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We present new, stabilized shape-perturbation methods for calculations of scattering from rough surfaces.
For practical purposes, we present new algorithms for both low- (first- and second-) and high-order implemen-
tations. The new schemes are designed with guidance from our previous results that uncovered the basic
mechanism behind the instabilities that can arise in methods based on shape perturbations [D. P. Nicholls and
F. Reitich, J. Opt. Soc. Am. A 21, 590 (2004)]. As was shown there, these instabilities stem from significant
cancellations that are inevitably present in the recursions underlying these methods. This clear identification
of the source of instabilities resulted also in a collection of guiding principles, which we now test and confirm.
As predicted, improved low-order algorithms can be attained from an explicit consideration of the recurrence.
At high orders, on the other hand, the complexity of the formulas precludes an explicit account of cancellations.
In this case, however, the theory suggests a number of alternatives to implicitly mollify them. We show that
two such alternatives, based on a change of independent variables and on Dirichlet-to-interior-derivative op-
erators, respectively, successfully resolve the cancellations and thus allow for very-high-order calculations that
can significantly expand the domain of applicability of shape-perturbation approaches. © 2004 Optical Soci-
ety of America

OCIS codes: 050.0050, 050.2770, 290.0290.
1. INTRODUCTION
Shape-perturbation methods for scattering calculations
have a long history1,2 and their simplicity, efficiency, and
accuracy have rendered them invaluable tools in a wide
array of applications. Both low-order2–9 and high-
order10–20 expansions have been investigated and imple-
mented numerically with varied degrees of success. This
variation can be largely attributed to the limited under-
standing of some fundamental properties of these meth-
ods, specifically those related to convergence and condi-
tioning, that existed until very recently. Indeed, the
issue of convergence of shape-perturbation series gener-
ated a historical controversy dating to the 1950s and only
recently resolved.21 Issues of stability, on the other
hand, had remained largely unexplored until our recent
work in Ref. 22, where we discussed the conditioning
properties of boundary perturbation schemes. In par-
ticular, in that paper we presented a theory that explains
the observed behavior of these methods, whose perfor-
mance typically deteriorates with increasing surface
roughness and/or increasing number of discretization
points beyond a threshold. The theory attributes this be-
havior to significant cancellations in the recursions un-
derlying these numerical procedures, and it further pro-
vides some guidelines for the design of new, stabilized
implementations. Here we demonstrate that the prin-
ciples derived from the theories in Ref. 22 can indeed be
carried out to generate shape-deformation algorithms
with improved conditioning properties.

As argued in Ref. 22, different strategies can be fol-
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lowed depending on whether low- or high-order perturba-
tion expansions are considered. For the sake of broad ap-
plicability, we shall discuss both cases, since, as we said,
both low- and high-order expansions have been, and con-
tinue to be, used in a variety of contexts. For low- (first-,
second-) order implementations, we shall show that, as
anticipated in Ref. 22, the relative simplicity of the recur-
rences does allow for an explicit account of cancellations.
More precisely, we shall explain how the formulas can be
recast in a manner that explicitly avoids the calculation of
small numbers (e.g., high-frequency Fourier coefficients)
as differences of large ones. For higher-order simula-
tions, on the other hand, this strategy becomes increas-
ingly complex, as the formulas get progressively more
complicated. As indicated in Ref. 22, however, cancella-
tions in these cases can be implicitly accounted for. Spe-
cifically, we shall show that improved recursions can be
obtained if care is taken in avoiding differentiation of the
fields across the boundaries of their domain of definition.
To this end, we propose two different strategies, both mo-
tivated by the results in Ref. 22, to improve the perfor-
mance of the field expansion (FE) and operator expansion
(OE) methods, respectively.22 The first approach im-
proves upon the FE method by means of a change of in-
dependent variables, effected a priori of the perturbation
expansion, which guarantees differentiations inside the
domain of definition of the fields. In the case of the OE
approach, on the other hand, these inner differentiations
are secured by replacing the standard perturbative calcu-
lation of Dirichlet-to-Neumann operators (DNOs) by one
2004 Optical Society of America
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that computes the DNO of the surface of interest by em-
bedding it in a family of Dirichlet-to-interior-derivative
operators (DIDOs); see Subsection 3.B.

The rest of the paper is organized as follows. First, in
Section 2 we address the conditioning of low-order imple-
mentations. For this, we begin from basic reformula-
tions of the OE and FE recurrences as derived in Ref. 22,
which we further develop here to attain stabilized imple-
mentations. Section 3 then is devoted to high-order ex-
pansions. There we present our proposals for improve-
ments in the FE (Subsection 3.A) and OE (Subsection 3.B)
implementations as described above. Finally, concluding
remarks follow in Section 4.

2. LOW-ORDER METHODS
In this section, we present our approach to the design of
low-order shape-deformation methods with improved sta-
bility properties. As we said, our basic strategy consists
of an explicit recasting of the underlying recursive rela-
tions for the successive terms in the perturbation series in
a way that prevents all consequential cancellations. This
basic premise then is clearly applicable to all standard
perturbative algorithms. Here we shall exemplify this in
the context of the well-known operator expansion (OE)
and field expansion (FE) schemes, which we briefly re-
view next.

A. Classical Methods: Operator and Field Expansions
As with all shape-deformation methods, the standard
method of field expansions (also known by a variety of al-
ternative names, including Small-Perturbation Method,
Rayleigh–Fourier method, Rayleigh–Rice theory, itera-
tive series solution, etc.) exploits the explicit solvability of
the scattering problem in the case of a flat surface by pro-
posing a perturbation series expansion for the field scat-
tered by a general profile. More precisely, for a plane
wave

v inc~x, y ! 5 exp~iax 2 iby !

incident on a d-periodic profile y 5 g(x), the scattered
field v(x, y) is sought in the form

v~x, y ! 5 (
n50

`

vn~x, y !, (2.1)

where

vn 5 O~ gn!. (2.2)

If the surface is perfectly conducting, for instance, a re-
currence relation can be derived from the boundary con-
dition

v(x, g~x !) 5 2exp@iax 2 ibg~x !#. (2.3)

Indeed, with the use of Eq. (2.2), it follows that the func-
tions vn satisfy the sequence of scattering problems22

Dvn 1 k2vn 5 0, (2.4a)

vn~x, 0! 5 Pn~x !, (2.4b)

]yvn~x, a ! 1 T~a !@vn~ • , a !#~x ! 5 0,
(2.4c)
vn~x 1 d, y ! 5 exp~iad !vn~x, y ! (2.4d)

for 0 , y , a, where

Pn~x ! 5 2exp~iax !
@2ibg~x !#n

n!

2 (
l50

n21
@ g~x !#n2l

~n 2 l !!
]y

n2lvl~x, 0!, (2.5)

so that Eqs. (2.4) provide a recursive definition of vn .
Here Eq. (2.4d) reflects the periodicity of the structure,
and Eq. (2.4c) expresses Sommerfeld’s radiation condition
for the scattered field in terms of a Dirichlet-to-Neumann
operator (DNO) (see Ref. 22). More precisely, for any sur-
face y 5 s(x), T( s), is an operator that acts on (quasi-
periodic) functions j(x) defined on y 5 s(x): The opera-
tor maps the function j onto a function T( s)@j#, also
defined on the surface, according to

T~ s!@j#~x ! 5
]J

]n~x !
~x, s~x !!,

where n(x) 5 (]xs(x), 21) is normal to the surface and
J 5 J(x, y) solves the scattering problem with boundary
data j(x) on y 5 s(x) [that is, J(x, s(x)) 5 j(x)]. Note
that, in particular, for a flat surface y 5 a the DNO can
be explicitly written as

T~a !F (
p52`

`

ĵp exp~iapx !G 5 (
p52`

`

~2ibp!ĵp exp~iapx !,

(2.6)

where

ap 5 a 1
2p

d
p, bp 5 Ak2 2 ap

2. (2.7)

As has been shown by a number of authors, Eqs. (2.4)
then provide an efficient means to approximate the scat-
tered field, as they simply entail the recursive evaluation
of a sequence of scattering problems off a flat surface,
which can be effectively attained through fast Fourier
transforms (FFTs) (see Ref. 22 and the references
therein).

A similar situation arises in connection with the OE
method,23–29 which constitutes an alternative method for
the prediction of scattering returns based on shape defor-
mations. The approach is based on two simple observa-
tions: First, we note that Green’s identity for the field v
scattered off a surface y 5 g(x) can be written as

v~x, y ! 5 E
0

dH 2
]F

]n~x8!
(x 2 x8, y 2 g~x8!)f inc~x8!

1 F(x 2 x8, y 2 g~x8!)T~ g !@ f inc#~x8!J dx8,

(2.8)

where F(x, y) denotes the (outgoing, time-harmonic)
free-space Green’s function, T( g) is the DNO on y
5 g(x), and f inc denotes the incident field evaluated on
the surface. Obviously, all quantities in Eq. (2.8) are ex-
plicit save for that involving the DNO, which is typically
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difficult to find. The second central observation in the
OE approach then relates to the DNO itself, and it is
based on the explicit nature that the operator takes on for
a flat surface. Indeed, the explicit formula (2.6) suggests
an efficient method for the evaluation of the DNO corre-
sponding to an arbitrary surface y 5 g(x), namely
through a perturbation series

T~ g !@j# 5 (
n50

`

Tn~ g !@j# (2.9)

about a flat surface y 5 0, so that Tn( g) 5 O( gn). In
fact, a formal expansion readily delivers the recurrence22

Tn~ g !@j# 5 ~ibD!n21H ]x

@ g~x !#n

n!
]xj 1 k2

@ g~x !#n

n!
jJ

2 (
l50

n21

~ibD!n2l
@ g~x !#n2l

~n 2 l !!
Tl~ g !@j#, (2.10)

whose implementation then constitutes the core of the OE
procedure. Here the (pseudo-differential) operator bD is
defined as

bD 5 iT~0 ! 5 2i]y

or, with the use of (2.6),

bDF(
p

ĵp exp~iapx !G 5 (
p

bpĵp exp~iapx !. (2.11)

Therefore Eq. (2.10) can be solved very efficiently, as it en-
tails only multiplication and (pseudo-) differentiation of
(quasi-) periodic functions, which can again be acceler-
ated with the use of FFTs.

We close this subsection by noting that when one is in-
terested in the scatter off a specific profile y 5 g(x) [and
not on that generated by intermediate surfaces y
5 dg(x)], a particularly appealing feature of the OE pro-
cedure is that only the DNO is approximated perturba-
tively; in particular, the function f inc in Eq. (2.8) is not ex-
panded in powers of g(x). This, in turn, suggests an
alternative to the FE scheme22 in Eqs. (2.4) wherein the
incoming wave is not expanded in powers of g(x). More
precisely, the convergence of the series (2.1) can be accel-
erated if Eq. (2.4b) is replaced by

vn~x, 0! 5 2dn,0 exp@iax8 2 ibg~x8!#

2 (
l50

n21
@ g~x !#n2l

~n 2 l !!
]y

n2lvl~x, 0!. (2.12)

With this addition, we shall refer to the new scheme as a
partial field expansion (PFE) and use it to (more fairly)
compare with the OE method.

B. Cancellations
As argued in Ref. 22, the origins of the instabilities in the
OE and FE schemes are rather apparent from Eqs. (2.10),
and (2.12). Indeed, for instance, Eqs. (2.7) imply that

bp ' i
2p

d
u pu, u pu @ 1,
so that the operator bD acts essentially as differentiation.
It follows then that the individual terms on the right-
hand side of Eq. (2.10) contain derivatives of the profile
g(x) (and of the data j) of increasingly high order. On
the other hand, classical results in the theory of singular
integrals30,31 guarantee that the series in Eq. (2.9) con-
verges for rough (Lipschitz) profiles that may not even
possess a single derivative in a classical sense. As ex-
plained in Ref. 22, this apparent contradiction can be rec-
onciled only if, as it happens, all high-order derivatives
appearing on the right-hand side of Eq. (2.10) exactly can-
cel out. Similar cancellations occur in Eq. (2.12), though,
in this case, high-order differentiation is inherently
present in the recursion and must be properly accounted
for.22 In any case, within a numerical implementation,
these cancellations are, of course, a recipe for ill-
conditioning, as it amounts to calculating relatively small
numbers (e.g., the Fourier coefficients of Tn( g)@j#) as a
difference of very large numbers [e.g., the Fourier coeffi-
cients of each (singular) individual term on the right-
hand side of Eq. (2.10)].

As we have shown,22 at low (first, second, third) order
of the recurrences (2.10) and (2.12), the cancellations can
be explicitly identified. Indeed, for n 5 1,2, formula
(2.10) can be rewritten as

T1~ g !@j# 5 2~Dg !~Dj! 2 Rg@bDj#, (2.13a)

T2~ g !@j# 5 ibDSg@bDj#, (2.13b)

while, if n 5 2,3, Eq. (2.12) is equivalent to

v2 5 2bDFg2

2
bDjG 2 Sg@bDj#, (2.14a)

v3 5 ibD
2 Fg3

6
bDjG 1 igbDSg@bDj#.

(2.14b)

The operators Rf and Sf are (nonconvolution) singular in-
tegral operators defined by

Rf@h# 5 bD@ fh# 2 fbD@h#, (2.15)

Sf@h# 5 2Rf 2/2@h# 1 fRf @h#,
(2.16)

respectively. These operators can be shown to possess
certain ‘‘smoothing’’ properties (see Appendix A), which, in
turn, imply that Eqs. (2.13) and (2.14) account for all sig-
nificant cancellations in the original recurrences.

C. Improved Low-Order Algorithms
As discussed above, the observations in Ref. 22 allow for
the identification of the main source of instabilities in
typical shape-perturbation schemes. Here we shall use
this insight in the design of new and improved implemen-
tations, which we first address in the context of low-order
calculations. Our effort in this direction is motivated in
part by the popularity of such implementations, which, in
turn, is partly due to their simplicity. For our purposes,
this simplicity translates into the possibility of explicitly
accounting for cancellations, as described in Subsection
2.B. Indeed, in view of these results, our objective re-
duces to providing stable numerical implementations for
the relations (2.13) and (2.14). We shall pursue this here
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through the orders indicated there, although the general
philosophy of Ref. 22 is not restricted, in principle, to the
second- and third-order calculations that we present be-
low. At higher orders, however, analogous calculations,
though possible, become quite involved. For high-order
calculations, on the other hand, alternative procedures,
which will be presented in Section 3, obviate the need for
an explicit management of cancellations.

As we said, our goal here is the design of stable imple-
mentations of Eqs. (2.13) and (2.14). To this end, we be-
gin by noting that the regularizing character of the opera-
tors Rf and Sf in Eqs. (2.15) and (2.16) is apparent only in
physical space, where they take on the form22

Rf@h#~x ! 5
1

d
E

0

d

h~ y !@ f~ y ! 2 f~x !#Q~x 2 y !dy,

Sf@h#~x ! 5 2
1

2d
E

0

d

h~ y !Q~x 2 y !@ f~ y ! 2 f~x !#2 dy,

where

Q~x ! [ (
p52`

`

bp exp~iapx !

' 2
i exp~iax !

2 sin2~px/d !
as x → 0

is a singular kernel. These representations, however, are
perhaps not optimal for numerical calculations, as they
entail the design of quadratures for (hyper)singular inte-
grals. An alternative approach is to resort to the fre-
quency domain representations of these operators, which
read as

Rf@h#̂p 5 (
q

~bp 2 bp2q! f̂qĥp2q , (2.17)

Sf@h#̂p 5 (
r

(
q

f̂rf̂qĥp2r2qF ~bp2q 2 bp2r2q!

2 S 1

2
bp 2

1

2
bp2r2qD G

5
1

2 (
r

(
q

f̂rf̂qĥp2r2q@~bp2q 2 bp!

1 ~bp2q 2 bp2r2q!# (2.18)

on account of the definitions (2.15) and (2.16). Here,
however, a straightforward implementation would bring
back a significant proportion of the very cancellations
that we are trying to avoid, as is clear from the multipli-
ers bp 2 bp2q and bp2q 2 bp2r2q that appear in Eqs.
(2.17) and (2.18) and that cancel out for large values of
the indices. In the present, low-order context, however,
these cancellations can again be explicitly rectified. In-
deed, as we show in Appendix A, the relations (2.17) and
(2.18) can be rewritten in the form

Rf@h#̂p 5 (
q

@2~2p/d !q#~ap 1 ap2q!

bp 1 bp2q
f̂qĥp2q , (2.19)
Sf@h#̂p 5 (
r

(
q

F ~2p/d !2qr

bp 1 bp2r2q
G

3 F1 1
~ap 1 ap2q!~ap2q 1 ap2r2q!

~bp 1 bp2q!~bp2q 1 bp2r2q!
G

3 f̂ rf̂qĥp2r2q , (2.20)

where now the multipliers are void of cancellations.
Combining Eqs. (2.13) with Eqs. (2.19) and (2.20), we

arrive at the (stable) OE formulas

~T1~ g !@j #̂ !p 5 2(
q

@~2p/d !q#ĝqap2qĵp2q

1 (
q

@~2p/d !q#~ap 1 ap2q!

bp 1 bp2q
ĝqbp2qĵp2q ,

(2.21)

~T2~ g !@j #̂ !q 5 ibp(
r

(
q

F ~2p/d !2qr

bp 1 bp2r2q
G

3 F1 1
~ap 1 ap2q!~ap2q 1 ap2r2q!

~bp 1 bp2q!~bp2q 1 bp2r2q!
G

3 ĝrĝqbp2r2qĵp2r2q . (2.22)

Similarly, from Eqs. (2.14), we obtain new FE relations in
the form

~v 2̂!p 5 2
1

2
bp(

r
(

q
ĝrĝqbp2r2qĵp2r2q

2 (
r

(
q

F ~2p/d !2qr

bp 1 bp2r2q
G

3 F1 1
~ap 1 ap2q!~ap2q 1 ap2r2q!

~bp 1 bp2q!~bp2q 1 bp2r2q!
G

3 ĝrĝqbp2r2qĵp2r2q , (2.23)

~v 3̂!p 5
i

6
bp

2 (
r,q,s

ĝrĝqĝsbp2r2q2sĵp2r2q2s

1 i (
r,q,s

F ~2p/d !2sq

bp2r 1 bp2r2q2s
Gbp2r

3 F1 1
~ap2r 1 ap2r2s!~ap2r2s 1 ap2r2q2s!

~bp2r 1 bp2r2s!~bp2r2s 1 bp2r2q2s!
G

3 ĝrĝqĝsbp2r2q2sĵp2r2q2s . (2.24)

In Figs. 1 and 2, we present numerical results that il-
lustrate the beneficial effect of using the stable formulas
(2.22) in place of Eq. (2.10), and (2.24) in place of Eqs.
(2.4) and (2.12) to compute the coefficients (T2( g)@j #̂)p
and (v 3̂)p . The figures correspond to

ĵp 5 p22, ĝp 5 p22, u pu < F,

and a number Nx 5 2048 of discretization points (that is,
wave numbers p with 21024 < p < 1023 represented).
To avoid aliasing effects and isolate the instabilities, we
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Fig. 1. Plots of relative error in absolute value of the Fourier coefficient (T2( g)@j #̂)p for two different incident waves, computed by using
OE, Improved OE, and Slow OE implementations.

Fig. 2. Plots of relative error in absolute value of the Fourier coefficient (v 3̂)p for two different incident waves, computed by using PFE,
Improved PFE, and Slow PFE implementations.
set F 5 341 and F 5 256 for the approximation of
T2( g)@j# and v3(x, y), respectively. In addition to the
new formulas (2.22) and (2.24) (labeled as Improved OE
and Improved PFE, respectively), the figures also display
the results obtained from two implementations of Eq.
(2.10) and Eqs. (2.4) and (2.12): the standard one, using
FFTs (labeled OE and PFE, respectively), and one where
the convolutions in Fourier space are performed without
FFT acceleration (labeled Slow OE and Slow PFE, respec-
tively).

Our motivation to include the latter experiments is
twofold. On the one hand, the results in Ref. 22 guaran-
tee that slow convolutions will lead to better-conditioned
numerics. Indeed, as explained there, the basic schemes
lead to consideration of possibly very irregular functions
(high-order derivatives of the surface and incidence),
which, for efficiency, are multiplied in physical space and
differentiated in the frequency domain. Clearly, as the
regularity of these functions decreases (with increasing
order of differentiation), this process becomes signifi-
cantly ill-conditioned, as the passage through physical
space relies on cancellations to approximate the func-
tional values. In contrast, slow convolutions allow for
the full calculation to remain in the frequency domain
and therefore for the stable calculation of Fourier series.
[An instructive example in this connection is provided by
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the product of two ‘‘delta functions’’ with pole at the ori-
gin, approximated in the frequency domain by a finite
Fourier series with unit coefficients: A fast calculation
would rely on the actual sum of the Fourier series, which,
away from the origin, should produce exactly 0 as a sum
of exponentials; in contrast, a slow convolution will de-
liver the (large) Fourier coefficients of the product directly
and stably as a sum of 1s.] A second reason for including
the slow calculations relates to the fact that a stable ac-
celerated implementation of the formulas (2.22) and
(2.24) is not immediate, so that a comparison with these,
equally costly, Slow OE and Slow PFE procedures appears
natural.

From the figures, we see that the new schemes signifi-
cantly improve upon the quality of the approximations.
Indeed, for instance, the predicted enhanced stability of
the slow procedures is evident in the PFE case (Fig. 2).
Interestingly, in the OE example this improvement is sub-
stantially less pronounced. In fact, this difference in be-
havior can again be explained on the basis of the findings
in Ref. 22, where a subtle distinction between these algo-
rithms was first noted. Indeed, as explained there, all
high-order derivatives of the profile and the incidence
cancel out of formula (2.10), while these are inherently
present in the recurrences (2.4) and (2.12). In view of
this, it follows that Eq. (2.10) entails the calculation of su-
perfluous singularities that remain to be cancelled even if
the calculation is entirely performed (slowly) in the fre-
quency domain. In contrast, the addition of slow convo-
lutions in an implementation of Eqs. (2.4) and (2.12) has a
beneficial effect on the approximation of its (truly
present) singular part. As a result, the gains from the
further stabilized formulas (2.22) and (2.24) are more pro-
nounced in relation to the OE approach (Fig. 1), where
they bypass the fictitious cancellations of Eq. (2.10).
Still, as shown in Fig. 2, for the PFE method the new for-
mulas do provide further gains in accuracy, which should
be attributed to the additional subtle rearrangement of
the singular part of Eq. (2.12) as explained in Ref. 22,
Subsection 3.B.

3. HIGH-ORDER METHODS
As we stated, an explicit rearrangement of the recursive
formulas, as pursued in Section 2, could be attempted at
higher orders. As is clear from the calculations in Appen-
dix A, however, this procedure becomes increasingly com-
plex with increasing order. For this reason, we introduce
in this section two alternative approaches, specifically de-
signed for high-order computations, that attain their en-
hanced stability in an implicit manner. The first of
these, described in Subsection 3.A, is motivated by the
discussion of Ref. 22, where it was shown that a simple
change of variables

x8 5 x, y8 5 aF y 2 g~x !

a 2 g~x !
G , (3.1)

mapping the shape of the scatterer y 5 g(x) to the plane
y8 5 0, allows for a direct recursive estimation of the
terms in the perturbation series of the field
u~x8, y8! 5 (
n50

`

un~x8, y8!, un 5 O~ gn!, (3.2)

in the transformed variables. As argued in Ref. 22, the
success of this iterative bounding procedure implies that,
in contrast with the formulas in the original variables,
the new recurrence for the terms un in Eq. (3.2) does not
entail significant cancellations. And this, in turn, sug-
gests that its numerical implementation should lead to a
stable algorithm. In Subsection 3.A, we show that this is
indeed the case and that, in fact, this approach signifi-
cantly improves the accuracy and the applicability of clas-
sical shape-deformation methods.

As we explain below, however, these gains are attained
at the expense of an increase in computational cost. If
we insist on computational times that are exactly compa-
rable with those associated with standard algorithms
(e.g., OE), a different approach may be necessary [al-
though we expect that further research may produce a
more efficient implementation of the recurrence for un in
Eq. (3.2) than the one we present below]. In this direc-
tion, we introduce in Subsection 3.B a novel algorithm
that exhibits enhanced stability properties while retain-
ing the computational complexity of the classical
schemes. This algorithm is also motivated by our obser-
vations above, but it uses the theory indirectly to moti-
vate an improvement over the OE procedure.

A. Transformed Field Expansions
As we have shown,22 the cancellations present in Eq.
(2.12) preclude a straightforward estimation of the size of
the functions vn in Eqs. (2.4) in a way that would guaran-
tee the convergence of the series (2.1). On the other
hand, we also showed there that this can be rectified by
using the transformation (3.1). Indeed, letting

u~x8, y8! 5 vXx8, g~x8! 1
a 2 g~x8!

a
y8C (3.3)

and expressing this transformed field in the form of a per-
turbation series as in Eq. (3.2), one can derive a new set of
recursive formulas, which read as22

Dun 1 k2un 5 ~1 2 dn,0!Fn~x8, y8!, (3.4a)

un~x8, 0! 5 2~2ib!n exp~iax8!
@ g~x8!#n

n!
,

(3.4b)

]y8un~x8, a ! 1 T~a !@un~ • , a !#~x8! 5 Rn~x8!,
(3.4c)

un~x8 1 d, y8! 5 exp~iad !un~x8, y8!
(3.4d)

for 0 , y8 , a, where dn, j is the Kronecker delta,

Fn~x8, y8! 5 divx8@Fn
~1 !~x8, y8!# 1 ]y8Fn

~2 !~x8, y8!

1 Fn
~3 !~x8, y8!,
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Fn
~1 !~x8, y8! 5

2g~x8!

a
¹x8un21 2

@ g~x8!#2

a2 ¹x8un22

1
~a 2 y8!¹x8g~x8!

a
]y8un21

2
~a 2 y8!g~x8!¹x8g~x8!

a2 ]y8un22 ,

Fn
~2 !~x8, y8! 5

~a 2 y8!¹x8g~x8!

a
• ¹x8un21

2
~a 2 y8!g~x8!¹x8g~x8!

a2 • ¹x8un22

2
~a 2 y8!2u¹x8g~x8!u2

a2 ]y8un22 ,

Fn
~3 !~x8, y8! 5 2

¹x8g~x8!

a
• ¹x8un21 1

g~x8!¹x8g~x8!

a2

• ¹x8un22 1
~a 2 y8!u¹x8g~x8!u2

a2 ]y8un22

1
2g~x8!k2

a
un21 2

@ g~x8!#2k2

a2 un22 ,

Rn~x8! 5
g~x8!

a
T~a !@un21~ • , a !#~x8!.

As demonstrated in Ref. 22, this new recurrence does not
entail significant cancellations, as the successive iterates
un can be recursively estimated from Eqs. (3.4) by bound-
ing the functions Fn inductively with a direct use of the
triangle inequality. This lack of cancellations, in turn,
suggests that a numerical implementation of Eqs. (3.4),
which we shall refer to as constituting the method of
transformed field expansion (TFE), should be signifi-
cantly better conditioned than that of Eqs. (2.4) and
(2.12).

As we mentioned in Subsection 2.A in connection with
the FE method, the convergence of the series (2.1) will be
accelerated if Eq. (2.4b) is replaced by Eq. (2.12), i.e., the
incoming wave is not expanded in powers of g(x). The
same comment applies to Eq. (3.2) in regard to the TFE
algorithm, where Eq. (3.4b) can be replaced by

un~x8, 0! 5 2dn,0 exp@iax8 2 ibg~x8!#. (3.5)

We term this new method the partial transformed field
expansion (PTFE) algorithm, which we will again use to
compare with the OE and PFE algorithms. In fact, in the
remainder of this section we present a collection of nu-
merical examples that clearly illustrate the convergence
properties of the OE and PFE schemes, as well as the sig-
nificant improvements that can be attained with PTFE.

For the numerical implementation of the OE and PFE
recursions, we shall use a spectral collocation method32

wherein
Tn~ g !@ f inc#~x ! 5 (
u pu , Nx/2

tn, p exp~iapx !, (3.6)

vn~x, y ! 5 (
u pu , Nx/2

dn, p exp~iapx 1 ibpy !

(3.7)

for coefficients tn, p and dn, p that are iteratively obtained
by means of FFTs and fast convolutions. In the case of
PTFE, on the other hand, the problem at nth order en-
tails the solution of a scattering problem, for a flat sur-
face, with a source Fn(x8, y8), which, of course, prevents
the use of (a basis of) exact solutions as in Eqs. (3.6) and
(3.7) to reduce the dimensionality of the problem. In-
deed, in this case, the additional transverse dimension y8
must also be resolved numerically, with a consequent in-
crease in computational cost. More precisely, for the
PTFE implementation we shall appeal to a spectral
Fourier/Chebyshev-tau method which posits an approxi-
mate solution of the form

ũn~x8, y8! 5 (
u pu,Nx/2

(
l50

Ny

ûn~ p, l !exp~ipx8!TlS 2y8 2 a

a D ,

(3.8)

where Tl(z) is the lth Chebyshev polynomial. The result-
ing set of equations can be efficiently solved with the use
of fast Fourier and Chebyshev transforms in conjunction
with the fast elliptic solve outlined in Ref. 33, Section 10.
Still, as we said, the computational effort associated with
such a strategy will typically be greater than that result-
ing from implementations of OE and PFE based on Eqs.
(3.6) and (3.7); as we show below, however, this increased
cost may be compensated by a substantial increase in ac-
curacy that can, in fact, allow for computations beyond
the reach of the OE and PFE algorithms.

To test the performance of the methods, we shall con-
sider both a smooth sinusoidal surface

y 5
h

2
cosS 2px

d D (3.9)

and an instance of a rather generic rough surface given by

y 5
h

2 F cosS 2px

d D 1
1

8
sinS 6px

d D 1
1

9
cosS 6px

d D
1

1

16
cosS 8px

d D G ; (3.10)

see Fig. 3. For each of these, we compute the diffracted
efficiencies ep , defined as34

Fig. 3. Plot of the rough surface (3.10) (d 5 1, h 5 0.1).
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ep 5
bp

b
uBpu2,

where Bp denotes the pth Rayleigh amplitude (see Ref.
22). For a lossless surface, the principle of conservation
of energy yields

(
p P U

ep 5 1. (3.11)

where

U 5 $ p u bp . 0%

is the (finite) set of propagating modes. Equation (3.11)
can be used to define a common measure of convergence of
a numerical approximation, namely the energy error

« 5 U1 2 (
pPU

epU, (3.12)

which we shall use below. We note, however, that this
test may not provide, in many instances, an accurate ap-
praisal of the convergence properties of a numerical
scheme for a number of reasons. On the one hand,
clearly, a specific error in the sum in Eq. (3.12) does not
guarantee a comparable error in each efficiency ep . In
addition, this test relates only to low-order efficiencies
corresponding to propagating modes: High-order Ray-
leigh amplitudes (i.e., those for p ¹ U) may be grossly
miscalculated and still result in a small energy defect ac-
cording to Eq. (3.12). In this connection, a more accurate
assessment may be garnered, for instance, by comparison
of exact and calculated normal derivatives of scattered
fields (i.e., currents or tractions). In fact, a convenient
approach to this end results if, for a given profile y
5 g(x), we consider an incident wave v inc satisfying

v inc~x, g~x !! 5 exp@iapx 1 ibpg~x !# (3.13)

for a fixed integer p, where ap and bp are defined as in
Eqs. (2.7). Indeed, in this case, we clearly have that the
scattered field is given by

v~x, y ! 5 exp~iapx 1 ibpy !, (3.14)

and therefore the normal derivative on the surface is ex-
plicitly expressed as

]v

]n
5 $@]xg~x !#]x 2 ]y%vuy5g~x !

5 T~ g !@exp$iapx 1 ibpg~x !%#

5 @iap]xg~x ! 2 ibp#exp@iapx 1 ibpg~x !#,

(3.15)

allowing for direct, near-field comparisons. Specifically,
the implementation of the PFE, OE, and PTFE schemes
to order n provides approximate values Tn,Nx

approx of this lat-
ter quantity at Nx equally spaced nodes xj on @0, d# for
which we may define the error as

Error 5 Error~n, Nx!

5 max
1<j<Nx

uT~ g !@j#~xj! 2 Tn,Nx

approx~xj!u; (3.16)
see Fig. 11 below.
Still, in keeping with traditional measurements, we be-

gin by presenting results in Eq. (3.12) for different height-
to-period and wavelength-to-period ratios. The first set
of results, in Tables 1 and 2, displays the energy defect for
OE, PFE, and PTFE for a variety of heights h, wavelength
l 5 0.4368 (normal incidence), period d
5 1, and profiles (3.9) and (3.10), respectively. In this
case, there are five propagating modes (U 5 $ p u u p
u < 2%). The parameters for the simulation in Table 1
are Nx 5 64, Ny 5 48, and n 5 64; for Table 2, they are
Nx 5 128, Ny 5 48, and n 5 64. In both cases, the ra-
diation condition (2.4c) and (3.4c) is imposed on a 5 2,
and the perturbation series (n 5 64) is summed by
means of Padé approximation.35–37

As follows from the tables, PTFE provides a very sig-
nificant improvement over OE and PFE, allowing for ac-
curate calculations beyond their domain of applicability.

Table 1. Energy Defect for the Sinusoidal Profile
(3.9) under Normal Incidence with a

Wavelength-to-Period Ratio lÄ0.4368, dÄ1,
and a [32/32] Padé Approximant

h PFE PTFE OE

0 0 0 0
0.05 3 3 10216 1 3 10216 3 3 10218

0.1 1 3 10216 1 3 10216 8 3 10212

0.15 6 3 10216 2 3 10215 2 3 1025

0.2 1 3 10213 2 3 10215 5 3 1023

0.25 4 3 10213 9 3 10215 3 3 1022

0.3 3 3 1029 2 3 10215 6 3 1022

0.35 4 3 1028 6 3 10214 1 3 1021

0.4 1 3 1026 8 3 10212 1 3 1021

0.45 3 3 1025 2 3 10210 2 3 1021

0.5 2 3 1024 2 3 1028 2 3 1021

0.55 3 3 1024 2 3 1027 4 3 1022

0.6 7 3 1023 7 3 1026 4 3 1021

0.65 2 3 1022 2 3 1026 2
0.7 7 3 1022 2 3 1024 4 3 1021

Table 2. Energy Defect for the Rough Surface
(3.10) under Normal Incidence with a

Wavelength-to-Period Ratio lÄ0.4368, dÄ1,
and a [32/32] Padé Approximant

h PFE PTFE OE

0 0 0 0
0.05 1 3 10215 1 3 10215 4 3 1024

0.1 5 3 10212 3 3 10215 8 3 1023

0.15 3 3 1029 2 3 10215 5 3 1025

0.2 9 3 1028 5 3 10214 2 3 1022

0.25 2 3 1025 6 3 10213 2 3 1022

0.3 2 3 1024 3 3 10212 6 3 1022

0.35 9 3 1024 7 3 10212 6 3 1022

0.4 5 3 1024 1 3 1028 8 3 1022

0.45 2 3 1022 1 3 1027 3 3 1024

0.5 1 3 1021 4 3 1026 9 3 1022

0.55 1 3 3 1025 1 3 1021

0.6 4 3 1021 2 3 1024 1 3 1021
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In fact, while the limit on the observed accuracy of PFE
and OE is solely due to ill-conditioning, that of PTFE is
due only to the limited resolution of the transverse direc-
tion (Ny 5 48). These results are representative of the

Table 3. Energy Defect for the Rough Surface
(3.10) under Normal Incidence with a

Wavelength-to-Period Ratio lÄ0.065, dÄ1,
and a [32/32] Padé Approximant

h PFE PTFE OE

0 0 0 0
0.025 9 3 10216 1 3 10215 2 3 10216

0.05 6 3 10214 3 3 10216 1 3 1023

0.075 2 3 10211 2 3 10213 3 3 1023

0.1 6 3 1028 1 3 10212 1 3 1022

0.125 1 3 1025 6 3 10212 3 3 1023

0.15 4 3 1024 1 3 10212 1 3 1023

0.175 6 3 1023 3 3 1028 5 3 1024

0.2 4 3 1021 7 3 1026 2 3 1024

0.225 3 1 3 1024 2 3 1022

0.25 6 2 3 1022 9 3 1022
overall behavior of the methods; additional results for the
profile in Eq. (3.10) at a higher frequency of radiation
(with a now reduced to 0.2) corresponding to l 5 0.065
(U 5 $ p u u pu < 15%) are presented in Table 3.

Next, we present in Figs. 4–9 experiments that display
the behavior of the methods as the order n is increased.
Several conclusions can be drawn from these figures (see
also Refs. 38 and 39). First, the results show that PFE
generally outperforms OE, while PTFE significantly im-
proves on both. Moreover, as first noted in Refs. 36 and
37, the figures also show that Padé summation has a dra-
matic effect in accelerating the convergence of the Taylor
series when it converges (e.g., Figs. 4, 6, and 8) and also
in providing a convergent approximation when the Taylor
series diverges (e.g., Figs. 5, 7, and 9). We also note that
although the figures suggest that, for instance, the OE re-
sults continue to improve up to n 5 20 or even n 5 30,
this holds only in the measure of energy defect (3.12), in-
volving only low-frequency modes; the actual convergence
of the individual, low-order modes is further verified in
Fig. 10, where we check the convergence of specific effi-
ciencies. On the other hand, we also show in Fig. 11 that
the apparent improvement of the OE and PFE procedures
Fig. 4. Energy defect (3.12) for a scattering configuration with the sinusoidal profile (3.9) using PFE, PTFE, and OE (l/d
5 0.4368, h/d 5 0.3, d 5 1, a 5 2, Nx 5 64, Ny 5 48, n 5 64).

Fig. 5. Energy defect (3.12) for a scattering configuration with the sinusoidal profile (3.9) using PFE, PTFE, and OE (l/d
5 0.4368, h/d 5 0.5, d 5 1, a 5 2, Nx 5 64, Ny 5 48, n 5 64).
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Fig. 6. Energy defect (3.12) for a scattering configuration with the rough profile (3.10) using PFE, PTFE, and OE (l/d 5 0.4368, h/d
5 0.25, d 5 1, a 5 2, Nx 5 128, Ny 5 48, n 5 64).

Fig. 7. Energy defect (3.12) for a scattering configuration with the rough profile (3.10) using PFE, PTFE, and OE (l/d 5 0.4368, h/d
5 0.35, d 5 1, a 5 2, Nx 5 128, Ny 5 48, n 5 64).

Fig. 8. Energy defect (3.12) for a scattering configuration with the rough profile (3.10) using PFE, PTFE, and OE (l/d 5 0.065, h/d
5 0.125, d 5 1, a 5 0.2, Nx 5 128, Ny 5 48, n 5 64).
up to high orders is not realized in the near field. Indeed,
as these results demonstrate (see also Figs. 12 and 13),
and because of numerical instabilities arising from can-
cellations, no more than ten terms (n < 10) in the OE re-
currence can be accurately computed for a full approxima-
tion of the currents. In any case, Figs. 10 and 11 show
that the general conclusions on the stability of the differ-
ent procedures suggested by the initial energy calcula-
tions do, in fact, still hold true (and, perhaps, even more
so) for these more detailed analyses.
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B. Dirichlet-to-Interior-Derivative Operators
In light of the high-order calculations presented in Sub-
section 3.A, it is natural to ponder what lies at the root of
the difference in the behavior of PTFE as contrasted with
that of OE or PFE. In this connection, we contend that a
main difference resides in the differentiations at the
boundary that underlie all methods (in the derivation of
the corresponding recursions). Indeed, we note that in
the case of the OE and PFE schemes, these differentia-
tions are performed across the boundary of definition of
Fig. 9. Energy defect (3.12) for a scattering configuration with the rough profile (3.10) using PFE, PTFE, and OE (l/d 5 0.065, h/d
5 0.175, d 5 1, a 5 0.2, Nx 5 128, Ny 5 48, n 5 64).

Fig. 10. Convergence of specific efficiencies e215 and e4 for the configuration of Fig. 9 using PFE, PTFE, and OE; comparison of diagonal
Padé approximations (@n/2, n/2#) with an overresolved PTFE calculation ([32, 32] approximant).

Fig. 11. Error (3.16) in the approximation of the current (using a diagonal Padé sum) for the configurations of (a) Fig. 7 and (b) Fig. 9
with incidence (3.13) and p 5 1; comparison with exact solution (3.15).
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Fig. 12. Error (3.16) in computation of the DNO by means of the OE and DIDO (b 5 0.05, 0.1, 0.15) algorithms for the sinusoidal profile
(3.9) (l/d 5 0.4368, h/d 5 0.1, Nx 5 128, n 5 0,... , 60). The results in (a) were obtained with Taylor summation, while those in (b)
were obtained with Padé approximation.

Fig. 13. Error (3.16) in computation of the DNO by means of the OE and DIDO (b 5 0.05, 0.1, 0.15) algorithms for the rough profile
(3.10) (l/d 5 0.4368, h/d 5 0.1, Nx 5 128, n 5 0,... , 60). The results in (a) were obtained with Taylor summation, while those in (b)
were obtained with Padé approximation.
the scattered fields to justify the use of the chain rule
[e.g., in Eq. (2.3)]. In contrast, in the PTFE approach
this justification is provided by the change of variables
(3.1), which guarantees that the differentiations are al-
ways performed in the interior of the domain of definition
of the fields [note that the argument of v in Eq. (3.3) re-
mains inside the domain y . g(x) for all y8 . 0]. This
realization, in turn, suggests an alternative procedure
that is based on mimicking this property (i.e., interior dif-
ferentiations) while retaining the dimension-reducing
benefits of the OE and PFE approaches.

To present these ideas, we begin by introducing a
Dirichlet-to-interior-derivative operator (DIDO), which,
much in the spirit of the DNO, maps Dirichlet data at the
boundary y 5 dg(x) to a ‘‘normal’’ derivative at a surface
strictly inside the domain y . dg(x) at

y 5 b~1 2 d! 1 dg~x ! 5 b 2 d@b 2 g~x !#,

where b . 0 is to be chosen. More precisely, the DIDO
T̃(dg) is defined as

T̃~dg !@j#~x ! 5 ¹v(x, b~1 2 d! 1 dg~x !)

• ~d]xg~x !, 21 !,
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where v is the scattered outgoing (quasi-periodic) solution
to the Helmholtz equation in y . dg(x) with Dirichlet
data j(x) 5 v(x, dg(x)).

When d 5 1, this DIDO coincides with the DNO, and
thus it provides a way to perturbatively compute the lat-
ter while avoiding boundary differentiations:

T~ g !@j# 5 T̃~dg !@j#ud51

5 (
n50

`

$T̃n~ g !@j#%d nU
d51

. (3.17)

Indeed, to derive a recurrence for the coefficients
T̃n( g)@j#, we can proceed analogously to the derivation of
Eq. (2.10).22 To this end, we begin by recalling that the
functions in Eq. (3.14) provide exact solutions to the
Helmholtz equation in y . dg, satisfy the Sommerfeld ra-
diation condition, and are quasi-periodic, so that

T̃~dg !@exp$iapx 1 ibpdg~x !%#

5 $@d]xg~x !#~iap! 2 ibp%

3 exp(iapx 1 ibp$b 2 d@b 2 g~x !#%).

Expanding in a series of powers of d and equating like
powers we obtain

T̃n~ g !@exp~iapx !#

5 @]xg~x !#~iap!exp~ibap!~ibp!n21
@b 2 g~x !#n21

~n 2 1 !!

3 exp~iapx ! 2 exp~ibap!~ibp!n11
@b 2 g~x !#n

n!

3 exp~iapx ! 2 (
l50

n21

T̃l~ g !F ~ibp!n2l

3
$ g~x !%n2l

~n 2 l !!
exp~iapx !G .

Finally, defining bD as in Eq. (2.11) and

exp~ibaD!F(
p

ĵp exp~iapx !G
5 (

p
exp~ibap!ĵp exp~iapx !,

we arrive at

T̃n~ g !@j# 5 ]xH @b 2 g~x !#n

n!
]x exp~ibaD!~ibD!n21jJ

1 k2
@b 2 g~x !#n

n!
exp~ibaD!~ibD!n11j

2 (
l50

n21

T̃l~ g !F $ g~x !%n21

~n 2 l !!
~ibD!n2ljG . (3.18)

Our new scheme then will take advantage of the recur-
rence (3.18) to compute the DNO as in Eq. (3.17); from
this, the scattered field can be computed as in the general
OE framework (see Subsection 2.A).
We close this section with some numerical examples
that illustrate the beneficial effects of the use of Eq. (3.18)
in computing the DNO. As these examples demonstrate,
the improvement of the DIDO over classical OE may be
very significant, especially for a Fourier profile such as
Eq. (3.9) or (3.10). And, although such impressive im-
provements may not be universally realized (especially
for very rough surfaces), the potential accuracy gains
come at no additional cost, which, we believe, should jus-
tify its use in rather general situations.

As we show below, and as is to be expected, the effec-
tiveness of the DIDO scheme will generally depend upon
the choice of the parameter b (the case b 5 0 coincides, of
course, with a standard OE algorithm). The optimal
choice of this parameter is tied to the study of subtle is-
sues of analytic continuation at d 5 1 (where the interior
surface coincides with the boundary of the domain), which
will be left for future work. For the present work, this
optimization was performed numerically, as could be done
in general. Indeed, a general strategy for the choice of
this parameter could be based, for instance, on numerical
minimization of the energy defect (3.12) or on observed
convergence on a set of Rayleigh amplitudes, both of
which, in fact, constitute common approaches in the ab-
sence of exact solutions.

Here, in Figs. 12 and 13, we display results correspond-
ing to approximations of the currents (3.15) for p 5 1
with errors defined as in Eq. (3.16). The figures show
this error as a function of n for the profiles (3.9) and
(3.10), respectively; in these experiments, l 5 0.4368, d
5 1, d 5 0.05, Nx 5 128, and n varies from 0 to 60.

Figure 12(a) illustrates the mechanism by which stabil-
ity is enhanced if the parameter b is chosen to be strictly
positive: The interior differentiations provide a signifi-
cant increase in the range of orders that can be accurately
computed. Indeed, as b increases from 0, this effect is
immediately apparent and it results in greatly improved
values. As b is further increased, however, the results
begin to deteriorate again as a consequence of the fact
that the boundary y 5 b at d 5 0 is increasingly far from
the target boundary y 5 g(x) at d 5 1. Indeed, in this
case, the perturbation series begins to converge too slowly
to benefit from the increase in the range of stable orders
n. In any event, for suitable values of b, this increase has
a rather dramatic effect that is, in fact, further magnified
if Padé approximants are used to evaluate the series; see
Fig. 12(b). In fact, as we show in Figs. 13(a) and 13(b),
Padé approximation will typically reveal this enhanced
stability even if it is not apparent in a comparison of Tay-
lor sums. Again here, the reason lies in the increased
range of orders that can be stably evaluated when b . 0
[see Fig. 13(a)], which can be exploited by the Padé pro-
cedure independently of the radius of convergence of the
Taylor series.

4. CONCLUDING REMARKS
The discussion and the numerical examples presented
here clearly demonstrate that the principles derived from
the theories in the first part of this work22 can be realized
in practice to derive shape-deformation algorithms with
improved conditioning properties. Indeed, our new re-
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sults provide further evidence that the stability proper-
ties of these methods are governed by cancellations in the
underlying recursive relations for the functional coeffi-
cients of the perturbation expansion. And they confirm
the contention in Ref. 22 that stabilized algorithms
should result from appropriate management of such can-
cellations. As suggested in Ref. 22, this management can
be explicitly attained in low-order implementations,
where cancellations can be mitigated through a careful
but explicit recasting of the formulas. For high-order ex-
pansions, on the other hand, the increasing complexity of
the expressions conspires against an explicit accounting.
As we have shown, however, the insight gained in Ref. 22
can be used to design a number of strategies to implicitly
mollify cancellations, resulting in numerical algorithms
with greatly enhanced stability properties. In particular,
we have introduced two distinct approaches to improve
upon the classical field expansion (FE) and operator ex-
pansion (OE) formalisms, respectively. In relation to the
FE scheme, our improved procedure of partial trans-
formed field expansion (PTFE) relies on the observation22

that cancellations can be avoided if a change of indepen-
dent variables is effected in advance of the derivation of
the corresponding recurrence. As we observed, a key fea-
ture of this change of variables is that it avoids differen-
tiation across the boundary of the domain of definition of
the fields when the recursion is being derived. This, in
turn, motivated our improvement of the OE method
wherein the avoidance of such boundary differentiations
is attained by computing the Dirichlet-to-Neumann op-
erator (DNO) by analytic continuation on a family of
Dirichlet-to-interior-derivative operators (DIDOs). In
connection with these new high-order implementations,
interesting questions remain, including the search for
better adapted bases for PTFE and for a theoretically op-
timal value of the interior parameter [b; cf. Eq. (3.18)] in
the DIDO. In any case, the results presented here
clearly place the new algorithms (both low- and high-
order versions) on a competitive ground with classical
schemes, and, in fact, they suggest that they may be, in
many instances, preferable over standard implementa-
tions.

APPENDIX A: CANCELLATIONS IN LOW-
ORDER OPERATOR EXPANSION AND
PARTIAL FIELD EXPANSION FORMULAS
For the sake of completeness, in this appendix we present
the derivation of the basic results that allow us to identify
cancellations in low-order formulas. At first order, we re-
call Eq. (2.13a) and establish the following:

Theorem A.1. Let f(x) be a d-periodic and Lipschitz-
continuous function, let h(x) be quasi-periodic and
square-integrable on @0, d#, and define Rf@h# as in Eq.
(2.15). Then, Rf@h# is square-integrable on @0, d#, and, if

Rf@h#~x ! 5 (
p

R̂p exp~iapx !

is the Fourier expansion of Rf@h#, we have
R̂p 5 (
q

@2~2p/d !q#~ap 1 ap2q!

bp 1 bp2q
f̂qĥp2q . (A1)

Proof. The proof of the square-integrability of Rf@h# is
presented in Appendix A of Ref. 22 and will be omitted
here. Formula (A1) is established explicitly by using the
Fourier representation of f and h, and Eq. (2.17). To this
end, first note that

ap
2 1 bp

2 5 ap2q
2 1 bp2q

2 5 k2,

ap 2 ap2q 5 ~2p/d !q,

so that

bp 2 bp2q 5
~ap 1 ap2q!@2~2p/d !q#

bp 1 bp2q
. (A2)

On the other hand, from Eq. (2.17), we have

R̂p 5 (
q

~bp 2 bp2q! f̂qĥp2q

and the representation (A1) by simply substituting Eq.
(A2) into this latter relation. h

The second-order result concerns cancellations that
arise in the operator T2 as well as in v2 and v3 ; see Eqs.
(2.13b) and (2.14).

Theorem A.2. Let f(x) and h be as in Theorem A.1 and
define Sf@h# as in Eq. (2.16). Then the function bDSf@h#
is square-integrable on @0, d# and, if

Sf@h#~x ! 5 (
p

Ŝp exp~iapx !

is the Fourier expansion of Sf@h#, we have

Ŝp 5 (
r

(
q

F ~2p/d !2qr

bp 1 bp2r2q
G

3 F1 1
~ap 1 ap2q!~ap2q 1 ap2r2q!

~bp 1 bp2q!~bp2q 1 bp2r2q!
G ĥp2r2qf̂rf̂q .

(A3)

Proof. The proof of the square-integrability of bDSf@h#
is again contained in Appendix A of Ref. 22 and will be
omitted. To establish Eq. (A3), we first note that from
Eq. (2.18) we have

Ŝp 5
1

2 (
r

(
q

f̂rf̂qĥp2r2q@~bp2q 1 bp!

1 ~bp2q 2 bp2r2q!#

which, with the use of Eq. (A2), can be written as

Ŝp 5
1

2 (
r

(
q

f̂rf̂qĥp2r2qH @~2p/d !q#~ap 1 ap2q!

bp 1 bp2q

1
@2~2p/d !r#~ap2q 1 ap2r2q!

bp2q 1 bp2r2q
J . (A4)
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Note that the last expression still entails significant can-
cellations, as follows from its symmetries: For instance,
for large values of p we have that the sum behaves accord-
ing to

'
1

2 (
r

(
q

f̂rf̂qĥp2r2q~2p/d !2S 2qap

2bp
1

22rap

2bp
D 5 0.

To derive the stable, cancellation-free formula (A3) from
Eq. (A4), it will be convenient to introduce the quantities

A 5 bp 1 bp2q , B 5 bp2q 1 bp2r2q ,

C 5 bp 1 bp2r2q ,

a 5 @~2p/d !q#~ap 1 ap2q!,

b 5 @2~2p/d !r#~ap2q 1 ap2r2q!,

in terms of which Eq. (A4) takes on the form

Ŝp 5
1

2 (
r

(
q

f̂rf̂qĥp2r2qS a

A
1

b

B D .

Then, using

1

A
2

1

C
5

2b

ABC
,

1

B
2

1

C
5

2a

ABC
,

we can write

Ŝp 5
1

2 (
r

(
q

f̂rf̂qĥp2r2qS a

C
2

ab

ABC
1

b

C
2

ab

ABC D
5

1

2 (
r

(
q

f̂rf̂qĥp2r2qS a 1 b

C
2

2ab

ABC D
5

1

2 (
r

(
q

f̂rf̂qĥp2r2qF ~2p/d !22qr

C
2

2ab

ABCG ,

where we have used the symmetries in r and q to replace

a 1 b 5 ~2p/d !2a~q 2 r ! 1 ~2p/d !2$q~2p 2 q !

2 r@2~ p 2 q ! 2 r#% by ~2p/d !22qr.

Finally, since

2ab 5 22~2p/d !2qr~ap 1 ap2q!~ap2q 1 ap2r2q!,

it follows that

Ŝp 5 (
r

(
q

f̂rf̂qĥp2r2qF ~2p/d !2qr

C G
3 F1 1

~ap 1 ap2q!~ap2q 1 ap2r2q!

~bp 1 bp2q!~bp2q 1 bp2r2q!
G ,

which immediately delivers Eq. (A3). h
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