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Abstract. We study solitary wave interactions in the Euler–Poisson equations modeling ion
acoustic plasmas and their approximation by KdV n-solitons. Numerical experiments are per-
formed and solutions compared to appropriately scaled KdV n-solitons. While largely correct
qualitatively the soliton solutions did not accurately capture the scattering shifts experienced by
the solitary waves. We propose correcting this discrepancy by carrying out the singular pertur-
bation scheme which produces the KdV equation at lowest order to higher order. The foundation
for this program is laid and preliminary results are presented.
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1. Introduction

Over the past 150 years one of the successes in the application of mathematics to
science and engineering has been in the simulation of nonlinear, dispersive evolu-
tionary physical processes by integrable partial differential equations. For example,
the Korteweg–de Vries (KdV) and Nonlinear Schrödinger (NLS) equations have
been used as a models in applications as diverse as ocean wave dynamics, plasma
physics, and nonlinear optics. Of particular significance in the success of these
models is the fact that they are integrable and possess, among other things, soli-
ton solutions which propagate without change in form and interact “elastically,”
i.e. the waveforms emerge from interactions with the same speed and shape, suf-
fering only a scattering shift as evidence of the collision.

A natural question to ask is how well the multi-soliton solutions approximate
the true solutions they are meant to model. In the setting of gravity waves on
the surface of an ideal fluid, modelled by the Euler equations, several answers
have been proposed. Craig [3] has shown that suitably scaled solutions of the
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Euler equations are “close” to solutions of the relevant KdV equation for a fi-
nite, though potentially quite long, period of time. More recently Schneider &
Wayne [12] have shown that suitably scaled and sufficiently small solutions of
the water wave problem in the long wave limit split up into two wave packets,
one moving to the right and one to the left, which evolve independently as so-
lutions of two KdV equations on a finite but again potentially quite long time
interval. Their analysis includes soliton solutions and allows for studying the in-
teraction of solitary waves in certain cases. However, the scattering anomalies
in our numerical experiments (see § 3) imply that the scattering shifts experi-
enced by the solitary waves are not accurately described by the KdV equation
itself.

Zou & Su [13] calculated numerically the second and third order corrections
to the KdV equation for the Euler equations. They found that the interaction
is elastic at second order, but that a dispersive tail appears at third order. Fen-
ton & Rienecker [5] carried out a numerical study of interacting solitary waves
for the Euler equations and compared the numerical results with solutions of the
Korteweg–de Vries equation. They noted [5]:

Results support . . . applicability of the Korteweg–de Vries equation . . . since
the waves during interaction are long and low. However, some deviations
from the theoretical predictions were observed: the overtaking wave grew
significantly at the expense of the slower wave, and the predicted phase
shift was only roughly described by the theory.

In fact, the inelastic nature of the interaction has been reported by others studying
solitary wave interactions for non-integrable dispersive systems [1], [2], [7], [8].

Among the class of nonlinear, dispersive, evolutionary physical models ad-
mitting an approximation by the KdV equation, one of the simplest is modelled
by the Euler–Poisson equations of ion acoustic plasma physics. These equations
share many of the same features as the Euler equations which model the evo-
lution of the free surface of an ideal fluid such as existence of solitary waves
and a wave of maximum speed, crest instability of solitary waves, Hamiltonian
structure and certain symmetries. However, they lack many of the complications
of the Euler equations such as the presence of the non-local Dirichlet–Neumann
operator (or one of its analogues) [4] for a formulation which can be naturally
related to the KdV equation. While this operator can be analyzed it does ren-
der the Euler equations significantly more complicated than the Euler–Poisson
equations and for this reason we restrict our current investigations to the latter
equation.

A further instance of the inelastic behavior mentioned above, but in the context
of plasma waves, was noticed by Li & Sattinger [9] in a numerical simulation of
interaction of low amplitude solitary waves (of different amplitude) of the Euler–
Poisson equations of plasma physics. They compared their numerically computed
solution with an appropriately scaled 2-soliton solution of the KdV equation and
found a dispersive tail approximately 0.00666% of the magnitude of the smaller
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wave, consistent with the dispersive tail at third order found by Zou & Su [13] for
water waves. However, Li & Sattinger’s data did not confirm all of the findings
of Fenton & Rienecker [5] in the case of the water waves. While it did show
that the plasma waves are displaced relative to the KdV waves, the faster waves
did not gain significant amplitude at the expense of the slower wave. In light
of these findings the authors’ aim in this research project is to understand the
discrepancies between predictions of the KdV n-soliton solution and observations
in numerical simulations on the full Euler–Poisson equations, and to produce, if
possible, an enhanced model which more accurately captures effects such as the
scattering shift.

The message of this paper is two-fold. First, in the setting of the Euler–Poisson
equations of plasma physics, the KdV n-soliton solution provides qualitatively ex-
cellent results (producing solitary waves which interact essentially elastically even
well outside of their purported realm of validity) while being quantitatively in-
accurate in capturing certain effects (particularly the scattering shift apparent
after a collision). Second, we present some preliminary results on constructing
“higher order corrections” to the KdV equation which will accurately capture the
quantitative inaccuracies produced by the KdV n-soliton solution.

The paper is organized as follows: Section 2 discusses the Euler–Poisson equa-
tions, the derivation of the KdV approximation, the numerical method developed
by Li & Sattinger [9], and a convergence study indicating the accuracy, stability,
and robustness of the method. In Section 3 we present results of numerical exper-
iments on two- and three-pulse interactions in the Euler–Poisson equations and
their approximation by KdV two- and three-solitons. In Section 4 we discuss some
of our preliminary theoretical results. In particular in Section 4.1 we present a dis-
cussion of the time-scale of interaction for two solitary waves and in Section 4.2 we
discuss the next-order correction to the KdV equation in a singular perturbation
expansion for the Euler–Poisson equations. Modulational effects on these model
equations during solitary wave interactions, and the relation to the results of Zou
& Su [13] are discussed in Section 4.3. Finally, in Appendix A we present some
results on two-soliton solutions of the KdV equation which are used extensively in
Section 4.2.

2. Numerical simulation of the Euler–Poisson equations

In this section we present the equations governing the evolution of an ion acoustic
plasma, i.e. the Euler–Poisson equations (§ 2.1), and present the first step in
a singular perturbation expansion of the Euler–Poisson equations which gives the
KdV equation at lowest order (§ 2.2). We also briefly describe a numerical method
due to Li & Sattinger [9] for simulating solutions and present some numerical
convergence studies which give us confidence that our numerical solutions converge
to true solutions of the Euler–Poisson equations (§ 2.3).
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2.1. Euler–Poisson equations

The Euler–Poisson equations for ion acoustic waves in plasmas are

nt + (nv)x = 0, vt +
(

v2

2
+ ϕ

)
x

= 0, ϕxx − eϕ + n = 0 (2.1)

where ϕ, n, and v are respectively the electric potential, ion density and ion
velocity. This system supports solitary waves which travel with constant speed
[11] (see [9] for a detailed proof of existence). They are solutions of the form
(1 + ñ, v, ϕ)(x − ct), where c is the propagation speed, which decay to zero as
ξ = (x− ct) → ±∞. Such solutions satisfy the system

ñ =
v

c− v
, v = c−

√
c2 − 2ϕ, (2.2a)

ϕ′′ = eϕ − c√
c2 − 2ϕ

. (2.2b)

Solitary waves exist for supersonic speeds c > 1 and there is a wave of maximum
speed traveling at a rate c̄ ≈ 1.5852. With this quantity one can define a Mach
number by

M(c) =
c− 1
c̄− 1

≈ c− 1
.5852

, (2.3)

which will appear in several of our numerical experiments.

2.2. KdV approximation

We briefly review the derivation of the KdV equation as the leading term in a
singular perturbation scheme for the Euler–Poisson equations. By introducing a
rescaling of the space and time variables by x′ = εx, t′ = ε3t, where ε is the
relevant smallness parameter, one obtains the singular perturbation problem

ε2nt′ + (nv)x′ = 0

ε2vt′ +
(

v2

2
+ ϕ

)
x′

= 0

−ε2ϕx′x′ + eϕ = n.

In the following, we shall drop the primes from the variables. As only even powers
of ε appear in these equations, we formally expand all quantities in powers of ε2,

n = 1 + ε2n1 + ε4n2 + . . .

v = −1 + ε2v1 + ε4v2 + . . .

ϕ = ε2ϕ1 + ε4ϕ2 + . . . .

This corresponds to expanding around a density of n = 1 and a velocity at infinity
of v = −1, corresponding to a Galilean frame moving with speed 1.
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At order ε2 we obtain, by differentiating the third equation with respect to x,

(n1 − v1)x = 0 (v1 − ϕ1)x = 0 (ϕ1 − n1)x = 0. (2.4)

At order ε4 we get

(n2 − v2)x = n1,t + (n1v1)x (2.5a)

(v2 − ϕ2)x = v1,t +
1
2
(v2

1)x (2.5b)

(ϕ2 − n2)x = ϕ1,xxx − ϕ1ϕ1,x. (2.5c)

In fact at each step, k, we get a system of equations of the form

(nk − vk)x = f
(1)
k , (vk − ϕk)x = f

(2)
k , (ϕk − nk)x = f

(3)
k . (2.6)

The operator on the left side of (2.6) has a null space of the form nk = vk = ϕk,
and the solvability condition for the system is

f
(1)
k + f

(2)
k + f

(3)
k = 0. (2.7)

The general solution of this system vanishing as x → −∞ is

vk(x, t) = ϕk +
∫ x

−∞
f

(2)
k (x′, t) dx′ (2.8a)

nk(x, t) = ϕk −
∫ x

−∞
f

(3)
k (x′, t) dx′, (2.8b)

where ϕ = ϕ(x, t) is to determined so that the solvability condition at the next
order is satisfied.

At the lowest order (2.4) & (2.8) require that n1 = v1 = ϕ1, while at next order
(2.5) and the solvability condition (2.7) require that ϕ1 satisfy

ut +
1
2
uxxx + uux = 0, (2.9)

the KdV equation. The extension of this expansion to next order is the topic of
§ 4.2.

Of great significance to the rest of the paper is integrability of (2.9) and the
explicit 2-soliton solution given by

u(x, t) = 6
d2

dx2
log τ, τ = det

∣∣∣∣∣∣δjk +
e−(θj+θk)

ωj + ωk

∣∣∣∣∣∣, (2.10)

where
θj = ωj(x− 2ω2

j t− αj), j = 1, 2. (2.11)

The 2-soliton solution is a four parameter family of solutions of (2.9); the param-
eters αj are the relative phases of the two waves and the speeds of the waves are
given by 2ω2

j . The determinant in (2.10) is called the tau function in the literature.



Vol. 5 (2003) Solitary Wave Interactions of the Euler–Poisson Equations 97

2.3. Numerical method and convergence

In numerical simulations the spatial boundary condition of decay at infinity is
replaced by the condition that n, v, and ϕ are periodic of period L, where L is
suitably large, and the support of these functions is well within the interval [0, L].
The numerical method we have utilized for simulations of (2.1) (with the periodic
boundary condition previously mentioned) is due to Li & Sattinger and discussed
in detail in [9]. To summarize, the method is a Fourier collocation method in
space and an implicit first order finite difference method in time. The spatial
discretization is chosen for its spectral accuracy while the time stepping strategy
is chosen for its simplicity and stability. A raised cosine filter is used periodically
(in time) in the spatial variable to counteract the effects of aliasing errors.

In order to build confidence in the reliability of our scheme we performed a
numerical convergence study on the problem of two solitary plasma waves colliding
at relatively low Mach number. In particular, we simulated the evolution of two
superposed solitary wave solutions of (2.1) with speeds c1 = 1.1 and c2 = 1.3 on
an interval of length L = 100 for a time interval of length T = 490. Equations
(2.1) were solved with c = 1.2 so that the solutions simply exchanged positions,
and discretizations were made in space and time parameterized by the number of
collocation points Nx and the number of time steps Nt. To help control aliasing
errors, the raised cosine filter was applied after every 100 units of time.

The results of this study for fixed Nt = 49000 (∆t = 0.01) and varying Nx are
given in Table 1 where the “exact solution” is given by the results of a simulation
with Nx = 16, 384 (∆x = 0.006103515625). The results for varying Nt and fixed

Nx ∆x Error in ϕ (Discrete L2)

256 0.390625 0.01146778606810997
512 0.1953125 0.002870303277881501
1024 0.09765625 3.427685711428991e× 10−5

2048 0.048828125 1.715995772970149× 10−7

4096 0.0244140625 8.53361553374557× 10−9

8192 0.01220703125 5.299269878231338× 10−9

Table 1. Convergence study of two solitary wave interaction at speeds c1 = 1.1 and c2 = 1.3
with fixed Nt = 49000 (∆t = 0.01) and variable Nx.

Nx = 1024 (∆x = 0.09765625) are given in Table 2, where the “exact solution”
is given by the approximation with Nt = 196, 000 (∆t = 0.0025). In each case
we see clearly that as the discretization is increased the approximate solution is
converging to the “exact solution.” Furthermore, as Nx is increased the rate of
convergence is spectral, as one would expect from a Fourier collocation method on
a periodic interval, and as Nt is increased the rate of convergence is roughly linear
as expected from a first order scheme.
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Nt ∆t Error in ϕ (Discrete L2)

6,125 0.08 0.1493931266324674
12,250 0.04 0.1200847953350079
24,500 0.02 0.07506573844755135
49,000 0.01 0.03645025098749217
98,000 0.005 0.01266804809229405

Table 2. Convergence study of two solitary wave interaction at speeds c1 = 1.1 and c2 = 1.3
with fixed Nx = 1024 (∆x = 0.09765625) and variable Nt.

3. Numerical results

We conducted several numerical experiments regarding the interaction of solitary
wave solutions of the Euler–Poisson equations (2.1) in order to gain some insight
into the strengths and weaknesses of the KdV approximation to these equations.
In all experiments the individual traveling waves were constructed by a numerical
continuation method applied to (2.1) for steady solutions, i.e. nt = vt = ϕt = 0,
where the parameter was the speed c and an initial guess of a properly scaled KdV
soliton was used to step off the trivial branch of solutions (n = v = ϕ ≡ 0). To
simulate two or more solitary waves interacting, two or more of these solutions were
simply added together and, provided that the pulses were sufficiently separated
in space, our results were excellent. In the experiments below, the relationship
between the absolute wave speed cj of pulse j in the rest frame to the solitary
wave speed parameter ωj is cj = 1 + 2ω2

j .
In the first experiment we compared a high Mach number (M = 0.8544) solitary

wave solution of the Euler–Poisson equation with a KdV soliton moving with the
same speed. In Figure 1 we see the results of this computation and notice that the
plasma wave (dashed line) is considerably more peaked than the KdV wave of equal
velocity (solid line). The KdV solitary wave is 6ω2sech2ωx, where c = 1 + 2ω2.

In the next two experiments we study two- and three-pulse interactions in the
Euler–Poisson equations and compare them with two- and three-soliton solutions
of KdV with speeds that match those of the plasma pulses. In Figures 2 & 3 we
see the results after matching KdV two- and three-solitons, respectively, to the
initial data of the plasma using the initial location of the wave peaks and the
initial speeds. The experiments clearly confirm the displacement of the plasma
waves relative to the corresponding KdV waves after the interaction, as noted by
Fenton & Rienecker [5] in the context of water waves.

Note that in Figure 2 the smaller plasma wave is completely absorbed by the
larger one in the course of the interaction, while in the interaction between waves
of speeds 1.05 and 1.1, depicted in the sequence in Figure 4 from Li & Sattinger [9],
momentum is exchanged between the faster and slower waves. This phenomenon is
well known for the 2-soliton solutions of the KdV equation: when the wave speeds
are close, there is a momentum transfer, while in the case of a large difference
between the wave speeds, the slower wave is overtaken and absorbed by the faster
wave.
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Fig. 1. Comparison of the KdV soliton (dashed) with the ϕ wave (solid) of the ion acoustic
plasma equations at M = .8544, c = 1.5.

The concept of scattering shift for the KdV equation is based on the fact that
the emerging waves travel at the same speeds as the incoming waves, and the waves
lose no energy in the course of the interaction. The trailing dispersive waves of
very low magnitude found in the numerical experiments of Li & Sattinger [9] and
predicted by Zou & Su [13] imply that energy is lost from the traveling waves
in the course of the interaction, so that the total energy of the emerging waves
is slightly less than that of the incoming waves. If this were the case, then the
emerging waves would travel at slightly different speeds than the incoming solitary
waves, and the distance between the plasma wave and the corresponding KdV wave
after the interaction would grow linearly in time, as indicated by the plots of the
scattering anomalies in Figure 5. In this plot, the δj are difference between jth

KdV wave and the corresponding plasma wave. The anomalies develop on a fast
time scale at the time of the interaction. For large times, δ2 appears to increase
linearly, suggesting that the faster plasma wave falls away from the KdV wave at
a constant speed; while the decay in δ1 suggests that the slower plasma wave has
gained speed.

If the waves are asymptotic to solitary waves after they emerge from the in-
teraction, then Figure 5 suggests that the faster plasma wave loses speed in the
interaction, while the slower plasma wave picks up speed in the interaction. Thus,
there is a small momentum transfer from the faster to the slower wave during
the interaction. In addition, the presence of a trailing dispersive wave indicates
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Fig. 2. Comparison of the KdV 2-soliton solution (dashed) with the ϕ wave (solid) of the ion
acoustic plasma equations at initial, intermediate, and final configurations. (c1 = 1.1, c2 = 1.5)

that some energy is lost from the waves in the course of the interaction. Table 3
gives the numerical values of the speeds of the waves, measured from the data; in
this table cj is the speed of each individual pulse computed as a solitary wave, v0

and A0 are the initial (pre-collision) speed and amplitude, while vf and Af are
the final (post-collision) speed and amplitude. The data show that the emitted

Run cj v0 A0 vf Af

1 1.05 1.0501 .1446 1.0499 .1447
1.10 1.0999 .2795 1.0999 .2789

2 1.1 1.0999 .2795 1.1003 .2790
1.3 1.2997 .7422 1.2964 .7341

3 1.1 1.1000 .2795 1.100 0.2797
1.4 1.3996 .9383 1.3939 0.9271

4 1.1 1.0998 .2795 1.1003 0.2790
1.5 1.5000 1.1165 1.4987 1.1144

Table 3. Numerical experiments on interacting two-pulse solutions of the Euler–Poisson
equations: cj are the theoretical solitary wave speeds; v0 and vf their observed speeds before

and after the interaction; A0 and Af their observed amplitudes before and after the interaction.

waves are very close in speed to the initial waves, while the plots of the scattering
anomalies indicate that the faster wave loses speed during the interaction. The
most significant qualitative difference between the KdV approximation and the
solutions of the Euler–Poisson equations themselves lies in the displacement of the
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Fig. 3. Comparison of the KdV 3-soliton solution (dashed) with the ϕ wave (solid) of the ion
acoustic plasma equations at initial, intermediate, and final configurations.

(c1 = 1.3, c2 = 1.4, c3 = 1.5)

emerging waves from those of the 2-soliton solution of the KdV equation.
In a completely elastic interaction the waves retain their original shape, speed,

and amplitude. Thus a rough measure of the elasticity of the interaction can be
obtained by translating one of the waves, say the faster one, back to its original
position and comparing it with the corresponding wave prior to the interaction. In
the experiment discussed in Li & Sattinger [9] there was no difference graphically
when this was done with the larger wave. A quantitative measure of the elasticity
of the interaction can be obtained by defining a coefficient of elasticity of the
interaction, as follows:

e = 1− ||v0 − vft||1
||v0||1 , ||v||21 =

∫
v2

x + v2 dx.

Here, v0 is the initial wave form, while vft is the final waveform, translated back
to its original position. By this measure the solitary wave interactions for the
Euler–Poisson equations are highly elastic, even at high Mach numbers, in the
sense that the faster wave regains its initial shape after the interaction, as shown
in Table 4. The experimental runs in Table 4 are the same as those in Table 3.
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Fig. 4. Comparison of the KdV 2-soliton solution (dashed) with the ϕ wave (solid) of the ion
acoustic plasma equations at initial, two intermediate, and final configurations [9].

(c1 = 1.05, c2 = 1.1)

Run M1 M2 e ∆x

1 0.0854 0.1709 0.9862 0.0245
2 0.1709 0.5126 0.9647 0.0122
3 0.1709 0.6835 0.9664 0.0037
4 0.1709 0.8544 0.9739 0.0031

Table 4. Elasticity coefficients e of interacting two-pulse solutions of the Euler–Poisson
equations with Mach numbers M1 and M2 (cf. Table 3); ∆x is the grid spacing.

4. Preliminary theoretical results

It is evident from the numerical experiments of § 3 that the KdV approxima-
tion of the Euler–Poisson equations (2.9) cannot provide complete details about
solitary wave interactions alone. In this section we present our preliminary re-
sults regarding efforts in this direction, particularly commenting on the results of
Schneider & Wayne [12] and Zou & Su [13], and our own progress on carrying out
the perturbation expansion begun in Section 2.2 to higher order.

4.1. Time-scale of solitary wave interactions

In Eulerian variables, the Euler equations of water waves have a quantity η(x, t),
the elevation of the free surface from the undisturbed state, which, like the quan-
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Fig. 5. Plots of the scattering anomalies. δj are difference between jth KdV wave and the
corresponding plasma wave.

tities n, v, ϕ from the Euler–Poisson equations, can be modelled at lowest order by
the KdV equation. In a recent paper Schneider & Wayne [12] have rigorously stud-
ied the approximation of solutions of the Euler equations equations by solutions
of the KdV equations. One of the corollaries in their work can be paraphrased in
the following way.

Corollary 4.1 (Schneider & Wayne, Corollary 1.5 [12]). Fix s ≥ 4. For all
T0 > 0 there exist C2, ε0 > 0 such that for all ε ∈ (0, ε0) the following is true. If η
is sufficiently smooth (related to weighted Hs+6 and Hs+11 Sobolev spaces) then

sup
t∈[0,T0/ε3]

∥∥η − ε2A1(ε(· − t), ε3t) + ε2A2(ε(·+ t), ε3t)
∥∥

Xs−3/2 ≤ C2ε
5/2,

where Xs−3/2 is a weighted Hölder space, and A1 and A2 satisfy right- and left-
moving KdV equations.

While this result has only been established for the Euler equations of water
waves, it is easy to believe that the same sort of general result is also true for
the Euler–Poisson equations. However, the occurrence of scattering anomalies in
the numerical experiments of § 3 implies that the KdV equation by itself does not
capture all of the relevant phenomena for interacting solitary waves. Of crucial
importance is the time-scale on which interactions take place in the Euler–Poisson
(or Euler) equations. To this end, we establish in Theorem 4.3 that the time-scale
of interaction for two traveling waves is proportional to not only ε−3 but also to a
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second parameter, the difference between the speeds of the two interacting waves.
Independent of the size of ε, by making the speeds of the interacting waves close,
one can make the time of interaction arbitrarily large, possibly larger than the
time-scale covered by Schneider & Wayne.

The problem we consider is somewhat ambiguous, since solitary waves are not
compactly supported, thus the waves never separate completely. To make the
discussion concrete, we make the following definition:

Definition 4.2. Two solitary waves are separated to threshold r% (0 < r < 100)
if the solution contains two distinct pulses, and, somewhere, denoted αr, between
the maxima of these two pulses the magnitude of the solution is (r/100)A where
A is the L∞ norm of the solution.

In light of Definition 4.2 we are able to establish the following theorem.

Theorem 4.3. The time required for two solitary waves of the KdV equation to
completely interact, given a threshold of r%, is given by

T =
αr

ω1ω2(ω2 − ω1)
− 1

2ω1ω2(ω2 + ω1)
log

[
ω2 + ω1

ω2 − ω1

]
, (4.1)

where sech2αr = 0.01r.

Proof. The exact formula for the length of time required for the interaction of
two solitary waves of the KdV equation is obtained by first calculating the time
required for two free waves to interact, and then correcting for the scattering shift.

The relative velocity of two free waves with speeds 2ω2
j , is 2(ω2

2 − ω2
1). The

relative distance traveled by the overtaking wave during the course of the inter-
action is the sum of the widths of the two waves. If l denotes the width of the
solitary wave of speed 2ω2, and we use r% as the threshold, we get ωl/2 = αr,
where sech2 αr = .01r. The total relative distance the faster wave must travel to
completely overtake and pass the slower wave is therefore

d = l1 + l2 = 2αr

(
1
ω1

+
1
ω2

)
.

The time required for the interaction of two free waves is

2αr

(
1
ω2

+
1
ω1

)
2(ω2

2 − ω2
1)

=
αr

ω1ω2(ω2 − ω1)
.

During the interaction, the faster wave is shifted forward, and the slower wave is
shifted backward, by the amounts

1
ω2

log
ω2 + ω1

ω2 − ω1
,

1
ω1

log
ω2 + ω1

ω2 − ω1
,
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respectively. The boost due to the scattering of the waves effectively reduces the
net distance the interacting waves must travel by(

1
ω2
− 1

ω1

)
log

ω2 + ω1

ω2 − ω1
.

Dividing this expression by the relative velocity and simplifying, we obtain the
second term in (4.1).

According to Schneider & Wayne [12], solutions of the Euler equations, and
presumably the Euler–Poisson equations, are close to the scaled 2-soliton solution
ε2u(εx, ε3t), u being the 2-soliton solution of KdV, on a time scale of order ε−3. In
this scaling the speeds ω1 and ω2 of the KdV solitons scale as εω1 and εω2, and the
interaction time T in (4.1) therefore scales as ε−3. This shows that the time scale
of the interaction is the same as that for the validity of the KdV approximation.
However, Eqn. (4.1) further shows that the interaction time goes to infinity as
ω1 → ω2, as one would expect. Thus the time required for the complete interaction
of two solitary waves depends not only on the small parameter the theory, ε, but
also on a second parameter δ = ω1 − ω2. Therefore one cannot assert, without
further analysis, that the result obtained in [12] is always sufficient to see the
interaction of two solitary waves for sufficiently small ε.

4.2. The perturbation scheme

As we have seen in § 2.2 the KdV equation is the leading term in a singular
perturbation scheme for the Euler–Poisson equations. In this section we derive a
method for obtaining a next-order correction to the KdV equation, and obtain an
analytical expression for the second order term to the 2-soliton solution.

Recall from § 2.2 that at each order, k, in the perturbation expansion for
approximating the Euler–Poisson equations we are required to solve a system of
equations (2.6) of the form

(nk − vk)x = f
(1)
k , (vk − ϕk)x = f

(2)
k , (ϕk − nk)x = f

(3)
k , (4.2)

where the solvability condition (2.7) is given by f
(1)
k + f

(2)
k + f

(3)
k = 0 and the

general solutions for nk and vk in terms of ϕk are given by (2.8). The solvability
condition at order four gives the KdV equation (2.9) for ϕ1.

At order ε6 we have

(n3 − v3)x = n2,t + (n1v2 + n2v1)x (4.3a)
(v3 − ϕ3)x = v2,t + (v1v2)x (4.3b)

(ϕ3 − n3)x = ϕ2,xxx − (ϕ1ϕ2)x − 1
6
(ϕ3

1)x. (4.3c)

The solvability condition at this order is obtained by setting the sum of the right
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hand sides equal to zero, as before. This leads to

Lϕ2 = DF(ϕ1), (4.4)

where L is the linearized KdV operator at ϕ1

Lw = wt +
1
2
wxxx + (ϕ1w)x

and

DF(ϕ1) =
5
4
ϕ1ϕ1,xxx +

1
2
(ϕ2

1,x)x +
3
4
ϕ1,xxt

=
∂

∂x

[
5
4
ϕ1ϕ1,xx − 1

8
ϕ2

1,x −
3
8
(ϕ1,xx + ϕ2

1)xx

]

=
∂

∂x

[
1
2
ϕ1ϕ1,xx − 7

8
ϕ2

1,x −
3
8
ϕ1,xxxx

]
.

Thus,

F(ϕ1) =
1
2
ϕ1ϕ1,xx − 7

8
ϕ2

1,x −
3
8
ϕ1,xxxx. (4.5)

Using the analytical results derived in Appendix A we solve this equation explic-
itly when ϕ1 is a 2-soliton solution of KdV (similar results hold for the n-solitons
but we do not consider them here). From (A.14b) and (A.13) we find

F(ϕ1) =
7
4
ϕ1ϕ1,xx − 1

4
ϕ2

1,x +
5
12

ϕ3
1 − 72

2∑
j=1

ω5
j Fj , (4.6)

where Fj is a squared eigenfunction of the Schrödinger operator associated with
the KdV equation (see Appendix A). The derivative of the first three terms in
(4.6) is

7
4
ϕ1ϕ1,xxx +

5
8

(
ϕ2

1,x

)
x

+
5
4
ϕ2

1ϕ1,x. (4.7)

From (A.13) with j = 2 and (A.14a) we get the identity

ϕ1ϕ1,xxx = 48ϕ1(ω3
1DF1 + ω3

2DF2)− 2ϕ2
1ϕ1,x, (4.8)

and the three terms in (4.7) reduce to

9
4
ϕ2

1ϕ1,x +
5
4
ϕ1,xϕ1,xx + 84ϕ1(ω3

1DF1 + ω3
2DF2) (4.9)

Putting all these identities together, we see that the right hand side h = DF(ϕ1)
of (4.4) can be written as

h =
5
4
ϕ1,xϕ1,xx − 9

4
ϕ2

1ϕ1,x +
2∑

j=1

(
84ω3

j ϕ1 − 72ω5
j

)
DFj . (4.10)



Vol. 5 (2003) Solitary Wave Interactions of the Euler–Poisson Equations 107

Using (A.22), (A.23), (A.21), and (A.24) we find, after some computations (cf.
also [13]), that the second order correction to the 2-soliton solution is

ϕ2 = −9
4
ϕ2

1 − 4ϕ1,xx +
2∑

j=1

(
84ω3

j Ej − 72ω5
j tDFj

)
, (4.11)

where

Ej = ω1

(
∂F1

∂ωj

)
θj

+ ω2

(
∂F2

∂ωj

)
θj

.

To this particular solution we may add any linear combination of homogeneous
solutions of the linearized KdV equation:

2∑
j=1

∂ϕ1

∂αj
∆αj +

∂ϕ1

∂ωj
∆ωj , (4.12)

(see Theorem A.3). Presumably, the coefficients ∆αj and ∆ωj are uniquely deter-
mined at the next order of the perturbation scheme by making the equations at
next order solvable; but the computations at third order are quite complicated.

The secular terms tDFj in (4.11) are resonance terms due to the appearance
of DFj in the right side of (4.4). These terms can be eliminated by modulating
the 2-soliton solution; this will be discussed in § 4.3. Notice that in the second
order correction to the 1-soliton solution these secular terms can be eliminated
by restricting to traveling waves. The second order approximation to the solitary
wave is

Σ = Σ1 + Σ2, (4.13)

where Σ1 is the KdV solitary wave

Σ1(θ) = 6ω2sech2(θ), θ = ω(x− 2ω2t− α),

and Σ2 is a solution of (4.4) for ϕ1(x, t) = Σ1. In this case a solution can be found
by transforming to a moving coordinate system; then (4.4) reduces to a third order
ordinary differential equation. Integrating once, we obtain

Σ′′2 + (12sech2 θ − 4)Σ2 = 9ω4
(
36 sech4θ − 4 sech2 θ − 43 sech6θ

)
. (4.14)

The explicit solution to this equation was obtained by the method of variation of
parameters, with assistance from Maple,

Σ2(θ) =
9
4
ω4 [20− 23 cosh 2θ + 4θ sinh 2θ] sech4(θ). (4.15)

We see that there are no secular terms when only one solitary wave is present, and
it is not necessary to introduce an amplitude wave speed correction, as in [13].
The first and second order approximations are depicted in Figure 6.
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Fig. 6. Upper: The solitary ϕ-wave solution of the ion acoustic plasma equation (solid) and
the KdV solitary wave (dashed). Lower: ϕ wave (solid) vs. the second KdV approximation

(dashed). The wave speed is c = 1.1, ω = 0.2231.

4.3. Modulation and resonant interactions

We saw in the last section that the second order term, given by (4.11), has secular
terms which grow in time for interacting solitary waves. These terms must be
eliminated in order to get a uniform approximation at second order. In this section
we formally set ε = 1 and use instead ω1 and ω2 as small parameters in the theory.
For example, the solitary wave 6ω2sech2θ is second order in ω. By Theorem A.7
the 2-soliton solution ϕ1 is second order in ω1 and ω2. Since ω1 < ω2 we use ω2

as a measure of relative size of terms in the expansion.
Returning to the formal expansion of § 4.2, we write the first two terms as

ϕ = ϕ1 + ϕ2, where L(ϕ2) = DF(ϕ1). By Theorem A.3

∂ϕ1

∂αj
= −12ωjDFj .

Hence by (4.11) and (4.12)

ϕ2 = ϕ̃2 + N2, (4.16)
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where

N2 =
2∑

j=1

∂ϕ1

∂αj
(∆αj + 6ω4

j t) +
∂ϕ1

∂ωj
(∆ωj)

and

ϕ̃2 = −9
4
ϕ2

1 − 4ϕ1,xx + 84
2∑

j=1

ω3
j Ej .

Lemma 4.4. For fixed λ = ω1/ω2, ϕ̃2 is O(ω4
2), uniformly in x and t. In order

that N2 be O(ω4
2) it is sufficient that

∆αj = O(ωj), ∆ωj = O(ω2
j ), |t| = O(ω−3

2 ),

and that
|x− 6ω2

j t− αj | = O(1).

Proof. By Theorem A.7, ϕ1 is O(ω2
2) and differentiation with respect to x is O(ω2).

It follows that ϕ2
1 and ϕ1,xx are O(ω4

2). Again by Theorem A.7, Ej is uniformly
O(ω2) hence the terms ω3

j Ej are O(ω4
2), uniformly in x and t.

We have
∂ϕ1

∂αj
=

∂ϕ1

∂θj

∂θj

∂αj
= −ωj

∂ϕ1

∂θj
,

∂ϕ1

∂ωj
=

∂ϕ1

∂θj

∂θj

∂ωj
=

∂ϕ1

∂θj
(x− 6ω2

j t− αj).

Since derivatives with respect to θj are order 1, and ϕ1 is order ω2
2 , the statements

concerning the order of N2 follow.

When the conditions of Lemma 4.4 are satisfied, the second order approxima-
tion can be written

ϕ = ϕ1 + (ϕ̃2 + N2) = (ϕ1 + N2) + ϕ̃2.

Let ϕ̃1 = ϕ1(θ̃1, θ̃2, ω̃1, ω̃2), where

ω̃j = ωj + ∆ωj , α̃j = αj + ∆αj + 6ω4
j t,

and
θ̃j = ω̃j(x− 2ω̃2

j t− α̃j) = ω̃j(x− (2ω̃2
j + 6ω4

j )t− αj −∆αj).

Then
ϕ̃1 = ϕ1 + N2 + O(ω6

2),

where ϕ̃1 is the modulated 2-soliton solution and ϕ1 = ϕ1(θ1, θ2, ω1, ω2) is the
original 2-soliton solution.
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Theorem 4.5. When the conditions of Lemma 4.4 are satisfied, the formal ap-
proximation to the ϕ wave of the plasma equations is given to second order by
ϕ̃ = ϕ̃1 + ϕ̃2.

There are three time regimes in the 2-soliton interaction, which must be treated
separately. In the first and last, the two solitons are separated and do not interact.
Thus, ϕ1 may be approximated by the sum of the two solitary waves. In this case,
the second order correction is given by sums of solitary waves and their second
order corrections (4.15). Prior to the interaction the initial wave speeds are given
by 2ω2

j . After the interaction, the phases and speeds are somewhat different due
to the interaction.

In the vicinity of the interaction, we use the modulated two-soliton interaction
ϕ̃ of Theorem 4.5 constructed above. A solution of this type was proposed in
Zou & Su [13] for the entire interaction, −∞ < t < ∞, but this approximation
is not justified for all time, since the conditions of Lemma 4.4 are met only over
time intervals of order O(ω−3

2 ). For the experiment in [9], ω2 = .2231 and ω−3
2 ≈

90, whereas the two solitary waves are found to overlap during the time interval
1500 ≤ t ≤ 2300. The terms ∂ϕ1/∂ωj in the nullspace of L were not included in the
second order approximation in Zou & Su [13]. On the other hand, Figure 2 shows
that the faster plasma wave drops behind the KdV wave during the interaction,
hence we must have

2ω̃2
2 + 6ω4

2 < 2ω2
2 .

This implies that ω̃2 < ω2, and hence ∆ω2 < 0, and some correction to the ωj is
necessary. The theoretical values of ∆ωj and ∆αj cannot be obtained by consid-
ering second order terms alone. They presumably are determined by casting out
resonances at third order, but the computations at third order are too complicated
to be obtained analytically [13].

A. Theoretical results regarding KdV 2-solitons

A.1. Eigenfunctions of the Schrödinger operator

The KdV equation which occurs in the approximation of the Euler–Poisson equa-
tions takes the form (cf. (2.9))

ut +
1
2
uxxx + uux = 0. (A.1)

Equation (A.1) can be written in the operator form L̇ = [B,L], where

L = D2 +
u

3
, B = −2D3 − 1

2
(uD + Du).

The wave functions satisfy the pair of equations

Lψ + k2ψ = 0, ψt −Bψ = 0, (A.2)
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and (A.1) is the compatibility condition for this over-determined system. We
denote by ϕ+(x, t, k) and ψ+(x, t, k) the solutions of (A.2) with the asymptotic
behaviors

ϕ+(x, t, k) ∼e−ik(x−2k2t), x → −∞,

ψ+(x, t, k) ∼eik(x−2k2t), x →∞.

The wave function ψ+ tends to zero exponentially as x →∞ for Im(k) > 0; while
ϕ+ tends to zero exponentially as x → −∞ for Im(k) > 0. The eigenvalues of the
Schrödinger equation Lψ + k2ψ = 0 are those values k = iωj (ωj > 0) for which
ϕ+(x, t, iωj) = cjψ+(x, t, iωj) for some constant cj , called the coupling coefficient.
The parameters ωj are precisely those which appear in (2.11). We denote the
corresponding eigenfunctions, which decay exponentially as x → ±∞, by ψj .

The eigenfunctions ψj can be obtained by solving a linear system of algebraic
equations, which are obtained as a finite dimensional reduction of the Gel’fand–
Levitan integral equation for inverse scattering [6]. For the 2-soliton solution the
eigenfunctions are obtained in closed form, as follows. Let

Djk = δjk +
e−(θj+θk)

ωj + ωk
, E =

(
e−θ1

e−θ2

)
.

By Cramer’s rule

ψk = −Dk

τ
,

where τ = τ(x, t) is the determinant of the matrix D = ||Djk||, and Dk is the
determinant of the matrix obtained by replacing the kth column of D by E, k =
1, 2.

The two wave functions are given by

D1 = e−θ1 − e−(θ1+2θ2)
ω2 − ω1

2ω2(ω2 + ω1)
= 2e−(θ1+θ2+β2) sinh (θ2 + β2), (A.3)

D2 = e−θ2 + e−2θ1−θ2
ω2 − ω1

2ω1(ω2 + ω1)
= 2e−(θ1+θ2+β1) cosh (θ1 + β1), (A.4)

where

βj = −1
2

log
ω2 − ω1

2ωj(ω2 + ω1)
;

and

τ = 1 +
e−2θ1

2ω1
+

e−2θ2

2ω2
+

e−2(θ1+θ2)

4ω1ω2

(
ω1 − ω2

ω1 + ω2

)2

. (A.5)

Thus

ψ1 = −2e−β2 sinh(θ2 + β2)
κ

, ψ2 = −2e−β1 cosh(θ1 + β1)
κ

, (A.6)
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where

κ = eθ1+θ2τ = eθ1+θ2 +
e−(θ1+θ2)

4ω1ω2

(
ω1 − ω2

ω1 + ω2

)2

+
eθ2−θ1

2ω1
+

eθ1−θ2

2ω2
. (A.7)

For k = iωj there is a second solution ϕj of the equations (A.2) which grows
exponentially as x → ±∞. (Since the potential u decays exponentially as x →
±∞, there is only one exponentially decaying solution. The second solution grows
exponentially.)

Lemma A.1. The second solution ϕj of the Schrödinger equation in (A.2) can be
obtained as

ϕj =
∂

∂k
(ϕ+ − cjψ+)

∣∣∣
k=iωj

, (A.8)

where cj is the coupling coefficient. The solution ϕj grows linearly in x and t.

Proof. The linear growth of ϕj in x and t is due to the differentiation of the
wave functions ϕ+(x, t, k) and ψ+(x, t, k) with respect to the spectral parameter
k. Hence Gj contains secular terms which grow linearly in x and t.

Differentiating the first equation in (A.2) with respect to k, we find that the
partial derivatives of ϕ+ and ψ+ with respect to the spectral parameter k satisfy

(L + k2)
∂ϕ+

∂k
+ 2kϕ+ = 0, (L + k2)

∂ψ+

∂k
+ 2kψ+ = 0.

Now set k = iωj in each of these equations, multiply the second equation by cj

and subtract it from the first equation. Since ϕ+(x, t, iωj) = cjψ+(x, t, iωj), we
find that Lϕj − ω2

j ϕj = 0, where ϕj is given in (A.8).
Since the two soliton solution u decays exponentially as x → ±∞, only one so-

lution of (A.2) decays exponentially at both ±∞. Since ϕj is linearly independent
of ψj , it necessarily grows exponentially.

Remark A.2. The coupling coefficients are given by:

cj =
1
2
e2ωjαj

ω1 − ω2

ωj(ω1 + ω2)
.

A.2. Solutions of the linearized KdV equation

The pair of functions Fj = ψ2
j , Gj = ψjϕj , called the squared eigenfunctions,

satisfy the equations

[D3 +
2
3
(uD + Du·)− 4ω2

j D]Fj = 0, (A.9)

∂

∂t
Fj +

1
2
D3Fj + uDFj = 0, (A.10)
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where u is the corresponding solution of the KdV equation [6]. Equation (A.10)
is called the associated linear equation. Differentiating (A.10) with respect to x,
we find that DFj and DGj satisfy the linearized KdV equation

LDFj = LDGj = 0, (A.11)

where
Lw = wt +

1
2
wxxx + (uw)x (A.12)

is the KdV operator, linearized at u.
The derivatives of the 2-soliton solution with respect to the four parameters

α1, α2, ω1, ω2 are also solutions of (A.12). This follows by differentiating the KdV
equation itself for the 2-soliton solution with respect to each of these four param-
eters. The relation between these two sets of solutions is given in the following
theorem.

Theorem A.3. The sets{
∂u

∂α1
,

∂u

∂α2
,

∂u

∂ω1
,

∂u

∂ω2

}
,

{
DF1, DF2, DG1, DG2

}
,

are both solutions of the linearized KdV equation. The relationship between them
is given by

∂u

∂aj
=

4∑
k=1

HjkDFk,

where F3 = G1, F4 = G2, a = (α1, α2, ω1, ω2), and

Hjk =− 12ωje
2ωjαj δjk, j = 1, 2, 1 ≤ k ≤ 4;

Hjk =24
(

ω1 + ω2

ω1 − ω2

)2

ω2
j−2e

−2ωj−2αj−2δjk, j, k = 3, 4;

H31 =
6e2ω1α1

ω1(ω2
2 − ω2

1)

[
(2α1ω1 − 1)(ω2

1 − ω2
2) + 2ω1ω2

]
;

H42 =
6e2ω2α2

ω2(ω2
1 − ω2

2)

[
(2α2ω2 − 1)(ω2

2 − ω2
1) + 2ω1ω2

]
;

H32 =
12ω2e

2ω2α2

ω2
2 − ω2

1

, H41 =
12ω1e

2ω1α1

ω2
1 − ω2

2

.

Proof. These relations were determined by extensive computations using the soft-
ware package Maple. One may simplify the relationships by setting the phase
constants α1 = α2 = 0.
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A.3. Identities

The KdV equation has also the structure of an infinite dimensional Hamiltonian
system, and can be written in the form

ut =
d

dx

δH2

δu
, H2(u) =

∫ ∞

−∞

u2
x

4
− u3

6
dx,

the functional H2 being the Hamiltonian for the system. There are, moreover,
an infinite number of Hamiltonians in involution with H2 with respect to the
Gardner–Poisson bracket, [10].

When the solution of the KdV equation is a multi-soliton, the gradients of this
hierarchy of Hamiltonians are linear combinations of the squared eigenfunctions
[6]. (In Theorem 3.5 of [6] the An in are obtained as solutions the Lenard recursion
relation, equation (3.20) in that article, but these are the gradients of the densities,
not the densities themselves, as stated in the article.) With the present scaling,

δHj

δu
= (−2)j−112

2∑
k=1

ω2j−1
k Fk. (A.13)

Remark A.4. The normalization of the squared eigenfunctions in (A.13) is that
obtained by solving the linear system of algebraic equations which comes from the
Gel’fand–Levitan equation of inverse scattering [6].

The gradients of the first three conservation laws are:

δH1

δu
= u,

δH2

δu
= −1

2
(uxx + u2), (A.14a)

δH3

δu
=

1
4
uxxxx +

5
6
uuxx +

5
12

u2
x +

5
18

u3. (A.14b)

In particular, taking j = 1 in (A.13), we obtain a representation of the 2-soliton
solution itself as a sum of the squared eigenfunctions:

u = 12
2∑

k=1

ωkFk. (A.15)

We derive a number of identities which are used in the perturbation theory of
§ 4.2. Since uDFj = D(uFj)− FjDu, it follows from (A.15) that

LFj = FjDu, LGj = GjDu. (A.16)

By a direct computation, using (A.9), (A.10), (A.12), and (A.16), we find

L[
D

(
(x− 6ω2

j t)Fj

)]
= L[

(x− 6ω2
j t)DFj + Fj

]
= −uDFj . (A.17)
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By (A.15) we find, for αj = 0,

∂u

∂ωj
=12Fj + 12

(
ω1

∂F1

∂θj
+ ω2

∂F2

∂θj

)
(x− 6ω2

j t) + 12Ej

=12
[
Fj +

1
12

(x− 6ω2
j t)

∂u

∂θj
+ Ej

]
, (A.18)

where

Ej = ω1

(
∂F1

∂ωj

)
θj

+ ω2

(
∂F2

∂ωj

)
θj

. (A.19)

Here ( )θj
denotes partial differentiation with θj held constant.

Lemma A.5. We have
∂u

∂θj
= 12DFj ,

where u, the 2-soliton solution, is regarded as a function of θj , ωj.

Proof. By Theorem A.3,
∂u

∂αj
= −12ωjDFj ,

at αj = 0. On the other hand,

∂u

∂αj
=

∂u

∂θj

∂θj

∂αj
= −ωj

∂u

∂θj
,

and the result follows.

As a consequence of Lemma A.5, (A.18) can be written

∂u

∂ωj
=12

[
Fj + (x− 6ω2

j t)DFj + Ej

]
=12

[
D

(
(x− 6ω2

j t)Fj

)
+ Ej

]
. (A.20)

Lemma A.6. The identity
L(Ej) = uDFj (A.21)

holds for any 2-soliton solution u. The identities

Luxx =− (u2
x)x = −2uxuxx, (A.22)

Lu2 =3uxuxx + u2ux, (A.23)

L(tDFj) =DFj + tL(DFj) = DFj . (A.24)

hold for any solution u of the KdV equation.
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Proof. By (A.17), (A.20) and Theorem A.3 we find

0 =L
(

∂u

∂ωj

)
= 12L[

D
(
(x− 6ω2

j t)Fj

)
+ Ej

]
=12

[L(Ej)− uDFj

]
.

This proves (A.21). Equation (A.22) is obtained by differentiating the KdV equa-
tion twice with respect to x. Equation (A.23) is obtained by a direct computation,
using the KdV equation for u. Finally, (A.24) follows from (A.11).

A.4. Magnitude estimates

We conclude this appendix with some order of magnitude estimates for the various
functions introduced. The parameters ω1 and ω2 are the small parameters of the
KdV theory. Since 0 < ω1 < ω2, we use ω2 as a measure of the order of magnitude.

Theorem A.7. The 2-soliton solution (2.10) is O(ω2
2) uniformly in x and t; the

squared eigenfunctions Fj are each O(ωj); and the Ej defined in (A.19) each satisfy
0 ≤ Ej ≤ Cj(λ)ωj, uniformly in x and t, where λ = ω2/ω1. The constants Cj

tend to infinity as λ tends to 0 or 1.

Proof. By the chain rule,

∂

∂x
=

2∑
j=1

ωj
∂

∂θj
.

Moreover, the derivatives of log τ with respect to θ1 and θ2 are of order 1, since
they are ratios of exponential functions of θ1 and θ2. (Recall also that τ ≥ 1.)
The second derivative with respect to x therefore is a sum of terms of order 1 with
coefficients ω2

1 , ω2
2 , ω1ω2. Since ω1 < ω2, all these terms are O(ω2

2), and so u is
O(ω2

2), uniformly in x and t.
By (A.3) and (A.7)

ψ1 = −D1

τ
=

Be−θ2 − eθ2

κ
,

where

B =
ω2 − ω1

2ω2(ω2 + ω1)
.



Vol. 5 (2003) Solitary Wave Interactions of the Euler–Poisson Equations 117

Since the entries of κ are positive,

eθ2

κ
≤ eθ2

eθ1+θ2 +
eθ2−θ1

2ω1

=
1

eθ1 +
e−θ1

2ω1

≤
√

ω1

2
sech (θ1 + 1

2 log 2ω1) ≤
√

ω1

2
.

By the same arguments, Be−θ2/κ is bounded above by
√

2ω1, so

−
√

ω1

2
≤ ψ1 ≤

√
2ω1

and 0 ≤ F1 ≤ 2ω1. Similarly, 0 ≤ F2 ≤ 2ω2 for all x and t.
By (A.6), (

∂Fj

∂ωk

)
θk

= −2Fj
1
κ

(
∂κ

∂ωk

)
θk

.

We have(
∂κ

∂ω1

)
θ1

=e−(θ1+θ2)
∂

∂ω1

1
4ω1ω2

(
ω1 − ω2

ω1 + ω2

)2

− 1
2ω2

1

eθ2−θ1

=− e−(θ1+θ2)

[
1

4ω2
1ω2

(
ω1 − ω2

ω1 + ω2

)2

+
1
ω1

ω2 − ω1

(ω2 + ω1)3

]
− 1

2ω2
1

eθ2−θ1 .

By the reasoning above, we find, after some calculations,

0 ≤ − 1
κ

(
∂κ

∂ω1

)
θ1

≤ 2
ω1

+
4ω2

ω2
2 − ω2

1

.

We find

E1 =(2ω1F1 + 2ω2F2)

[
− 1

κ

(
∂κ

∂ω1

)
θ1

]

≤4(ω2
1 + ω2

2)
(

2
ω1

+
4ω2

ω2
2 − ω2

1

)
. (A.25)

Setting ω1 = λω2 we obtain 0 ≤ E1 ≤ C1(λ)ω1, the result stated in the theorem.
Similarly, 0 ≤ E2 ≤ C2(λ)ω2, uniformly in x and t, where C2(λ) = C1(λ−1).

Remark A.8. In the experiment by Li and Sattinger [9], ω2
1 = .025, ω2

2 = .05,
and λ =

√
2. The quantity on the right hand side of (A.25) is approximately 14.1.
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