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a b s t r a c t

In a recent paper (Nicholls (2009) [1]) the author conjectured upon the connection between the onset of
dynamic spectral instability of periodic traveling water waves, and singularities present in Taylor series
representations of spectral data for the linearized water wave equations. More specifically, he proposed
that the onset of instability is always coincidentwith encountering the smallest singularity in these Taylor
series. In this paper we study this connection via a new Direct Numerical Simulation algorithm derived
from the surface formulation of the water wave problem due to Zakharov (1968) [5] and Craig & Sulem
(1993) [6]. We find compelling evidence that the conjecture is true in the case of deep (as compared to
Benjamin & Feir’s (1967) [7] critical depth h ≈ 1.363)water, but false for shallow depths as it significantly
underpredicts the onset of instability. The utility of the singularity identification strategy advocated in [1],
while somewhat lessened in the shallow water case, is nonetheless upheld due to its ability to reliably
identify a lower bound of stability and its extremely favorable computational complexity.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

Thewaterwave equations govern themovement of a large body
of water primarily under the influence of gravity (e.g., the ocean)
and therefore arise in a wide array of engineering applications.
From pollutant transport and the motion of sandbars, to tsunami
propagation and the design of open-ocean oil rigs, the water wave
equations are a central model in fluid mechanics. Among the
many motions permitted by these equations, the traveling wave
solutions are of great interest due to their ability to transport
energy andmomentumover great distances in the ocean. Of course
not all of these traveling waveforms are dynamically stable and it
is of crucial importance to identify those that are as these will be
the only ones observed in practice.

In a recent publication [1] the author endeavored upon a study
of the spectral stability of periodic travelingwater waves on a two-
dimensional (one vertical and one horizontal) fluid. Spectral stabil-
ity refers to the fact that the eigenvalues (spectrum) of the water
wave operator linearized about the traveling wave are considered
rather than a full linear or even nonlinear stability analysis. The
author approached the problem from a rather different point of
view than the direct method applied by Longuet-Higgins [2,3] (see
also the survey article of Dias & Kharif [4] for a full description of
results along these lines). Rather than simply substituting a com-
puted traveling wave into the linearized water wave problem and
appealing to a numerical eigensolver, the author used the fact that
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traveling waves come in analytic branches to show that, generi-
cally, the spectral data can also be parametrized analytically. With
this point of view, the author followed the ‘‘motion’’ of the spec-
trum in the complex plane as a wave height/steepness parameter
was increased until divergence of themethod [1]. The singularities
in the expansions (which result in the divergence of the numerical
scheme) are mandated by the form of the expansions: Only purely
imaginary eigenvalues can be produced so that the algorithm
cannot compute spectrumwith a non-zero real part. In the light of
this, the author posed a conjecture that not only is the presence of a
singularity necessary for the onset of (spectral) instability, but also
that it is sufficient. The purpose of this contribution is to validate
or repudiate this conjecture based upon Direct Numerical Simula-
tion of the spectrum via the surface formulation of Zakharov [5]
and Craig & Sulem [6].

After careful numerical investigation, we find that the conjec-
ture is largely justified in the case of deep water (as compared
to Benjamin & Feir’s [7] critical value of the depth h ≈ 1.363)
but underpredicts the onset of instability in shallow water. Inter-
estingly, the author showed [1] that there was also a dichotomy
between deep and shallow water when considering the ‘‘first col-
lision’’ of eigenvalues on the imaginary axis (a necessary condition
for an eigenvalue to leave the imaginary axis, resulting in spectral
instability) and the presence of a singularity in his recursions. In
deep water, eigenvalues could be followed beyond the first colli-
sion, while in shallow water eigenvalue collision and the presence
of a singularity were synonymous. In the light of this discovery one
can wonder about the utility of the ‘‘singularity detection’’ method
outlined in [1]. First, the algorithm does produce largely precise
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results in the deep water regime, while also producing a reliable
lower bound on stability for fluids of any depth. Second, this new
approach is greatly advantaged in terms of computational com-
plexity when compared to a direct approachmainly due to the fact
that its cost is independent of the number of waveforms sampled in
the study. The algorithm computes the entire Taylor series repre-
sentation of the spectral data in one step so that particular details
(e.g., singularities in the expansion) can be computed a posteriori
as a post-processing step.

The organization of the paper is as follows: In Section 2we recall
the governing water wave equations. In Section 2.1 we outline the
spectral stability framework we have in mind, and in Section 2.2
we review the conclusions of our previous work. In Section 3 we
present our new numerical results, including a description of the
algorithm in Section 3.1 and new figures in Section 3.2. Concluding
remarks are presented in Section 4.

2. Governing equations

We consider the motion of the free interface above an ideal
(inviscid, irrotational, incompressible) two-dimensional (one ver-
tical and one horizontal) fluid under the influence of gravity; ef-
fects of surface tension can easily be incorporated if desired. If the
fluid occupies the domain

Sh,η = {x ∈ R | −h < y < η(x, t)}

with mean depth h and free surface η = η(x, t), the equations of
motion are known to be [8]:

∆ϕ = 0 in Sh,η (1a)

∂yϕ(x,−h) = 0 (1b)

∂tη + ∂xη ∂xϕ − ∂yϕ = 0 at y = η (1c)

∂tϕ +
1
2

|∇ϕ|
2
+ gη = 0 at y = η, (1d)

where ϕ = ϕ(x, y, t) is the velocity potential (v⃗ = ∇ϕ) and g is
the constant of gravity. We can also consider the case of a fluid of
infinite depth by replacing (1b) with

∂yϕ → 0 as y → −∞. (1e)

These equations must be supplemented with initial conditions

η(x, 0) = η0(x), ϕ(x, η0(x), 0) = ξ0(x), (1f)

where it suffices (by elliptic theory [9]) to specify ϕ only at the sur-
face. Boundary conditions are also required to guarantee the exis-
tence of a unique solutionwhich, for the study of Stokes waves, are
periodicity with respect to some lattice Γ ⊂ R, i.e.

η(x + γ , t) = η(x, t), ϕ(x + γ , y, t) = ϕ(x, y, t) ∀γ ∈ Γ ;

this lattice generates the conjugate lattice of wavenumbers [10],

Γ ′
:= {k ∈ R | k · γ ∈ (2π)Z,∀γ ∈ Γ }.

In this paper we consider non-dimensionalized quantities and, as
such, choose Γ = 2πZwhich gives Γ ′

= Z.
It was shown by Zakharov [5] that the system (1) is Hamiltonian

in the canonical variables η(x, t) and ξ(x, t) := ϕ(x, η(x, t), t)
with energy

H =
1
2

∫ ∫ η

−h
|∇ϕ|

2 dy dx +
1
2

∫
gη2 dx.

With the introduction of the Dirichlet–Neumann operator (DNO),
Craig & Sulem [6] rendered this formulation much more explicit.
Specifically, if the DNO is given by

G(η)[ξ ] := [∇ϕ · N]y=η = [∂yϕ − (∂xη)∂xϕ]y=η
then the Hamiltonian can be expressed as

H =
1
2

∫
ξG(η)[ξ ] + gη2dx.

From this (or a direct calculation with the chain rule) the ‘‘Za-
kharov–Craig–Sulem’’ evolution equations equivalent to (1) can be
written

∂tη = G(η)[ξ ], ∂tξ = −gη − A(η)B(η, ξ), (2)

where

A(η) =
1

2(1 + (∂xη)2)
,

B(η, ξ) = (∂xξ)
2
− (G(η)[ξ ])2 − 2 (∂xη)(∂xξ)(G(η)[ξ ]).

The purpose of this paper is to study the stability of traveling wave
solutions of (2) and thus it is important to work in a frame moving
uniformly with velocity c. In such a frame it is not difficult to show
that the governing equations become

∂tη + c∂xη = G(η)[ξ ], ∂tξ + c∂xξ = −gη − A(η)B(η, ξ). (3)

2.1. Spectral stability analysis

The spectral stability analysis that we have in mind is fully
described by the author in [11,1], but we briefly outline it here for
completeness. To begin, consider a traveling wave solution of (2),
i.e. a steady solution

(η̄, ξ̄ , c̄) = (η̄(x), ξ̄ (x), c̄)

of (3). With this we seek solutions to the full problem (3) with the
‘‘spectral stability’’ form:

η(x, t) = η̄(x)+ δeλtζ (x), ξ(x, t) = ξ̄ (x)+ δeλtψ(x)

where δ ≪ 1measures themagnitude of the small perturbation of
the traveling state andλdetermines the spectral stability. Inserting
this into (3) we find, to order O(δ)

(λ+ c∂x)ζ = Gη(η̄)[ξ̄ ]{ζ } + G(η̄)[ψ] (4a)

(λ+ c∂x)ψ = −gζ − Aη(η̄){ζ }B(η̄, ξ̄ )
− A(η̄)(Bη(η̄, ξ̄ ){ζ } + Bξ (η̄, ξ̄ ){ψ}) (4b)

where the η and ξ subscripts represent η and ξ variations,
respectively.

The final specification we make for our spectral stability prob-
lem (4) are the boundary conditions which ζ and ψ must satisfy.
For this we require that the ‘‘Bloch boundary conditions’’:

ζ (x + γ ) = eipγ ζ (x), ψ(x + γ ) = eipγψ(x), ∀γ ∈ Γ ,

[11,1]. Notice that if p is a rational number then these functions
will be periodic with respect to the lattice Γ . Such functions can
be expanded as

ζ (x) =

−
k∈Γ ′

ζ̂kei(k+p)x, ψ(x) =

−
k∈Γ ′

ψ̂kei(k+p)x.

We also recall that the periodicity of the spectrum with respect to
p implies that only values of p in the conjugate cell (P(Γ ′)) need be
considered [11]; for the non-dimensional choice L = 2π this cell
is P(Γ ′) = [0, 1].
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2.2. Previous results

The goal of this paper is to assess the utility of a conjecture
made by the author in a previous publication [1]. To explain the
conjecture and put it into context, let us return to the classical
formulation of the water wave problem, (1), which, in a reference
frame moving with velocity c , is

∆ϕ = 0 in Sh,η (5a)

∂yϕ(x,−h) = 0 (5b)

∂tη + c∂xη + ∂xη ∂xϕ − ∂yϕ = 0 at y = η (5c)

∂tϕ + c∂xϕ +
1
2

|∇ϕ|
2
+ gη = 0 at y = η. (5d)

Rather than pursuing the surface formulation (2), in [1] the author
worked directlywith the volumetric formulation (5) subsequent to
a domain-flattening change of variables, equivalent to

x′
= x, y′

= h

y − η

h + η


.

This change of variables delivers (upon dropping primes) the
system

∆u = F(x, y; u, η) in Sh,0 (6a)

∂yu(x,−h) = 0 (6b)

∂tη + c∂xη − ∂yu = Q (x; u, η) at y = 0 (6c)

∂tu + c∂xu + gη = R(x; u, η) at y = 0, (6d)

where u is the transformed potential, and the details of F , Q , and
R are provided in [1]. The important feature of these right-hand-
sides for our purposes is that they are O(ε)2 if u and η are O(ε).

With the objective of computing traveling wave solutions, one
can seek steady solutions of (5) in the form of regular perturbation
expansions

ū(x, y; ε) =

∞−
n=1

ūn(x, y)εn,

η̄(x; ε) =

∞−
n=1

η̄n(x)εn, c̄(ε) = c̄0 +

∞−
n=1

c̄nεn.

(7)

These expansions can be shown to be strongly convergent in an
appropriate function space [12] and specify a rapid and robust
numerical algorithm for the approximation of traveling wave-
forms [13]. To study the stability of these traveling waves the au-
thor considered the spectral stability forms

u(x, y, t) = ū(x, y)+ δeλtv(x, y), η(x, t) = η̄(x)+ δeλtζ (x).

Insertion of these into (6) and dropping terms of orderO(δ) results
in

∆v = F (x, y; u, η, v, ζ ) in Sh,0 (8a)

∂yv(x,−h) = 0 (8b)

(λ+ c∂x)ζ − ∂yv = Q(x; u, η, v, ζ ) at y = 0 (8c)

(λ+ c∂x)v + gζ = R(x; u, η, v, ζ ) at y = 0, (8d)

and, again, the forms for F , Q, and R are given in [1]. As with the
right-hand-sides (F ,Q , R), if v and ζ are O(ε) then (F ,Q,R) are
O(ε)2 which suggests expansions of the form

v(x, y; ε) =

∞−
n=0

vn(x, y)εn,

ζ (x; ε) =

∞−
n=0

ζn(x)εn, λ(ε) =

∞−
n=0

λnε
n (9)
for the spectral data. The author showed [11] that these expansions
are (generically) strongly convergent in suitable function spaces,
while he displayed in [1] the accurate and stable nature of the nu-
merical simulations which these recursions can produce.

For flat water (ε = 0) the eigenvalues λ(0) are purely imag-
inary indicating (weak) spectral stability of small perturbations
from the quiescent state. As ε is increased from zero the spec-
trum will ‘‘move’’ in the complex plane. It is known (see, e.g., [1])
that eigenvalues of a Hamiltonian system such as the water wave
problem cannot leave the imaginary axis unless they ‘‘collide’’ with
another eigenvalue. Furthermore, MacKay & Saffman [14] further
specify that such a collision must be between eigenvalues of the
opposite Krein signature to leave the imaginary axis. Additionally,
the spectrum is symmetric with respect to the imaginary axis so
that departure from this axis automatically guarantees instability.

In light of this spectral theory, the author sought [1] to investi-
gate the ‘‘first collisions’’ of eigenvalues for two-dimensional trav-
eling wave solutions of (6) in water of varying depths. In this study
several things were discovered:

1. First collision indicates divergence of the numerical scheme for
some choices of p.

2. First collision is followed by continued ‘‘motion’’ of the spec-
trum along the imaginary axis for other values of p.

3. Collision (even of the opposite Krein signature) does not always
indicate the onset of spectral instability.

4. The formulation of the recursions prevents the study of the
spectrum beyond instability as the coefficients λn are required
to be purely imaginary (in a non-resonant configuration).

With this data in hand, it was conjectured [1] that the onset of
instability and singularity in the expansions of the spectral data,
(9), occurred at one and the same value of ε. Our purpose in this
contribution is to test this conjecture against a Direct Numerical
Simulation (DNS) of the spectrum from (4).

3. Numerical results

In this section we display results of our new DNS of the spectral
data from (4) versus our previously published computations of
‘‘smallest singularity’’ associated with the perturbative calculation
of the spectrum from (9).We find that in deepwater (as defined by
the applicability of the Benjamin–Feir Instability [7]) the author’s
conjecture [1] is to a large extent valid: The first singularity in the
expansions (9) is predictive of instability. However, for shallow
water the first singularity significantly underestimates the onset
of instability and thus is an unsatisfactory indicator of dynamical
instability.

3.1. Algorithms

As the algorithms for the detection of crossings and singularities
has been extensively described in [1], we focus upon an elucidation
of our DNS. Clearly, a crucial ingredient for theDNS of the spectrum
is a high-fidelity simulation of the underlying traveling wave. This
we procure from the algorithm presented in [13] which is simply
a numerical approximation of the {ūn, η̄n, c̄n} from (7) (note that a
surface evaluation of ūn gives ξ̄n). The expansions
η̄N,Nx(x; ε)
ξ̄N,Nx(x; ε)


:=

N−
n=1

Nx/2−1−
k=−Nx/2


dk,n
ak,n


eikxεn,

c̄N(ε) := c̃0 +

N−
n=1

c̃nεn,

where {dk,n, ak,n, c̃n} approximate { ˆ̄ηk,n,
ˆ̄ξ k,n, c̄n}, are inserted into

the eigenvalue problem (4) for various values of ε. This eigenvalue
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problem is, in turn, approximated by a Fourier collocation method
with unknowns
ζ Nx(x)
ψNx(x)


:=

Nx/2−1−
k=−Nx/2


fk
bk


ei(k+p)x,

resulting in the finite dimensional eigensystem Lx⃗ = λx⃗, which
was simulated via the eig command in MATLAB [15].

The only real issue in this numerical approximation is the choice
of algorithm for the simulation of the Dirichlet–Neumann operator
(DNO), G(η), and its first variation, Gη(η). For this we use the rapid
and accurate ‘‘Operator Expansions’’ (OE)method (see, e.g., [6,16]).
To summarize this approach, we note that for sufficiently smooth
deformations η = εf , the DNO and its first variation depend
analytically upon the height/slope parameter ε so that expansions
of the form

G(εf ) =

∞−
n=0

Gn(f )εn, Gη(εf ) =

∞−
n=0

G(1)n (f )ε
n,

converge strongly. The OE approach delivers convenient formulas
for the Gn and G(1)n in terms of Fourier multipliers and convolution
products. For instance,

G0[ξ ] = |D| tanh(h |D|)[ξ ], G1(f )[ξ ] = D[fD[ξ ]] − G0[fG0[ξ ]],

where D := (1/i)∂x, and

G(1)0 [ξ ]{ζ } = D[ζDξ ] − G0[ζG0ξ ],

for a variation in the ζ direction. If these terms are computed for
0 ≤ n ≤ M then the DNO and its variation can be approximated
by

GM(εf ) :=

M−
n=0

Gn(f )εn, GM
η (εf ) :=

M−
n=0

G(1)n (f )ε
n.

It has been shown [6,17] that these OE recursions deliver highly
accurate simulations with extremely low computational cost
(O(MNx log(Nx))) provided that ε is small and f smooth so that
M may be chosen relatively small. However, care must be taken
to avoid severe ‘‘cancellations’’ which are inherent to these recur-
sions. In fact, Nicholls & Reitich showed [18] that this method can
be quite unstable when used outside its domain of applicability.
For the numerical experiments we present below we restrict out
choice toM = 8 which gave excellent results.

Once the approximate spectral data {ζ Nx , ψNx , λNx} is com-
puted for a particular value of ε it remains to determine if this
configuration is ‘‘unstable’’. For this we simply search over the full
set of eigenvalues and find the one with the largest (in absolute
value) real part. If this largest real part is bigger than some tol-
erance, say ρ, then we deem the problem unstable. For all of the
simulations we present in this paper, we have selected numerical
parameters Nx = 64,M = 8,N = 30, ρ = 10−6 and physical pa-
rameters g = 1, L = 2π, corresponding to non-dimensionalized
units. In relation to the well-known non-dimensional quantity for
this problem (the Froude number) we note that L = 2π implies
fundamental wavenumber k = 1 which, in turn, delivers (linear)
velocity c =

√
g/k = 1, and Froude number F =

c
√
gh =

1
√
h
.

In the algorithm for singularity detection outlined in [1] an
important parameter τ was introducedwhich gives a ‘‘cancellation
tolerance’’. More precisely, the truncated Taylor polynomials
λN(ε), c.f. (9), were approximated by rational functions A(ε)/B(ε)
using the Padé Approximation algorithm [19]. A natural set of
singularities is given by the zeros of the polynomial B, however,
‘‘false positives’’ can be identified if a zero of A occurs for the
same value of ε. Therefore, we defined the set of approximate
singularities to be Pτ := {ε ∈ C | B(ε) = 0, A(ε) > τ }.
Fig. 1. Plot of εs (smallest singularity) and εi (first instability) versus p for water of
depth h = ∞. The underlying Stokes wave is 2π-periodic and τ = 10−8 .

Fig. 2. Plot of εs (smallest singularity) and εi (first instability) versus p for water of
depth h = 2. The underlying Stokes wave is 2π-periodic and τ = 10−8 .

3.2. Results

In Figs. 1–4 we present, simultaneously, results for the first
singularity in our perturbation expansion of the spectral data (εs)
and the onset of instability (εi) based upon our DNS of the spectral
data. The figures correspond to depths of h = ∞, h = 2, h = 1, and
h = 1/2, respectively, and for Bloch parameters p = pj = j/100
for j = 0, . . . , 100.

From these figures we learn several things, particularly relative
to Benjamin & Feir’s critical depth h ≈ 1.363 [7]. First of all, in
the cases of deep water (h = 2,∞) the smallest singularity in
our expansion, εi, appears to be predictive of (spectral) instability
for these traveling waves. To make this more precise we plot, in
Figures 5 and 6 the relative difference in these values

εs − εi

εi
(10)

versus p. For most values of p this difference falls below 30%
which lends credence to our claim. However, there are clearly
counterexamples for a range of p just above 1/2 which we
attribute to the errors inherent to our twoquite different numerical
approaches.
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Fig. 3. Plot of εs (smallest singularity) and εi (first instability) versus p for water of
depth h = 1. The underlying Stokes wave is 2π-periodic and τ = 10−8 .

Fig. 4. Plot of εs (smallest singularity) and εi (first instability) versus p for water of
depth h = 1/2. The underlying Stokes wave is 2π-periodic and τ = 10−8 .

Interestingly, in the cases of shallow water (h = 1/2, 1) the
smallest singularity is not predictive of spectral instability. As
before,wemake this precise in Figs. 7 and 8using themeasure (10).
In fact, the first singularity significantly underpredicts the onset of
instability: Traveling waves in shallow water are stable for much
larger amplitudes than predicted in the results of [1]. Curiously,
we recall that it is in precisely this regime of shallow water that
the ‘‘windows of stability’’ seemed to disappear. In fact they still
exist, however, they are not identified using our perturbation
expansions.We also point out that our DNS demonstrates thewell-
known property that the Benjamin–Feir instability disappears in
shallow water: For small p (long wavelength disturbances) there
is a non-zero range of ε for which traveling waves are spectrally
stable.

At this point one may wonder about the utility of the approach
advocated in [1] for classification of spectral stability by detection
of singularities. Certainly, for shallow water it does not appear to
give the sharpest possible results, however, it always delivers a
lower boundwhich is as accurate as the test of eigenvalue collision.
Furthermore, in deep water it does appear to give largely accurate
results in our framework of spectral stability.
Fig. 5. Plot of relative difference between εs (smallest singularity) and εi (first
instability) versus p for water of depth h = ∞. The underlying Stokes wave is 2π-
periodic and τ = 10−8 .

Fig. 6. Plot of relative difference between εs (smallest singularity) and εi (first
instability) versus p for water of depth h = 2. The underlying Stokes wave is 2π-
periodic and τ = 10−8 .

Regardless of the physical configuration of our system is it
very important to point out the astronomical cost of the DNS as
compared with the singularity detection algorithm. We recall that
this latter method requires, for each p, time proportional to

O(NNx log(Nx)Ny log(Ny))

to generate the relevant Fourier/Chebyshev/Taylor coefficients and
time proportional to O(NNx) to find the singularities. By contrast,
the bottleneck in our DNS is the computation of the matrix L,
for each p, in time O(MNx log(Nx)Nx). However, this must be
recomputed for every waveform along the branch of solutions. In
our simulations this amounted to thousands to tens of thousands of
computations. As we were able to select the vertical discretization
parameter to Ny = 64 (please see [1] for full details of this
parameter) our DNS simulations were several orders of magnitude
more expensive.

4. Conclusions

In this paper we have outlined an algorithm for the Direct
Numerical Simulation of the spectrum of the water wave operator
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Fig. 7. Plot of relative difference between εs (smallest singularity) and εi (first
instability) versus p for water of depth h = 1. The underlying Stokes wave is
2π-periodic and τ = 10−8 .

Fig. 8. Plot of relative difference between εs (smallest singularity) and εi (first
instability) versus p for water of depth h = 1/2. The underlying Stokes wave is
2π-periodic and τ = 10−8 .

linearized about a periodic traveling wave solution. The study of
the resulting eigenvalues produces a spectral stability result. This
DNS was used to test the conjecture made in [1] regarding the
onset of instability and the presence of singularities in recursions
advocated by the author. We provide here compelling evidence
that the conjecture is largely true in the case of deep (as compared
to Benjamin & Feir’s critical depth h ≈ 1.363) water, but false for
shallowwater. The utility of the singularity identification strategy,
while somewhat lessened in the shallowwater case, is nonetheless
upheld due to its ability to reliably identify a lower bound of
stability and its extremely favorable computational complexity.
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