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ABSTRACT

In this letter, we consider the question of designing insulator/metal thermovoltaic structures with periodically corrugated
interfaces that give optimal performance based on the metric of useful power density. Using a Monte Carlo approach in a robust,
rapid, and high-accuracy numerical simulation strategy, we have identified such interface shapes. We searched among the class
of sinusoids and found that a flat-interface configuration could be significantly improved in transverse magnetic polarization.
More specifically, we found that (i) the performance improves with increasing corrugation amplitude (ii) up to a maximum, (iii) the
shape of the corrugation is largely irrelevant, and (iv) the period of the corrugation should be chosen in connection to
the bandgap energy of the photovoltaic cell. For the latter, we provide a simple expression as a starting point for practitioners
interested in fabricating such structures.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5080548

A thermophotovoltaic (TPV) emitter is a structure that,
when heated to an appropriate temperature, emits photons
with energies suitable for the generation of electricity by a pho-
tovoltaic (PV) cell.1 If solar energy is used to heat the emitter,
then the full system is a solar thermophotovoltaic (STPV) sys-
tem,1,2 although applications of TPVs involving nonsolar-based
energy (e.g., waste heat) are also of great interest. Ideally, the
emitted photons should have energies near and above the
bandgap energy of the relevant PV cell. If the emitter were sim-
ply a blackbody emitter, then only the operating temperature
would be of relevance, but layered and nanostructured TPV
structures can lead to emission properties more tailored for effi-
cient energy generation.3,4

Inspired by Jeon et al.,5 we consider a simple Bragg
reflector-tungsten TPV system (see Fig. 1) and use a highly effi-
cient computational electrodynamics procedure to predict
optimal surface structuring. By corrugating the interfaces in the
emitter, we can enhance the emissivity in the relevant, sub-
bandgap range of energies. We follow Ref. 6 where the authors
reasoned that such corrugations act like a “graded” material and

allow one tomodify the emissivity. However, rather than consid-
ering their sharply varying sawtooth profiles,6 we focus on
smooth periodic profiles to corrugate. Not only is this feature
advantageous for our numerical algorithm, but also the response
is similar to sawtooth shapes readily generated bymodern fabri-
cation techniques.

The numerical approach we utilize is a high-order pertur-
bation of surfaces (HOPS) algorithm,7–10 which utilizes surface
unknowns, giving it an order-of-magnitude advantage in terms
of storage and execution time over volumetric approaches such
as finite difference,11 finite element,12 spectral element,13 and
spectral14 methods. Furthermore, because of its perturbative
character and expression in terms of periodic eigenfunctions of
the Laplacian, it has advantages over integral equation
approaches:15 there is no need for specialized quadratures, peri-
odization strategies, or iteration schemes for solving dense,
nonsymmetric positive-definite systems of linear equations.16,17

From our simulations, we have made a number of important
discoveries. First, the introduction of periodic corrugations can
significantly increase the useful power density (PD) (4.2651W/cm2
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versus 3.4443W/cm2) of solar cells in transverse magnetic
(TM) polarization. Second, the enhancement grows with
increasing corrugation amplitude up to a maximal value
beyond which the beneficial effects dissipate. Third, the shape
of the corrugation does not appear to be crucial since a simple
sinusoid produces roughly the same results as those produced
by a sawtooth profile. Finally, our results improve as the
period, d, of the corrugation is adapted to the bandgap wave-
length, kBG, of the underlying PV cell. Based upon the careful
study of the emissivity of our structures, we have derived the
rule d� kBG as a useful starting point for practitioners building
such devices. We note that our results depend strongly on
polarization: The difference between flat and corrugated
interfaces is minimal in transverse electric (TE) polarization;
however, it is sizable in TM.

Figure 2 displays the geometry of the configuration we
consider: a y-invariant (Mþ 1)-layered insulator-metal struc-
ture. An insulator (vacuum with refractive index nvac¼ 1) occu-
pies the domain above the uppermost interface {z > g1(x)} and
the metal (tungsten) fills {z < gM(x)}. A tungsten-alumina alloy

spacer (Al2O3 with nal¼ 1.7682 with tungsten volume fraction
0� fW � 1) occupies the second layer, {g2(x) < z < g1(x)}, while a
Bragg reflector composed of alternating layers of SiO2

(nsi¼ 1.4585) and TiO2 (nti¼ 2.6142) occupies the middle of the
structure {gM(x) < z < g2(x)}. We focus upon d-periodic grating
interfaces, typically gjðxÞ ¼ �gj þ a sinð2px=dÞ, and work with
triply layered Bragg structures so that M¼ 5. The structure is
illuminated from above by monochromatic plane-wave inci-
dent radiation of frequency x, aligned with the grooves.
Factoring out the common term expð�ixtÞ, we choose the
reduced electric and magnetic fields as unknowns, which, like
the incident field, are quasiperiodic.

In this two-dimensional setting, the time-harmonic
Maxwell equations decouple into (Mþ 1)-many scalar Helmholtz
problems that govern the TE and TM polarizations.18 We denote
the invariant (y) directions of the scattered (electric or magnetic)
fields by vm(x, z) in layer m and the incident radiation in the
upper layer by vi.We seek outgoing quasiperiodic solutions of

Dvm þ kðmÞð Þ2vm ¼ 0; gmþ1ðxÞ < z < gmðxÞ; (1)

vm�1 � vm ¼ �dm;1v
i; z ¼ gmðxÞ; (2)

@Nmvm�1 � s2m@Nmvm ¼ �dm;1@Nmvi; z ¼ gmðxÞ; (3)

where dm,‘ is the Kronecker delta, k(m)¼n(m)x/c, Nm

¼ ð�@xgm; 1ÞT; s2m ¼ 1 in TE, and s2m ¼ ðkðmÞ=kðmþ1ÞÞ
2 ¼ ðnðmÞ=

nðmþ1ÞÞ2; in TM:
The Rayleigh expansions18,19 state, for z > jg1jL1,

v0ðx; zÞ ¼
X1

p¼�1
âpeiapxeic

ð0Þ
p z;

where ap :¼ aþ 2pp=d, cð0Þp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkð0ÞÞ2 � a2p

q
; with Imðcð0Þp Þ � 0;

and the “propagating modes” are Uð0Þ ¼ p 2 Z j a2p < ðkð0ÞÞ
2

n o
:

The emissivity (equal to the absorbance) is defined as

�sðkÞ ¼ 1�
X
p2Uð0Þ

eð0Þp ; eð0Þp :¼
cð0Þp jðv̂0 Þpj

2

cð0Þ
:

We follow a HOPS methodology to solve (1)–(3), which suc-
cessively corrects the flat-interface (Fresnel) approxima-
tion.8,16,20–22 The approach begins with the assumption that the
shapes of the interface deformations gm satisfy gm¼ efm (e � 1)
with fm being sufficiently smooth. The smallness assumption on
e can be removed by analytic continuation23,24 and numerically
implemented via Pad�e summation.8,25,26

We utilize the Transformed Field Expansion approach8,20

which we recall here. A simple change in variables has an impact
in each layer which flattens the domain interfaces, {z¼ gj(x)} to
fz0 ¼ �gjg. This delivers equations for the transformed fields,
umðx0; z0Þ ¼ vmðxðx0; z0Þ; zðx0; z0ÞÞ, e.g.,

D0um þ kðmÞð Þ2um ¼ Fmðx0; z0Þ;

for (1), where forms for Fm can be readily derived.9,10 Classical
results7,20 imply that the transformed fields depend analytically
on the deformation size e so that, e.g.,FIG. 2. Bragg-tungsten structure with sinusoidal periodic interfaces.

FIG. 1. Depiction of the full STPV system (left) with special emphasis on the TPV
emitter structure (right).
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um ¼ umðx0; z0; eÞ ¼
X1
n¼0

um;nðx0; z0Þen: (4)

This expansion is inserted into the transformed version of
(1)–(3), resulting in a system of coupled inhomogeneous
Helmholtz problems governing um,n to be solved. For the pur-
pose of approximating these, we have selected a stable, High-
Order Spectral Fourier-Legendre Galerkin approach14 where

um;n �
XNx=2�1

p¼�Nx=2

XNz

‘¼0
~um;n;p;‘L‘ðzÞeiapx;

and L‘ are appropriately scaled and translated Legendre polyno-
mials. For smooth profiles fm, the scattered fields, um, are jointly
analytic in x, z, and e, so the coefficients ~um;n;p;‘ decay exponen-
tially fast as {m, n, p, ‘} grow.8 Thus, only a small number of these
are required to deliver a high-fidelity solution which can be dis-
covered very quickly. Naturally, as the deformation size e
becomes larger, more perturbation orders n are required, which
slows our algorithm.

A figure of merit that measures the utility of our structures
comes from Planck’s law for the spectral radiance of a black
body at temperature T

Bðk;TÞ ¼ 4p�hc2

k5

 !
1

exp ðQÞ � 1
; Q :¼ 2p�hc

kBTk
;

where �h is Planck’s constant, c is the speed of light in a vacuum,
and kB is the Boltzmann constant. With this, the (useful) power
density is given by

P :¼
ðkBG

0

k
kBG

Bðk;TÞ�sðkÞ dk; (5)

where we restricted the integration domain to be {kmin< k
< kmax}. Jeon et al.5 introduced a second figure of merit, the
“spectral efficiency,” which, in our simulations, decreased only
slightly with the introduction of corrugations.

In all of our simulations, we chose the physical parameters
kBG¼ 2.254lm, kmin¼0.6lm, kmax¼6.0lm, T¼ 1700 K, and
fW¼0.75, where we have used a Maxwell formula to estimate
the permittivity of the alloy.5 Geometrically, we have chosen the
base layer thicknesses to be 20nm for tungsten-alumina alloy,
255nm for SiO2, and 150nm for TiO2.

To begin,we consider a selection of representative configu-
rations with sinusoidal corrugations of the spatial period,
d¼ 2.5lm, and amplitudes a¼0, 0.15, 0.275, and 0.35lm. The
results are summarized in Table I. The final column, d, is a
dimensionless measure of the energy defect when the tungsten

and alloy layers are replaced by a dielectric. If d¼0, then energy
is perfectly conserved (as it should be in a dielectric structure),
while the values of 10�2 to 10�3 indicate that 2–3 digits can be
trusted. From this table, we learn a number of things. First, we
can increase the useful power density by nearly 25% with the
introduction of periodic sinusoidal corrugations. To see why this
is the case, we display, in Fig. 3, the emissivity, �s, for flat
(a¼0lm) and corrugated (a¼0.25lm) interface configurations.
We notice the significant enhancement of the magnitude of the
emissivity below the bandgap wavelength in the presence of
corrugations. In addition, from Table I, we note that the
improvement in useful power density increases as the corruga-
tion amplitude increases to a maximum around a�0.275lm but
then decreases again as a increases.

To discern the effect of the particular shape of the interface
deformations, we ran these simulations again with a¼0.18lm
and interfaces shaped as sawtooth profiles (see Fig. 4). These
simulations revealed that the useful power density increases
from 4.01W/cm2 to 4.03W/cm2 when the sharp sawtooth cor-
rugations are introduced,which is clearly not significant.

Continuing, we decided to investigate the possibility of
improving the performance of our design by varying the period
of our corrugations. For this, we selected 100 samples of d from
the uniform distributionU(1.6, 3.0) (in microns) for a fixed ampli-
tude a¼0.18lm; the results are depicted in Fig. 5. Here, we see a
significant spike near the value d¼ 2.8lm. Our explanation for
this result is that it is within a small neighborhood of kBG so that
our emissivity profile is tailored to the bandgap of the PV. To
make this more quantitative, we display the emissivity for a
period d near this critical value kBG in Fig. 6 and approximately
below/above this value in Fig. 7 with amplitude a¼0.18lm cor-
rugations. Here, we see how the emissivity curve is “optimal” in
the d¼ 2.88� kBG case with all of the plasmonic peaks located at
wavelengths up to, but not past, the bandgap wavelength. By
contrast, for d< kBG, the peaks do not exist all the way up to the

TABLE I. Numerical results for six-layer structures.

a (lm) PD (W/cm2) D Nx Nz N

0 3.4443 4� 10�16 20 20 20
0.15 3.8381 3� 10�3 20 20 20
0.275 4.2651 8� 10�3 20 40 40
0.35 4.1651 1� 10�2 20 40 40 FIG. 3. Plot of the emissivity, �s, versus wavelength, k, for the sinusoidally corru-

gated interface configuration with a¼ 0 and 0.25lm. (Nx¼Nz¼ 20 and N¼ 20).
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bandgap wavelength, while for d>CkBG, there are “wasted”
peaks beyond.

In this letter, we addressed the problem of designing TPV
emitters consisting of Bragg reflectors overlaying tungsten with
periodically corrugated interfaces. Using a rapid and robust
HOPS solver, we have found such structures using the useful
power density figure of merit.We determined that corrugations
of simple sinusoidal form can give significant enhancements
which grow with increasing amplitude up to a maximal value.
The shape of the corrugation did not appear to be particularly
important; however, the period, d, should be adapted to the
bandgap wavelength of the PV cell, kBG, with a useful first
approximation expressed by d� kBG.

We note that our calculations focus on normal incidence
(emission), which is common in the literature. As discussed in
the supplementary material of Ref. 5, although angles near nor-
mal are expected to be most important, a more complete calcu-
lation would involve integrating over all the angles of emission.
The conditions for plasmonic/diffractive resonances depend on
the angle [e.g., Eqs. (1) and (2) of Ref. 27] so that there will likely
be some deterioration in the overall power densities.

This paper has focused on achieving emissivities that can
enhance power density associated with a PV cell at a particular
band-gap energy. However, another important aspect of solar
energy related problems (e.g., concentrating solar power28) is to

FIG. 5. Useful power density versus period of the sinusoidally corrugated interfaces
(Nx¼Nz¼ 20 and N¼ 20).

FIG. 6. Emissivity versus wavelength for period d¼ 2.88lm (d� kBG) corrugated
interfaces (Nx¼Nz¼ 20 and N¼ 20).

FIG. 7. Emissivity versus wavelength for period d¼ 2.4 lm (d<CkBG) and
d¼ 3.2lm (d>CkBG) corrugated interfaces (Nx¼Nz¼ 20 and N¼ 20).

FIG. 4. Bragg-tungsten structure with sawtooth periodic interfaces.
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design structures that can absorb over the entire solar spec-
trum. Figure 7 shows that one can achieve absorption (emissiv-
ity) at somewhat longer wavelengths by increasing the
periodicity. The extent to which one could optimize the period-
icity represents an interesting problem that we plan to address.
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supported by the U.S. Department of Energy, Office of
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