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The scattering of electromagnetic waves by periodic layered media plays a crucial role in many applications in
optics and photonics, in particular in nanoplasmonics for topics as diverse as extraordinary optical transmission,
photonic crystals, metamaterials, and surface plasmon resonance biosensing. With these applications in mind, we
focus on surface plasmon resonances excited in the context of insulator–metal structures with a periodic, corru-
gated interface. The object of this contribution is to study the geometric limits required to generate these fun-
damentally important phenomena. For this we use the robust, rapid, and highly accurate field expansions method
to investigate these delicate phenomena and demonstrate how very small perturbations (e.g., a 5 nm deviation on a
530 nm period grating) can generate strong (in this instance 20%) plasmonic absorption, and vanishingly small
perturbations (e.g., a 1 nm deviation on a 530 nm period grating) can generate nontrivial (in this instance 1%)
plasmonic absorption. © 2016 Optical Society of America

OCIS codes: (050.1755) Computational electromagnetic methods; (240.6680) Surface plasmons.
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1. INTRODUCTION

The scattering of linear electromagnetic waves by periodic
layered media plays a crucial role in many applications of
scientific and engineering interest. In optics and photonics,
for instance, this can be seen in nanoplasmonics [1–3], where
one can investigate topics as diverse as extraordinary optical
transmission [4,5], photonic crystals [6,7], metamaterials
[8], surface acousto-optic systems [9,10], and surface plasmon
resonance (SPR) biosensing [11–17].

The objects of our current investigation are the SPRs at the
heart of a wide range of highly accurate and robust biosensing
devices of current interest (see, e.g., [12]). These SPRs are
generated when a surface plasmon polariton (an exponentially
confined time-harmonic electromagnetic wave propagating at
the interface between an insulator and a metal) is excited
and coupled to the illuminating radiation.

A well-known property of these SPRs is that they cannot be
excited at the boundary of an insulator–metal structure with a
flat interface (though they can be launched in the Kretschmann
configuration) [1–3]. It is not difficult to show that there is
insufficient “momentum” to generate an SPR. With the addi-
tion of periodic corrugations at the interface, such momentum
can be provided and SPRs can be excited. (Periodic gratings are

among several methods of producing SPRs, and we refer the
interested reader to [1–3] for other approaches.)

It is also known that these SPRs can be generated by quite
small deformations. The object of this contribution is to study
the limits of the size of the deformation required to generate
surface plasmon waves. In concert with this, a remarkable fea-
ture of these resonances is that for a well-designed (i.e., the
metal should be a superior conductor, e.g., having permittivity
with a very negative real part) but fixed configuration, they are
excited only for a very narrow band of illumination frequencies.
Clearly, the ability to simulate such configurations numerically
in a rapid, robust, and high-order fashion is of paramount
importance.

While all of the classical numerical algorithms have been
brought to bear upon this problem, each has shortcomings.
Typically one considers methods based on finite elements
(see, e.g., [18–21]) and finite differences (see, e.g., [22–24]).
However, these volumetric approaches are clearly disadvan-
taged by an unnecessarily large number of unknowns for the
problem at hand, which features piecewise-constant dielectric
constants. Methods based on traditional integral equation (IE)
formulations [25] are a natural candidate but face several
challenges. While most have been adequately addressed with
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appropriate quadrature rules and iteration procedures (see [26]
and [27] for different strategies), the authors recently argued
[17,28] that these methods are noncompetitive for the periodic,
parameterized problems we consider as compared with “high-
order perturbation of surfaces” (HOPS) algorithms, which we
advocate here.

More specifically, in [17,28] we pointed out that standard IE
methods have the following properties:

1. For periodic problems, the relevant Green’s function
must be periodized if one is to restrict the domain of integration
to a single period cell. This is a well-known problem (see, e.g.,
the introduction of [29] for a full description), and the slow
convergence of the periodization must be accelerated (e.g., with
techniques such as Ewald summation). However, even with
such technology, these IE methods demand an additional
discretization parameter: the number of terms retained in
the approximation of the periodized Green’s function. (We
note the recent results [30] and [31], which significantly
ameliorate this concern.)

2. For configurations parameterized by the real value h (for
us the height/slope of the crossed interface), an IE solver will
return the scattering returns only for a particular value of h. If
this value is changed, then the solver must be run again.

3. The dense, nonsymmetric positive definite systems of
linear equations, which must be inverted with each simulation.

In this contribution we utilize a particular HOPS approach:
the method of field expansions (FE), which traces its roots to
the low-order calculations of Rayleigh [32] and Rice [33]. Its
high-order incarnation for doubly layered media was first intro-
duced by Bruno and Reitich for the two-dimensional scalar case
in [34,35] and for the fully three-dimensional vector Maxwell
case in [36]. It was further enhanced and stabilized by Nicholls
and Reitich [37–39], and expanded to multiple layers in the
two-dimensional scalar case by Malcolm and Nicholls [40]
and the fully three-dimensional vector electromagnetic case
by Nicholls [28].

As we pointed out in [17,28], this formulation is particularly
compelling, as it maintains the advantageous properties of
classical IE formulations (e.g., surface formulation and exact
enforcement of far-field conditions) while avoiding the
shortcomings listed above:

1. As this HOPS scheme utilizes the eigenfunctions of
the Laplacian (suitable complex exponentials) on a periodic
domain, the quasiperiodicity of solutions is built in and does
not need to be further approximated.

2. Since the method is built upon expansions in the boun-
dary parameter, h, once the Taylor coefficients are known for
the scattering quantities, it is simply a matter of summing these
(rather than beginning a new simulation) for any given choice
of h to recover the returns.

3. Due to the perturbative nature of the scheme, at every
perturbation order one need only invert a single sparse operator
corresponding to the flat-interface approximation of the
problem.

With this method we can show that vanishingly small-
amplitude (e.g., a 5 nm deviation on a 530 nm period grating)
perturbations can give rise to substantial plasmonic absorption
on the order of a 20% dip from the base, flat-interface return.

This is of particular relevance to experimentalists, since the
roughness of as-deposited metal films can be on the order of
5 nm, unless ultraflat metal films are produced using tech-
niques such as template stripping [41].

From here the paper is organized as follows: In Section 2 we
briefly recall the equations that govern the propagation of
electromagnetic waves in a periodic structure that is invariant
in one direction, rendering this problem two-dimensional. In
Section 3 we specify the method of FE for numerically approxi-
mating solutions to these governing equations [28,34–36,40].
In Section 4 we make a simple explanation of the SPR phenom-
ena in terms of the FE framework introduced in Section 3. In
Section 5 we discuss our numerical simulations, including the
implementation (Section 5.A) and results for vanishingly small
perturbations (Section 5.B).

2. GOVERNING EQUATIONS

In Fig. 1 we show the geometry of the configuration we con-
sider: A y-invariant doubly layered insulator–metal structure.
The insulator (vacuum with refractive index n�u� � 1) occupies
the domain above the graph z � g�x�,

S�u� ≔ fz > g�x�g;
and the metal (with index of refraction n�w�) fills

S�w� ≔ fz < g�x�g:
The grating is d -periodic so that g�x � d� � g�x�. The struc-
ture is illuminated from above by monochromatic plane-wave
incidence of frequency ω, aligned with the grooves

Ei�x; z; t� � Aeiαx−iγz−iωt ;Hi�x; z; t� � Beiαx−iγz−iωt :

We consider the reduced electric and magnetic fields

E�x; z� � eiωtE;H�x; z� � eiωtH;

which, like the reduced scattered fields, are α-quasiperiodic due
to the incident radiation. Finally, the scattered radiation must
be “outgoing” (upward propagating in S�u� and downward
propagating in S�w�).

As shown in Petit [42], in this two-dimensional setting, the
time-harmonic Maxwell equations decouple into two scalar

Fig. 1. Plot of an insulator–metal structure with periodic lamellar
interface (period d � 530 nm and height h � 5 nm).
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Helmholtz problems that govern the transverse electric (TE)
and transverse magnetic (TM) polarizations. We denote the
invariant (y) directions of the scattered electric and magnetic
fields by

u � u�x; z�; w � w�x; z�;
in S�u� and S�w�, respectively. The incident radiation in the
upper layer is specified by ui.

In light of all of this, we are led to seek outgoing, α-
quasiperiodic solutions of

Δu� �k�u��2u � 0; z > g�x�; (2.1a)

Δw� �k�w��2w � 0; z < g�x�; (2.1b)

u − w � ζ; z � g�x�; (2.1c)

∂N u − τ2∂Nw � ψ ; z � g�x�; (2.1d)

where k�m� � n�m�ω∕c, N � �−∂xg; 1�T , the Dirichlet and
Neumann data are

ζ�x�≔ − ui�x; g�x�� � −eiαx−iγ�u�g�x�;

ψ�x�≔ − �∂N ui��x; g�x��
� �iγ�u� � iα�∂xg��eiαx−iγ�u�g�x�;

and

τ2 �
�
1 TE
�k�u�∕k�w��2 � �n�u�∕n�w��2 TM

:

Appealing to the classical study of SPRs [1], we restrict our
attention to TM polarization from here.

A. Rayleigh Expansions

Separation of variables gives the Rayleigh expansions [42],
which are quasiperiodic, outgoing solutions of Eqs. (2.1a)
and (2.1b). The electric fields can be written

u�x; z� �
X∞
p�−∞

âpeiαpxeiγ
�u�
p z ; (2.2a)

w�x; z� �
X∞
p�−∞

d̂ peiαpxe−iγ
�w�
p z ; (2.2b)

where, for p ∈ Z and m � u; w,

αp ≔ α�
�
2π

d

�
p; γ�m�p ≔

8<
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�k�m��2 − α2p

q
p ∈ U�m�

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2p − �k�m��2

q
p ∉ U�m�

;

and

U�m� � fp ∈ Zjα2p < �k�m��2g;
which are the “propagating modes” in the upper and lower
layers. We point out that âp and d̂ p are the upward and down-
ward propagating Rayleigh amplitudes. Quantities of great
interest are the efficiencies

e�u�p � �γ�u�p ∕γ�u��jâpj2; e�w�p � �γ�w�p ∕γ�u��jd̂ pj2;
and the objects of fundamental importance to the design of
SPR biosensors [12–17] are the “reflectivity map” and “normal-
ized reflectivity,”

R≔
X
p∈U�u�

e�u�p ; B�λ; h�≔ e�u�0 �λ; h�
e�u�0 �λ; 0�

; (2.3)

respectively. If the lower layer is filled with a perfect electric
conductor, then if S�u� contains an insulator (such as the vac-
uum), conservation of energy requires that R � 1. This is not
the case for a metal (such as gold or silver) in the lower domain,
and drops in its value to a tenth or even a hundredth are the
fundamental phenomena behind the utility of these sensors.

3. FIELD EXPANSIONS

The method of FE [34–36] is a perturbative approach to
enforcing the boundary conditions in Eqs. (2.1c) and (2.1d)
with the fâp; d̂ pg from the Rayleigh expansions in Eq. (2.2)
as unknowns. Here we take the point of view advocated by
one of the authors in [28], which, we believe, simplifies the
presentation. First, we define the functions

a�x�≔ u�x; 0� �
X∞
p�−∞

âpeiαpx (3.1a)

d �x�≔w�x; 0� �
X∞
p�−∞

d̂ peiαpx ; (3.1b)

which are the “flat interface” field traces.
We further define the Dirichlet trace operators

D�u�: a → u�x; g�x��; D�w�: d → w�x; g�x��;
and their Neumann counterparts

N �u�: a → �∂zu − �∂xg�∂xu��x; g�x��;
N �w�: d → �∂zw − �∂xg�∂xw��x; g�x��:

The idea behind these operators D and N is that they map,
respectively, the function pair �a; d � to the upper and lower
Dirichlet and Neumann traces. It can be shown that

D�u� � exp�g�iγ�u�D ��; D�w� � exp�g�−iγ�w�D ��;
and

N �u� � exp�g�iγ�u�D ���iγ�u�D � − �∂xg� exp�g�iγ�u�D ��∂x ;
N �w� � exp�g�−iγ�w�D ���−iγ�w�D � − �∂xg� exp�g�−iγ�w�D ��∂x ;

where we have used Fourier multiplier notation, e.g.,

m�D�ξ�x�≔
X∞
p�−∞

m�p�ξ̂peiαpx ;

where ξ̂p is the generalized pth Fourier coefficient of ξ�x�.
In these terms, the Dirichlet boundary condition,

Eq. (2.1c), becomes

D�u��a� −D�w��d � � ζ; (3.2)

while the Neumann condition, Eq. (2.1d), becomes

N �u��a� − τ2N �w��d � � ψ : (3.3)

We state the boundary conditions [Eqs. (3.2) and (3.3)]
abstractly as

Mv � b; (3.4)

where
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M �
�

D�u� D�w�

N �u� −τ2N �w�

�
; v �

�
a

d

�
; b �

�
ζ

ψ

�
:

A. Taylor Expansions

The FE approach to this problem is to consider deformations of
the form g�x� � hf �x� (f � O�1�) and note that for a suffi-
ciently smooth f (Lipschitz) and sufficiently small h, the linear
operator M and inhomogeneity b are both analytic in h
[43,44]. Furthermore, an analytic solution v can be shown
to exist. More specifically, the following expansions can be
demonstrated to be strongly convergent:

fM; v; bg�hf � �
X∞
n�0

fMn�f �; vn�f �; bn�f �ghn:

Crucially, an algorithm for recovering vn can be devised based
on regular perturbation theory. In short, we write Eq. (3.4) as�X∞

n�0

Mnhn
��X∞

m�0

vmhm
�

�
X∞
n�0

bnhn;

and, equating at each perturbation order, we find

M0vn � bn −
Xn−1
m�0

Mn−mvm: (3.5)

At order zero we recover the flat-interface solution, giving the
Fresnel coefficients, while higher-order corrections, vn, can be
computed by appealing to Eq. (3.5). Of great importance is
the fact that one only need invert the same linear operator,
M0, at every perturbation order. All that remains is a specifica-
tion of the terms fMn; bng.

Regarding the Dirichlet trace operators, upon defining

Fn�x�≔ f �x�n∕n!;
one can show that

D�u�
n � Fn�iγ�u�D �n; D�w�

n � Fn�−iγ�w�D �n:
For their Neumann counterparts, we have

N �u�
n � Fn�iγ�u�D �n�1 − �∂xf �Fn−1∂x�iγ�u�D �n−1;

N �w�
n � Fn�−iγ�w�D �n�1 − �∂xf �Fn−1∂x�−iγ�w�D �n−1:

Finally, for the surface data, bn, it is easy to show that

ζn � −Fn�−iγ�u��neiαx ;
and

ψn � Fn�iγ�u���−iγ�u��neiαx � �∂xf �Fn−1�iα��−iγ�u��n−1eiαx ;

where F −1�x� ≡ 0 and F 0�x� ≡ 1.

4. PERSISTENCE OF SPRS AT VANISHINGLY
SMALL AMPLITUDE

The SPR phenomena have been observed since the time of
Wood [45], and explanations for the onset of these surface
waves for extremely narrow bands of illumination wavelengths
can be traced to the foundational work of Rayleigh [32] (see the
fascinating article of Maystre in Chapter 1 of [3]). This is all
discussed in a number of sources including the books of
Raether [1], Maier [2], and Novotny and Hecht [3]. Here

we recover these results in the language of the boundary
formulation [Eq. (3.4)] and the FE approach.

The onset of an SPR is indicated by a precipitous drop in the
normalized reflectivity, B [Eq. (2.3)], as a function of λ. In the
current formulation,

B�λ; h� � 1� B1�λ�h� B2�λ�h2 �O�h3�;
where

B1 �
â0;1â0;0 � â0;0â0;1

jâ0;0j2
;

and

B2 �
â0;2â0;0 � â0;1â0;1 � â0;0â0;2

jâ0;0j2
:

We will now demonstrate that B1 ≡ 0, while B2 takes on very
large negative values at an SPR.

To simplify the presentation, we use the notation

U ≔ �iγ�u�D �; W ≔ �−iγ�w�D �; Z ≔ �−iγ�u��;
and further fix upon normally incident illumination so that
α � 0. With these, we have

D�u�
n � FnUn; D�w�

n � FnW n;

N �u�
n � FnUn�1 − �∂xf �Fn−1∂xU n−1;

N �w�
n � FnW n�1 − �∂xf �Fn−1∂xW n−1;

ζn � −FnZn; ψn � −FnZn�1;

which gives

M0 �
�

I −I
U −τ2W

�
; b0 � −

�
1
Z

�
;

and

Mn � Fn

�
Un −W n

Un�1 −τ2W n�1

�

− �∂xf �Fn−1∂x
�

0 0

Un−1 τ2W n−1

�
;

bn � −FnZn

�
1

Z

�
:

For future reference, it can be shown that

M−1
0 � Δ−1

�
−τ2W I
−U I

�
;

where Δ≔U − τ2W , and

Δ−1�eip̃x � �
�

1

Δ̂p

�
eip̃x ;

where Δ̂p ≔ iγ�u�p � iτ2γ�w�p and p̃≔ �2π∕d �p.
A. Order Zero: Fresnel Coefficients

At order zero, Eq. (3.4) delivers�
a0
d 0

�
� v0 � M−1

0 b0 � −Δ−1

�
−τ2W I

−U I

��
1

Z

�

� −Δ−1

�
−τ2W �1� � Z

−U �1� � Z

�
:
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Recalling that

U �1� � �iγ�u��; W �1� � �−iγ�w��;
we find the solutions

a0�x; z� � Reiγ�u�z ; d 0�x; z� � T e−iγ�w�z ; (4.1)

with the Fresnel (reflection and transmission) coefficients

R � iγ�u� − τ2iγ�w�

Δ̂0

; T � 2iγ�u�

Δ̂0

:

There is no appreciable variation in R as λ is varied; one requires
f ≢ 0 to find an SPR.

B. Order One: B1

At order one, Eq. (3.4) becomes

M0v1 � b1 −M1v0 ≕ S1;

where

b1 � −f Z
�

1
Z

�
;

and

M1 � f
�

U −W
U 2 −τ2W 2

�
− �∂xf �∂x

�
0 0
I −τ2I

�
;

so that

S1 � f
�

�1 − R��iγ�u�� − T �iγ�w��
−�1� R��iγ�u��2 � T τ2�−iγ�w��2

�
:

We seek solutions of the form

a1�x� �
X∞
p�−∞

â1;peip̃x ; d 1�x� �
X∞
p�−∞

d̂ 1;peip̃x ;

which has the solution�
â1;p
d̂ 1;p

�
� M−1

0
d�S1�p � f̂ p

Δ̂p

�
R̃p

T̃ p

�
:

It is not difficult to show that

R̃p � −�τ2�iγ�w�p � � Z �Z − �τ2�iγ�w�p � � iγ�u���iγ�u��R
� �−�iγ�w�p � � �iγ�w���τ2�iγ�w��T ;

and

T̃ p � ��iγ�u�p � − Z �Z � ��iγ�u�p � − �iγ�u����iγ�u��R
� ��iγ�u�p � � τ2�iγ�w����iγ�w��T :

Importantly, since the mean of f is zero, we have f̂ 0 � 0, so
that â1;0 � d̂ 1;0 � 0, which implies that

B1 ≡ 0:

We must move to order two to see the SPR.

C. Order Two: B2

At order two, Eq. (3.4) becomes

M0v2 � b2 −M1v1 −M2v0 ≕ S2;

where

b2 � −
1

2
f 2Z 2

�
1
Z

�
;

and

M2 �
1

2
f 2

�
U 2 −W 2

U 3 −τ2W 3

�
− �∂xf �f ∂x

�
0 0
U −τ2W

�
:

Again, we seek solutions of the form

a2�x� �
X∞
p�−∞

â2;peip̃x ; d 2�x� �
X∞
p�−∞

d̂ 2;peip̃x ;

which can be solved to yield�
â2;p
d̂ 2;p

�
� M−1

0
d�S2�p � X∞

q�−∞
f̂ p−qf̂ q

�
Rp;q
T p;q

�
:

Unfortunately, the forms for fRp;q; T p;qg are rather unwieldy
and we do not report them here. However, there are a few
things one can say.

Our goal is to investigate the nature of the SPR and the role
played by the classic condition [1–3]

Δ̂1 ≈ 0:

For this we focus on S2, and since the determinant of M0 at
wavenumber p � 0 (Δ̂0) is of order one, we seek near-
singularities in this right-hand side to generate the dramatic
SPR response. We note that b2 and M2v0 are also of order
one throughout the range of λ, and thus we focus on M1v1.
In Fourier space it can be shown that

d�M1v1�p �
X∞
q�−∞

f̂ p−qf̂ q

�
ξ̂q∕Δ̂p

ν̂q∕Δ̂p � i�p − q�κ̂q∕Δ̂p

�
;

where

ξ̂p ≔ �iγ�u�p �R̃p � �iγ�w�p �T̃ p;

ν̂p ≔ �iγ�u�p �2R̃p − τ
2�iγ�w�p �2T̃ p;

κ̂p ≔ − �ip�R̃p � τ2�ip�T̃ p:

Importantly, while f̂ 0 � 0, f̂ 1 ≠ 0 generically, so that contri-
butions to d�M1v1�1 will come from ξ̂1∕Δ̂1, ν̂1∕Δ̂1, and κ̂1∕Δ̂1.

We summarize our findings:

1. In Fig. 2 we see that the denominator of d�M1v1�1,
jΔ̂1j2, approaches zero very rapidly as λ tends towards the
SPR value λSPR ≈ 557.4 nm, while being far from zero near
the “passing-off value” (which we denote as the Rayleigh value
λRay � d � 530 nm).

2. In Fig. 3 we plot three components of the numerator ofd�M1v1�1,
fjξ̂1j2; jν̂1j2; jκ̂1j2g;

versus λ. Two of these tend to zero as λ approaches λRay, while
all three vary quite continuously (and none become particularly
large) as λ changes.

3. By contrast, in Fig. 4 we display three components ofd�M1v1�1,
fjξ̂1∕Δ̂1j2; jν̂1∕Δ̂1j2; jκ̂1∕Δ̂1j2g;

versus λ. Two of these tend to zero as λ → λRay, but all three
become anomalously large as λ → λSPR . From this it becomes
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clear that the only reason for the SPR in terms of these equa-
tions is the near-zero value of Δ̂1 at λSPR .

While it is difficult to explain all of the constituent parts of
â2;0, and therefore B2, we can say that it depends linearly upon

fξ̂1∕Δ̂1; ν̂1∕Δ̂1; κ̂1∕Δ̂1g:

In this way we see quite explicitly how at very low (second)
order, the SPR condition Δ̂1 ≈ 0 can generate its remarkably
strong and specific effect.

5. NUMERICAL RESULTS

We are now in a position to explore the conclusions above
for the case of a very small perturbation of an ultraflat silver
interface. In these we investigate deformations with a size
on the order of the roughness of as-deposited metal films
(approximately 5 nm on a grating of period 530 nm) in the
absence of specialized deposition techniques [41].

A. Numerical Implementation

The method described in Section 3 is essentially a Fourier
collocation [46]/Taylor method [37,47] enhanced by Padé
approximation [44,48]. More specifically, we approximate
the fields fu; wg by

uNx;N ≔
XN
n�0

XNx∕2−1

p�−Nx∕2
ân;peiαpxeiγ

�u�
p zhn; (5.1a)

wNx;N ≔
XN
n�0

XNx∕2−1

p�−Nx∕2
d̂ n;peiαpxe−iγ

�w�
p zhn (5.1b)

[cf. Eq. (2.2)]. We insert these into Eq. (3.5) and determine
fvng.

A crucial consideration is how the Taylor series in h are
summed. To be specific, to approximate u we consider the
truncation uNx;N , which amounts to the approximation
âp�h�≔

P∞
n�0 ân;ph

n by âNp �h�≔
PN

n�0 ân;ph
n. The classical

numerical analytic continuation technique of Padé approxima-
tion [48] has been successfully brought to bear upon HOPS
methods in the past (see, e.g., [28,35,44]), and we advocate
its use here. Padé approximation seeks to simulate the truncated
Taylor series âNp �h� by the rational function

�L∕M ��h�≔ AL�h�
BM �h� �

PL
l�0 Alhl

1�PM
m�1 Bmhm

; (5.2)

where L�M � N and

Fig. 2. Second-order correction of the normalized reflectivity: plot
of the denominator of d�M1v1�1, one of three components of the
second correction to the normalized reflectivity, B, as a function of
incident wavelength λ. Dotted line at λ � λRay and dashed line at
λ � λSPR . Note the nonvanishing value at λRay but near-zero value
at λSPR .

Fig. 3. Second-order correction of the normalized reflectivity: plot
of the numerator of d�M1v1�1, one of three components of the second
correction to the normalized reflectivity, B, as a function of incident
wavelength λ. Dotted line at λ � λRay and dashed line at λ � λSPR .
Note the relatively modest values at both λRay and λSPR , where the
values vary continuously.

Fig. 4. Second-order correction of the normalized reflectivity: plot
of d�M1v1�1, one of three components of the second correction to the
normalized reflectivity, B, as a function of incident wavelength λ.
Dotted line at λ � λRay and dashed line at λ � λSPR . Note the rela-
tively modest values at λRay , while all three values grow anomalously as
λ approaches λSPR .
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�L∕M ��h� � âNp �h� �O�hL�M�1�;

well-known formulas for the coefficients fAl; Bmg can be found
in [48]. This approximant has remarkable properties of
enhanced convergence, and we refer the interested reader to
Section 2.2 of Baker and Graves-Morris [48] and the insightful
calculations of Section 8.3 of Bender and Orszag [49] for a
thorough discussion of the capabilities and limitations of
Padé approximants.

B. Small Perturbations

We now display results that show that SPRs can be launched
for surface profiles with amplitudes on the order of the rough-
ness of as-deposited metal films. To illustrate this, we consider a
doubly layered structure of vacuum (an insulator) above silver
(a metal), separated by the profile g�x� � hf �x�.

To begin, we consider f �x� � −�1∕2� cos�2πx∕d�; see
Fig. 5. By definition, the refractive index of vacuum is
nu � 1, while the refractive index of silver is still the subject
of current research. For this we use a Lorenz model [50],

εAg � εAg∞ �
X6
j�1

ΔAg
j

−aAgj ω2 − ibAgj ω� cAgj
;

where ω � 2π∕λ, εAg∞ � 1, and ΔAg , aAg , bAg , and cAg can be
found in [50]. For physical and numerical parameters we
choose

α � 0; γ � �γv; γAg�T ; (5.3a)

h � 0;…; 5; d � 530; (5.3b)

Nx � 32; N � 2: (5.3c)

In Fig. 6 we display the normalized reflectivity, B�λ; h� [cf.
Eq. (2.3)], for this configuration, which shows a strong 13%
plasmonic response for a perturbation of size 5 nm (<1% of d ).

We also consider the “lamellar” profile (see Fig. 1),

f �x� � 1

2

�
tanh

�
σ

�
x −

d
2

�
�W

2

�

− tanh

�
σ

�
x −

d
2

�
−
W
2

��
;

in this, W is the linewidth and σ measures the “steepness” of
the line. For instance, in Fig. 1 we chose σ � 50, d � 530 nm,
and W � d∕2. For physical and numerical parameters we
choose

α � 0; γ � �γv; γAg�T ; (5.4a)

h � 0;…; 5; d � 530; W � d∕2; (5.4b)

Nx � 32; N � 2: (5.4c)

Fig. 5. Plot of an insulator–metal structure with cosine interface
(period d � 530 nm and height h � 5 nm).

Fig. 6. Normalized reflectivity B�λ; h� [Eq. (2.3)] as a function of
incident wavelength λ for several grating amplitudes h separating a vac-
uum–silver interface. Results for the cosine configuration [Eq. (5.3)],
with Nx � 32, N � 2.

Fig. 7. Normalized reflectivity B�λ; h� [Eq. (2.3)] as a function of
incident wavelength λ for several grating amplitudes h separating a vac-
uum–silver interface. Results for the lamellar configuration [Eq. (5.4)],
with Nx � 32, N � 2.
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In Fig. 7 we display the normalized reflectivity, B�λ; h�[cf.
Eq. (2.3)], for this configuration, which shows a strong 20%
plasmonic response for a perturbation of size 5 nm (<1% of d ).

In Fig. 8 we display the squared norm of the field juj2 in the
lamellar configuration at λ � 557.4 ≈ λSPR . Here the strong
plasmonic response for h � 5 nm is reflected by the remark-
able confinement displayed by the scattered field.

In Table 1 we report the numerical values of B�λ; h� for λ �
557.4 nm ≈ λSPR for the cosine and lamellar profiles of period
d � 530 nm. To help illustrate that these effects are quite ro-
bust, we now display results for gratings of different periods,
d � 633 and 785 nm. In Table 2 we report the numerical
values of B�λ; h� for λ � 682.8 nm ≈ λSPR for the cosine
and lamellar profiles of period d � 633 nm. In Table 3 we
report the numerical values of B�λ; h� for λ � 801.0 nm ≈
λSPR for the cosine and lamellar profiles of period
d � 785 nm. In Fig. 9 we display the normalized reflectivity
map, R�λ; h� [cf. Eq. (2.3)], for the lamellar configuration
[Eq. (5.4)] with grating period d � 785 nm. This plot shows
both the wavelength λ and deformation height h dependence of
the plasmonic response near λ � 801.0 nm ≈ λSPR.

6. CONCLUSION

In this contribution we studied the limits of the surface defor-
mation required to generate SPRs. We explicitly identified the
crucial role that the SPR condition, Δ̂1 ≈ 0, plays in this phe-
nomena. Additionally, we used the robust, rapid, and highly
accurate FE method to investigate this delicate phenomenon,
which is difficult to perform using conventional finite
difference time domain or finite element methods due to
the low accuracy and exorbitant computational cost of these
algorithms. We demonstrated how very small perturbations
(e.g., a 5 nm deviation on a 530 nm period grating) can gen-
erate strong (in this instance 20%) plasmonic absorption, and
vanishingly small perturbations (e.g., a 1 nm deviation on a
530 nm period grating) can generate nontrivial (in this instance
1%) plasmonic absorption. Our findings support the conten-
tion that ultrasmooth metal surfaces (roughness on the order of
1 nm or below) can improve the performance of plasmonic

Fig. 8. Plot of the squared norm of the field juj2 in the lamellar
configuration [Eq. (5.4)] at λ � 557.4 ≈ λSPR , with Nx � 32,
N � 2.

Table 1. Numerical Values of the Normalized Reflectivity
B [Eq. (2.3)] for λ � 557.4 nm ≈ λSPR for the Cosine and
Lamellar Profiles of Period d � 530 nm

h (nm) Cosine Profile Lamellar Profile

0 1 1
1 0.994839 0.992012
2 0.979436 0.968234
3 0.954031 0.929244
4 0.919026 0.876019
5 0.874981 0.809930

Table 2. Numerical Values of the Normalized Reflectivity
B [Eq. (2.3)] for λ � 682.8 nm ≈ λSPR for the Cosine and
Lamellar Profiles of Period d � 633 nm

h (nm) Cosine Profile Lamellar Profile

0 1 1
1 0.994977 0.992139
2 0.979984 0.968749
3 0.955248 0.930404
4 0.921149 0.878058
5 0.878219 0.813045

Table 3. Numerical Values of the Normalized Reflectivity
B [Eq. (2.3)] for λ � 801.0 nm ≈ λSPR for the Cosine and
Lamellar Profiles of Period d � 785 nm

h (nm) Cosine Profile Lamellar Profile

0 1 1
1 0.995426 0.992743
2 0.981766 0.971126
3 0.959209 0.935622
4 0.92807 0.887027
5 0.888791 0.82646

Fig. 9. Reflectivity map R�λ; h� [cf. Eq. (2.3)] versus incident wave-
length λ and deformation height h. Results for the lamellar configu-
ration [Eq. (5.4)] with grating period d � 785 nm and Nx � 32,
N � 2.
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resonators, and provide the means to quantitatively explore
such experiments.
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