80)

where Tr and Ti represent the real and imaginary part of the complex matrix T. Thus we
have the assembled representation of (80) as

T N (u, υ) = vTQTTQu = vT T̄u = vT (T̄r + iT̄i)u.

For ρ in (32), we apply notation similar to that used for u. Then we have the following:

FN (ρ, υ) =
E∑

e=1

(υe)TBeρe = vTBρ = vTFρ,

with the assembled representation as

FN (ρ, υ) = vTQTBQρ = vT F̄ρ.

3.4.2 Matrix T

Wenext discuss how to compute sê,pi in Eq. (79). Note that the data is precomputed only once.
One might apply the GLL quadrature for the integrations when dp is small. For large dp ,
however, the GLL quadrature is not accurate enough to capture the high-frequency modes,
leading to loss of accuracy in the solution. One can consider the discrete FFT algorithm since
it is the pth component of the inverse DFFT of function li (ξ). However, since li (ξ) has only a
very small portion of compact support on Γ , we can compute it directly on its local compact
support using refined GLL quadrature points on each Γ ê. Another approach is to use the
relation to the Bessel function, which can be more efficient than the other approach.

In this paper, we discuss the computation of sê,pi based on the Bessel function represen-
tation. We have written li (ξ) in the finite expansion of the mth-order Legendre polynomials
given as

li (ξ) =
N∑

m=0

(l̂i )mLm(ξ), (81)

where (l̂i )m are the Legendre expansion coefficients defined by

(l̂i )m = 2m + 1

2

∫ 1

−1
li (ξ)Lm(ξ)dξ. (82)

Then, substituting (81) in (77) and using simply the notation x , instead of x ′, we have

sê,pi = 1√
d

∫
Γ ê

li (ξ(x))e−idpxdx = 1√
d

N∑
m=0

(l̂i )m

(∫ 1

−1
Lm(ξ)e−idpx(ξ) J ês dξ

)
, (83)

where J ês is the surface Jacobian on Γ ê. In fact, each Γ ê is represented by an interval
[xêmin, x

ê
max]with the coordinate transformation by x(ξ) = âeξ+b̂ewith âe = (xêmax−xêmin)/2

and b̂e = (xêmax + xêmin)/2, so that J
ê
s ≡ âe is constant on Γ ê. Then, Eq. (83) becomes

sê,pi = âe√
d

N∑
m=0

(l̂i )md
p,ê
m with q p,ê

m =
∫ 1

−1
Lm(ξ)e−idp(âeξ+b̂e)dξ. (84)
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Now we need to compute the two terms (l̂i )m and q p,ê
m , in (84). To compute (l̂i )m , one might

apply the GLL quadrature for the integration term in (82) as follows:

(l̂i )m = 2m + 1

2

N∑
k=0

li (ξk)Lm(ξk)wk = 2m + 1

2
Lm(ξi )wi . (85)

An alternative approach is to evaluate (81) on the GLL grids in [−1, 1], resulting in the form

LL̂ =
⎡
⎢⎣

L0(ξ0) L1(ξ0) · · · Lm(ξ0)
...

...
...

...

L0(ξN ) L1(ξN ) · · · Lm(ξN )

⎤
⎥⎦
⎡
⎢⎣

(l̂0)0 (l̂1)0 · · · (l̂N )0
...

...
...

...

(l̂0)N (l̂1)N · · · (l̂N )N

⎤
⎥⎦ ≡ I,

and compute the inverse of the matrix L = [L j i ] = [Li (ξ j )] to obtain L̂ = [L̂mi ] =
[(l̂i )m] = L−1. To compute q p,ê

m , we recall that the Legendre polynomials are related to the
Bessel functions as

∫ 1

−1
Lm(ξ)e−ixξdξ = 1

im

√
2π

x
Jm+1/2(x) = 2

im
jm(x) for x ∈ R,

where jm is the spherical Bessel function and Jm is the ordinary Bessel function with the
relation

jm(x) =
√

π

2x
Jm+1/2(x).

Then, we can write

q p,ê
m =

∫ 1

−1
Lm(ξ)e−idp(âeξ+b̂e)dξ = e−idpb̂e

(
2

im
jm(dpâe)

)
. (86)

From (85) and (86), we have the final form of sê,pi by

sê,pi = âee−idpb̂e
√
d

N∑
m=0

(l̂i )m

(
2

im
jm(dpâe)

)
.

3.5 Matrix Structure and Eigenvalues

We arrange our solution as a real vector of length 2n expressed by uN = [uN
r , uN

i ]T , where
uN
r and uN

i represent real and imaginary parts of the solution, respectively. The spectral
element discretization leads to a linear system:

HuN = F , (87)

where

H :=
[
A − (k2 − α2)B + Tr −Ti − 2αC

Ti + 2αC A − (k2 − α2)B + Tr

]
andF :=

[
Fρr
Fρi

]
.

Equation (87) in assembled representation can be expressed as

H̄uN = F̄ , (88)
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Fig. 3 Spatial operator in matrix structure (assembled) and its eigenvalue distribution. a H̄ for single layer
with transparent/Dirichlet (top/bottom) BCs. b H̄ for double layer with transparent/transparent (top/bottom)
BCs

where

H̄ :=
[
Ā − (k2 − α2)B̄ + T̄r −T̄i − 2αC̄

T̄i + 2αC̄ Ā − (k2 − α2)B̄ + T̄r

]
and F̄ :=

[
F̄ρ

r
F̄ρ

i

]
.

In Fig. 3, we demonstrate the structure of matrix and its eigenvalue distribution for our
spectral element operator. For simplicity, we chose a simple box geometry for the domain
[0, 2π] × [−1, 1] with equi-sized non-deformed rectangular elements (3 elements in x and
2 elements in y directions) and a relatively small N = 3. Figure 3a demonstrates the case of
single layer with DtN boundary on the top and Dirichlet boundary at the bottom and the wave
number k = 1.5, and Fig. 3b demonstrates the case of double layer, defining Γg at y = 0,
with DtN boundaries at the top and bottom and the wave numbers k = 1.5 on the top layer
and k = 2.5 on the bottom layer.
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Table 1 Condition numbers for
H̄ Transparent (top) Transparent (top/bottom)

E N Condition # E N Condition #

3×2 3 1.1873947E+02 3×2 3 5.9542135E+01

5 4.6002926E+02 5 2.3470212E+02

7 1.1704056E+03 7 5.9022047E+02

9 2.4000224E+03 9 1.2031346E+03

11 4.2909436E+03 11 2.1437669E+03

13 6.9854623E+03 13 3.4825776E+03

In Table 1, we list the condition numbers for these operators. The resulting linear system
(88) is not Hermitian positive definite and thus it was natural choice to consider the GMRES
method [36] for its solution.

4 Computational Results

In this section, we consider scattering returns by three types of periodic grating surfaces: flat,
smooth curved, and nonsmooth. We consider different angles of incidence impinging on the
scattering surface in singly and doubly layeredmedia.We solve the scalarHelmholtz equation
and compute the total field in a finite computational domain with transparent boundary
conditions enforced at artificial boundaries based on the spectral element discretization.
For validation of our computational approach, in the case of a flat grating we compare our
results with analytic solutions and provide convergence studies. For smooth curved periodic
surface gratings, we consider sinusoidal grooves and compare our results with those from the
transformed field expansion (TFE) method [13,20]. For nonsmooth periodic surface gratings
(rectangular, triangular, and sawtooth) separating doubly layered media we demonstrate the
accuracy of our computational solutions by studying the energy defect [4–6,16].

4.1 Flat Scattering Surface

To begin, we consider singly and doubly layered media with flat interface in the x-direction.
For these configurations, there exist analytic solutions for incident waves at arbitrary angles
of incidence κ = (α,−β). Here we consider downward propagating incidence with β > 0.

4.1.1 Single Layer

Consider a finite computational domain Ω = [0, 2π ] × [0, 1] with the scattering surface
defined by Γg = {(x, y) ∈ Ω | y = 0} and the artificial boundary defined at Γ = {(x, y) ∈
Ω | y = 1}. We apply homogeneous Dirichlet boundary conditions on the scatterer Γg and a
transparent boundary condition via the DtN operator on Γ . Figure 4a shows our quadrilateral
element mesh with E = 4 × 4 and the GLL grids for N = 8. Considering the incident field

Uinc(x, y) = ei(αx−β(y+1)),

impinging on Γg , we can show the total field solution to be

U exact(x, y) = ei(αx−β(y+1)) − ei(αx+β(y−1)).
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Fig. 4 Single layer: k = 1.5 (yellow); transparent (top) and Dirichlet (bottom) boundary conditions. a Mesh
and GLL grids with E = 4 × 4, N = 8. b Real part of the scattered field UN

scat : α = 0.1 (left) and α = 1.0

(right). c Imaginary part of the scattered field UN
scat : with α = 0.1 (left) and α = 1.0 (right) (Color figure

online)

For a fixed wavenumber k = 1.5 in the single layer medium, we consider incident waves for
α = 0.1 and α = 1.0. Fig. 4b, c show the numerical solutions of the scattered fields that are
obtained by subtracting the incident field from the total field:UN

scat = UN −UN
inc, whereU

N
inc

denotes the incident field U exact
inc evaluated on the GLL grid.

4.1.2 Double Layer

We now consider a computational domainΩ = [0, 2π ]×[−1, 1]with flat scattering surface
Γg = {(x, y) ∈ Ω | y = 0} and artificial boundaries at Γ = Γ + ∪ Γ −, where Γ + =
{(x, y) ∈ Ω | y = 1} and Γ − = {(x, y) ∈ Ω | y = −1}. We apply transparent boundary
conditions here using the DtN operator on the GLL points on Γ . Figure 5a shows our mesh
with E = 4 × 4 and the GLL grids for N = 8. The incident field and analytic solution are
given as follows:

– On Ω+ = [0, 2π] × [0, 1] with k+ = 1.5 and β+ > 0:

Uinc(x, y) = ei(αx−β+y),

U exact(x, y) = ei(αx−β+y) + c+ei(αx+β+y).

– On Ω− = [0, 2π] × [−1, 0] with k− = 2.5 and β− > 0:

U exact(x, y) = c−ei(αx−β−y).

Here the (Fresnel) constants are

c− = 2β+

β+ + β− , c+ = β+ − β−

β+ + β− .
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Fig. 5 Double layer: k+ = 1.5 (yellow) and k− = 2.5 (blue); transparent (top/bottom) boundary conditions.
a Mesh and GLL grids with E = 4 × 4, N = 8. b Real part of the scattered field UN

scat : α = 0.1 (left) and

α = 1.0 (right). c Imaginary part of the scattered field UN
scat : α = 0.1 (left) and α = 1.0 (right) (Color figure

online)

Again, we consider incoming incident waves on Ω+ for α = 0.1 and α = 1.0, and we
simulate the total field. In Fig. 5b, c we display the scattered field UN

scat.

4.1.3 Convergence

Figure 6 depicts the outcomes of our convergence studies, measured in the maximum error,
for scattered fields in singly and doubly layered media:

error =
∥∥∥U exact

scat − UN
scat

∥∥∥∞ ,

where U exact
scat = U exact − Uinc is the exact solution for the scattered field. The errors show

spectral convergence as N increases. The approximation order for the Fourier data used in
the DtN operator is P = 5. Table 1 shows that the condition numbers increase as N increases,
thus explaining why the errors do not improve beyond 10−10. Figure 6a, b demonstrate the
iteration count increasing up to ∼900 for N = 15.

4.1.4 Computation

In practice, we transformUN
inc into u

N
inc = e−iαxUN

inc and compute the solution of Eq. (11) uN

with periodic boundary treatment in x . Then, we transform back to UN through the relation
UN = eiαxuN . This approach makes our algorithm much simpler by eliminating additional
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Fig. 6 Convergence and GMRES iteration counts versus mesh refinement with E=4×4 and N =
3, 5, 7, 9, 11, 13, 15. The approximation order for the Fourier expansion in the DtN operator is P = 5.
a Single layer with flat interface. b Double layer with flat interface

boundary treatments in the x-direction. The same idea is applied for solving all other example
problems presented in the remaining sections.

4.2 Smooth Curved Scattering Surfaces

In this section, we examine singly and doubly layered media with smooth, curved interfaces.
Dirichlet and transparent boundary conditions are once again applied in the y-direction.
For these configurations no analytic solutions are available, so we validate our results in
comparison with results provided by the TFE method [13,20].

4.2.1 Single Layer

Consider a computational domainΩ = [0, 2π ]×[g(x), 1]with the scattering surface defined
by Γg = {(x, y) ∈ Ω | y = g(x)} and an artificial boundary defined on Γ = {(x, y) ∈
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Fig. 7 Single layer: k = 1.5 (yellow); transparent (top) and Dirichlet (bottom) boundary conditions. a Mesh
and GLL grids: E = 4× 4, N = 8. b Real part of the scattered field uNscat : α = 0.1 (left) and α = 1.0 (right).

c Imaginary part of the scattered field uNscat : α = 0.1 (left) and α = 1.0 (right) (Color figure online)

Fig. 8 Double layer: k+ = 1.5 (yellow) and k− = 2.5 (blue); transparent (top/bottom) boundary conditions.
aMesh and GLL grids: E = 4× 4, N = 8. b Real part of the scattered field UN

scat : α = 0.1 (left) and α = 1.0

(right). c Imaginary part of the scattered field UN
scat : α = 0.1 (left) and α = 1.0 (right) (Color figure online)
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Fig. 9 Convergence and GMRES iteration counts versus mesh refinement with E = 4 × 4 and N =
3, 5, 7, 9, 11, 13, 15. The approximation order for the Fourier expansion in the DtN operator is P = 5.
a Single layer with smooth curved scattering interface. bDouble layer with smooth curved scattering interface

Ω | y = 1}. We choose a sinusoidal interface g(x) = ε cos(x)with the grating depth varying
with ε. We apply homogeneous Dirichlet boundary conditions onΓg and the DtN operator on
Γ . Figure 7a displays the mesh with E = 4 × 4 and the GLL grids for N = 8, representing
g(x) with surface fitted elements for the case of ε = 0.1. We consider the incident field

Uinc(x, y) = ei(αx−βy)

with varying incident angles α = 0.1 and α = 1.0 for a fixed wavenumber k = 1.5 with
β > 0. The scattered fields are shown in Fig. 7b, c.

4.2.2 Double Layer

Consider a computational domain Ω = Ω− ∪ Ω+, consisting of two different media Ω+ =
[0, 2π] × [g(x), 1] and Ω− = [0, 2π ] × [−1, g(x)] with a sinusoidal interface shaped by

123



796 J Sci Comput (2016) 68:772–802

Table 2 Convergence of
errorr =∥∥∥real

(
UTFE
scat − UN

scat

)∥∥∥∞,
errori =∥∥∥imag

(
UTFE
scat − UN

scat

)∥∥∥∞ and

GMRES iteration count for
varying wave numbers with
P = 9 and N = 17

g(x) = cos(x), oblique incidence α = 0.1

E (k+, k−) Errorr Errori Iter #

16 (1.5,2.5) 1.7524E−10 1.6718E−10 2199

(1.5,4.5) 1.2329E−10 1.3031E−10 2578

(1.5,8.5) 9.9584E−11 9.0917E−10 3373

(1.5,16.5) 6.2485E−09 5.3194E−09 4846

(1.5,22.5) 2.0038E−07 1.2528E−07 5784

(1.5,32.5) 1.2439E−05 1.2840E−05 6742

g(x) = ε cos(x).We define the artificial boundaries atΓ = Γ +∪Γ −, whereΓ + = {(x, y) ∈
Ω | y = 1} and Γ − = {(x, y) ∈ Ω | y = −1}. Figure 8a shows the mesh with E = 4 × 4
and the GLL grids for N = 8, representing g(x) with surface-fitted elements for the case of
ε = 0.1. We consider incoming incident waves

Uinc(x, y) = ei(αx−β+y),

in Ω+ with k+ = 1.5 and β+ > 0 and varying incidence angles α = 0.1 and α = 1.0. We
choose the wavenumber k− = 2.5 on Ω−, and in Fig. 8b, c we show the scattered fields.

4.2.3 Convergence

Figure 9 displays the convergence of our numerical solutions, measured in the maximum
error, for the scattered field in singly and doubly layered media in comparison with results
given by the TFE method:

error =
∥∥∥UTFE

scat − UN
scat

∥∥∥∞ .

HereUTFE
scat is the scattered field approximation given by the TFE method. Our solution UN

scat
on the GLL grids is interpolated to the TFE grid in order to compute the difference of the
solutions on the same grids. The approximation order for the Fourier data used in the DtN
operator is fixed with P = 5. In Fig. 9, the errors show spectral convergence as N increases
with the GMRES iteration count increasing up to 1700–1900 for N = 15, as demonstrated
in Fig. 9a, b. We note that computational results demonstrated throughout the paper, we used
tolerance of 1E-10 for the GMRES solution.

In Tables 2, 3 and 4, we demonstrate the convergence of varying wave numbers and P
using the samemesh configuration as in Fig. 8a. In Table 2, we show convergence for varying
wave numbers, ranging k− = 2.5−32.5, with a fixed k+ = 1.5 and a relatively fine resolution
with N = 17 and P = 9. The errors increase because the resolution in terms of N and P is not
enough to capture the higher frequency waves well compared to the lower frequency waves
as k− increases. In Tables 3 and 4, we used fine grid resolution with a higher N and observe
the convergence as we increase P . Table 3 demonstrates the convergence with varying P
with a fixed N = 11 and (k+, k−) = (1.5, 2.5), showing that the relatively small P = 5 is a
good choice as k− is relatively small. Table 4 demonstrates the convergence with varying P
with a fixed N = 13 and (k+, k−) = (1.5, 8.5), showing that the relatively higher P = 9 is
a good choice as k− is relatively large. As for the convergence depending on the distance of
the artificial boundary from the grating interface, the detailed study can be found in [37].
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Table 3 Convergence of
errorr =∥∥∥real

(
UTFE
scat − UN

scat

)∥∥∥∞,
errori =∥∥∥imag

(
UTFE
scat − UN

scat

)∥∥∥∞ and

GMRES iteration count for
varying P with N = 11 and
(k+, k−) = (1.5, 2.5)

g(x) = cos(x), oblique incidence α = 0.1

E P Errorr Errori Iter #

16 0 4.0639E−01 8.5534E−01 1391

1 4.5017E−03 7.3669E−03 1304

2 2.8951E−05 2.0889E−05 1276

3 3.7341E−07 4.9301E−07 1248

4 9.1279E−09 1.4023E−08 1247

5 2.5614E−10 4.8626E−10 1247

6 1.1452E−10 1.1020E−10 1247

7 1.0750E−10 1.0557E−10 1247

8 1.0368E−10 1.0009E−10 1247

9 1.0414E−10 1.0169E−10 1247

Table 4 Convergence of
errorr =∥∥∥real

(
UTFE
scat − UN

scat

)∥∥∥∞,
errori =∥∥∥imag

(
UTFE
scat − UN

scat

)∥∥∥∞ and

GMRES iteration count for
varying P with N = 13 and
(k+, k−) = (1.5, 8.5)

g(x) = cos(x), oblique incidence α = 0.1

E P Errorr Errori Iter #

16 0 1.6319E+00 1.3417E+00 2601

1 5.9357E−01 5.6400E−01 2571

2 2.4980E−01 2.4801E−01 2550

3 4.8806E−03 5.9880E−03 2490

4 2.0239E−04 1.5874E−04 2432

5 2.0005E−06 1.4451E−06 2351

6 7.0879E−08 3.6509E−08 2381

7 3.0704E−10 2.8059E−10 2361

8 1.0474E−10 1.1638E−10 2386

9 9.7235E−11 9.9168E−11 2384

10 9.0224E−11 9.6817E−11 2384

11 9.3851E−11 9.8553E−11 2385

4.3 Nonsmooth Scattering Surfaces

To begin this section, we recall the scattering efficiencies and the energy defect measure of
convergence.With these, we examine the behavior of our algorithm in a doubly layeredmedia
with rectangular, triangular, and sawtooth scattering interfaces, which severely challenge the
capabilities of the TFE approach. We demonstrate the convergence of our method using this
energy defect measure.

4.3.1 Energy Defect

We recall the Rayleigh expansions (14) for the reflected and transmitted fields,

U+(x, y) =
∞∑

p=−∞
Û+

p e
iαpx+iβ+

p y, U−(x, y) =
∞∑

p=−∞
Û−

p e
iαpx−iβ−

p y, (89)
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Fig. 10 Real part of the scattered field. a Rectangular groove: α = 0.0 (left) and α = 0.2 (right); (E, N ) =
(64, 7). b Triangular groove: α = 0.0 (left) and α = 0.2 (right); (E, N ) = (48, 7). c Sawtooth groove:
α = 0.0 (left) and α = 0.2 (right); (E, N ) = (48, 7)

and the efficiencies

e+
p = β+

p

β

∣∣∣Û+
p

∣∣∣2 , and e−
p = β−

p

β

∣∣∣Û−
p

∣∣∣2 , (90)

which measure the energy at wave modes p propagated away from the grating interface. It is
a classical calculation to show that for lossless media, a principle of conservation of energy
[16] holds: ∑

p∈K+
e+
p +

∑
p∈K−

e−
p = 1. (91)

For an explicit demonstration we refer the interested reader to [20].
One measure of the fidelity of a numerical scheme for the approximation of scattering

returns from a grating structure is to test the validity of this principle, for example, via the
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Fig. 11 Imaginary part of the scattered field. a Rectangular groove: α = 0.0 (left) and α = 0.2 (right);
(E, N ) = (64, 7). b Triangular groove: α = 0.0 (left) and α = 0.2 (right); (E, N ) = (48, 7). c Sawtooth
groove: α = 0.0 (left) and α = 0.2 (right); (E, N ) = (48, 7)

“energy defect” [16]:

εdefect =
∣∣∣∣∣∣1 −

⎛
⎝ ∑

p∈K+, |p|≤P

e+
p +

∑
p∈K−, |p|≤P

e−
p

⎞
⎠
∣∣∣∣∣∣ . (92)

While it is not definitive, since the evanescent modes play no role in the energy defect, it is
certainly indicative of a convergent scheme.

4.3.2 Double Layer

We consider a computational domain Ω = Ω− ∪ Ω+ with Ω+ = [0, 2π] × [g(x), 1] and
Ω− = [0, 2π] × [−1, g(x)], including rectangular, triangular, and sawtooth grooves for
the scattering surface g(x), as shown in Figs. 10 and 11. Artificial boundaries are set at
Γ = Γ + ∪ Γ − for Γ + = {(x, y) ∈ Ω | y = 1} and Γ − = {(x, y) ∈ Ω | y = −1}.
We consider incoming incident waves U inc(x, y) = ei(αx−β+ y) on Ω+ for varying incident
angles of α = 0 and α = 0.2 with k+ = 1.5 and β+ > 0. The wavenumber k− = 2.5
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Table 5 Convergence of the energy defect εdefect and GMRES iteration count (P = 5)

Normal incidence α = 0 Oblique incidence α = 0.2

E N εdefect Iter # E N εdefect Iter #

Rectangular Groove

64 3 0.4352422E−03 226 64 3 0.4297330E−03 309

5 0.7139313E−06 447 5 0.7013786E−06 638

7 0.4966379E−09 704 7 0.4880223E−09 1001

9 0.7938834E−12 998 9 0.1396099E−11 1412

Triangular Groove

48 3 0.6962538E−02 160 48 3 0.6795656E−02 177

5 0.4811381E−04 321 5 0.4707435E−04 349

7 0.1354668E−06 515 7 0.1318199E−06 556

9 0.2083588E−09 728 9 0.1873164E−09 782

Sawtooth Groove

48 3 0.1407709E−01 182 48 3 0.1366347E−01 186

5 0.4745677E−04 359 5 0.4642258E−04 368

7 0.1337871E−06 563 7 0.1302132E−06 574

9 0.1946178E−09 803 9 0.1829619E−09 813

is defined on Ω−, and Figs. 10 and 11 show the computed scattered field. In Table 5, we
demonstrate the convergence of our numerical solutions measured in the energy defect,
showing spectral convergence as N and the number of GMRES iterations are increased to
700–1400 for N = 9. The approximation order for the Fourier data used in the DtN operator
is fixed with P = 5.

5 Conclusions

In this contributionwe have studied quasi-periodic solutions of the scalar Helmholtz equation
in two dimensions in the context of layered media scattering problems. We have consid-
ered singly and doubly layered media with periodic surface interfaces. We used body-fitted
quadrilateral element meshes with spectral element discretization based on the GLL grids.
We imposed nonreflecting, outgoing boundary conditions at artificial boundaries which form
a truncated computational domain. We introduced an accurate formulation of the spectral
element DtN operator by representing the Fourier data in relation to the Bessel function,
rather than computing the Fourier coefficients using the GLL quadrature integration, which
can cause loss of accuracy depending on the grid resolution. Because of the quasi-periodicity
of the solutions and the appearance of the DtN operator, the resulting linear system is not
Hermitian positive definite. Therefore, we applied the GMRES algorithm for solving the
resulting linear system. We demonstrated our computational results for the scattered field
and validated them with convergence studies showing spectral convergence.
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