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Shape deformations in rough-surface scattering:
cancellations, conditioning, and convergence
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We analyze the conditioning properties of classical shape-perturbation methods for the prediction of scattering
returns from rough surfaces. A central observation relates to the identification of significant cancellations
that are present in the recurrence relations satisfied by successive terms in a perturbation series. We show
that these cancellations are precisely responsible for the observed performance of shape-deformation methods,
which typically deteriorates with decreasing regularity of the scattering surfaces. We further demonstrate
that the cancellations preclude a straightforward recursive estimation of the size of the terms in the pertur-
bation series, which, in turn, has historically prevented the derivation of a direct proof of its convergence. On
the other hand, we also show that such a direct proof can be attained if a simple change of independent vari-
ables is effected in advance of the derivation of the perturbation series. Finally, we show that the relevance
of these observations goes beyond the theoretical, as we explain how they provide definite guiding principles
for the design of new, stabilized implementations of methods based on shape deformations. © 2004 Optical
Society of America
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1. INTRODUCTION
Analytical and numerical methods based on shape defor-
mations have been widely used in scattering calculations
since the original work of Rayleigh1 and Rice2 and have
successfully led to new insights in a variety of applica-
tions, including acoustics, spectroscopy, optics, remote
sensing, etc. Besides being simple to implement, these
perturbative approaches generally lead, quite efficiently,
to quality predictions within their domain of applicability.
Indeed, it was these characteristics that prompted a num-
ber of investigations in the last 30 years, mainly in the
area of scattering by rough surfaces, and that resulted in
a variety of low-order theories (see, e.g., Refs. 2–9). The
efficiency of these approaches naturally led to consider-
ation of their applicability and accuracy; despite signifi-
cant advances in the elucidation of these properties over
the last decade, some important aspects remain unre-
solved.

The issue of applicability of shape-perturbation meth-
ods is, of course, closely related to the order of the pertur-
bation expansion and therefore to its convergence proper-
ties. These properties, in turn, have apparently
generated a controversy in the literature, dating back to
the work of Meecham10 and Uretsky11 and further en-
hanced by the limited success of straightforward attempts
at high-order expansions in numerical simulations (see,
e.g., Refs. 12–22). A definitive answer to the question of
convergence of shape-perturbation expansions was finally
provided in Ref. 23, where it was proved that, for analytic
scattering surfaces, the scattered fields are analytic func-
tions of a deformation parameter. For the case of infinite
1084-7529/2004/040590-16$15.00 ©
(periodic) rough surfaces, this result asserts that the scat-
tered field analytically continues to that of a flat surface,
thereby guaranteeing the convergence of the series, at
least for small perturbations. More importantly per-
haps, in this case the theoretical results in Ref. 23 (sub-
sequently illustrated in numerical simulations in Refs.
24–29) establish that the fields corresponding to a flat
surface analytically continue to perturbations of arbitrary
size. Of course, such perturbations may not be attain-
able by a simple Taylor-series sum; rather, alternative
summation (i.e., analytic continuation) mechanisms may
be necessary (see, e.g., Refs. 25 and 26).

The issue of accuracy and, more precisely, conditioning
of shape-perturbation approaches, on the other hand, has
remained largely unexplored. This is, in fact, apparently
the case for all perturbative schemes, including alterna-
tives such as the operator expansion (OE) method of
Milder et al.30–38 In this paper, we address this issue as
we uncover the precise mechanism giving rise to potential
instabilities in classical shape-perturbation methods. As
we demonstrate, these instabilities arise as a result of sig-
nificant cancellations that occur in the recurrences under-
lying a typical shape-deformation scheme. Indeed, we
show that these cancellations are precisely responsible for
the observed performance of these methods, which typi-
cally deteriorates with decreasing regularity of the scat-
tering surfaces. We further show that the cancellations
preclude a straightforward recursive estimation of the
size of the terms in the perturbation series, which, in
turn, has historically prevented the derivation of a direct
proof of its convergence. On the other hand, we also
2004 Optical Society of America
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show that such a direct proof can be attained if a simple
change of independent variables is effected in advance of
the derivation of the perturbation series. In addition to
providing a more straightforward path to convergence
than that presented in Ref. 23, which we therefore hope
will be more readily accepted by practitioners, these ob-
servations have immediate practical relevance, as they
provide definite guiding principles for the design of new,
stabilized implementations of boundary perturbation
methods.

The rest of the paper is organized as follows. In Sec-
tion 2, we introduce our notation, and we briefly review
some of the most commonly used shape-perturbation
methods. In Section 3, we discuss the conditioning is-
sues that we alluded to above, as we describe the way in
which cancellations arise at both low and high orders of
the recurrences. Section 4 is devoted to the convergence
properties of the perturbation series. There we first ex-
plain how the cancellations preclude an iterative estima-
tion of the terms in the series in the original variables.
We then also show that a simple change of variables can
be effected to implicitly account for cancellations, thus
permitting a direct, inductive bound of the perturbation
coefficients that delivers a convergence result. Finally,
some concluding remarks are presented in Section 5,
which include a set of guidelines for the design of im-
proved numerical simulation strategies based on shape
deformations.

2. SHAPE-DEFORMATION METHODS
As we mentioned, we shall be centrally concerned with
stability properties of shape-perturbation methods in
rough-surface-scattering calculations. For simplicity, we
shall restrict our discussion to the scalar case in two
space dimensions, although our observations and algo-
rithms clearly extend to the full vector equations in three-
dimensional space; see the remarks at the end of this sec-
tion. Here we first set up our notation and then briefly
review some classical perturbative algorithms.

A. Scattering by Rough Surfaces
We shall consider the scattering of an acoustic or electro-
magnetic time-harmonic plane wave

ṽ inc~x, y, t ! 5 exp~2ivt !v inc~x, y !

5 exp~2ivt !exp~iax 2 iby !

incident upon a rough d-periodic surface

y 5 g~x !, g~x 1 d ! 5 g~x !,

and we shall be interested in predictions of the generated
scattered field

ṽscat~x, y, t ! 5 exp~2ivt !vscat~x, y !.

Here, of course, ṽ denotes the pressure in acoustics or the
component of the electric or magnetic field parallel to the
invariant (z) direction in electromagnetics. In any case,
the (reduced) scattered field vscat(x, y) propagates accord-
ing to the Helmholtz equation

Dvscat 1 k2vscat 5 0 (2.1)
on y . g(x), where the wave number k satisfies k2 5 a2

1 b2 5 (2p/l)2 and l is the wavelength of radiation.
The uniqueness of solutions coupled to the periodicity of
the profile g(x) then implies that vscat will be ‘‘quasi-
periodic’’ in x, that is,

vscat~x 1 d, y ! 5 exp~iad !vscat~x, y !. (2.2)

Any of a number of physically relevant boundary condi-
tions can be imposed on the rough surface. For the sake
of definiteness, we shall work with a pressure release or
perfectly conducting (TE) surface, where

vscat(x, g~x !) 5 2v inc(x, g~x !) 5 2exp@iax 2 ibg~x !#.

Finally, the Sommerfeld radiation condition must be im-
posed to specify the physical solution. Within the
present context, this condition can be stated in terms of
the Rayleigh series: If a is any number satisfying a
. maxu g(x)u, then the scattered field in y . a must admit
a representation

vscat~x, y ! 5 (
p52`

`

Bp exp~iapx 1 ibpy ! (2.3)

as a superposition of outgoing waves. Here

ap 5 a 1
2p

d
p, bp 5 Ak2 2 ap

2.

Equivalently, the radiation condition can be stated in
terms of a ‘‘Dirichlet-to-Neumann’’ operator (DNO), with
the advantage that the resulting problem is formulated in
a bounded domain. We recall that given a surface y
5 s(x) the DNO T( s) associated with the scattering
problem (2.1) and (2.2) on y . s(x) is an operator that
acts on (quasi-periodic) functions j(x) defined on y
5 s(x): The operator maps the function j onto a func-
tion T( s)@j#, also defined on the surface, according to

T~ s!@j#~x ! 5
]vscat

]n~x !
(x, s~x !),

where vscat is the (quasi-periodic) solution to Eq. (2.1)
with boundary condition

vscat(x, s~x !) 5 j~x !.

In particular, if s(x) [ a . maxu g(x)u and

j~x ! 5 (
p52`

`

ĵp exp~iapx !,

the corresponding solution in y . a is

vscat~x, y ! 5 (
p52`

`

ĵp exp@iapx 1 ibp~ y 2 a !#,

so that

T~ s!@j#~x ! 5 T~a !@j#~x ! 5 2
]vscat

]y
~x, a !

5 (
p52`

`

~2ibp!ĵp exp~iapx !. (2.4)
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Hence an equivalent form of Sommerfeld’s condition is
given by

]vscat

]y
~x, a ! 1 T~a !@vscat~ • , a !#~x ! 5 0.

Summarizing, and denoting vscat(x, y) by v(x, y), we
shall seek a solution of the system of equations

Dv 1 k2v 5 0, (2.5a)

v(x, g~x !) 5 2exp@iax 2 ibg~x !#, (2.5b)

]yv~x, a ! 1 T~a !@v~ • , a !#~x ! 5 0, (2.5c)

v~x 1 d, y ! 5 exp~iad !v~x, y ! (2.5d)

for g(x) , y , a.

B. Field Expansions
The basic idea behind shape-perturbation methods is to
exploit the explicit solvability of Eqs. (2.5) in the case
where g(x) [ 0, that is, for a flat surface. In this case,
the law of reflection gives, for y . 0,

v 5 v0~x, y ! 5 2exp~iax 1 iby !, (2.6)

and, more generally, if v inc(x, 0) 5 2dp exp(iap x), then

v~x, y ! 5 dp exp~iapx 1 ibpy !.

These relations can be used to advantage if a general sur-
face y 5 g(x) is embedded in a family y 5 dg(x), 0 < d
< 1, and the solutions V(x, y;d) of Eqs. (2.5), with g(x)
replaced by dg(x), are sought in the form of a perturba-
tion series:

V~x, y;d! 5 (
n50

`

vn~x, y !d n. (2.7)

Indeed, as can be readily checked, the functions vn are, at
least formally, solutions to scattering problems over a flat
interface and can therefore be explicitly found. More pre-
cisely, the functions vn satisfy (see, e.g., Ref. 24)

Dvn 1 k2vn 5 0, (2.8a)

vn~x, 0! 5 Pn~x !, (2.8b)

]yvn~x, a ! 1 T~a !@vn~ • , a !#~x ! 5 0, (2.8c)

vn~x 1 d, y ! 5 exp~iad !vn~x, y !. (2.8d)

for 0 , y , a. To find the specific form of the ‘‘incident
field’’ Pn(x), one resorts to the condition satisfied by
V(x, y;d) at y 5 dg(x), namely,

V(x, dg~x !;d) 5 2exp@iax 2 ibd ~x !#. (2.9)

Formal differentiations with respect to d then yield

Pn~x ! 5 2exp~iax !
@2ibg~x !#n

n!

2 (
l50

n21
@ g~x !#n2l

~n 2 l !!
]y

n2lvl~x, 0!, (2.10)

so that the equations can be solved recursively, starting
from Eq. (2.6), to define
v~x, y ! 5 V~x, y;d 5 1 ! 5 (
n50

`

vn~x, y !. (2.11)

This formal procedure (or slight variations thereof )
has been used extensively in both low- and high-order
implementations. It has been referred to by a variety
of names, including small-perturbation method,38,39

Rayleigh–Fourier Method,17 Rayleigh–Rice theory,16 it-
erative series solution,15 etc. Here we shall refer to it
with the generic name of method of ‘‘field expansion’’ (FE).
Our choice for this name is motivated by the actual ex-
pansion of fields that underlies the method; this name
will also help us distinguish it from the operator expan-
sion (OE) method, which we review in Subsection 2.C.

As we mentioned in Section 1, the convergence of the
series in Eq. (2.11) was a subject of much controversy over
the last 50 years and was eventually resolved in Ref. 23.
There it was also shown that, for analytic profiles g(x),
the function (scattered field) V(x, y;d) is analytic for all
values of d on the real line. Besides its intrinsic theoret-
ical value, this observation has a significant practical con-
sequence, as it guarantees that the Taylor coefficients
vn(x, y) contain all the necessary information to deter-
mine the values of V(x, y;d) for every d, even beyond the
disk of convergence of the series. As proposed in Ref. 23,
the FE approach can be combined with mechanisms of
analytic continuation (e.g., conformal mappings,24 Padé
approximation,25,26,29 etc.) to produce a method that can
accurately compute scattering returns for large deforma-
tions of a plane that lie well beyond the radius of conver-
gence of the perturbation series.

For a practical implementation of this approach, it is
convenient to work in Fourier space. More precisely, the
most general solution to Eqs. (2.8a), (2.8c), and (2.8d) is of
the form

vn~x, y ! 5 (
p52`

`

dn, p exp~iapx 1 ibpy ! (2.12)

for some coefficients dn, p . Equations (2.8b) and (2.10)
then translate into a recursion for these coefficients24:

dn, p 5 2~2ib!nCn, p 2 (
l50

n21

(
q52`

`

Cn2l, p2q~ibq!n2ldl,q ,

(2.13)

where

@ g~x !# l/l! 5 (
p52`

`

Cl, p exp~ipx !. (2.14)

Note that the inner sum in Eq. (2.13) is a discrete convo-
lution, so that it can be performed efficiently by means of
fast Fourier transforms (FFTs). Equivalently, an effi-
cient implementation of Eqs. (2.8b) and (2.10) can be at-
tained by performing all multiplications [e.g., by powers
of the profile g(x)] in physical space and all differentia-
tions in the frequency domain and by using FFTs to trans-
form from one to the other. Also, from Eqs. (2.3), (2.11),
and (2.12), we have
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Bp 5 (
n50

`

dn, p , (2.15)

so that the Rayleigh amplitudes can be readily computed
once Eq. (2.13) has been resolved. In fact, as we said, the
series in Eq. (2.15) may not converge for large perturba-
tions. As has been shown, however, Padé approximation
provides an effective analytic continuation mechanism in
this case (see, e.g., Ref. 29).

C. Operator Expansions
An alternative and elegant shape-perturbation scheme
was pioneered by Milder et al.30–36,38 in scattering calcu-
lations, based on earlier work on simulations of the evo-
lution of gravity water waves40–42 (see also Refs. 43 and
44). In the context of two-dimensional, periodic scatter-
ing configurations, this approach starts with consider-
ation of the Helmholtz integral for the scattered field in
y . g(x):

v~x, y ! 5 E
0

dF ]F

]n~x8!
(x 2 x8, y 2 g~x8!)v(x8, g~x8!)

2
]v

]n~x8!
(x8, g~x8!)

3 F(x 2 x8, y 2 g~x8!)Gdx8, (2.16)

where23

F~x, y ! 5
i

4 (
n52`

`

exp~2iand !H0
~1 !(k@~x 1 nd !2

1 y2#1/2)

5
i

2d (
p52`

` exp~ibpu yu!

bp
exp~iapx ! (2.17)

is the (periodized) free-space Green’s function and n(x)
5 (]x g(x), 21) is the (unnormalized) outward normal
vector to the scattering surface. Next, we introduce the
Dirichlet-to-Neumann operator (DNO) T( g), as defined
in Subsection 2.A, in terms of which Eq. (2.16) can be
written in the form

v~x, y ! 5 E
0

dF2
]F

]n~x8!
(x 2 x8, y 2 g~x8!)f inc~x8!

1 F(x 2 x8, y 2 g~x8!)T~ g !@ f inc#~x8!Gdx8,

(2.18)

where we have used v(x, g(x)) 5 2v inc(x, g(x)) and have
set

f inc~x ! 5 v inc(x, g~x !) 5 exp@iax 2 ibg~x !#.
(2.19)

Substituting the modal expansion of the Green’s function
(2.17) into Eq. (2.18), we obtain, for y . max u g(x)u,
v~x, y ! 5 (
p52`

`

Bp exp~iap x 1 ibp y !,

where

Bp 5
i

2dbp
E

0

d

fp~x8!$@iap]xg~x8! 2 ibp#

1 T~ g !%@ f inc#~x8!dx8, (2.20)

fp~x ! 5 exp@2iapx 2 ibpg~x !#. (2.21)

As follows from Eq. (2.20), a central component of the
method relates to the calculation of the DNO. For this, a
perturbative scheme appears to be particularly appropri-
ate, as we recall (cf. Subsection 2.A) that the operator can
be explicitly found for a flat interface. Indeed, letting a
5 0 in Eq. (2.4), we have

T~0 !H (
p52`

`

ĵp exp~iapx !J 5 (
p52`

`

~2ibp!ĵp exp~iapx !.

For a general surface y 5 g(x), we shall seek an expres-
sion for the operator T( g) in the form of a perturbation
series:

T~ g ! 5 T~dg !ud51 5 F (
n50

`

Tn~ g !d nGU
d51

. (2.22)

To find a recursion for the (operator) coefficients Tn( g),
we note that the functions

wp~x, y ! 5 exp~iapx 1 ibpy ! (2.23)

solve Eqs. (2.5a), (2.5c), and (2.5d), so that

T~dg !@exp$iapx 1 ibpdg~x !%#

5 @iapd]xg~x ! 2 ibp#exp@iapx 1 ibpdg~x !#. (2.24)

Expanding Eq. (2.24) in powers of d and equating like
powers, we obtain

Tn~ g !@exp~iapx !#

5 @]xg~x !#~iap!~ibp!n21
@ g~x !#n21

~n 2 1 !!
exp~iapx !

2 ~ibp!n11
@ g~x !#n

n!
exp~iapx !

2 (
l50

n21

Tl~ g !F ~ibp!n2l
$ g~x !%n2l

~n 2 l !!
exp~iapx !G .

Therefore, if

j~x ! 5 (
p52`

`

ĵp exp~iapx !,

then, using the linear character of the operator Tn( g), we
find that
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Tn~ g !@j# 5 @]xg~x !#
@ g~x !#n21

~n 2 1 !! (
p52`

`

~iap!

3 ~ibp!n21ĵp exp~iapx !

2
@ g~x !#n

n! (
p52`

`

~ibp!n11ĵp exp~iapx !

2 (
l50

n21

Tl~ g !F $ g~x !%n2l

~n 2 l !!

3 (
p52`

`

~ibp!n2lĵp exp~iapx !G
or, equivalently, using bp

2 5 k2 2 ap
2,

Tn~ g !@j# 5 ]xH @ g~x !#n

n! (
p52`

`

~iap!~ibp!n21ĵp exp~iapx !J
1 k2

@ g~x !#n

n! (
p52`

`

~ibp!n21ĵp exp~iapx !

2 (
l50

n21

Tl~ g !F $ g~x !%n2l

~n 2 l !!

3 (
p52`

`

~ibp!n2lĵp exp~iapx !G . (2.25)

Setting

D 5 2i]x (2.26)

and introducing a (pseudo-differential) operator bD , de-
fined by

bD@j# 5 (
p52`

`

bpĵp exp~iapx !, (2.27)

we can write Eq. (2.25) as

Tn~ g !@j# 5 ]xH @ g~x !#n

n!
~ibD!n21]xjJ

1 k2
@ g~x !#n

n!
~ibD!n21j

2 (
l50

n21

Tl~ g !F $ g~x !%n2l

~n 2 l !!
~ibD!n21jG .

(2.28)

A further simplification is possible at this point, as first
noted in Refs. 45 and 46. Indeed, note that Eq. (2.28) for
Tn( g) involves the operators Tl( g), 0 < l < n 2 1,
evaluated on functions that change with the order n. In
contrast, using the self-adjointness of these operators
(and the fact that the operator bD commutes with differ-
entiation), we can rewrite Eq. (2.28) in the form
Tn~ g !@j# 5 ~ibD!n21H ]x

@ g~x !#n

n!
]xj 1 k2

@ g~x !#n

n!
jJ

2 (
l50

n21

~ibD!n2l
@ g~x !#n2l

~n 2 l !!
Tl~ g !@j#. (2.29)

This latter form significantly reduces the computational
effort, as now the operators Tl( g), 0 < l < n 2 1, are al-
ways evaluated on the same function j, independently of
n, and can therefore be stored and reused at each order.
In fact, with this addition, a numerical implementation of
this approach can be attained with prescriptions similar
to those described above in the context of the FE proce-
dure. Indeed, here the values of Tl( g)@j# on a fixed eq-
uispaced grid can, once again, be recursively obtained
from Eq. (2.29) by effecting multiplications in physical
space and applications of bD in the frequency domain and
by alternating between these by means of FFTs.

D. Partial Field Expansions
When one is interested in the scatter off a specific surface
y 5 g(x) [and not on that generated by the intermediate
surfaces y 5 dg(x)], a particularly appealing feature of
the OE procedure is that only the DNO is approximated
perturbatively. In particular, the function f inc in Eq.
(2.19) is not expanded in powers of g [and neither is fp in
Eq. (2.21)]. This suggests an alternative to the FE
scheme presented in Subsection 2.B, wherein the incom-
ing wave is not expanded in powers of d. More precisely,
an alternative form of the recursions can be derived if we
replace Eq. (2.9) by

V(x, dg~x !;d) 5 2exp@iax 2 ibg~x !#, (2.30)

so that, at zero order, we have

v0~x, 0! 5 2exp@iax 2 ibg~x !#.

Indeed, in this case, Eqs. (2.8) are replaced by a similar
recursion, but now Pn in Eq. (2.10) takes on the simpler
form

Pn~x ! 5 2(
l50

n21
@ g~x !#n2l

~n 2 l !!
]y

n2lvl~x, 0!. (2.31)

As expected, this modified approach, which we shall refer
to as a partial field expansion (PFE), generally exhibits
better convergence properties than the FE method; see
Fig. 1.

As follows from Eqs. (2.13), (2.29), and (2.31) and as ex-
plained above, methods based on shape deformations
lead, in this case, to very simple and efficient algorithms,
entailing only straightforward FFTs and multiplications.
In fact, it is these characteristics that can make these ap-
proaches the method of choice over other classical proce-
dures (e.g., integral equations, finite elements, etc.) in
many instances; see, e.g., Refs. 47 and 48 for a recent ex-
ample of application and comparison with alternative
methods.

In fact, the advantages of shape-deformation methods
over other rigorous numerical schemes can become more
pronounced for scalar and vector problems in three di-
mensions. Indeed, in this case, finite-element ap-
proaches, for instance, must deal with volumetric discreti-
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zations and artificial boundary conditions,49 while the
design of efficient integral equation methods faces signifi-
cant challenges in the design of both appropriate quadra-
ture rules and efficient matrix inversion mechanisms; see,
e.g., Refs. 39 and 50. In contrast, the FE and PFE ap-
proaches described above can be readily extended to these
cases, leading to similarly simple recurrences.26,28,48 The
OE approach can also be extended, although, for general
three-dimensional electromagnetic problems, it requires a
more careful treatment on account of the more compli-
cated boundary conditions that must be enforced in this
case and that lead to a correspondingly more complicated
definition for the relevant DNO.36,37 [In this connection,
we point out that the treatment in Refs. 36 and 37 does
not constitute the only possibility, and, in fact, a perhaps
more natural version of the recurrence can be derived.
Indeed, for instance in the case of perfectly conducting
surfaces, such a recurrence can be derived by defining the
DNO as directly providing the surface current from
knowledge of the electric field on the surface for use in a
Stratton–Chu formula51—the analog of Eq. (2.16). The
recurrence for the perturbation coefficients of the DNO
can then be derived by simply enforcing that the operator
vanish on normal fields and that it satisfy the analog of
Eq. (2.24) on electric fields that are tangential to the sur-
face.]

The aforementioned advantages of shape-deformation
methods hold throughout their domain of applicability.
And, as was shown in Refs. 23 and 52, the theoretical va-
lidity of boundary perturbation expansions extends to
perturbations of arbitrary order and arbitrary size.
However, a numerical implementation of these schemes
leads to a restricted domain of applicability on account of
inaccuracies that arise from finite arithmetic and round-
off errors, which have, until now, remained unexplained.
The origins of these instabilities are elucidated in Section
3 in the context of both the OE and FE implementations.

3. CANCELLATIONS AND CONDITIONING
It is important to note that the derivations of the recur-
sions in Section 2 are formal in nature. Indeed, as we
mentioned, the question of convergence of shape-

Fig. 1. Plot of ‘‘energy defect’’ (error in conservation of energy)
versus perturbation order n for a sinusoidal profile under normal
incidence; the height-to-period ratio is 0.05, and the wavelength-
to-period ratio is 0.065. A comparison is given of FE and PFE
implementations.
perturbation expansions has a long history, as does the
question of validity of recursions such as those in Eqs.
(2.8) and (2.29). With regard to the issue of convergence,
a rather general result can be derived from the work of
Calderón,53 and Coifman and Meyer54 on the theory of
singular integrals. Indeed, it follows from this work that
the series in Eq. (2.22) converges for sufficiently small d
(in appropriate functional spaces) provided that g(x) is a
Lipschitz-continuous function [i.e., there is a constant M
such that u g(x) 2 g(x8)u < Mux 2 x8u for 0 < x, x8
< d]. From this, in turn, it also follows that the series
(2.7) converges inside the domain y . dg(x). However,
these results do not shed light on the, perhaps more im-
portant, issue of validity of the recursive formulas. This,
in fact, is a more subtle issue, as it involves the behavior
of the fields on the boundary y 5 dg(x) of their domains
of definition. An affirmative answer on the validity of
the recursive relations was finally provided in Ref. 23 for
the case where g(x) is an analytic function.

The discrepancy in the smoothness requirements of the
results quoted above, Lipschitz regularity for Ref. 54 and
analyticity for Ref. 23, can be used to motivate one of our
main observations. Indeed, the analyticity assumption
in Ref. 23 was fundamental to the derivation of the recur-
rence (2.8), which, when analyzed in detail, can be shown
to involve derivatives of g(x) of arbitrarily high order.
This property is shared by the recurrence (2.29), where it
is, in fact, much more obvious (bD is a pseudo-differential
operator of order 1; i.e., with regard to regularity proper-
ties, it acts like differentiation). On the other hand, as
we said, the results in Ref. 54 apply to general ‘‘rough’’
(Lipschitz) perturbations of a plane. As we have
shown,55,56 this apparent contradiction is at the heart of
the instabilities that may arise in OE and FE calcula-
tions. Indeed, as argued there, substantial cancellations
occur in Eqs. (2.8b) and (2.29), so that the overall sums on
their respective right-hand sides give rise to finite quan-
tities in spite of possible singularities in the individual
terms.

In the remainder of this section, we shall substantiate
this argument with some analytical remarks and some
numerical examples. In particular, we shall first explain
the manner in which the cancellations manifest them-
selves at low orders, where explicit calculations can be
performed to reveal them. In addition to providing a di-
rect verification of their presence, these low-order calcu-
lations will also shed light on the rather dramatic effect of
cancellations in high-order simulations (Subsection 3.C).
In Section 4, we shall further demonstrate how these can-
cellations preclude an iterative estimation of the func-
tions vn in Eqs. (2.8) or Tn( g)@j# in Eq. (2.29), as any use
of the triangle inequality destroys these, rendering a use-
less bound. Interestingly, we will also show that a simple
change of independent variables can be made to implicitly
account for cancellations, allowing then for an iterative
estimation in the new coordinates.

A. Cancellations in the Operator Expansion Method
In the OE formulation, a cancellation of high-order de-
rivatives occurs at every order and can, in fact, be explic-
itly identified at low orders in Eq. (2.29). Indeed, for n
5 0, 1, 2, Eq. (2.29) reads as
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T0@j# 5 2ibDj, (3.1a)

T1~ g !@j# 5 2DgDj 1 k2gj 2 ibDgT0@j#,
(3.1b)

T2~ g !@j# 5 ibD$2D~ g2/2!Dj 1 k2~ g2/2!j

2 ibD~ g2/2!T0@j# 2 gT1~ g !@j#%,

(3.1c)

where the D and the bD are defined as in Eqs. (2.26) and
(2.27), respectively. Note that T1( g)@j# appears to in-
volve second derivatives of the data j and that T2( g)@j#
appears to involve third derivatives. On the other hand
(see Appendix A, Theorem A.1), if f is Lipschitz continuous
and h is square-integrable, the operator bD satisfies a
kind of ‘‘product rule:’’

bD@ fh# 2 fbD@h# 5 Rf @h#, (3.2)

where Rf@h# is more regular than either of the two terms
on the left-hand side (in particular, it is itself square-
integrable). In other words,

most singular part of bD@ fh# 5 fbD@h#.

Thus we can write

T1~ g !@j# 5 2~Dg !~Dj! 2 g~D2j! 1 k2gj 2 gbD
2 j

2 Rg@bDj#,

and since

bD
2 5 k2 2 D2, (3.3)

we see that the second derivatives of j and the term in-
volving k2 exactly cancel out, yielding

T1~ g !@j# 5 2~Dg !~Dj! 2 Rg@bDj#. (3.4)

Similarly, using Eq. (3.4) in Eq. (3.1c) and expanding the
derivatives, we get

T2~ g !@j# 5 ibD$2~ g2/2!D2j 2 g~Dg !~Dj! 1 k2~ g2/2!j

2 ~ g2/2!bD
2 j 2 Rg2/2@bDj# 2 g(~Dg !~Dj!

2 Rg@bDj#!%

or, deleting terms that exactly cancel out (first/third/
fourth and second/sixth terms on the right-hand side),

T2~ g !@j# 5 ibDSg@bDj#, (3.5)

where the operator Sf is defined as

Sf@h# 5 2Rf 2/2@h# 1 fRf@h#. (3.6)

Again here, and in contrast with the individual terms on
the right-hand side of Eq. (3.1c), the right-hand side of
Eq. (3.5) is square-integrable, as the operator Sf in Eq.
(3.6) maps square-integrable functions onto functions
with a square-integrable derivative (see Appendix A,
Theorem A.2).

B. Cancellations in Field Expansion Methods
Not surprisingly, the cancellations in the FE and PFE ap-
proaches lead to consideration of the same operators as
those in Subsection 3.A. The behavior of the ‘‘cancelled
equations’’ in this case, however, is somewhat different
from that of the corresponding OE relations [cf. Eqs. (3.4)
and (3.5)], as we explain next.

As discussed in Subsections 2.B and 2.D, the recur-
rences for the FE and PFE approaches are similar in na-
ture and differ only in the manner in which the incident
wave is treated. For this reason, cancellations in these
procedures arise in precisely the same way, which, for the
sake of brevity, we shall exemplify on the PFE approach;
as will be clear from these developments, entirely analo-
gous remarks apply to the FE scheme.

To shed light on the cancellations in the PFE method,
we begin by noting that the partial derivatives with re-
spect to the transverse ( y) variable in Eq. (2.31) are
closely related to the operator bD in Eq. (2.27); indeed, we
have

]y 5 ibD .

For n 5 0, 1, 2 then, and letting j denote the incident
wave on the scattering surface, we can write the PFE re-
currences as

v0 5 j, (3.7a)

v1 5 2igbDv0 , (3.7b)

v2 5
g2

2
bD

2 v0 2 igbDv1 . (3.7c)

If j has a square-integrable derivative, it follows from
Eqs. (3.7) that both v0 and v1 are well defined. To see
how cancellations arise in v2 , we write, from Eq. (3.7c),

v2 5
g2

2
~k2 2 D2!j 2 gbDgbDj, (3.8)

where we have used Eqs. (3.7a) and (3.7b) and the equal-
ity (3.3). Then, from Eq. (3.2),

v2 5
g2

2
~k2 2 D2!j 2 g2bD

2 j 2 gRg@bDj#

5
g2

2
~k2 2 D2!j 2 g2~k2 2 D2!j 2 gRg@bDj#

5 2
g2

2
~k2 2 D2!j 2 gRg@bDj#. (3.9)

On the other hand, we also have that

bD

g2

2
bDj 5

g2

2
~k2 2 D2!j 1 Rg2/2@bDj#, (3.10)

so that Eq. (3.9) can be transformed to

v2 5 2bDFg2

2
bDjG 1 Rg2/2@bDj# 2 gRg@bDj#

or, by using Eq. (3.6),

v2 5 2bDFg2

2
bDjG 2 Sg@bDj#. (3.11)

As follows from the above derivation, this last form of
definition for v2 rectifies some cancellations present in
the original form (3.7c). Indeed, from Theorem A.2, the
second term in Eq. (3.11) is more regular than any of the
terms in Eq. (3.7c). The first term in Eq. (3.11), on the
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other hand, precisely identifies the most singular part of
v2 and expresses it in a manner that is better suited for
approximation. Indeed, a comparative analysis of this
term with the first term in Eq. (3.7c), for instance, reveals
that the latter will lead to larger errors on truncation of
the profile g and the incidence j. To illustrate this addi-
tional and subtle effect, we let br and C2,r [cf. Eq. (2.14)]
denote the Fourier coefficients of bDj and @ g(x)#2/2, re-
spectively:

bDj~x ! 5 (
r52`

`

br exp~iapx !,

@ g~x !#2/2 5 (
r52`

`

C2,r exp@i~2p/d !px#.

Then the first term in Eq. (3.7c) is

@ g~x !#2

2
bD

2 j~x ! 5 (
r52`

` S (
p52`

`

C2,r2pbpbpD exp~iar x !,

(3.12)

while that in Eq. (3.11) reads as

bDFg2

2
bDjG ~x ! 5 (

r52`

`

brS (
p52`

`

C2,r2pbpD exp~iarx !.

(3.13)

The issue here then is the approximation of the Fourier
coefficients in Eqs. (3.12) and (3.13) with the use of trun-
cated series, that is, as

(
p52F

F

C2,r2pbpbp , (3.14)

br (
p52F

F

C2,r2pbp , (3.15)

respectively. The benefits of the formulation (3.11) are
now evident from Eqs. (3.14) and (3.15) as the additional
factor bp ('u pu) inside the sum of the former decreases
the rate of convergence of the series and translates into
larger errors. In fact, these effects are clearly influenced
by the regularity, or lack thereof, of both the profile g and
the incidence j, as it is these characteristics that deter-
mine the decay of the coefficients C2,r and br (and thus
the speed of convergence of the series). Moreover, even
in the case of smooth data, the detrimental effects of these
cancellations are consistently accentuated at higher or-
ders. Indeed, proceeding as in the derivation of Eq.
(3.11), we also find that, after significant cancellation,

v3 5 i
g3

6
bD

3 v0 1
g2

2
bD

2 v1 2 igbDv2 (3.16)

can be reduced to

v3~x ! 5 ibD
2 Fg3

6
bDjG 1 igbDSg@bDj#, (3.17)

where again the first term entails the most singular part,
on account of Theorem A.2; in fact, it can be shown induc-
tively that
most singular part of vn 5 ~2i !nbD
n21Fgn

n!
bDjG .

(3.18)

From Eq. (3.17) and letting C3,r denote the Fourier coef-
ficients of g3/6, we see that the analog of the series (3.14)
at third order, namely a truncated version of the first
term in Eq. (3.16), leads to

i (
p52F

F

C3,r2pbp
2bp (3.19)

while that corresponding to the first term on the right-
hand side of Eq. (3.17) is

ibr
2 (

p52F

F

C3,r2pbp . (3.20)

These latter expressions then imply that the relative er-
ror in an approximation of the original recursion signifi-
cantly deteriorates at third order, while it remains con-
stant if reformulated as in Eq. (3.17) after cancellations
have been accounted for. Similar remarks apply at
higher order [cf. Eq. (3.18)].

As follows from these calculations, the cancellations
are very significant, as they occur in the most singular
part on the right-hand sides in Eqs. (2.29) and (2.31).
Within a numerical implementation, this amounts to cal-
culating relatively small numbers (e.g., the Fourier coef-
ficients of Tn( g)@j#) as a difference of very large numbers
[e.g., the Fourier coefficients of each (singular) individual
term in the recurrence], which is, of course, a recipe for
ill-conditioning (see Fig. 2).

C. Effect of Cancellations in High-Order
Implementations
In connection with calculations of arbitrary order, the ar-
guments in the preceding sections also suggest that this
ill-conditioning should increase with increasing interface
roughness as the terms in the recursions become more
singular. Moreover, even for very smooth profiles, the in-
stabilities should be enhanced as the number of Fourier
modes in a calculation are increased, since the small con-
tributions to high wave numbers are still attained as dif-
ferences of large numbers (e.g., as in Fig. 2). The next
series of numerical experiments (Figs. 3 and 4) were de-
signed to confirm these predictions. To this end, we se-
lected scattering profiles given by

gs~x ! 5 cos~x !, (3.21a)

gr~x ! 5 ~2 3 1024!x4~2p 2 x !4 2 c0 , (3.21b)

gL~x ! 5 5 2
2

p
x 1 1, 0 < x < p

2

p
x 2 3, p < x < 2p

, (3.21c)

with decreasing regularity: gs is ‘‘smooth’’ (analytic), gr
is ‘‘rough’’ (i.e., finite smoothness; four but not five times
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continuously differentiable), and gL is only Lipschitz con-
tinuous (it possesses a discontinuous first derivative).
The constant c0 in Eq. (3.21b) was chosen so that gr has
zero mean (as do gs and gL). To facilitate a comparison,
we chose the scaling of each of the profiles so that they all
have approximate amplitudes of 2 and maximum slopes
of approximately 1. The Fourier-series representations of
gr and gL are given by

gr~x ! 5 (
k51

` 96~2k2p2 2 21!

125k8 cos~kx !,

gL~x ! 5 (
k51

` 8

p2~2k 2 1 !2 cos@~2k 2 1 !x#,

and, to minimize the effects of aliasing errors, we approxi-
mate them by their truncated Fourier series:
gr,P~x ! 5 (
k51

P 96~2k2p2 2 21!

125k8 cos~kx !,

gL,P~x ! 5 (
k51

P/2 8

p2~2k 2 1 !2 cos@~2k 2 1 !#.

Indeed, if P ! Nx/2, the number of modes in our numeri-
cal approximation, the effects of aliasing will be minimal
(in fact, no aliasing occurs if nP 1 F < Nx/2, where n is
the degree of the perturbation series and F is the number
of Fourier modes in the Dirichlet data).

Figures 3 and 4 display the errors associated with per-
turbative approximations to surface currents (DNO) in-
duced on the profiles in Eqs. (3.21). The figures show er-
rors from approximations of increasing order
corresponding to the OE and PFE formalisms as in Eq.
(2.29) and Eqs. (2.8) and (2.31), respectively. More pre-
cisely, the errors correspond to approximations of the ex-
act solutions (2.23), for which we can explicitly compute
Fig. 2. Plots of relative error in (absolute value of) the Fourier coefficients (T2( g)@j #̂)p and ( v̂3)p for different values of the wave number
(and oblique incidence) as computed from the original OE and PFE recursions, respectively [cf. Eqs. (3.1c) and (3.16)]; the results are for
rough profile g and incidence j with ĝp 5 ĵp 5 p22 for u pu < F. To avoid aliasing effects and isolate the instabilities, here F was chosen
as F 5 Nx/3 for T2 and F 5 Nx/4 for v3 , where Nx 5 2048 is the number of discretization points.

Fig. 3. Maximum error [cf. Eq. (3.23)] in the evaluation of the DNO with the OE, PFE, and PTFE algorithms. A comparison is given
with exact solution (3.22) and p 5 1 for normal incidence with a wavelength-to-period ratio of 0.4368. (a) Sinusoidal profile (3.21a)
(d 5 0.09, Nx 5 64), (b) ‘‘rough’’ profile (3.21b) (d 5 0.03, Nx 5 256), (c) Lipschitz profile (3.21c) (d 5 0.03, Nx 5 256).
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Fig. 4. Maximum error [cf. Eq. (3.23)] in the evaluation of the DNO with the OE, PFE, and PTFE algorithms. A comparison is given
with exact solution (3.22) and p 5 1 for normal incidence with a wavelength-to-period ratio of 0.4368. The effect of different discreti-
zations for Lipschitz profile (3.21c) is given, showing the existence of an optimal number of discretization points (Nx 5 512), a compro-
mise between aliasing and conditioning errors: (a) effect on OE scheme, (b) effect on PFE algorithm.
T~ g !@exp$iapx 1 ibpg~x !%#

5 @iap]xg~x ! 2 ibp#exp@iapx 1 ibpg~x !#. (3.22)

As explained in Subsections 2.B and 2.C, the approxima-
tions are computed by using (fast) Fourier collocation on
Nx equally spaced nodes xj on @0, d#.57 When truncated
and summed up to order n, this approach produces an ap-
proximation Tn,Nx

approx for which the error is defined as

Error 5 Error~n, Nx!

5 max
1<j<Nx

uT~ g !@j#~xj! 2 Tn,Nx

approx
~xj!u. (3.23)

The figures display this error as a function of n, the num-
ber of terms retained in the Taylor series, for each of the
profiles (P 5 40, d 5 0.09 for gs and d 5 0.03 for gr and
gL). For comparison purposes, the figures also display
the results corresponding to a more stable algorithm, la-
beled partial transformed field expansions (PTFEs). This
latter scheme corresponds to the implementation of alter-
native recursions that can be obtained much as in the
PFE approach but with the addition of a nonlinear trans-
formation effected a priori of the expansion (thus the
PTFE name). As we shall see, our theoretical results in
Section 4 guarantee that the transformation implicitly ac-
counts for all cancellations and thus they predict the ob-
served enhanced stability of the method.

The effect of the ill-conditioning of the OE and PFE for-
mulas is evidenced in Fig. 3 and 4 in the form of an ex-
plosive divergence of the series beyond a few terms.
Moreover, as predicted, the onset of this divergence is pre-
cipitated by a profile’s roughness. Indeed, the figures
show that as the profile is varied from smooth to rough to
Lipschitz, the onset of divergence for the OE approach
changes from n 5 13 to 7 to 6 while that for the PFE pro-
cedure occurs at n 5 15, 9, and 7, respectively (note that,
in contrast, the results of PTFE are consistently stable).
A further refinement of the discretization (from Nx 5 64
for gs and Nx 5 256 for gr) results in a loss of accuracy
for both the smooth and rough profiles, indicating that
conditioning errors overcome those that may arise from
aliasing. For the Lipschitz profile, on the other hand, a
discretization with Nx 5 512 actually produces slightly
better results, but they again deteriorate at Nx 5 1024;
see Fig. 4.

4. CONVERGENCE
As we demonstrated in Section 3, the cancellations ap-
pear at every order n and, in fact, they become more se-
vere with increasing n. In this section, we address the
consequences of these observations on attempts at estab-
lishing the convergence of the perturbation series. In-
deed, we shall first explain how what is perhaps the most
natural approach cannot succeed, precisely on account of
cancellations. In this connection, it can be argued that it
is the failure of this approach that largely contributed to
the historical confusion over the convergence of shape-
perturbation expansions. We shall further show here
that a strategy, based on a change of independent vari-
ables, can be devised to implicitly account for cancella-
tions in a manner that then allows for a rather straight-
forward proof of the convergence of the perturbation
series.

To begin, we note that a most natural attempt at the
convergence of the series (2.7) or (2.22) would be to try to
estimate the growth of the terms in the series inductively,
appealing to the corresponding recursions. Indeed, if we
could show that the size of the nth term in the series is
bounded by Bn, for some constant B, then the existence of
a positive radius of convergence will follow. Now, rather
clearly, such a procedure cannot succeed, as any attempt
at estimating the right-hand sides of the recursions will
destroy the cancellations. This, in fact, can be easily il-
lustrated within the Fourier version (2.13) of Eqs. (2.8) [a
similar calculation can be done for Eq. (2.29)]. To this
end, consider an arbitrary M-mode Fourier profile

g~x ! 5 (
p52M

M

ĝp exp~ipx !,

and define Cl, p by

@ g~x !# l

l!
5 (

p52lM

lM

Cl, p exp~ipx !.
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Fig. 5. (a) Results of the implementation of the recursion (4.1) in exact and finite-precision arithmetic, (b) root test for the sequences Dn
and Dn in Eqs. (4.1) and (4.2), respectively.
Then, from Eq. (2.13), it follows that

Dn 5 2~2ib!nCn,nM 2 (
l50

n21

Cn2l,~n2l !M~ib lM!n2lDl ,

(4.1)

where Dl is the amplitude of the highest-order Fourier
mode at order l:

Dl 5 dl,lM .

In Fig. 5, we show some numerical results obtained from
implementation of Eq. (4.1) in the most favorable case of
an analytic boundary

g~x ! 5 2 cos~x ! 5 exp~ix ! 1 exp~2ix ! ~M 5 1 !;

the wave number is k 5 1, and the incidence is normal.
Figure 5(a) shows the effect of cancellations on the accu-
racy that can be attained: At sufficiently high orders,
round-off errors completely overcome the values of inter-
est. These errors, of course, arise from computing
smaller values (i.e., the values of Dn) as differences of
larger numbers [i.e., the individual terms on the right-
hand side of Eq. (4.1)]. The fact that these large num-
bers do indeed significantly cancel out is further demon-
strated in Fig. 5(b), which also exemplifies the effect of
straightforward bounds on the recursion. For this, we
introduce the majorizing sequence Dn , defined by the re-
currence

Dn 5 ubunuCn,nMu 1 (
l50

n21

uCn2l,~n2l !Muub lMun2lD l .

(4.2)

Clearly,

uDnu < Dn ,

as Eq. (4.2) can be obtained from Eq. (4.1) upon use of the
triangle inequality. As we show in Fig. 5(b), this esti-
mate, which destroys the cancellations in Eq. (4.1), leads
to a series with a vanishing radius of convergence.58

Interestingly, however, a direct estimation of the terms
of the series can be achieved if a change of independent
variables is effected before the perturbation expansion.
Indeed, consider the transformation

x8 5 x, y8 5 aF y 2 g~x !

a 2 g~x !
G , (4.3)
which maps the domain g(x) , y , a to the strip 0
, y8 , a. Problem (2.5) then transforms into

D8u 1 k2u 5 F~x8, y8!, (4.4a)

u~x8, 0! 5 2exp@iax8 2 ibg~x8!#, (4.4b)

]y8u~x8, a ! 1 T~a !@u~ • , a !#~x8! 5 R~x8!, (4.4c)

u~x8 1 d, y8! 5 exp~iad !u~x8, y8! (4.4d)

for 0 , y8 , a, where

u~x8, y8! 5 v(x8, $@a 2 g~x !#/a%y8 1 g~x !), (4.5)

F~x8, y8! 5 divx8H 2g~x8!

a
¹x8u 2

@ g~x8!#2

a2 ¹x8u

1
~a 2 y8!¹x8g~x8!

a
]y8u

2
~a 2 y8!g~x8!¹x8g~x8!

a2 ]y8uJ
1 ]y8F ~a 2 y8!¹x8g~x8!

a
• ¹x8u

2
~a 2 y8!g~x8!¹x8g~x8!

a2 • ¹x8u

2
~a 2 y8!2u¹x8g~x8!u2

a2 ]y8uG
2

¹x8g~x8!

a
• ¹x8u

1
g~x8!¹x8g~x8!

a2 • ¹x8u

1
~a 2 y8!u¹x8g~x8!u2

a2 ]y8u

1
2g~x8!k2

a
u 2

@ g~x8!#2k2

a2 u,

R~x8! 5
g~x8!

a
T~a !@u~ • , a !#~x8!.
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Note that, coincidentally, this change of independent vari-
ables agrees with that used in the C method of Chand-
ezon et al.59,60 Our use of the transformation, however,
differs from that of the C method, where it is introduced
to conveniently recast Eqs. (4.4) in the form of an eigen-
value problem for the vertical propagation constants. In
contrast, our appeal to the transformation (4.3) is based
on an entirely different property, specifically related to
conditioning and convergence of shape-perturbation ap-
proaches. Indeed, dropping primes and formally expand-
ing

u~x, y ! 5 (
n50

`

un~x, y !,

where un 5 O(g(x)n), we obtain

Dun 1 k2un 5 ~1 2 dn,0!Fn~x, y !, (4.6a)

un~x, 0! 5 2~2ib!n exp~iax !
@ g~x !#n

n!
, (4.6b)

]yun~x, a ! 1 T~a !@u~ • , a !#~x ! 5 Rn~x !, (4.6c)

un~x 1 d, y ! 5 exp~iad !un~x, y ! (4.6d)

for 0 , y , a, where dn, j is the Kronecker delta,

Fn~x, y ! 5 divx@Fn
~1 !~x, y !# 1 ]yFn

~2 !~x, y ! 1 Fn
~3 !~x, y !,

Fn
~1 !~x, y ! 5

2g~x !

a
¹xun21 2

@ g~x !#2

a2 ¹xun22

1
~a 2 y !¹xg~x !

a
]yun21

2
~a 2 y !g~x !¹xg~x !

a2 ]yun22 ,

Fn
~2 !~x, y ! 5

~a 2 y !¹xg~x !

a
• ¹xun21

2
~a 2 y !g~x !¹xg~x !

a2 • ¹xun22

2
~a 2 y !2u¹xg~x !u2

a2 ]yun22 ,

Fn
~3 !~x, y ! 5 2

¹xg~x !

a
• ¹xun21 1

g~x !¹xg~x !

a2 • ¹xun22

1
~a 2 y !u¹xg~x !u2

a2 ]yun22 1
2g~x !k2

a
un21

2
@ g~x !#2k2

a2 un22 ,

Rn~x ! 5
g~x !

a
T~a !@un21~ • , a !#~x !.

Equations (4.6) are obviously similar in structure to
Eqs. (2.8). There are, however, significant differences.
Most notably, in contrast with Eqs. (2.8), Eqs. (4.6) do not
involve high-order derivatives of lower-order iterates
$ul% l50
n21, and thus they do not require derivatives of the

profile g(x) of increasingly high order. In fact, at this
point, under the sole assumption that g(x) has two con-
tinuous derivatives, it can be inductively shown, by using
the techniques of Ref. 55, that

iuni2 < K1Bn (4.7)

for some constants K1 , B . 0, where the (Sobolev) norm
of index s is defined by

iuis
2 5 (

l50

s

(
p52`

`

~1 1 u pu2!s2lE
0

a

u]y
l ûp~ y !u2 dy.

Indeed, in contrast with the solutions to Eqs. (2.8), the so-
lutions un to Eqs. (4.6) can be iteratively bounded in these
Sobolev norms with a direct use of the triangle inequality
on the right-hand sides Fn and Rn that depend on
$ul% l50

n21. Such a strategy readily delivers inequality (4.7),
which, in particular, demonstrates that the transformed
field u is analytic with respect to the perturbation param-
eter d under rather permissive smoothness restrictions on
g(x).

In more detail, classical results from the theory of ellip-
tic partial differential equations61,62 indicate that if
f(x, y), m(x), and h(x) are such that

if i0 5 (
p52`

` E
0

a

uf̂p~ y !u2 dy,

imi1/2 5 (
p52`

`

~1 1 u pu2!1/2um̂pu2,

ihi3/2 5 (
p52`

`

~1 1 u pu2!3/2uĥpu2

are all bounded, then there exists a unique solution of

Dw~x, y ! 1 k2w~x, y ! 5 f~x, y !, (4.8a)

w~x, 0! 5 h~x !, (4.8b)

]yw~x, a ! 1 T~a !@w~ • , a !#~x ! 5 m~x !, (4.8c)

w~x 1 d, y ! 5 exp~iad !w~x, y ! (4.8d)

for 0 , y , a satisfying

iwi2 < Ke~ if i0 1 ihi3/2 1 imi1/2! (4.9)

for some Ke . 0. Now, the explicit solution of Eqs. (4.6)
at order 0 verifies the inequality (4.7) for n 5 0. On the
other hand, if we assume the inequality (4.7) for all n
, N, it can be shown, again as in Refs. 52 and 55, by us-

ing the triangle inequality, that

iFNi0 < K1K0~CgBN21 1 Cg
2BN22!, (4.10a)

iRNi1/2 < K1K0CgBN21, (4.10b)

where K0 . 0, and Cg . 0 is a constant bounding the sec-
ond (continuous) derivative of g(x) on @0, d#. Then, from
inequalities (4.9) and (4.10), we have
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iuNi2 < KeH iFNi0 1 I2~ib!N exp~iax !
@ g~x !#N

N!
I

3/2

1 iRNi1/2J
< KeFK1K0~CgBN21 1 Cg

2BN22! 1 bN
Cg

N

N!

1 K1K0CgBN21G < K1BN

if we choose B . Cg max$6KeK0 , A3KeK0,
@3Ke /(K1N!)#1/Nb%, which, by induction, proves the in-
equality (4.7). We remark again that the success of this
argument relied on the possibility of bounding the norms
of Fn and Rn by the sum of the norms of each of their con-
stitutive terms to obtain the inequalities (4.10), a possi-
bility that, in turn, relies on the absence of cancellations
in these sums.

Finally, by similar arguments,52 it can be shown that if
g(x) is analytic, then

I ]x
l ]y

m

l!m!
unI

2

< C2Bn
Dm

~m 1 1 !2

Al

~l 1 1 !2 ,

which, in particular, implies that u is jointly analytic with
respect to d and the spatial variables x and y. If we recall
the change of variables (4.3) that produced u from v in Eq.
(4.5), it then follows that the original field v itself enjoys
this joint analyticity property. This latter observation, in
turn, guarantees the validity of the recurrences, and it
also recovers the original result of Ref. 23 in a direct man-
ner, bypassing any reference to the integral equation for-
mulation.

5. CONCLUDING REMARKS
In this paper, we have analyzed the conditioning proper-
ties of shape-deformation methods for rough-surface-
scattering simulations. In particular, we have presented
a theory that explains the observed behavior of these
schemes, whose performance typically deteriorates with
increasing surface roughness and/or increasing number of
discretization points beyond a threshold. The theory at-
tributes this behavior to significant cancellations in the
recursions underlying these numerical procedures. A va-
riety of analytical and numerical results, encompassing
both low- and high-order calculations, were presented
that support this contention.

Our discussion also addressed theoretical and numeri-
cal consequences of these cancellations. On the theoret-
ical side, we showed how they prevent a most straightfor-
ward proof of convergence of the perturbation series, and
we suggested that this significantly added to the histori-
cal controversy over the properties of the series. More-
over, we also showed that a simple change of independent
variables can be used to rectify the cancellations and al-
low for a new, direct demonstration of convergence. As
for numerical implementations, we showed that the can-
cellations are always significant and that they become
more pronounced with decreasing surface regularity. In
particular, even for smooth profiles, the cancellations im-
pose certain restrictions on the discretizations (in either
physical or Fourier space), as these must balance accu-
racy requirements, which demand a large number of
points, with stability, which favors a small number of fre-
quencies.

Finally, our results can be interpreted as providing
guidelines for the design of new, stabilized implementa-
tions of boundary perturbation methods. Indeed, our
very precise identification of the origins of instabilities
can be used in attempting to mollify them. In the case of
low- (first-, second-) order calculations, the relative sim-
plicity of the recurrence could potentially allow for an ex-
plicit account of cancellations, that is, for a restatement of
the formulas in a manner that explicitly avoids the calcu-
lation of small numbers (e.g., high-frequency Fourier co-
efficients) as differences of large ones. For higher-order
simulations, on the other hand, this strategy becomes in-
creasingly complex, as the formulas get progressively
more complicated. In this case, however, our theoretical
results suggest a number of schemes to implicitly account
for cancellations. Indeed, as we stated, the success of our
approach to convergence of the perturbation series im-
plies that the newly derived recursions in the trans-
formed variables do not exhibit significant cancellations
and thus they must lead to a well-conditioned scheme (in
fact, the curves labeled PTFE in Figs. 3 and 4, which pre-
cisely correspond to such a scheme, provide some evidence
to support this assertion). More generally, a more funda-
mental property of the transformed recursions that could
prove useful in the design of new implementations is that,
in contrast with the original recurrences, they are derived
without the need to differentiate the fields across the
boundary of their domains of definition. Indeed, it is this
characteristic that eventually leads to formulas that do
not involve high-order derivatives of the surface [cf. Eqs.
(4.6)] and that, more generally, could guide the design of
alternative stabilized schemes.

APPENDIX A: SMOOTHNESS OF
REMAINDERS IN LOW-ORDER OPERATOR
EXPANSION AND PARTIAL FIELD
EXPANSION FORMULAS
For the sake of completeness, in this appendix we present
a discussion on the regularity properties of the operators
Rf and Sf introduced in Subsection 3.A [cf. Eqs. (3.2) and
(3.6), respectively]. Specifically, we have the following:

Theorem A.1. Let f(x) be a d-periodic and Lipschitz-
continuous function, and let h(x) be quasi-periodic and
square-integrable on [0, d]. Define Rf@h# by

Rf@h# 5 bD@ fh# 2 fbD@h#. (A1)

Then Rf@h# is square-integrable on [0, d].

Note that this result implies that Rf@h# is more regular
than either bD@ fh# or fbD@h#.

Proof. We begin by introducing the function
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Q~x ! 5 (
p52`

`

bp exp~iapx !,

where the sum is to be understood in the sense of Abel.63

We note that the function Q has a (periodic) quadratic sin-
gularity at x 5 0. In fact, from the asymptotic expansion

bp 5 iu pu 1 ia sgn~ p ! 2 i
k2

2u pu
1 O~ p22!

as p → `,

it is easy to see that

Q~x ! 5 exp~iax !H 2
i

2

1

sin2~px/d !
2 a

cos~px/d !

sin~px/d !

1
ik2

2
ln@sin2~px/d !# 1 P~x !J , (A2)

where P(x) is bounded. Then, expanding

h~x ! 5 (
p52`

`

ĥp exp~iapx !

and using the definition (2.27), we have that

bD@h#~x ! 5 (
p52`

`

bpĥp exp~iapx !

5 (
p52`

`

bp exp~iapx !
1

d
E

0

d

h~ y !exp~2iapy !dy

5
1

d
E

0

d

h~ y !Q~x 2 y !dy,

and then, from Eq. (A1), it follows that

Rf@h#~x ! 5 bD@ fh# 2 fbD@h#

5
1

d
E

0

d

h~ y !@ f~ y ! 2 f~x !#Q~x 2 y !dy.

(A3)

Finally, since f is Lipschitz continuous, the last integral is
precisely a (nonconvolution) singular integral in the sense
that the singularity in the kernel

@ f~ y ! 2 f~x !#Q~x 2 y !

behaves like 1/sin@p(x 2 y)/d# [cf. Eq. (A2)]. The square
integrability of R( f )@h# then follows from the classical
theory of singular-integral operators.64 h

Theorem A.2. Let f(x) and h be as in Theorem A.1, and
define

Sf@h# 5 2Rf 2/2@h# 1 fRf@h#.

Then the function bDSf@h# is square-integrable on [0, d].
Proof. From Eq. (A3), we have
Sf@h#~x ! 5
1

d
E

0

d

h~ y !Q~x 2 y !Xf~x !@ f~ y ! 2 f~x !#

2 H @ f~ y !#2

2
2

@ f~x !#2

2 J Cdy,

which can be simply written as

Sf@h#~x ! 5 2
1

2d
E

0

d

h~ y !Q~x 2 y !@ f~ y ! 2 f~x !#2 dy.

(A4)

Then, again, classical results in singular-integral theory64

imply that a derivative of Sf@h# [and thus the function
bDSf@h#] will be square-integrable on account of the ad-
ditional regularity of the kernel Q(x 2 y)@ f( y) 2 f(x)#2

in Eq. (A4). h
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