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The scattering of time-harmonic linear waves by periodic media arises in a wide array of applications from
materials science and nondestructive testing to remote sensing and oceanography. In this work we have in mind
applications in optics, more specifically plasmonics, and the surface plasmon polaritons that are at the heart of
remarkable phenomena such as extraordinary optical transmission, surface-enhanced Raman scattering, and
surface plasmon resonance biosensing. In this paper we develop robust, highly accurate, and extremely rapid
numerical solvers for approximating solutions to grating scattering problems in the frequency regime where these
are commonly used. For piecewise-constant dielectric constants, which are commonplace in these applications,
surface formulations are clearly advantaged as they posit unknowns supported solely at the material interfaces.
The algorithms we develop here are high-order perturbation of surfaces methods and generalize previous
approaches to take advantage of the fact that these algorithms can be significantly accelerated when some or
all of the interfaces are trivial (flat). More specifically, for configurations with one nontrivial interface (and
one trivial interface) we describe an algorithm that has the same computational complexity as a two-layer solver.
With numerical simulations and comparisons with experimental data, we demonstrate the speed, accuracy, and
applicability of our new algorithms. © 2014 Optical Society of America

OCIS codes: (240.6680) Surface plasmons; (050.1755) Computational electromagnetic methods.
http://dx.doi.org/10.1364/JOSAA.31.001820

1. INTRODUCTION
The scattering of time-harmonic linear waves by periodic
media arises in applications from a wide array of disciplines
from materials science [1] and nondestructive testing [2] to
remote sensing [3] and oceanography [4]. In this work we have
in mind applications in optics, more specifically plasmonics
and nano-optics [5,6], which are at the heart of remarkable
phenomena such as extraordinary optical transmission
(EOT) [7,8], surface-enhanced Raman scattering (SERS) [9],
and surface plasmon resonance (SPR) biosensing [10].

A surface plasmon polariton (SPP) is usually defined as a
time-harmonic electromagnetic wave propagating at the inter-
face between a dielectric (insulator) and a metal (conductor),
which is exponentially confined in the direction orthogonal to
the interface. The configuration we study here is composed of
a thin layer of gold (larger than the skin depth) mounted on
(and illuminated through) a dielectric (e.g., glass or polymer
substrate) with the exposed (flat) metal interface sitting in a
second dielectric (e.g., water); see Fig. 1. These SPPs are the
result of a resonance (a SPR) between the illuminating radi-
ation and the polariton guided mode.

A remarkable feature of these SPRs is that for a well-
designed (i.e., the metal should be a superior conductor,
e.g., with high real negative permittivity) but fixed configura-
tion, they are excited only for a very narrow band of illumi-
nation frequencies. For this reason it is easy to see how

such devices could be constructed to produce measurement
devices with very high sensitivity. Furthermore, the set of
frequencies at which these SPRs exists depends strongly on
the refractive index near the interface, and this principle is
utilized in commercial SPR sensors that can detect refractive
index changes that are as small as 10−7 refractive index
units [10].

A well-known property of crucial importance is that these
SPPs cannot be excited at the boundary of a dielectric/metal
grating structure with flat interface [11,12]. It is not difficult to
show that there is insufficient “momentum” to generate an
SPP; however, with the addition of periodic corrugations at
the interface such momentum can be provided and SPPs
can be excited. (We note that periodic gratings are among sev-
eral methods for producing SPPs, and we refer the interested
reader to [11,12] for other approaches.)

With all of this in mind it becomes crucial to develop ro-
bust, highly accurate, and extremely rapid numerical solvers
for approximating solutions to grating scattering problems
in the resonance regime (both the period of the structure
and the illumination frequency are in the optical regime
of hundreds of nanometers) [13]. For piecewise-constant
dielectric constants, which are commonplace in these appli-
cations, surface formulations are clearly advantaged as
they posit unknowns supported solely at the material
interfaces.
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Methods based upon integral equation (IE) formulations
are natural candidates [14], but face several challenges. First,
specially designed quadrature rules must be designed to
deliver high-order (spectral) accuracy. Second, such rules
generate dense, nonsymmetric-positive-definite linear sys-
tems to be solved. However, these issues have been
adequately addressed (possibly with the use of iterative sol-
ution procedures accelerated by fast multipole methods),
and they are a compelling alternative (see, e.g., the survey
article of [15] for more details). However, two properties ren-
der them noncompetitive for the periodic, parametrized

problems we consider as compared with the methods we out-
line in this paper:

1. For periodic problems the relevant Green function
must be periodized if one is to restrict the domain of integra-
tion to a single period cell. This is a well-known problem (see,
e.g., the introduction of [16] for a full description), and the
slow convergence of the periodization must be accelerated
(e.g., with techniques such as Ewald summation). However,
even with such technology, these IE methods demand an
additional discretization parameter: the number of terms re-
tained in the approximation of the periodized Green function.

2. For configurations parametrized by the real value ε
(here the height/slope of the irregular interface), an IE solver
will return the scattering returns only for a particular value of
ε. If this value is changed, then the solver must be run again.

As we shall see, our new approach not only requires no spe-
cial treatment for periodic problems, but also delivers the
scattering returns for the entire family of configurations para-
meterized by the height/slope ε (within the disk of analyticity
of the relevant Taylor series) with a single simulation.

The alternative surface algorithm we have in mind is a high-
order perturbation of surfaces (HOPS) method, which traces
its roots to the low-order calculations of Rayleigh [17] and
Rice [18]. Its high-order incarnation [the method of variation
of boundaries, later renamed the method of field expansions

(FE)] for doubly layered media was first introduced by
Bruno and Reitich [19–21], and was further enhanced and
stabilized by Nicholls and Reitich [22–24]. The method was
expanded to multiple layers by Malcolm and Nicholls [25]
at the (reasonable) cost of requiring pairs of surface un-
knowns at every interface. Since these methods utilize the
eigenfunctions of the Laplacian (suitable complex exponen-
tials) on a periodic domain, the quasi-periodicity of solutions
is “built in,” and, in contrast with IE methods, it does not need
to be further approximated. Furthermore, since the methods
are built upon expansions in the boundary parameter, ε, once
the Taylor coefficients are known for the scattering quantities,
it is simply a matter of summing these (rather than beginning a
new simulation) for any given choice of ε to recover the
returns.

In the present contribution we extend the above contribu-
tions in a number of directions. First, we show that if one of
the interfaces is flat (trivial), then the cost of the original two-
layer (one irregular interface) algorithm can be recovered for
the three-layer configurations that arise in this study of SPPs.
Additionally, the algorithm is extended to accommodate the
complex-valued permittivities that arise for metals. Following
our previous developments on these methods [22,23] we also
develop a new, high-order, and provably stable HOPS method
[the method of transformed field expansions (TFE)], which
may be mandated for large and/or rough surface deviations.
While this comes at a moderate additional cost (due to a small
volumetric discretization), it is often crucial for the accurate
simulation of configurations of interest [26].

The paper is organized as follows: in Section 2 we describe
the relevant models for simulating SPRs, in particular the
time-harmonic Maxwell equations (Section 2.A) and a domain
decomposition that greatly simplifies our recursions and en-
hances our numerical schemes (Section 2.B). We describe our
methods of FE in Section 3, and TFE in Section 4. In Section 5
we present our numerical results with a special discussion of
numerical implementation issues in Section 5.A. Evidence of
the convergence of our schemes is presented in Section 5.B,
while our numerical simulations of an experimental biosens-
ing coupler are discussed in Section 5.C.

2. GOVERNING EQUATIONS
As discussed in the survey book of Raether [27], the scattering
of electromagnetic fields by metals can be effectively modeled
with the classical Maxwell equations (i.e., quantum mechani-
cal effects are negligible even for structures on the order of
nanometers). However, an important consideration is the fact
that the dielectric function ε depends strongly on the wave-
length of the radiation interacting with the structure.

A. Time-Harmonic Maxwell’s Equations
In Fig. 1 we display a cross section of the problem configura-
tion we have in mind, a z-invariant layered structure of three
materials. Occupying the domains above the plane y � h̄ and
below the graph y � g�x� are dielectrics with indices of re-
fraction nu ∈ R and nw ∈ R, while placed between is a (thin)
layer of metal with refractive index nv ∈ C:

S :� Su∪Sv∪Sw

� fy > h̄g∪fg�x� < y < h̄g∪fy < g�x�g:

Fig. 1. Plot of three-layer configuration with illumination from
below.
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The d-periodic grating, shaped by y � g�x�, satisfies
g�x� d� � g�x�.

Incident upon this is monochromatic plane-wave radiation
of frequency ω, aligned with the grooves of the grating and, in
order to match with experimental results, impinging from
negative infinity

Ei�x; y; t� � Aeiαx�iβy−iωt; ℋi�x; y; t� � Beiαx�iβy−iωt:

Considering the reduced electric and magnetic fields

E�x; y� � eiωtE�x; y; t�; H�x; y� � eiωtℋ�x; y; t�;

this α-quasi-periodic illumination induces the same quasi-
periodicity in the (reduced) scattered fields. Additionally,
the scattered radiation must be “outgoing” (upward propagat-
ing in the upper layer Su and downward propagating in the
lower layer Sw), which, in this present context, is equivalent
to solutions being bounded.

It is well known ([12], Chap. 2), that in this two-dimensional
configuration, the time-harmonic Maxwell’s equations
decouple into two scalar Helmholtz problems governing the
transverse electric (TE) and transverse magnetic (TM) polar-
izations. These correspond to the components of the scattered
electric and magnetic fields aligned with the invariant (z)
directions, and we will denote them in the upper, middle,
and lower layers by

u � u�x; y�; v � v�x; y�; w � w�x; y�;

respectively. The incident radiation in the lowest layer is
denoted by wi � wi�x; y�.

These considerations lead us to consider α-quasi-periodic,
outgoing solutions of the system of boundary value problems

Δu� k2uu � 0 y > h̄; (1a)

Δv� k2vv � 0 g�x� < y < h̄; (1b)

u − v � 0; ∂yu − τ2∂yv � 0 y � h̄; (1c)

Δw� k2ww � 0 y < g�x�; (1d)

v −w � ζ y � g�x�; (1e)

∂Nv − σ2∂Nw � ψ y � g�x�; (1f)

where kj � njω∕c, N � �−∂xg; 1�T , the Dirichlet and Neumann
data are

ζ�x� :� wi�x; g�x�� � eiβwg�x�eiαx; (1g)

ψ�x� :� σ2�∂Nwi��x; g�x�� � σ2fiβw − iα�∂xg�geiβwg�x�eiαx;
(1h)

and the constants τ2 and σ2 are identity in the TE configura-
tion, and

τ2 � k2u

k2v
� n2

u

n2
v

; σ2 � k2v

k2w
� n2

v

n2
w

; (1i)

in the TM case. It is a classical argument (see [27] for full
details) that the case of TM polarization is the relevant one
for the study of SPRs, and we restrict our attention to this
from here.

B. Domain Decomposition
It is standard in the application of HOPS to affect a domain
decomposition before expansion of field quantities in the
boundary deformation. This can be achieved “exactly” with
the use of Dirichlet–Neumann operators (DNOs) [22,28] in
a “transparent boundary condition.” In Appendix A we give
details of such conditions for the present configuration.

In summary, if we specify hyperplanes fy � −bg and
fy � ag, where

−b < −jgjL∞ ; jgjL∞ < a < h̄;

then given DNOs T and S, the system (1) is equivalent to

Δv� k2vv � 0 g�x� < y < a; (2a)

∂yv − T �v� � 0 y � a; (2b)

Δw� k2ww � 0 − b < y < g�x�; (2c)

v −w � ζ y � g�x�; (2d)

∂Nv − σ2∂Nw � ψ y � g�x�; (2e)

∂yw − S�w� � 0 y � −b: (2f)

We point out that while the uppermost field u has disappeared
from the statement of the problem, it is still implicitly present
through the operator T , and can be readily recovered once v is
known in fg�x� < y < ag.

3. METHOD OF FIELD EXPANSIONS
The first HOPS method we consider for the approximate
solution of Eq. (2) [equivalently Eq. (1)] is the method of
FE [19–21,29]. This approach pursues the consequences of
setting g�x� � εf �x� with the knowledge [23,28,30–32] that
if f is sufficiently smooth (e.g., C2, C1�δ, Lipschitz), then
the scattered fields fv;wg will depend analytically upon ε
(sufficiently small) so that, e.g.,

v � v�x; y; ε� �
X∞
n�0

vn�x; y�εn; (3a)

w � w�x; y; ε� �
X∞
n�0

wn�x; y�εn; (3b)

Before proceeding we note that it has been further shown that
the domain of analyticity includes a neighborhood of the
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entire real axis [33] so that these expansions are valid for arbi-
trarily large real values of ε (up to physical obstruction,
e.g., εjf jL∞ < h̄).

Upon insertion of the forms (3) into (2), differentiation n

times with respect to ε followed by evaluating ε � 0 yields

Δvn � k2vvn � 0 0 < y < a; (4a)

∂yvn − T �vn� � 0 y � a; (4b)

Δwn � k2wwn � 0 − b < y < 0; (4c)

vn −wn � ζn − Qn y � 0; (4d)

∂yvn − σ2∂ywn � ψn − Rn y � 0; (4e)

∂ywn − S�wn� � 0 y � −b; (4f)

where

ζn � Fn�iβw�neiαx; (4g)

ψn � σ2fFn�iβw�n�1 � �∂xf �Fn−1�iβw�n−1geiαx; (4h)

Fn�x� :� �f �x��n∕n!, and

Qn �
Xn−1
m�0

Fn−mf∂n−my um − ∂n−my vmg; (4i)

Rn �
Xn−1
m�0

Fn−mf∂n−m�1
y um − σ2∂n−m�1

y vmg;

−

Xn−1
m�0

�∂xf �Fn−1−mf∂n−1−my um − σ2∂n−m�1
y vmg: (4j)

Appealing to Rayleigh’s expansions, we note that α-quasi-
periodic solutions of Eqs. (4a) and (4c) are

vn�x; y� �
X∞
p�−∞

ξ̂n;pfeiβv;py � Dpe
−iβv;pygeiαpx; (5a)

wn�x; y� �
X∞
p�−∞

μ̂n;pfe−iβw;py � Epe
iβw;pygeiαpx; (5b)

where

αp :� α� �2π∕d�p; βj;p :�
8<
:

���������������
k2j − α2p

q
; p ∈ U�j�

i

���������������
α2p − k2j

q
; p ∈ U�j�

;

and the propagating modes are specified by

U�j� � fp ∈ Z jα2p < k2j g

In light of the fact that S � �−iβw;D� (see Section 2.A), it is easy
to see from Eq. (4f) that Ep ≡ 0 so that, for clarity, we write
μ̂n;p � ŵn;p. The analysis at y � a is more involved, but it is
not difficult to show that Eq. (4b) demands that

Dp � e2iβv;pa�iβv;p − T̂p�∕�iβv;p � T̂p�:

We note that in the case in which the same material fills the
top two layers (i.e., ku � kv), T̂p � �iβv;p� and Dp � 0 so that
the FE recursions of Bruno and Reitich [19] are recovered.
Finally, Eqs. (4d) and (4e) give

�1� Dp�ξ̂n;p − ŵn;p � ζ̂n;p − Q̂n;p; (6a)

�iβv;p��1 − Dp�ξ̂n;p − σ2�−iβw;p�ŵn;p � ψ̂n;p − R̂n;p; (6b)

a system of two linear equations (at every p) that is uniquely
solvable provided

σ2�iβw;p��1� Dp� − �iβv;p��1 − Dp� ≠ 0:

4. METHOD OF TRANSFORMED FIELD
EXPANSIONS
The second HOPS method we describe, the method of TFE,
follows a slightly different philosophy, which delivers not only
computational stability, but also provably convergent recur-
sions, at the cost of slightly elevated computational complex-
ity [23,28]. In this TFE approach two preliminary changes of
variables are affected:

x0 � x; y0 � a

�
y − g�x�
a − g�x�

�
; g�x� < y < a;

x00 � x; y00 � b

�
y − g�x�
b� g�x�

�
; −b < y < g�x�;

which map fg�x� < y < ag to f0 < y0 < ag and f−b < y < g�x�g
to f−b < y00 < 0g, respectively. This domain-flattening change
of coordinates is known as the C method [34] in electromag-
netics and σ coordinates [35] in the atmospheric sciences. The
inverse transform is easily seen to be

x � x0; y � y0 � g�x0�
�
a − y0

a

�
; 0 < y0 < a;

x � x00; y � y00 � g�x00�
�
b� y00

b

�
; −b < y00 < 0;

which allows us to define

v0�x0; y0� :� v�x0; y0 � g�a − y0�∕a�;

w0�x00; y00� :� w�x00; y00 � g�b� y00�∕b�:

For ease of exposition, we will, from this point forward, drop
reference to the primed variables.
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In these new coordinates we find that Eq. (2) is trans-
formed to

Δv� k2vv � Fv�x; y; g; v� 0 < y < a; (7a)

∂yv − T �v� � Jv�x; g; v� y � a; (7b)

Δw� k2ww � Fw�x; y; g;w� − b < y < 0; (7c)

v −w � ζ − Q�x; g; v;w� y � 0; (7d)

∂yv − σ2∂yw � ψ − R�x; g; v;w� y � 0; (7e)

∂yw − S�w� � Jw�x; g;w� y � −b; (7f)

The particular forms for Fv, Jv, Fw, Q, R, and Jw have been
derived in the work on two-layer configurations [36]. The for-
mula for Jv is necessarily new as we consider a three-layer
structure here; however, it is not significantly different from
the term found in [36], and we present it without derivation:

Jv � −
1
a
gT �v�:

The next step in the TFE procedure is, upon defining
g�x� � εf �x�, to expand the transformed fields fv;wg in the
Taylor series

v�x; y; ε� �
X∞
n�0

vn�x; y�εn; w�x; y; ε� �
X∞
n�0

wn�x; y�εn;

(8)

which can be shown to be strongly convergent in an appro-
priate Sobolev space [28,33]. Upon insertion of these forms
into Eq. (3) we find, at each perturbation order n, the follow-
ing problem to solve:

Δvn � k2vvn � Fv
n�x; y� 0 < y < a; (9a)

∂yvn − T �vn� � Jv
n�x� y � a; (9b)

Δwn � k2wwn � Fw
n �x; y� − b < y < 0; (9c)

vn −wn � ζn − Qn y � 0; (9d)

∂yvn − σ2∂ywn � ψn − Rn�x� y � 0; (9e)

∂ywn − S�wn� � Jw
n �x� y � −b; (9f)

It is not difficult (cf. [36]) to derive the forms for
fFv

n; J
v
n; F

w
n ; Qn; Rn; J

w
n g, which we exclude for brevity.

5. NUMERICAL RESULTS
In this section we present a brief sampling of the results our
new algorithms can achieve. We begin with a configuration of
three insulators (dielectrics) that do not support SPRs, but
that are useful as they possess a principle of conservation
of energy that is a standard diagnostic of convergence. Having
validated our codes with this initial configuration of insula-
tors, we proceed to a structure that does exhibit SPRs: a triply
layered water/gold/dielectric configuration that we further
compare with experimental observations.

Before beginning, we describe the “outputs” of our simula-
tions, which are quantities of particular interest to experimen-
talists. The notion of a “far-field pattern” is pervasive in the
study of scattering by bounded obstacles [37] but is not really
relevant for gratings. The quantities that play the same role in
these configurations are the efficiencies. For the problem we
describe in Eq. (1) they are defined in terms of the fields in the
bottom (w) and top (u) layers. To be more specific, the
Rayleigh expansions state that

u�x; y� �
X∞
p�−∞

ûpe
iβu;pyeiαpx; y > h̄;

w�x; y� �
X∞
p�−∞

ŵpe
−iβw;pyeiαpx; y ≤ −b < −jgjL∞ ;

and in terms of these we can define the efficiencies, for illu-
mination from below the structure, as

eu;p :� βu;p
βw

jûpj2; ew;p :� βw;p

βw
jŵpj2:

These efficiencies are the (scaled) amplitudes of the transmit-
ted and reflected waves at the propagating frequencies p (in
U�u� and U�w�), and, thus, they describe the information “seen
in the far field.” If all three materials in the structure are loss-
less (i.e., perfect insulators), then there is a conserved energy

X
p∈U�u�

eu;p �
�
k2u

k2w

� X
p∈U�w�

ew;p � 1;

and we can define a diagnostic of convergence based upon
this, namely the “energy defect”:

δ :� 1 −
X
p∈U�u�

eu;p −

�
k2u

k2w

� X
p∈U�w�

ew;p: (10)

Regardless of the material’s index of refraction, it is of con-
siderable interest to know how much energy is reflected and/
or transmitted by a structure. Since the direction of illumina-
tion of the structure may be from above or below, we do not
distinguish between reflection or transmission, but rather de-
fine the “reflectivity” of the scattered field in the upper and
lower layers. These are defined as

~Ru :�
X
p∈U�u�

eu;p;
~Rw :�

X
p∈U�w�

ew;p;

so that for a stack of insulators ~Ru � �k2u∕k2w� ~Rw � 1. Of
great importance are the “reflectivity maps,” which are these
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quantities as functions of the wavelength of the incident radi-
ation, λ, and the size (height/slope) of the interface deforma-
tion, h. It is often of interest to compare these reflectivity
maps for nontrivial interfaces (of size h) with those realized
by the same structure with flat interfaces; thus we define the
“scaled reflectivity maps,” e.g.,

Rw � Rw�λ; h� :�
~Rw�λ; h�
~Rw�λ; 0�

: (11)

Finally, two scattered directions that are of special interest
to practitioners are the specular ones (the directions of reflec-
tion and transmission in the flat-interface case). In terms of
our representations, these energies are given by eu;0 and
ew;0, which, in light of the formulas above, are given by
jû0j2 and jŵ0j2. Again, of particular import are the “scaled
specular energies,” e.g.,

C0 � C0�λ; h� :�
jŵ0�λ; h�j2
jŵ0�λ; 0�j2

: (12)

A. Numerical Implementation
For a numerical implementation of the FE method we
approximate fv;wg by a truncation of the expansions (3)

v ≈ vN :�
XN
n�0

vn�x; y�εn; w ≈wN :�
XN
n�0

wn�x; y�εn: (13)

For the fvn;wng we approximate by the Nx-term truncation of
Eq. (5):

vn ≈ v
Nx
n :�

XNx∕2−1

p�−Nx∕2
ξ̂n;pfeiβv;py � Dpe

−iβv;pygeiαpx; (14a)

wn ≈w
Nx
n :�

XNx∕2−1

p�−Nx∕2
ŵn;pe

−iβw;pyeiαpx: (14b)

Finally, the fξ̂n;p; ŵn;pg are recovered by solving (6) where the
only approximation is that convolutions arising in the
formulas for fQn;p; Rn;pg are evaluated by the discrete Fourier
transform (DFT) accelerated by the fast Fourier transform
(FFT) algorithm [38].

The implementation of the TFE algorithm is a little more
involved, but begins analogously to the FE procedure
(recalling that we dropped the primes in the TFE change of
variables) by approximating

v ≈ vN :�
XN
n�0

vn�x; y�εn; w ≈wN :�
XN
n�0

wn�x; y�εn;

and

vn ≈ v
Nx
n :�

XNx∕2−1

p�−Nx∕2
v̂n;p�y�eiαpx;

wn ≈w
Nx
n :�

XNx∕2−1

p�−Nx∕2
ŵn;p�y�eiαpx:

Upon insertion of these forms into Eq. (9), it becomes appar-
ent that we must solve a pair of coupled two-point boundary
value problems for fv̂n;p�y�; ŵn;p�y�g, on the domain
�−b; 0�∪ �0; a� [36]. For this we diverge from the approach of
[36] and utilize a Chebyshev-tau method outlined in [39]. In
short, we express

v̂n;p ≈ v̂
Ny

n;p :�
XNy

l�0

v̂n;p;lT l

�
2y − a

a

�
;

ŵn;p ≈ ŵ
Ny

n;p :�
XNy

l�0

ŵn;p;lTl

�
2y� b

b

�
;

and find the fv̂n;p;l; ŵn;p;lg from the Chebyshev-tau constraints.
We point out that while this solution procedure can be accel-
erated by the FFT algorithm (the computational complexity is
O�Ny log�Ny��), it is disadvantaged when compared with the
FE algorithm as an extra discretization is required in the y

variable.
To conclude our discussion of numerical implementation

we point out that there is a choice in evaluating the truncated
Taylor series that appear above [see, e.g., Eq. (13)]. The
classical numerical analytic continuation technique of Padé
approximation [40] has been successfully brought to bear
upon HOPS methods in the past (see, e.g., [20,33]), and we
utilize this here as well. This approximant has the remarkable
properties that, for a wide class of functions, not only is the
convergence faster at points of analyticity, but it also may con-
verge for points outside the disk of analyticity. We refer the
interested reader to Section 2.B of Baker and Graves-Morris
[40] and the insightful calculations of Section 8.3 of Bender
and Orszag [41] for a thorough discussion of the capabilities
and limitations of Padé approximants.

B. Convergence Test
In this section we provide evidence for the accuracy and
robustness of the FE and TFE methods we outlined in
Sections 3 and 4. As there are no readily available exact sol-
utions for plane-wave scattering by corrugated gratings we
resort to two widely accepted measures of convergence:
Cauchy convergence and energy defect.

Before describing these measures of convergence we out-
line the physical and numerical parameters of our simulations.
In light of our subsequent experiments we choose the perio-
dicity of our grating to be d � 650 nm (0.65 μm), and the mean
interface locations to be h̄ � 1000 nm and ḡ � 0 nm. We fill
this triply layered structure with three (different) perfect
insulators with indices of refraction

nu � 1.1; nv � 2.1; nw � 3.5:

For the shape of the lower interface we choose the “rough
profile” selected in [33]
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f �x� � a

�
cos

�
2πx
d

�
� 1

9
cos

�
6πx
d

�

� 1
16

cos
�
8πx
d

�
� 1

8
sin

�
6πx
d

��
;

where a � 25 nm, and we chose 101 equally spaced values of
h � ε between 0 and 1. For the incident radiation we chose
normal incidence (α � 0), and 101 equally spaced wave-
lengths, λ, between 600 and 750 nm (0.6 and 0.75 μm). For
numerical parameters we selected Nx � 128, Ny � 32,
and Nmax � 30.

For the FE algorithm we present in Fig. 2(a) measurements
of the difference between the reflectivity map Rw with N Tay-
lor terms versus this map with �N − 1� Taylor terms measured
in the supremum norm. We repeat this calculation for the TFE
approach and display results in Fig. 2(b). In both instances we
see the spectral convergence rate one would expect of the
Fourier/Chebyshev/Taylor approach we outline above [33].

Additionally, we show in Fig. 3(a) measurements of the
energy defect for λ � 670.5 nm as computed by the FE
approach as N increases. This was repeated for the TFE algo-
rithm, and the results are given in Fig. 3(b). Once again, in
both instances we see the remarkably rapid and stable conver-
gence of our new HOPS approaches.

C. Buried Plasmonic Grating
We now consider the configuration that has been studied ex-
perimentally by two of the authors (Oh and Johnson) in [42] to
investigate the thin-film sensing capability of an engineered
metal film that is flat on one side but has a periodic grating
patterned on the opposite side. (This is in contrast to conven-
tional gratings in which undulations appear on both sides.) For
this, a structure was fabricated consisting of a thin layer of
gold mounted a polymeric substrate (optical adhesive,
through which the structure is illuminated) and sitting in
water. The key feature of this structure is that surface reac-
tions and molecular binding events occur on a flat surface,

Fig. 2. Plot of Cauchy error, jRu
N − Ru

N−1jL∞ and jRw
N − Rw

N−1jL∞ , versus
perturbation order N for three-layer, dielectric configuration simu-
lated via (a) FE recursions and (b) TFE recursions.

Fig. 3. Plot of energy defect, δ, versus perturbation orderN for three-
layer, dielectric configuration (λ � 670.5 nm): (a) FE recursions and
(b) TFE recursions.
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whereas a grating coupler for SPP excitation is buried in the
film and does not disturb the surface topography. There are
broader applications of such buried grating structures; for ex-
ample, a multilayer metamaterials stack can be placed on such
buried gratings or slits [43], which can be readily modeled us-
ing our method. For this study, we focus on a single-layer
metal film atop a buried grating, as illustrated in Fig. 1, with-
out losing generality.

To accommodate this geometry we consider the upper (u)
layer as water, the middle layer (v) as gold, and the lowest
layer (w) as polymer (Norland 61). The configuration is de-
picted to scale in Fig. 4(a), and rescaled in Fig. 4(b) to reveal
the features of the gold/substrate interface. The technology of
[42] involves depositing a (thin) t1 nm layer of gold, followed
by t2 nm strips of gold of width w nm, and finishing with an
(effectively) infinite layer of epoxy. To approximate this we
set h̄ � �t1 � t2� nm, and shape the gold/epoxy interface by
the function

f �x� � aftanh�b��x − d∕2� � c�� − tanh�b��x − d∕2� − c��g;
(15)

where we have set a � t2∕2, c � �d −w�∕2, and the dimen-
sionless “steepness” b � 5 × 105.

An important consideration is the model of the refractive
index for each of these three layers. For the two dielectrics
we use [42]

nepoxy � 1.56; nwater � 1.333:

The refractive index of gold is the subject of current research,
and we choose a Lorentz model [44]

ϵAu � ϵAu∞ �
X6
j�1

ΔAu
j

−aAuj ω2
− ibAuj ω� cAuj

; (16)

where ω � 2π∕λ, εAu∞ � 1, and ΔAu, aAu, bAu, and cAu can be
found in [44].

To demonstrate the applicability of our new algorithm we
now make direct comparisons the experimental results pre-
sented in [42]. In Fig. 5 we plot the scaled specular energy
C0 [cf. Eq. (12)], which is reflected back into the epoxy. This
figure includes not only experimental data (with green dia-
monds), but also the results of numerical simulations (in
red crosses) using the rapid and robust FE algorithms over
a range of incident wavelengths from λ � 550 to 750 nm.
We find the agreement between the two curves quite striking,
especially in light of the fact that these SEMs simply give
estimates of these quantities. However, we do point out that
while the SEM utilized after the experiment indicated that
t1 � 50 nm, t2 � 20 nm, and w � 220 nm, we found that if
we set t1 � 40 nm, t2 � 22.2 nm, and w � 209 nm we got
the “best” results depicted here.

We note that there is a pronounced “dip” in the neighbor-
hood of λ � 631 nm and a “peak” near λ � 717 nm, which was
verified by comparison with the stable and high-order (though
more computationally intensive) TFE recursions. For this rea-
son we plot in Fig. 6 the intensity of the reflected field for

Fig. 4. (a) Geometry and model (to scale). Upper region, water
(sensing area); middle, gold; lower, polymer substrate. Gold/polymer
interface specified by Eq. (15): blue curve displays b � 5 × 105, while
green curve is “idealized” shape with b � ∞. (b) Close up of (a) near
the gold/polymer interface.

Fig. 5. Plot of the reflectivity map for water/gold/polymer configura-
tion (which can exceed 1 as it is normalized by the flat-interface
value). Experimental data are depicted with green diamonds, while
numerical simulations (via FE recursions) are shown with red stars.
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these values [λ � 631 nm in (a) and λ � 717 nm in (b)]
using the TFE algorithm (which delivers the scattered field
everywhere in the problem domain, including the selvage
region).

To close we report on two numerical experiments that
probe the sensitivity of these devices. First, we repeat one
of the simulations reported in [42] by plotting, in Fig. 7, the
shift of the dip and peak data (from the value shown in Fig. 5)
as the index of refraction, nwater, is varied from 1.33 to 1.36,
which measures the bulk sensitivity and is achieved experi-
mentally by varying the concentration of glycerol in the water.
Based upon a least squares fit to this data we find that the dip
changes by 82.5 nm∕RIU (“refractive index unit”), compared
with roughly 300 nm∕RIU reported in [42], while the peak
changes by 491 nm∕RIU compared with approximately
410 nm∕RIU in [42].

Finally, we consider another simulation described in [42] by
plotting, in Fig. 8, the spectral shift of the SPR resonances as a
dielectric film is sequentially deposited layer by layer on top of
the sensing surface. Such experiments are often performed,
e.g., using atomic layer deposition (ALD) of dielectric films

on metals [45], to measure the response of optical sensors
as a function of the deposited film thickness. Because the
intensity of the SPP evanescent field decreases rapidly away
from the interface, the response of these sensors (e.g., the res-
onance wavelength) does not scale linearly with the deposited
film thickness. To precisely model such effects, one needs an
accurate modeling capability to resolve the changes due to a
very thin (a few nanometers) film atop the patterned sensing
surface. We point out that this requires a significant but
straightforward extension of the formulation we have de-
scribed above in that the boundary operator, T , must be gen-
eralized to the case of two flat interfaces (four layers total).
This, and the further extension to arbitrary numbers of flat
interfaces (in both two and three dimensions), is the subject
of a forthcoming publication. Returning to our results, based
upon a least squares fit to the first half of the data, we find
that, in the range of 0–50 nm, the dip changes by 0.640 nm
per nm of Al2O3 overlayer, while the peak varies by

Fig. 6. Intensities jHzj2 at the wavelengths (a) λ � 631 nm and
(b) λ � 717 nm.

Fig. 7. Plot of shift in “peak” and “dip” of reflectivity map as the
index of refraction, nwater, in water corresponding to the bulk sensi-
tivity to varying concentrations of glycerol in the water.

Fig. 8. Plot of shift in “peak” and “dip” of reflectivity map as layers of
Al2O3 are added to the sensor to test local sensitivity.
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1.16 nm per nm. These values should be compared with about
1.1 nm per nm reported in [42]. We point out that, as one
would expect, for thicknesses of the film beyond 50 nm there
is a saturation where the dip and peak no longer vary.

These results demonstrate that our HOPS method can ac-
curately predict the optical response of a buried plasmonic
structure, which in this case consists of one trivial surface
(flat gold–water interface) and one nontrivial surface (buried
gratings for SPP excitation). A brief inpsection of the develop-
ments in Appendix A reveals that it should be a significant but
straightforward calculation to extend this method to model
multilayer metamaterials (e.g., several alternating layers of
flatmetallic and insulating films; see Fig. 9) above the flat gold
surface with buried gratings, which will provide a powerful
modeling tool for investigating metamaterials [43,46], plas-
monic photovoltaic cells [47,48], and nanoplasmonic sensors
[10]. Finally, we note that it is easy to imagine how this effi-
cient and robust scheme could be adapted to investigate the
parametric optimization of grating shapes and properties to
deliver “optimal” properties.

APPENDIX A: TRANSPARENT BOUNDARY
CONDITIONS
To specify the operator S required by the formulation (2) we
focus on the unknown w in Eq. (1) and analyze outgoing,
quasi-periodic solutions of its augmented version:

Δw� k2ww � 0 − b < y < g�x�; (A1a)

Δw� k2ww � 0 y < −b; (A1b)

w −w � 0; ∂y�w −w� � 0 y � −b; (A1c)

which clearly has the same solution w on the truncated
domain f−b < y < gg, while w � w for y < −b. We recall
Rayleigh’s expansion for w:

w�x; y� �
X∞
p�−∞

ŵpe
−iβw;pyeiαpx; (A2)

so that if we are provided with Dirichlet data, say ψ�x� from,
e.g., Eq. (A1c), then we can solve for ŵp using

X∞
p�−∞

ψ̂pe
iαpx � ψ�x� � ŵ�x;−b� �

X∞
p�−∞

ŵpe
−iβw;p�−b�eiαpx;

which gives

w�x; y� �
X∞
p�−∞

ψ̂pe
−iβw;p�y�b�eiαpx:

Neumann data can be computed as

∂yw�x;−b� �
X∞
p�−∞

�−iβw;p�ψ̂pe
iαpx � ∶S�ψ�x��;

which defines the order-one Fourier multiplier S (commonly
denoted �−iβw;D�) that permits only downward propagating
solutions. We point out for later reference that S is a DNO,
and the Neumann condition in (A1c) can be stated at
y � −b in terms of this DNO as

∂yw − S�w� � 0:

Thus Eq. (A1) is equivalent to

Δw� k2ww � 0 − b < y < g�x�; (A3a)

∂yw − S�w� � 0 y � −b: (A3b)

The considerations for the transparent boundary condition
above the structure are a little more involved as we locate the
“artificial boundary” between the irregular interface and the
uppermost interface

jgjL∞ < a < h̄:

We now focus on the unknowns fu; vg in Eq. (1) and quasi-
periodic and outgoing solutions of the augmented system

Δu� k2uu � 0 y > h̄; (A4a)

Δv� k2vv � 0 a < y < h̄; (A4b)

u − v � 0; ∂y�u − τ2v� � 0 y � h̄; (A4c)

Δv� k2vv � 0 g�x� < y < a; (A4d)

v − v � 0; ∂y�v − v� � 0 y � a; (A4e)

We now pursue a formulation of the problem for fu; vg in
terms of surface Dirichlet

U�x� :� u�x; h̄�; V�x� :� v�x; h̄�; Va�x� :� v�x; a�;

and external Neumann traces

~U�x� :� −�∂yu��x; h̄�; ~V�x� :� �∂yv��x; h̄�;

~Va�x� :� −�∂yv��x; a�;

we point the interested reader to [49] for further details. In
terms of these Eqs. (A4a)–(A4c) are equivalent to

Fig. 9. Depiction of a sample multilayer device that should be
amenable to our HOPS method.
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U − V � 0; − ~U − τ2 ~V � 0; Va � ψ ; (A5)

where we view ψ :� v�x; a� as given and seek to produce
�∂yv��x; a�, precisely the DNO T . Further defining the
DNOs [49]

G∶U → ~U; B∶�V; Va� → � ~V; ~Va�;

where we idenfity B as the matrix-valued operator

B �
�
Buu Bul

Blu Bll

�
;

Eq. (A5) is equivalent to

U −V � 0; −G�U �− τ2�Buu�V ��Bul�Va��� 0; Va �ψ ;

or, quite simply,

�G� τ2Buu��V � � −τ2Bul�ψ �: (A6)

Now, the operator T is given by

T �ψ � � −�Blu�V � � Bll�ψ �� � fτ2�G� τ2Buu�−1Bul
− Bllg�ψ �;

which, despite its intimidating form, can be expressed as a
simple multiplication in Fourier space. This is because it
has been shown that for the flat-interface case described here,
the operators G and B are order-one Fourier multipliers with
formulas

G � −�iβu;D�; Buu � Bll � �iβv;D� coth�iβv;D�h̄ − a��;

Bul � Blu � −�iβv;D�csch�iβv;D�h̄ − a��;

so that

T̂p � −
τ2�iβv;p�csch�iβv;p�h̄ − a��

−�iβu;p� � τ2�iβv;p� coth�iβv;p�h̄ − a��
− �iβv;p� coth�iβv;p�h̄ − a��: (A7)

Finally, we note that Eq. (A4) is equivalent to

Δv� k2vv � 0 g�x� < y < a; (A8a)

∂yv − T �v� � 0 y � a: (A8b)
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