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a b s t r a c t

In this paper, we take up the question of dynamic stability of genuinely two-dimensional ‘‘generalized’’
hexagonal traveling wave patterns on the surface of a three-dimensional ideal fluid (i.e., stability of
Generalized Short-Crested Wave (GSCW) solutions of the water wave problem). We restrict ourselves
to a study of spectral stability which considers the linearization of the water wave operator about one
of these traveling generalized hexagonal waves, and draws conclusions about stability from the spectral
data of the resulting linear operator. Within the class of perturbations we are allowed to study, for a wide
range of geometrical parameters, we find stable traveling waveforms which eventually destabilize with
features that depend strongly on the problem configuration. In particular, we find ‘‘Zones of Instability’’
for patterns shaped as symmetric diamonds, while such zones are absent for asymmetric configurations.
Furthermore, we note that within a geometrical configuration, as a ‘‘generalized SCW’’ ratio is varied
(essentially the character of the linear solution), these waves becomemore unstable as thewaves become
more asymmetric.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

The movement of a large body of water under the influence
of gravity (e.g., the ocean) is governed by the Euler equations of
ideal fluid mechanics (the water wave problem), and arises in a
wide array of engineering applications. From pollutant transport
to the motion of sandbars to tsunami propagation, the water wave
equations are a central model in fluidmechanics. Among themany
motions permitted by these equations, the periodic traveling wave
solutions are of great interest due to their ability to transport
energy andmomentumover great distances in the ocean. Of course
not all of these traveling waveforms are dynamically stable and it
is of crucial importance to identify those that are.

A great deal of research has been conducted on the stability of
two-dimensional (one vertical and one horizontal) periodic wave-
trains, the so-called ‘‘Stokeswaves’’. The striking result of Benjamin
and Feir [1] that such waves on deep water are dynamically unsta-
ble set off a decades-long investigation into the strength and time-
scales of such instabilities as functions of the allowed properties of
potential perturbations (e.g. superharmonic [2], subharmonic [3],
and three-dimensional [4–7]). The interested reader is referred to
the excellent survey article of Dias and Kharif for a complete re-
view [8].

In this paper, we take up the question of dynamic stability
of genuinely two-dimensional ‘‘generalized hexagonal’’ traveling
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wave patterns on the surface of a three-dimensional fluid. Such
waves (which we denote ‘‘Generalized Short-Crested Waves’’—
GSCWs) have traveling surface shapes η(x) with leading order
behavior

η1(x) = ρ1 cos(k1 · x)+ ρ2 cos(k2 · x),

for linearly independent wavenumbers k1 and k2. By contrast,
Stokes waves feature a single wavenumber (ρ1 = 0 or ρ2 = 0),
while classical ‘‘Short-CrestedWaves’’ (SCWs) require thatρ1 = ρ2
so that η1 resembles a diamond and η becomes ‘‘rectangular’’ as it
becomes more nonlinear [9,10].

SCWs have been the subject of a good deal of recent work
which begins with the high-order numerical simulations of
Roberts [11], and Roberts and Peregrine [12] (see also the
work of Marchant and Roberts [13] in finite depth). One of the
authors has contributed to their study, first (in collaboration
with W. Craig) through a rigorous theoretical analysis of their
existence [14] and supplementary numerics [9,10]. Later, in
collaboration with F. Reitich, he developed a stable and high-order
numerical algorithm for their computation [15]which also delivers
a powerful and straightforward rigorous existence theory [16].

Regarding the stability of these SCWs, current results are
restricted ‘‘spectral stability’’ which considers the linearization
of the water wave operator about one of these traveling
rectangular waves, and draws conclusions about stability from
the spectral data of the resulting linear operator. Along these
lines the definitive work is the numerical simulations of Ioualalen
and Kharif for superharmonic [17] and subharmonic [18–20]
perturbations. We also mention the extensive finite-depth work
of Ioualalen, Kharif, and collaborators [21–24]. In short, these
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authors focused their attention on resonant configurations of
wavenumbers in the basic traveling wave (i.e., k1 and k2) with
wavenumbers in the leading perturbation. These linear resonances
govern the instability of these nonlinear traveling waveforms
for sufficiently small amplitudes, while nonlinear effects dictate
which perturbations are strongest. However, as the amplitude is
increased other mechanisms for instability enter and move the
strongest instabilities to other points, sometimes far from the
linear resonance curves.

In this paper, we investigate the role of asymmetry in the
stability theory of SCWs both with regard to their geometric
configuration (through their underlying period) and their linear
character (through the ratio ρ1/ρ2). While we are able to draw
some conclusions regarding this question, we do point out that we
are not able to accommodate all possible unstable perturbations
due to computational limitations. Consequently, the conclusions
we draw regarding instability can be viewed as authoritative,
however, conclusions regarding stability may not be conclusive
as we possibly may have excluded an unstable perturbation form
(see Section 2.5 for more details). For the question of geometric
asymmetry, we note that as the waveforms are varied away from
the symmetric case (θ = 45°, symmetric diamond-shaped),
waves of similar height become more unstable. Perhaps more
surprisingly, we noticed a ‘‘Zone of Instability’’ in the symmetric
case – a band of wave heights which are unstable with stable
waveforms of smaller and larger height – which does not exist
in the asymmetric cases. In these, instability sets in for a certain
value of thewave height and then all tallerwaves are also unstable.
Regarding the linear character, we found a destabilizing effect with
the decrease of the ratio ρ1/ρ2 where the initial onset of instability
occurs for smaller values of the wave height for smaller choices of
this ratio.

The paper is organized as follows. In Section 2, we recall the
equations of motion together with considerations of periodicity
(Section 2.1), surface variables (Section 2.2), dimensionless quan-
tities (Section 2.3), spectral stability (Section 2.4), and Bloch the-
ory (Section 2.5). In Section 3, we give a detailed description of the
Dirichlet–Neumann operator, while in Section 4we review the lin-
ear stability theory. The new ‘‘Generalized SCWs’’ are discussed in
Section 5, and we describe our numerical method and results in
Sections 6 and 7, respectively.

2. Equations of motion

Our object of study is the motion of the free surface of an
ideal (inviscid, irrotational and incompressible) three-dimensional
(one vertical and two horizontal directions) deep fluid under the
influence of gravity. If the fluid occupies the domain

Sη := {(x, y) = (x1, x2, y) ∈ R2
× R | y < η(x, t)}

with free surface η = η(x, t), the well-known equations of motion
are [25]

∆ϕ = 0 in Sη (2.1a)

∂yϕ → 0 y → −∞ (2.1b)

∂tη = ∂yϕ − ∇xη · ∇xϕ at y = η (2.1c)

∂tϕ = −gη −
1
2
∇ϕ · ∇ϕ at y = η, (2.1d)

where ϕ = ϕ(x, y, t) is the velocity potential (u = ∇ϕ) and g
is the constant of gravity. These equations are also supplemented
with initial conditions

η(x, 0) = η(0)(x), ϕ(x, η(x, 0), 0) = ξ (0)(x),

where it suffices (by elliptic theory [26]) to specify ϕ only at the
surface.
2.1. Periodicity

Boundary conditions are also required and, for the study of
hexagonal (rectangular) waves that we undertake here, they are
periodicity with respect to some lattice

Γ =

γ ∈ R2

| γ = m1a1 + m2a2; a1, a2 ∈ R2
;m1,m2 ∈ Z


,

generated by two linearly independent vectors a1, a2. Functions
periodic with respect to Γ satisfy

η(x + γ , t) = η(x, t), ϕ(x + γ , y, t) = ϕ(x, y, t),
∀γ ∈ Γ

and this lattice generates the conjugate lattice of wavenumbers

Γ ′
:= {k ∈ R2

| k · γ ∈ (2π)Z,∀γ ∈ Γ }

so that, e.g., we can express η by its Fourier series

η(x, t) =


k∈Γ ′

η̂k(t)eik·x. (2.2)

Utilizing the notation of Roberts et al. [11,12,27,13] we
specialize to ‘‘Rectangular’’ or ‘‘Short-Crested Waves’’ (SCWs)
which are periodic both in the direction of propagation and the
orthogonal horizontal direction [9,10]. In this work, the periods
are set to L1 := L0/ sin(θ) and L2 := L0/ cos(θ) in the parallel
and orthogonal directions to propagation, respectively. Roberts
used this to describe a L0-periodic Stokes wavetrain incident upon
a vertical wall where θ is the angle between the direction of
propagation and the normal to the wall. In this way, θ = 0
corresponds to Stokes waves while θ = π/2 represents the
case of standing waves. One can also regard this setting as the
interaction of two Stokes wavetrains incident upon one another at
an angle µ = π − 2θ . If we choose the x1-axis as the direction of
propagation, then the lattice of periodicity is

Γ = Γθ =


γ ∈ R2

|γ = m1a1 + m2a2;

a1 =


L0/ sin(θ)

0


, a2 =


0

L0/ cos(θ)


;m1,m2 ∈ Z


,

(2.3a)

and the conjugate lattice is given by

Γ ′
= Γ ′

θ =


k ∈ R2

| k = m1b1 + m2b2;

b1 =


2π sin(θ)/L0

0


, b2 =


0

2π cos(θ)/L0


;

m1,m2 ∈ Z


. (2.3b)

2.2. Surface formulation

Zakharov [28] showed that system (2.1) is, in fact, Hamiltonian
in terms of the canonical variables η(x, t) and ξ(x, t) := ϕ(x,
η(x, t), t)with Hamiltonian

HZ =
1
2


P(Γ )

 η

−∞

∇ϕ · ∇ϕ dy


+ gη2 dx,

where P(Γ ) is the period cell associated to Γ . A simplification
of the formulation and reduction in dimension was realized by
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Craig and Sulem [29] with the introduction of the Dirichlet–
Neumann operator (DNO) which maps Dirichlet data to Neumann
data:

G(η)[ξ ] := ∇v|y=η · Nη = ∂yv|y=η − ∇xη · ∇xv|y=η (2.4)

in reference to the elliptic boundary value problem:

∆v = 0 in Sη (2.5a)

∂yv → 0 y → −∞ (2.5b)

v(x, η(x)) = ξ(x); (2.5c)

c.f. (2.1a) and (2.1b). This DNO permits the restatement of HZ as

HZCS =
1
2


P(Γ )

ξ(G(η) ξ)+ gη2 dx.

It can be shown [29,9] that the water wave problem (2.1) can be
equivalently restated as the following evolution problem

∂tη = G(η)[ξ ] (2.6a)
∂tξ = −gη − A(η)B(η, ξ), (2.6b)

where

A(η) :=
1

2 (1 + ∇xη · ∇xη)
(2.7a)

B(η, ξ) := ∇xξ · ∇xξ − (G(η)[ξ ])2

− 2 (G(η)[ξ ])∇xξ · ∇xη

+ (∇xξ · ∇xξ) (∇xη · ∇xη)− (∇xξ · ∇xη)
2 . (2.7b)

Our focus is upon the stability of traveling wave solutions of (2.6)
and so we move to a reference frame moving uniformly with
velocity c ∈ R2. In such a frame it is straightforward to show that
the governing equations are

∂tη + c · ∇xη = G(η)[ξ ] (2.8a)
∂tξ + c · ∇xξ = −gη − A(η)B(η, ξ). (2.8b)

2.3. Dimensionless variables

Before proceeding we mention our (classical) nondimensional-
ization strategy. We make the scalings

x1 = Lx′

1, x2 = Lx′

2, y = Ly′,

η = aη′, ξ = Xξ ′, t = Tt ′,

with the classical choices [25]

X = a

Lg, T =


L/g, L = L0/(2π)

(recall from Section 2.1 that the traveling wave has wavelengths
L1 = L0/ sin(θ) and L2 = L0/ cos(θ) in the x1 and x2 directions,
respectively). It is not difficult to show that

∇x =
1
L
∇x′ , ∂t =

1
T
∂t ′ ,

while it takes more effort to establish (see Section 3) that

G(aη′) =
1
L

∞
n=0

G′

n(η
′)αn

A(aη′) =

∞
n=0

A′

n(η
′)αn

B(aη′, Xξ ′) =
T
X

∞
n=1

B′

n(η
′, ξ ′)αn,

(in fact A2j+1 = 0 for j = 0, 1, . . .) where we have defined the
slope/steepness parameter

α := a/L.
A little work shows that (2.8) becomes

∂t ′η
′
+ c ′

· ∇x′η
′
= G′

0[ξ
′
] +

∞
n=1

G′

n(η
′)[ξ ′

]αn

∂t ′ξ
′
+ c ′

· ∇x′ξ
′
= −η′

−

∞
n=1

αn


n

l=1

An−l(η
′)Bl(η

′, ξ ′)


,

where we have defined the dimensionless velocity

c ′
=

c
√
gL
,

which, in two dimensions, gives the Froude number. At this point
we eliminate the explicit dependence upon the (small) dimen-
sionless parameter α by choosing as unknowns the dimensionless
quantities

η̃(x, t) := αη′(x, t) =
α

a
η(x, t) =

1
L
η(x, t),

ξ̃ (x, t) := αξ ′(x, t) =
α

X
ξ(x, t) =

1
L3g

ξ(x, t).

Upon dropping primes and tildes, we find the final dimensionless
evolution equations in a traveling frame

∂tη + c · ∇xη = G(η)[ξ ] (2.9a)
∂tξ + c · ∇xξ = −η − A(η)B(η, ξ), (2.9b)

periodic on the lattice

Γθ =


γ =


2πm1/ sin(θ)
2πm2/ cos(θ)


;m1,m2 ∈ Z


,

with conjugate lattice

Γ ′

θ =


k =


m1 sin(θ)
m2 cos(θ)


;m1,m2 ∈ Z


;

c.f., (2.3a) and (2.3b).

2.4. Spectral stability analysis

Here we briefly recapitulate the spectral stability analysis we
have in mind (fully described in [30]). Consider a traveling wave
solution of (2.6), i.e., a steady solution of (2.9)

(η̄, ξ̄ , c̄) = (η̄(x), ξ̄ (x), c̄).

We seek solutions of the full problem (2.9) in the ‘‘spectral stability
form’’

η(x, t) = η̄(x)+ δeλtζ (x), ξ(x, t) = ξ̄ (x)+ δeλtψ(x),

where δ ≪ 1 measures the perturbation from the steady state,
and λ determines the spectral stability. Inserting this into (2.9) and
using the fact that (η̄, ξ̄ , c̄) are solutions of (2.9), we recover, to
order O(δ),

(λ+ c̄ · ∇x)ζ = Gη(η̄)[ξ̄ ]{ζ } + G(η̄)[ψ] (2.10a)

(λ+ c̄ · ∇x)ψ = −ζ − Aη(η̄){ζ }B(η̄, ξ̄ )
− A(η̄)Bη(η̄, ξ̄ ){ζ } − A(η̄)Bξ (η̄, ξ̄ ){ψ}, (2.10b)

where η and ξ subscripts denote η and ξ variations, respectively.
It is not difficult to see that, from (2.7),

Aη(η̄){ζ } = −
∇xη̄ · ∇xζ

(1 + ∇xη̄ · ∇xη̄)
2

Bη(η̄, ξ̄ ){ζ }

= −2

G(η̄)[ξ̄ ]

 
Gη(η̄)[ξ̄ ]{ζ }


− 2


Gη(η̄)[ξ̄ ]{ζ }


∇xξ̄ · ∇xη̄
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− 2

G(η̄)[ξ̄ ]


∇xξ̄ · ∇xζ + 2


∇xξ̄ · ∇xξ̄


∇xη̄ · ∇xζ

− 2

∇xξ̄ · ∇xη̄

 
∇xξ̄ · ∇xζ


Bξ (η̄, ξ̄ ){ψ}

= 2∇xξ̄ · ∇xψ − 2

G(η̄)[ξ̄ ]


(G(η̄)[ψ])

− 2 (G(η̄)[ψ])∇xξ̄ · ∇xη̄

− 2

G(η̄)[ξ̄ ]


∇xψ · ∇xη̄ + 2


∇xξ̄ · ∇xψ


(∇xη̄ · ∇xη̄)

− 2

∇xξ̄ · ∇xη̄


(∇xψ · ∇xη̄) ,

and we defer our discussion of the first variation of the DNO,
Gη(η̄)[ξ̄ ]{ζ }, until Section 3.

2.5. Bloch theory

We now write our spectral stability problem (2.10) abstractly
as

A(x)

ζ
ψ


= λ


ζ
ψ


. (2.11)

The final specification is the boundary conditions that the eigen-
functions (ζ , ψ) must satisfy. For these we use the ‘‘Generalized
Principle of Reduced Instability’’ [31] (essentially Floquet Theory,
see, e.g., [32]), inspired by the Bloch theory of Schrödinger equa-
tions with periodic potentials [33]. This theory allows perturba-
tions

(ζ , ψ) ∈ H2
lu(R

2),

which are in the Sobolev class of uniformly local L2 functions.
Mielke [31] reduces this study to the ‘‘Bloch waves’’, e.g.,

ζ (x) = eip·xZ(x), ψ(x) = eip·xY (x),

where Z, Y ∈ H2(P(Γ )). As we shall see, it suffices to consider
p ∈ P(Γ ′), the fundamental cell of wavenumbers, and thus (2.11)
becomes

Ap(x)

ζ
ψ


= λ


ζ
ψ


,

where

Ap(x)

ζ
ψ


:= e−ip·xA(x)


eip·x


ζ
ψ


.

Mielke’s fundamental result is that

L2 − spec(A) = L2lu − spec(A) = closure

 
p∈P(Γ ′)

spec(Ap)


.

Thus, we learn about stability with respect to all of these
perturbations by simply considering Z, Y ∈ H2(P(Γ )) and p ∈

P(Γ ′). This whole analysis is equivalent to requiring that the
functions ζ and ψ satisfy the ‘‘Bloch boundary conditions’’:

ζ (x + γ ) = eip·γ ζ (x), ψ(x + γ ) = eip·γψ(x), ∀γ ∈ Γ .

Such functions can be expanded in the ‘‘generalized’’ Fourier series

ζ (x) =


k∈Γ ′

ζ̂kei(k+p)·x, ψ(x) =


k∈Γ ′

ψ̂kei(k+p)·x
; (2.12)

c.f. (2.2).

3. The Dirichlet–Neumann operator and its first variation

The one unexplained component of our formulation of the
spectral stability problem is the computation of the DNO and its
first variation. Many algorithms can be contemplated including
finite difference, finite element, finite volume, and integral
equation methods. However, we choose the accurate and efficient
Method of Operator Expansions (OEs) [34,29,9,35] and provide
brief details here (in the case of water of infinite depth). The key
observation for the OE methodology is that for sufficiently smooth
deformations η = εf , the DNO and its first variation depend
analytically upon the height/slope parameter ε ∈ R resulting in
strongly convergent expansions

G(εf ) =

∞
n=0

Gn(f )εn, Gη(εf ) =

∞
n=0

G(1)n (f )ε
n

for ε sufficiently small. The OE approach prescribes accurate
formulas for the Gn and G(1)n in terms of Fourier multipliers and
convolutions.

In more detail, consider the function

vk(x, y) = eik·x+|k|y, k ∈ Γ ′

which satisfies (2.5a) and (2.5b) of the elliptic equations governing
the definition of the DNO. Inserting this into the definition of the
DNO, (2.4), gives

G(εf )

eik·x+|k|εf 

= (|k| − ε(∂xf )(ik)) eik·x+|k|εf .

Expanding the DNO and exponentials in power series yields
∞
n=0

Gn(f )εn


∞
m=0

Fm |k|m εmeik·x


= (|k| − ε(∂xf )(ik))
∞
n=0

Fn |k|n εneik·x, (3.1)

where Fn(x) := f (x)n/n!. At order O(ε0) this gives

G0

eik·x


= |k| eik·x = |D|


eik·x


,

which defines the order-one Fourier multiplier |D| in terms of
D = (1/i)∂x. Remarking that any L2 function ξ can be written in
terms of its Fourier series

ξ(x) =


k∈Γ ′

ξ̂keik·x,

we have the action of G0 on any ξ given by

G0 [ξ ] = G0


k∈Γ ′

ξ̂keik·x


=


k∈Γ ′

ξ̂kG0

eik·x


=


k∈Γ ′

ξ̂k |k| eik·x =: |D| [ξ ] . (3.2)

At order n > 0 in (3.1) we find

Gn(f )

eik·x


= Fn |k|n+1 eik·x − (∂xf )Fn−1(ik) |k|n−1 eik·x

−

n−1
m=0

Gm(f )

Fn−m |k|n−m eik·x


=

Fn |D|

2
+ (Df )Fn−1D

 
|D|

n−1 eik·x
−

n−1
m=0

Gm(f )

Fn−m |D|

n−m eik·x


= D

FnD |D|

n−1 eik·x
−

n−1
m=0

Gm(f )

Fn−m |D|

n−m eik·x ,
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where we have used |D|
2

= D2 and the product rule for D. Using
the Fourier representation of ξ we deduce that

Gn(f ) [ξ ] = D

FnD |D|

n−1 [ξ ]


−

n−1
m=0

Gm(f )

Fn−m |D|

n−m [ξ ]

. (3.3)

With these formulas, (3.2) and (3.3), for Gn it is not difficult
to formally compute the first variation of the DNO and its
perturbation expansion [9,36,37]. For this it is helpful to think of
the expansion of the DNO (equivalently) as

G(η) =

∞
n=0

Gn(η)

(G0 and Gn are given in (3.2) and (3.3), respectively, with f replaced
by η). Taking the variation with respect to η we find

Gη(η){ζ } =

δηG


(η){ζ } =

∞
n=1


δηGn


(η){ζ },

where the n = 0 term disappears as it is independent of η, and
δηGn(η)


[ξ ] {ζ }

= D

ζ


ηn−1

(n − 1)!


D |D|

n−1 [ξ ]


−

n−1
m=0


δηGm(η)

  ηn−m

(n − m)!


|D|

n−m [ξ ]


{ζ }

−

n−1
m=0

Gm(f )

ζ


ηn−m−1

(n − m − 1)!


|D|

n−m [ξ ]

.

While this formula is absolutely correct, in an expansion in powers
of ε, where η = εf , this nth order term is only O(εn−1), thus

G(1)n−1(f )[ξ ]{ζ } = D

ζ Fn−1D |D|

n−1 [ξ ]


−

n−1
m=0

G(1)m−1(f )

Fn−m |D|

n−m [ξ ]

{ζ }

−

n−1
m=0

Gm(f )

ζ Fn−m−1 |D|

n−m [ξ ]

. (3.4)

4. Linear stability theory

To properly frame our discussion of the spectral stability theory
of nonlinear traveling water waves wemust first discuss the linear
theory. The traveling waves we study bifurcate from the trivial
state, i.e.

(η̄, ξ̄ , c̄) = (0, 0, c0),

for particular values of the velocity c̄ = c0 whichwe discuss below,
and thus the zeroth order stability result involves the study of these
forms in the spectral stability problem (2.10). It is not difficult to
see that, in this case, (2.10) becomes

(λ+ c0 · ∇x)ζ0 = G0[ψ0]

(λ+ c0 · ∇x)ψ0 = −ζ0,

or
λ0 + c0 · ∇x −G0

1 λ0 + c0 · ∇x


ζ0
ψ0


= 0.

Expressing ζ0 and ψ0 in terms of their generalized Fourier series

ζ0(x) =


k∈Γ ′

ζ̂0,kei(k+p)·x, ψ0(x) =


k∈Γ ′

ψ̂0,kei(k+p)·x,
(c.f., (2.12)) this reduces to
λ0 + c0 · (i(k + p)) − |k + p|

1 λ0 + c0 · (i(k + p))


ζ̂0,k

ψ̂0,k


= 0.

Given a velocity c0, and the quasiperiodicity parameter p, we find
non-trivial solutions for all k ∈ Γ ′ for two choices of the eigenvalue
λ0 which make the determinant function

Λ(λ0, c0, k, p) := (λ0 + ic0 · (k + p))2 + |k + p|

equal to zero, i.e.,

λs0(k, p) = i

−c0 · (k + p)+ s


|k + p|


= i


−c0 · (k + p)+ s

√
ωk+p


, (4.1)

where s = ±1 and ωk :=
√

|k| is the dispersion relation. It
is important to note that these eigenvalues are purely imaginary
thus indicating that the trivial, ‘‘flat water’’, state is (weakly) stable.
Small perturbations will not grow, but neither will they decay.

The important question, of course, is what happens as we
move from trivial (zero-amplitude) traveling waves to non-trivial
(finite amplitude) waves. The spectrum will ‘‘move’’ as the wave
amplitude, for instance, is varied from zero and the question arises:
does one (or more) of the eigenvalues move into the complex
right half-plane, i.e., does Re{λs} > 0 for any eigenvalue? The
results of MacKay and Saffman [38] (which extend well-known
results for finite dimensional Hamiltonian systems to the water
wave problem) give us a necessary (though not sufficient, see [39])
condition for such an excursion for an eigenvalue. This may only
occur after ‘‘collision’’ with another eigenvalue. That is, only after
an eigenvalue increases its multiplicity larger than one.

Therefore, to detect the ‘‘first’’ instability (i.e., the one for
the smallest amplitude traveling wave) it is natural to focus
upon eigenvalues of higher multiplicity among the trivial wave
spectrum, (4.1). If all eigenvalues are distinct (multiplicity one)
for a particular configuration (e.g., a fixed value of p ∈ P(Γ ′))
then there is guaranteed a small ‘‘window of stability’’ for small
enough amplitudes [39,30]. However, if one of the eigenvalues has
multiplicity two (or higher) there may be ‘‘immediate’’ instability,
i.e., instability for all amplitudes larger than zero.

The work of Ioualalen and Kharif [17,18] focuses precisely upon
these ‘‘resonant configurations’’, i.e., values of p ∈ P(Γ ′) where
eigenvalues of multiplicity two (or higher) exist. These values of p
can be characterized by the condition

λ
s1
0 (k1, p) = λ

s2
0 (k2, p), k1 ≠ k2,

and it can be shown that s2 must be the opposite of s1.
Following McLean’s work on the three-dimensional stability of
Stokes waves [4,5,40], Ioualalen and Kharif define assorted classes
of resonances based upon the parity of the components of the
difference k1 − k2, and then plot the resulting curves in p-space for
these classes. For SCWthey then indicate, for specified values of the
travelingwave amplitude, which values of p give rise to a spectrum
with positive real part. While the results are not terribly detailed
(they do not give quantitative information on themagnitude of the
largest real part), they do show that the lowest-order (k1−k2 small)
resonances are dominant for small amplitudes.

5. Generalized short crested waves

Having discussed the stability of ‘‘flat water’’, we now specialize
to the ‘‘Generalized Short-Crested Waves’’ (GSCWs) which are the
focus of our investigations here. To begin we will define these
GSCWs by recalling the governing equations for water waves in a
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(a) Surface. (a) Contour.

Fig. 1. Plot of a Generalized Short-Crested Wave for ρ1/ρ2 = 1/1.
reference frame traveling with velocity c̄ , (2.9), and let us focus on
steady, linear solutions which satisfy

c̄0 · ∇xη̄1 = G0[ξ̄1]

c̄0 · ∇xξ̄1 = −η̄1,

and, in light of (3.2), become
c̄0 · ∇x −G0

1 c̄0 · ∇x


η̄1
ξ̄1


= 0. (5.1)

Expanding

η̄1(x) =


k∈Γ ′

dkeik·x, ξ̄1(x) =


k∈Γ ′

akeik·x,

we must solve
c̄0 · (ik) − |k|

1 c̄0 · (ik)


dk
ak


= 0, (5.2)

at everywavenumber k ∈ Γ ′. Non-trivial solutions exist onlywhen
awavenumber k1 and velocity c̄0 render thematrix on the left hand
side singular, i.e. when its determinant is zero

0 = −(c̄0 · k1)2 + |k1| = −(c̄0 · k1)2 + ω2
k1 .

This represents one equation for two unknowns, c̄0 ∈ R2, so we
may specify a second, linearly independent, wavenumber k2 ∈ Γ ′

and demand

0 = −(c̄0 · k2)2 + |k2| = −(c̄0 · k2)2 + ω2
k2 ,

resulting (up to a choice of signs) in the linear system
k(1)1 k(2)1
k(1)2 k(2)2


c̄(1)0
c̄(2)0


=


ωk1
ωk2


, kj =


k(1)j

k(2)j


,

c̄0 =


c̄(1)0
c̄(2)0


.

In this present study, we select k1 = (sin(θ), cos(θ))T and k2 =

(sin(θ),− cos(θ))T so that

c̄0 =


1/ sin(θ)

0


.

With this choice of velocity c̄0 we find solutions to (5.2) at k =

k1, k2 of the form
dk
ak


= A


|k|

ic̄0 · k


= A


1
i


,

together with d−k = d̄k and a−k = āk, for any A = (ρ/2)eiφ ∈ C.
Thus, we have the quadruply parameterized family of solutions

η̄1(x) = ρ1 cos(k1 · x + φ1)+ ρ2 cos(k2 · x + φ2)

ξ̄1(x) = −ρ1 sin(k1 · x + φ1)− ρ2 sin(k2 · x + φ2)
for any choices of ρj, φj. We lose no generality by setting φj = 0 as
this simply sets themaximum for η̄1 at the origin, and ifwe express
the amplitudes (ρ1, ρ2) in polar coordinates (τ , σ ) via

ρ1 = τ cos(σ ), ρ2 = τ sin(σ ),

then we may set τ = 1 by varying α. However, we are free
to vary the ‘‘skewness ratio’’ σ away from π/4 (the linearization
of the classical Short Crested Waves) to any value −π/2 <
σ < π/2 (note that σ = 0,±π/2 constitute Stokes waves
in rotated coordinates) which is the linear part of a ‘‘Generalized
Short Crested Wave’’ (GSCW).

The procedure we employ for computing the base traveling
waves is due to Nicholls and Reitich [15] and is perturbative in
nature (see Section 6 for more details). In short this approach is
based upon the strongly convergent perturbation expansions [41]

c̄ = c̄(α) = c̄0 +

∞
n=1

c̄nαn,

η̄ = η̄(x;α) = η̄1(x)+

∞
n=2

η̄nα
n,

ξ̄ = ξ̄ (x;α) = ξ̄1(x)+

∞
n=2

ξ̄nα
n.

The corrections {c̄n}, n ≥ 1, and {η̄n, ξ̄n}, n ≥ 2, provide
the ‘‘nonlinearization’’ of the traveling profiles, and help further
distinguish our GSCWs from the classical SCWs considered by
other authors. In Figs. 1–3, we depict surface and contour
plots of such traveling waveforms for values of cot(σ ) =

ρ1/ρ2 = 1/1, 1/2, 1/4, respectively. We see quite explicitly how
asymmetric these waveforms can become despite the symmetry
of the underlying geometry (θ = 45°). Fig. 1 shows a classical
SCW, while the other forms tend increasingly more towards the
Stokes wave with wavenumber k2 = (sin(θ),− cos(θ))T =
1/

√
2,−1/

√
2
T

.

6. Numerical method

To complete a numerical simulation of the spectral data
{λ, ζ (x), ψ(x)} from the stability eigenproblem (2.10) there are
many algorithms to be chosen. First, high-fidelity approximations
of the traveling wave solutions {c̄, η̄, ξ̄} must be produced. For
this we use the work of Nicholls and Reitich [15] which used the
method of Transformed Field Expansions to produce coefficients
{c̃n, η̃p,n, ũp,l,n} which generate approximations

c̄N(α) =

N
n=0

c̃nαn,
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(a) Surface. (a) Contour.

Fig. 2. Plot of a Generalized Short-Crested Wave for ρ1/ρ2 = 1/2.
(a) Surface. (a) Contour.

Fig. 3. Plot of a Generalized Short-Crested Wave for ρ1/ρ2 = 1/4.
η̄N,Nx(x;α) =

N
n=0


|k|<Nx/2

η̃n,keik·xαn,

ūN,Nx,Ny(x, y′
;α) =

N
n=0


|k|<Nx/2

Ny
l=0

ũn,k,leik·xTl(y′)αn,

where ū is the transformed velocity potential, Tl is the lth Chebyshev
polynomial (see [15] for full algorithm details), and {N,Nx,Ny} are
the perturbation, horizontal, and vertical discretization parame-
ters, respectively. We note that, for our purposes, an approxima-
tion to the surface velocity potential is more relevant and can be
recovered from

ξ̄N,Nx(x;α) = ūN,Nx,Ny(x, 0;α),

as the transformation maps y = η to y′
= 0.

In addition, we must approximate solutions of the spectral
stability problem (2.10). For this we appeal to a Fourier collocation
approach and simulate ζ (x) and ψ(x)with

ζ Nx(x) =


|k|<Nx/2

ζ̃kei(k+p)·x, ψNx(x) =


|k|<Nx/2

ψ̃kei(k+p)·x,

respectively. These expansions are then inserted into (2.10) and
enforced at the equally spaced gridpoints on P(Γ ). This procedure
is straightforward for the forms A, B, Aη, Bη , and Bξ as derivatives
are simulated spectrally, while nonlinearities are evaluated via
fast convolutions. The only aspects yet to be addressed are the
computation of the DNO, G, and its first variation with respect to η.
For this we appeal to the algorithms developed by the author with
Fazioli [36,37], which essentially amounts to evaluating the terms
Gn and G(1)n from Section 3 via spectral Fourier multipliers and fast
convolutions, followed by summation of truncated Taylor series.

Finally, once the matrix representation of the linear operator
A has been formed, we appeal to the LAPACK routine ‘‘zgeevx’’ to
find the spectrum for each choice of α. Then, for each value of α,
we compute the real part of the eigenvalue with largest real part

rmax(α) := max
p∈P(Γ ′)

{Re{λ}|λ ∈ spec(A)} .

These are plotted in the next section for fine sampling of α and a
certain subset of the p ∈ P(Γ ′) (in all cases a 10 × 10 grid), which
was determined by the computational resources available to us.

7. Numerical results

We completed extensive numerical simulations for three geo-
metrical configurations:

1. Square Period Cell: θ = 45°,
2. Moderately Skewed Rectangular Period Cell: θ = 60°,
3. Extremely Skewed Rectangular Period Cell: θ = 75°,

and three classes of GSCWs:

1. SCW: ρ1/ρ2 = 1/1,
2. Moderately Skewed GSCW: ρ1/ρ2 = 1/2,
3. Extremely Skewed GSCW: ρ1/ρ2 = 1/4.

For each of these we computed the base traveling waves for a
fine sampling of α using the method of Nicholls and Reitich,
and then found the quantity rmax(θ, ρ1, ρ2;α) for a 10 × 10
sampling (equally spaced) of quasiperiods p on the fundamental
conjugate period cell P(Γ ′). These quantities indicate the strength
of instability for each configuration. To leading order a surface
perturbation will grow like

Cermaxtζ (x),

plus more slowly growing contributions.
We begin with the symmetric geometric configuration θ =

45° and display in Figs. 4, 6 and 8 plots of rmax versus α for
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Fig. 4. Plot of maximum real part of an eigenvalue, rmax , versus wave height/slope
parameter α for ρ1/ρ2 = 1/1, θ = 45°.

Fig. 5. Plot ofmaximum real part of an eigenvalue, rmax , versus quasiperiod (p1, p2)
for ρ1/ρ2 = 1/1, θ = 45°.

Fig. 6. Plot of maximum real part of an eigenvalue, rmax , versus wave height/slope
parameter α for ρ1/ρ2 = 1/2, θ = 45°.

ρ1/ρ2 = 1/1, 1/2, 1/4, respectively. For these we notice a few
things, first, for the range of quasiperiods p we consider, there is a
‘‘Zone of Instability’’, for each ρ1/ρ2 configuration for whichwaves
of smaller and larger amplitude are stable (choosing 10−7 to be
equivalent to zero for our simulations). We see this in the cases
ρ1/ρ2 = 1/1 for 0.01 < α < 0.028, ρ1/ρ2 = 1/2 for 0.008 <
Fig. 7. Plot ofmaximum real part of an eigenvalue, rmax , versus quasiperiod (p1, p2)
for ρ1/ρ2 = 1/2, θ = 45°.

Fig. 8. Plot of maximum real part of an eigenvalue, rmax , versus wave height/slope
parameter α for ρ1/ρ2 = 1/4, θ = 45°.

α < 0.02, and ρ1/ρ2 = 1/4 for 0.006 < α < 0.016. From these
observations we note that, as the ratio ρ1/ρ2 is decreased from
one, the traveling waves become more unstable in that instability
arises for smaller values of α (less nonlinear waves). In Figs. 5, 7
and 9 we display plots of rmax versus the quasiperiod parameter
(p1, p2) and learn that, in all three cases, the maximum is realized
at (p1, p2) = (0.1111, 0.2222).

In the mildly asymmetric case θ = 60°we notice very different
stability behavior in Figs. 10, 12 and 14. Here we notice no ‘‘Zone of
Instability’’, but rather a critical value of α beyond which all larger
waves are unstable. This onset of instability happens roughly at
α = 0.015 for ρ1/ρ2 = 1/1, α = 0.013 for ρ1/ρ2 = 1/2, and
α = 0.0125 for ρ1/ρ2 = 1/4. Again, the waves become more
unstable as the ratio ρ1/ρ2 decreases. In Figs. 11, 13 and 15 we
depict rmax versus the quasiperiod parameter (p1, p2) and learn
that for the ratios ρ1/ρ2 = 1/1, 1/2 the maximum is realized at
(p1, p2) = (0.05556, 0.5), while for the ratio ρ1/ρ2 = 1/4 it is
found at (p1, p2) = (0.05556, 0).

Finally, in the strongly asymmetric case θ = 75° we notice
from Figs. 16, 18 and 20 the same behavior as that in the case
θ = 60°. Stability for α sufficiently small, followed by instability
for all values of α larger than a critical value. This critical behavior
happens roughly at α = 0.012 for ρ1/ρ2 = 1/1, α = 0.008



1414 T. McBride, D.P. Nicholls / Physica D 241 (2012) 1406–1416
Fig. 9. Plot ofmaximum real part of an eigenvalue, rmax , versus quasiperiod (p1, p2)
for ρ1/ρ2 = 1/4, θ = 45°.

Fig. 10. Plot of maximum real part of an eigenvalue, rmax , versus wave height/slope
parameter α for ρ1/ρ2 = 1/1, θ = 60°.

Fig. 11. Plot of maximum real part of an eigenvalue, rmax , versus quasiperiod
(p1, p2) for ρ1/ρ2 = 1/1, θ = 60°.
Fig. 12. Plot of maximum real part of an eigenvalue, rmax , versus wave height/slope
parameter α for ρ1/ρ2 = 1/2, θ = 60°.

Fig. 13. Plot of maximum real part of an eigenvalue, rmax , versus quasiperiod
(p1, p2) for ρ1/ρ2 = 1/2, θ = 60°.

Fig. 14. Plot of maximum real part of an eigenvalue, rmax , versus wave height/slope
parameter α for ρ1/ρ2 = 1/4, θ = 60°.

for ρ1/ρ) = 1/2, and α = 0.0075 for ρ1/ρ2 = 1/4. Again,
there is greater instability for smaller values of ρ1/ρ2. From all of
these figures we can also deduce a greater degree of instability
as the geometric asymmetry parameter is increased away from
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Fig. 15. Plot of maximum real part of an eigenvalue, rmax , versus quasiperiod
(p1, p2) for ρ1/ρ2 = 1/4, θ = 60°.

Fig. 16. Plot of maximum real part of an eigenvalue, rmax , versus wave height/slope
parameter α for ρ1/ρ2 = 1/1, θ = 75°.

Fig. 17. Plot of maximum real part of an eigenvalue, rmax , versus quasiperiod
(p1, p2) for ρ1/ρ2 = 1/1, θ = 75°.

the symmetric value θ = 45°. In Figs. 17, 19 and 21 we display
plots of rmax versus the quasiperiod parameter (p1, p2) and learn
Fig. 18. Plot of maximum real part of an eigenvalue, rmax , versus wave height/slope
parameter α for ρ1/ρ2 = 1/2, θ = 75°.

Fig. 19. Plot of maximum real part of an eigenvalue, rmax , versus quasiperiod
(p1, p2) for ρ1/ρ2 = 1/2, θ = 75°.

Fig. 20. Plot of maximum real part of an eigenvalue, rmax , versus wave height/slope
parameter α for ρ1/ρ2 = 1/4, θ = 75°.

that, in all three cases, the maximum is realized at (p1, p2) =

(0.05556, 0.2778).
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Fig. 21. Plot of maximum real part of an eigenvalue, rmax , versus quasiperiod
(p1, p2) for ρ1/ρ2 = 1/4, θ = 75°.
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