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Abstract. The spectral stability problem for periodic traveling waves on a two-dimensional fluid
of infinite depth is investigated via a perturbative approach, computing the spectrum as a function of
the wave amplitude beginning with a flat surface. We generalize our previous results by considering
the crucially important situation of eigenvalues with multiplicity greater than one (focusing on the
generic case of multiplicity two) in the flat water configuration. We use this extended method of
transformed field expansions (which now accounts for the resonant spectrum) to numerically simulate
the evolution of the eigenvalues as the wave amplitude is increased. We observe that there are no
instabilities that are analytically connected to the flat state: The spectrum loses its analyticity at the
Benjamin–Feir threshold. We complement the numerical results with an explicit calculation of the
first nonzero correction to the linear spectrum of resonant deep water waves. Two countably infinite
families of collisions of eigenvalues with opposite Krein signature which do not lead to instability are
presented.
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1. Introduction. From tsunami propagation and the motion of sandbars, to
the design of open-ocean oil rigs and pollutant transport, the water wave equations
are a central model in fluid mechanics. Among the many motions permitted by these
equations, the traveling wave solutions are of great interest due to their ability to
transport energy and momentum over great distances in the ocean. These have been
studied for over a century, most famously by Stokes, for whom weakly nonlinear
periodic waves are now named [1]. In his 1847 paper, Stokes expanded the wave
profile as a power series in a small wave slope parameter, a technique which has since
become commonplace. This classic Stokes expansion has been applied to the water
wave problem numerous times (see, e.g., [2, 3, 4, 5, 6, 7]). In this work, we construct
a new numerical method, as well as explicit asymptotics, using a similar expansion in
the water wave stability problem.
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690 BENJAMIN AKERS AND DAVID P. NICHOLLS

Of course not all of these traveling waveforms are dynamically stable, and it
is of crucial importance to identify those that are, as these will be the only ones
observed in practice. In a series of recent publications [8, 9, 10] one of the authors
has endeavored to study the spectral stability of periodic traveling water waves on
a two-dimensional (one vertical and one horizontal) fluid. Spectral stability refers
to the fact that the eigenvalues (spectrum) of the water wave operator linearized
about the traveling wave are considered, rather than a full linear or even nonlinear
stability analysis. The latter would require bounding generic evolving perturbations
by the linearized and full water wave equations, respectively, in appropriate function
spaces (see [11] for a full discussion of this point). It is not difficult to show that
the trivial waves (those of zero amplitude) are weakly stable—i.e., all eigenvalues are
pure imaginary—the interesting question becomes the stability of nontrivial traveling
wavetrains.

This author approached the problem from a rather different point of view than
the direct method applied by [12, 13] and more recently by [14, 15] (see also the survey
article of [16] for a further description of results along these lines). Rather than simply
substituting a computed traveling wave into the linearized water wave problem and
appealing to a numerical eigensolver, the author used the fact that traveling waves
come in analytic branches [17] to show that, generically, the spectral data can also
be parametrized analytically [8]. With this point of view, the author followed the
“motion” of the spectrum in the complex plane as a wave height/steepness parameter
was increased up until divergence of the method [9].

However, this transformed field expansion (TFE) method was fundamentally lim-
ited by the requirement that in the trivial (flat water) configuration the eigenvalues
must all be simple. While the case of eigenvalues of higher multiplicity is nongeneric,
the work of [18] shows that such a configuration is required for the onset of spectral
instability for infinitesimal waves. Their result, which arises from the Hamiltonian
structure of the water wave problem [19], states that an eigenvalue of the linearized
problem can leave the imaginary axis only after collision with another eigenvalue.
Additionally, this second eigenvalue must be of opposite Krein signature, though this
is not sufficient, as we demonstrate explicitly later. Our main contribution in this
work is to extend the TFE algorithm to this crucially important case of eigenvalues
of multiplicity two, and to demonstrate the spectral stability of infinitesimal wave-
trains to perturbations of the associated eigenfunctions. For deep water waves on a
two-dimensional fluid, the eigenvalues have multiplicity one, two, or four, where the
only eigenvalue of multiplicity four is λ0 = 0, near which the spectrum is not analytic.
Thus, by extending the TFE method to eigenvalues of multiplicity two, this paper
completes the treatment of the analytic spectrum.

More specifically, in this paper we construct the spectrum of traveling waves as
a function of the wave slope, ε. We focus on the resonant case, where the linear
spectrum of the flat surface has repeated eigenvalues of multiplicity two. At two
critical values of the Bloch parameter (p = 0, 1/4) we not only explicitly compute the
first three terms in the perturbation expansion at the resonant eigenvalues, but also
numerically simulate the spectrum to very high powers of ε. We observe that, for deep
water waves on a two-dimensional fluid, no real eigenvalues are connected analytically
to the flat free surface; i.e., instabilities either bifurcate at finite wave slope or are not
analytic in wave slope.

The perturbative approach of this paper is fundamentally different from the more
common direct approach [14, 15, 20]. The classic method is to compute the spectrum
with an eigensolver for each wave amplitude. To consider a branch of traveling waves,
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the wave amplitude is then discretized. The idea is to choose a discretization which
is fine enough to observe any eigenvalue crossings or bubbles of instability. The ap-
proach of this paper avoids this difficulty by computing explicitly the dependence of
the spectrum on the wave amplitude. Here the spectrum is a continuous (analytic)
function of the wave height/slope, so no crossings or bubbles of instability can be
“missed” by too coarse a discretization. Along with the computations of the spec-
trum itself, this method also reports the disk of analyticity of the spectrum, useful
knowledge for those considering how fine an amplitude discretization to employ in the
classic approach. In addition to any stability conclusions, the spectrum of a traveling
wave is useful information by itself, for example as an initial guess for computing time
periodic traveling waves [21].

The paper is organized as follows. In section 2, we present the water wave prob-
lem as well as two formulations of the spectral stability problem used for numerical
methods. First, the TFE formulation, which forms the basis for the new perturba-
tive numerical method, is presented. A second formulation is also presented, which
nonperturbatively calculates the spectrum and serves as a basis for comparison. In
section 3, we summarize the perturbation procedure used to compute the spectra with
two-dimensional kernels; complete details of the perturbation procedure are given in
Appendix A. An exact calculation of the spectrum to O(ε2) using a Stokes-like ex-
pansion about two families of repeated eigenvalues is also presented in this section
using the same perturbation procedure. In section 4, we present our numerical re-
sults compared to the results of the second-order Stokes expansion of the eigenvalues.
Conclusions and future areas of research are in section 5.

2. Spectral stability of traveling water waves. This paper is concerned
with the spectral stability of traveling solutions of the potential flow equations in two
dimensions [4]:

φxx + φzz = 0, z < εη,(2.1a)

φz → 0, z → −∞,(2.1b)

ηt + εηxφx = φz , z = εη,(2.1c)

φt +
ε

2

(
φ2x + φ2z

)
+ η = 0, z = εη.(2.1d)

These equations describe the motion of an inviscid incompressible fluid on a flat
impermeable bed, undergoing an irrotational motion. System (2.1) has been nondi-
mensionalized as in [22], and we assume that the wave slope, ε = a/L, is small—L
is a length scale chosen in the nondimensionalization so that the waves have spatial
period 2π. In this initial contribution we focus on the deep water case and neglect sur-
face tension. The potential flow equations support traveling solutions which depend
analytically on ε (see [17] and the references therein); moreover, the spectral stability
problem has simple eigenvalues and eigenfunctions which also depend analytically on
ε [9]. We will use this fact to numerically compute the spectrum of traveling waves
as a function of ε; more specifically we extend the transformed field expansion (TFE)
approach of [7] to the crucial case of eigenvalues with multiplicity greater than one.
The numerical method of this paper also provides a natural framework for a proof of
analyticity of the spectrum of repeated eigenvalues.

Before describing the TFE approach, we recall an important domain decompo-
sition which can be made for the water wave problem with the introduction of an
“artificial boundary.” The details of this are provided in [7], but we summarize here
for completeness. Our goal is to replace (2.1b) with an equivalent condition in the



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

692 BENJAMIN AKERS AND DAVID P. NICHOLLS

near-field; consider (2.1a) and (2.1b),

φxx + φzz = 0, z < εη,

φz → 0, z → −∞,

and notice that, given a plane {z = −a} (−a < −ε|η|∞), these are equivalent to

φxx + φzz = 0, −a < z < εη,(2.2a)

φz = μz , z = −a,(2.2b)

φ = μ, z = −a,(2.2c)

μxx + μzz = 0, z < −a,(2.2d)

μz → 0, z → −∞.(2.2e)

If we denote φ(x,−a) by the variable Φ(x), then it is clear that (2.2c), (2.2d),
and (2.2e) have the unique solution

μ(x, z) =
∑
k

Φ̂ke
|k|zeikx,

where Φ̂k is the kth Fourier coefficient of Φ(x). To close (2.2a) and (2.2b) for φ alone
we simply need to produce μz(x,−a), which is delivered by the operator T ,

T [Φ(x)] :=
∑
k

|k|Φ̂ke
ikx,

a Fourier multiplier of order one; thus, (2.2b) equivalently reads

φz(x,−a)− Tφ(x,−a) = 0.

With this operator, (2.1) can be equivalently restated on the truncated (and finite)
domain {−a < z < η} as

φxx + φzz = 0, −a < z < εη,(2.3a)

φz − Tφ = 0, z = −a,(2.3b)

ηt + εηxφx = φz, z = εη,(2.3c)

φt +
ε

2

(
φ2x + φ2z

)
+ η = 0, z = εη.(2.3d)

To search for traveling waves we move to a reference frame moving uniformly with
velocity c ∈ R and seek steady solutions. With an abuse of notation, we write
φ = φ(x + ct, z) − cx (so that φ is still periodic) and η = η(x + ct), and notice that
waves moving to the right have negative c; we thus transform (2.3) into

φxx + φzz = 0, −a < z < εη,(2.4a)

φz − Tφ = 0, z = −a,(2.4b)

cηx + εηxφx = φz , z = εη,(2.4c)

cφx +
ε

2

(
φ2x + φ2z

)
+ η = 0, z = εη.(2.4d)
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2.1. Transformed field expansions. To summarize the TFE approach to com-
puting traveling water waves, we begin with the domain-flattening change of variables

x′ = x, z′ = a

(
z − εη

a+ εη

)
,

which are known as σ-coordinates [23] in atmospheric science and as the C-method
[24] in the electromagnetic theory of gratings. Defining the transformed potential

u(x′, z′) := φ

(
x′,

(a+ εη)z′

a
+ εη

)
,

system (2.4) becomes, upon dropping primes,

uxx + uzz = F (x, z;u, εη), −a < z < 0,(2.5a)

uz − Tu = J(x;u, εη), z = −a,(2.5b)

cηx − uz = Q(x;u, εη, c), z = 0,(2.5c)

cux + η = R(x;u, εη, c), z = 0,(2.5d)

where the precise forms for F , J , Q, and R are reported in [7]. For the purposes
of our brief explanation, the only salient feature of these inhomogeneities is that if
u = O(ε) (noting that we already have εη = O(ε)), then they are O(ε2). The TFE
approach now posits the expansions

c = c(ε) = c0 +

∞∑
n=1

cnε
n, εη = εη(x; ε) =

∞∑
n=1

ηn(x)ε
n,

u = u(x, z; ε) =

∞∑
n=1

un(x, z)ε
n,(2.6)

which, a posteriori, can be shown to be strongly convergent [17]. Inserting these forms
into (2.5) yields

un,xx + un,zz = Fn(x, z), −a < z < 0,(2.7a)

un,z − Tun = Jn(x), z = −a,(2.7b)

c0ηn,x − un,z = Qn(x) − cn−1η1,x, z = 0,(2.7c)

c0un,x + ηn = Rn(x)− cn−1u1,x, z = 0,(2.7d)

and the forms for Fn, Jn, Qn, and Rn are [7]

(2.7e) Fn(x, y) = divx

[
F (1)
n (x, y)

]
+ ∂yF

(2)
n (x, y) + F (3)

n (x, y),

(2.7f) F (1)
n = −2

a

n−1∑
l=1

ηl ∇xun−l − 1

a2

n−1∑
m=2

m−1∑
l=1

ηl ηm−l ∇xun−m

+
a+ y

a

n−1∑
l=1

∇xηl ∂yun−l +
a+ y

a2

n−1∑
m=2

m−1∑
l=1

ηl ∇xηm−l ∂yun−m,
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(2.7g) F (2)
n =

a+ y

a

n−1∑
l=1

∇xηl · ∇xun−l +
a+ y

a2

n−1∑
m=2

m−1∑
l=1

ηl ∇xηm−l · ∇xun−m

− (a+ y)2

a2

n−1∑
m=2

m−1∑
l=1

∇xηl · ∇xηm−l ∂yun−m,

(2.7h) F (3)
n =

1

a

n−1∑
l=1

∇xηl · ∇xun−l +
1

a2

n−1∑
m=2

m−1∑
l=1

ηl ∇xηm−l · ∇xun−m

− a+ y

a2

n−1∑
m=2

m−1∑
l=1

∇xηl · ∇xηm−l ∂yun−m,

(2.7i) Jn =
1

a

n−1∑
l=1

ηl Tun−l,

(2.7j) Qn = −
n−2∑
l=1

cl · ∇xηn−l − 1

a

n−1∑
m=1

m−1∑
l=0

cl · ηm−l ∇xηn−m −
n−1∑
l=1

∇xηl · ∇xun−l

− 1

a

n−1∑
m=2

m−1∑
l=1

ηl ∇xηm−l · ∇xun−m +

n−1∑
m=2

m−1∑
l=1

∇xηl · ∇xηm−l ∂yun−m,

(2.7k) Rn = −
n−2∑
l=1

cl · ∇xun−l − 2

a

n−1∑
m=1

m−1∑
l=0

cl · ηm−l ∇xun−m

− 1

a2

n−1∑
t=2

t−1∑
m=1

m−1∑
l=0

cl · ηm−l ηt−m ∇xun−t +
n−1∑
m=1

m−1∑
l=0

cl · ∇xηm−l ∂yun−m

+
1

a

n−1∑
t=2

t−1∑
m=1

m−1∑
l=0

cl · ηm−l ∇xηt−m ∂yun−t − 2

a
g
n−1∑
l=1

ηl ηn−l

− 1

a
g

n−1∑
m=2

m−1∑
l=1

ηl ηm−l ηn−m +
2

a
σ

n−1∑
l=1

ηl Δxηn−l

+
1

a2
σ

n−1∑
m=2

m−1∑
l=1

ηl ηm−l Δηn−m − 1

2

n−1∑
l=1

∇xul · ∇xun−l

− 1

a

n−1∑
m=2

m−1∑
l=1

ηl ∇xum−l · ∇xun−m − 1

2a2

n−1∑
t=3

t−1∑
m=2

m−1∑
l=1

ηl ηm−l ∇xut−m · ∇xun−t

+

n−1∑
m=2

m−1∑
l=1

∇xηl · ∇xum−l ∂yun−m +
1

a

n−1∑
t=3

t−1∑
m=2

m−1∑
l=1

ηl ∇xηm−l · ∇xut−m ∂yun−t

− 1

2

n−1∑
t=3

t−1∑
m=2

m−1∑
l=1

∇xηl · ∇xηm−l ∂yut−m ∂yun−t − 1

2

n−1∑
l=1

∂yul ∂yun−l.
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Given a traveling solution of the water wave problem, (ū, η̄, c̄), we consider its spectral
stability with the ansatz

u(x, z, t) = ū(x, z) + v(x, z)eλt, η(x, t) = η̄(x, z) + ζ(x)eλt,

where quadratic products of the perturbations v and ζ are neglected. Next, the
eigenvalues λ and the functions ζ and v are also expanded as a power series in ε. Such
a procedure in the TFE formulation of the water wave problem yields

vn,xx + vn,zz = F̃n(x, z), −a < z < 0,(2.8a)

vn,z − Tvn = J̃n(x), z = −a,(2.8b)

λ0ζn + c0ζn,x − vn,z = Q̃n(x)− cn−1η1,x − λn−1ζ1, z = 0,(2.8c)

λ0ζn + c0vn,x + ηn = R̃n(x) − cn−1u1,x − λn−1v1, z = 0.(2.8d)

This procedure is presented in [8], and the functions F̃n, J̃n, Q̃n, and R̃n are known
explicitly. The salient feature here is that for n = 0 these functions vanish. We
comment that to consider the most general perturbations possible we enforce “Bloch
periodicity” in the x variable for ζ and v. Recall that this requires

ζ(x + γ) = eipγζ(x), v(x+ γ, z) = eipγv(x, z) ∀γ ∈ 2πZ,

and allows one to express

ζ(x) =
∞∑

k=−∞
ζ̂ke

i(k+p)x, v(x, z) =
∞∑

k=−∞
v̂k(z)e

i(k+p)x;

see [8, 9]. For each value of p, the spectral stability problem is transformed from
an eigenvalue problem into a series of linear problems (see (2.8)) for the corrections
vn and ζn. Over the range of the linear operator, the problem is easily solved via
Fourier transforms. The key step numerically is solving for the Fourier amplitudes
of the frequencies in the null space and the eigenvalue corrections—each from solv-
ability conditions. In the following sections, we present the form of the perturbation
procedure and solvability conditions, the resulting numerical method, the exactly cal-
culated first nonzero correction to the spectrum, as well as numerical computations of
the spectrum to arbitrary order. To test the numerical computations, we also compute
the spectrum nonperturbatively in what we call direct numerical simulation (DNS).

2.2. Direct numerical simulation. In section 4, we compare numerical results
of the TFE method to those of a competing method for calculating the spectrum,
which we call DNS. This method is outlined in [10] and uses the Hamiltonian structure
of the water wave problem first presented in [19], together with the canonical variables
η(x, t) and the surface velocity potential

ξ(x, t) := φ(x, η(x, t), t).

This formulation can be made more explicit [25] with the introduction of the Dirichlet–
Neumann operator,

G(η)ξ = (∂zφ− (∂xη)∂xφ)z=η ,
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which maps Dirichlet data to Neumann data. In terms of this operator the evolution
equations (2.1) can be equivalently stated as

∂tη = G(η)ξ,(2.9a)

∂tξ = −η −A(η)B(η, ξ),(2.9b)

where

A(η) =
1

2(1 + (∂xη)2)
,(2.9c)

B(η, ξ) = (∂xξ)
2 − (G(η)ξ)2 − 2(∂xη)(∂xξ)G(η)ξ.(2.9d)

If (η̄, ξ̄, c̄) is a steady solution in a frame traveling with velocity c̄ (i.e., a traveling
wave solution with velocity c̄), then we can study spectral stability by considering

η(x, t) = η̄(x) + eλtζ(x), ξ(x, t) = ξ̄(x) + eλtψ(x).

Upon insertion of these forms into (2.9) (appropriately modified to account for the
traveling frame) and ignoring quadratic products, we find the eigenproblem

(λ+ c∂x)ζ = Gη(η̄)[ξ̄]{ζ}+G(η̄)[ψ],(2.10a)

(λ+ c∂x)ψ = −ζ −Aη(η̄){ζ}B(η̄, ξ̄)−A(η̄)
(
Bη(η̄, ξ̄){ζ}+Bξ(η̄, ξ̄){ψ}

)
,(2.10b)

where η and ξ subscripts represent functional variations in η and ξ, respectively, in
the ζ and ψ directions. For complete details together with a specification of a spectral
collocation procedure for estimating the eigenvalues λ and eigenfunctions (ζ, ψ), we
refer the interested reader to [10].

3. A perturbation procedure for repeated eigenvalues. The spectral sta-
bility problem is a generalized eigenvalue problem of the form

(3.1) (A+ λB)q = 0,

where the operators A and B depend analytically on ε. The approach we advocate
is essentially a Rayleigh–Schrödinger expansion (see [26]), which is based upon the
assumption that the spectral data (λ, q) also vary analytically in ε. If this is the case,
we can form the Taylor series

(3.2) A =

∞∑
n=0

Anε
n, B =

∞∑
n=0

Bnε
n, λ =

∞∑
n=0

λnε
n, q =

∞∑
n=0

qnε
n,

and upon insertion into (2.5) we find a series of linear problems of the form

(3.3) (A0 + λ0B0)qn = Pn,

with Pn a known function of {λ1, . . . , λn} and {q0, . . . , qn−1} which vanishes when
n = 0. As we will explain in more detail in this section, although the functional form
of Pn is known at order n, the values of some of its arguments, for example λn, are
not determined at this order. The eigenvalue problem is solved by inversion of the
linear operator (A0+λ0B0) in its range, as well as by solvability conditions which set
both the components of qn in the null space of this operator as well as the correction
to the eigenvalue λn.
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The case where λ0 is simple is handled in [8] and leads to a strongly convergent
Taylor series for λ and q which can be used in a stable and high-order numerical
simulation of the spectral data [9, 10]. This algorithm numerically inverts the operator
(A0 + λ0B0) over its range using a Chebyshev-based elliptic solver in the vertical
direction and Fourier collocation in the horizontal dimension. The eigenvalues λn are
set by a linear solvability condition at each order, ensuring that the operator is forced
orthogonally to its null space.

We now take up the far more challenging question of λ0 with higher multi-
plicity, more specifically algebraic and geometric multiplicity two. Suppose that
(A0 + λ0B0)q0 = 0 has two independent solutions w1 and w2. At every order, for
(3.3) to have a solution one requires that Pn be orthogonal to the kernel of the ad-
joint operator (A0+λ0B0)

∗, which we suppose is spanned by ψ1 and ψ2. In the simple
case dim(Ker(A0 + λ0B0)

∗)) = 1, the solvability condition 〈ψ1, Pn〉 = 0 is a single
linear equation determining λn [9]. We generalize this procedure to find solutions
when the kernel is two-dimensional, using solvability arguments [26, 27].

In more detail, the eigenfunction is most generally represented as an arbitrary
linear combination of w1 and w2,

(3.4) q0 = αw1 + βw2.

Without loss of generality we choose α = 1, defining the total projection of q onto
w1. Although the coefficient β is arbitrary at leading order (n = 0), a perturbative
solution exists only in the neighborhood of particular values of β. To find these values
we expand β as a power series in ε,

β =

∞∑
n=0

βnε
n.

At each order, two solvability conditions, 〈ψj , Pn〉 = 0, are satisfied by choice of
λn and βn. Thus far the discussion has been quite generic, but, of course, the forms
of the equations for βn and λn are problem-specific, and for deep water waves, the
equations for λn and βn are all linear.

We next present the perturbation procedure used to numerically compute λn to
all orders. At each order, we wish to solve a linear algebra problem of the form

(A0 + λ0B0)qn = −
n∑

j=1

(
Aj +

n∑
q=0

λqBj−q

)
qn−j .

The leading-order solution is given by (3.4) and (3.10), with an as yet arbitrary ratio
β0. The ratio β0 will be determined at a later power of ε, with the power depending
on the two frequencies in the leading-order solution, ξ1 and ξ2. At O(ε), the system
is

(3.5) (A0 + λ0B0)q1 = − (A1 + λ0B1 + λ1B0) q0.

Taking the inner product of the right-hand side with the ψj yields two solvability
conditions,

(3.6)

(〈ψ1, (A1 + λ1B0 + λ0B1)w1〉 〈ψ1, (A1 + λ1B0 + λ0B1)w2〉
〈ψ2, (A1 + λ1B0 + λ0B1)w1〉 〈ψ2, (A1 + λ1B0 + λ0B1)w2〉

)(
1
β0

)
= 0.
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Clearly our procedure depends on whether any of the inner products in (3.6) vanish,
which in turn depends on the frequency difference ξ1−ξ2. We use the convention that
both the ψj and wj are supported solely at wavenumber ξj . Because the operators
An and Bn have support at frequencies |ξ| ≤ n, the inner products vanish at least
when |ξ1 − ξ2| > n, that is, if the frequency difference is larger than the order of
the perturbation. Inner products may also vanish at order n when |ξ1 − ξ2| ≤ n due
to cancellation, but for this one must compute the inner products on a case-by-case
basis. Next we present the derivation of λ1 and β0 for deep water waves, with the
complete details of the calculation of all values of λn and βn left to Appendix A.

First, the null space is two-dimensional for fixed p if there are two frequencies
ξ1, ξ2 with λ0(ξ1) = λ0(ξ2). For the water wave problem this is equivalent to

ξ1 − ξ2 −m = 0 and ω(ξ2) + ω(ξ1)−mω(1) = 0,

where m is an integer. To enumerate the possibilities, we note that we can choose
m = 1 only if the linear (two-dimensional) system supports resonant triads, which is
not possible for two-dimensional deep gravity water waves [28]. Generally, the system
will have a two-dimensional kernel for any wavenumbers ξ1 and ξ2 which undergo
an (m + 2) degree resonance with m instances of ξ = 1 [18, 16]. The details of the
procedure for calculating βn and λn depend crucially on the degree of the resonance.
Because there are no triads in deep water we know that |ξ1 − ξ2| > 1, or that

〈ψj , (A1 + λ0B1)wi〉 = 0

for i 
= j. Also, as there is no mean flow,

〈ψi, (A1 + λ0B1)wi〉 = 0

(here the result would differ for shallow water); thus (3.6) simplifies to

(3.7) λ1

(〈ψ1, B0w1〉 0
0 〈ψ2, B0w2〉

)(
1
β0

)
= 0,

which implies λ1 = 0 with β0 arbitrary. Continuing this procedure, we find that in
deep water β0 is always zero and is determined at O(ε2). Moreover, there are two
branches of eigenvalue-eigenfunction pairs which are, at leading order, supported at a
single frequency ξj ; the coupling of the two frequencies happens only at higher powers
in ε. Complete details of the perturbation procedure, including which inner products
vanish in deep water, are given in Appendix A. Because the procedure is sensitive to
which frequencies the operators are supported at, the algorithm will require extension
for finite depth, where there is a mean flow. The current algorithm includes support
for triads, even though there are none in deep water, so that it may be more easily
extended to include surface tension and to shallow water [28].

For deep water gravity waves, the leading-order linear problem is

v0,xx + v0,zz = 0, −a < z < 0,(3.8a)

v0,z − Tv0 = 0, z = −a,(3.8b)

λ0ζ0 + c0ζ0,x − v0,z = 0, z = 0,(3.8c)

λ0v0 + c0v0,x + ζ0 = 0, z = 0,(3.8d)
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so that

(3.9) A0 =

⎛
⎜⎜⎝

∂2x + ∂2z 0
∂z − T 0
−∂z c0∂x
c0∂x 1

⎞
⎟⎟⎠ and B0 =

⎛
⎜⎜⎝

0 0
0 0
0 1
1 0

⎞
⎟⎟⎠ .

The vector q0 can be thought of as having two components q0 = (v0(x, z), ζ0(x)), so
long as the operators in the rows of A0 are applied at the appropriate places (inside the
domain for the first row, at z = a for the second row, etc.). The kernel of (A0+λ0B0)
can then be determined by solving the first two equations for the z-dependence of v0,
essentially reducing the problem to surface quantities, or to solving( −(−∂2x)1/2 λ0 + c0∂x

λ0 + c0∂x 1

)(
v0(x, 0)
ζ0(x)

)
= 0.

It is simple to show that this kernel is supported at frequencies satisfying

(λ0 + ic0ξ)
2 + |ξ| = 0

or, using c0 = 1,

(3.10) λ0(k, p) = ±iω(k + p)− i(k + p),

where ω(ξ) :=
√|ξ|, k ∈ Z, and p ∈ (−1/2, 1/2] is the quasi-period parameter men-

tioned in section 2. Because the water wave problem is Hamiltonian with real solu-
tions, it is enough to consider only p ≥ 0 (the negative p values are determined as the
complex conjugate) [11].

At later orders, the differential operator (A0 + λ0B0) must be inverted over its
range. In the numerical method, given that the frequencies in the null space are
known, this is naturally handled in Fourier space, where inverting the operator means
solving for all the Fourier modes of the solution except the two in the null space.
Since the right-hand side of (2.8) is nonhomogeneous for n ≥ 1, a Chebyshev-based
elliptic solver is used to determine the vertical dependence of the Fourier modes. This
inversion of (A0+λ0B0) is identical to the method used for simple eigenvalues, with the
exception that there are now two elements which are not in the range of the operator,
rather than one. After all the frequencies in the range are determined, the amplitude
of the Fourier modes in the null space is determined using the perturbation procedure
outlined above. The correction vn has zero projection onto the eigenfunction w1

by definition and has a projection onto w2 of amplitude βn which is determined
by a solvability condition. The numerical method requires two loops, one in the
perturbation order and another in the wave numbers of the correction vn, for each λ0.
The different eigenvalues can then be treated separately, as can the different Bloch
parameters—either in other loops or in parallel.

3.1. The O(ε2) spectrum. An eigenvalue of multiplicity two, where the kernel
of (A0−λ0B0) is two-dimensional, requires that for fixed p there be distinct integers k1
and k2 with λ0(k1, p) = λ0(k2, p). For deep water waves, this happens, for p ∈ [0, 1/2],
only when p = 0 and 1/4. Moreover, in the deep water problem, eigenvalues have
multiplicity only one, two, or four—as can be seen using the graphic construction for
computing wave resonances; see [28]. There is only one eigenvalue of multiplicity four,
the degenerate case λ0 = 0. Near λ0 = 0 the spectrum is not analytic with respect
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to ε due to the Benjamin–Feir instability; thus considering the two-dimensional case
completes the treatment of the analytic spectrum. In this section, we compute ex-
plicitly the first nonzero corrections for the two countably infinite families of repeated
eigenvalues at p = 0 and 1/4, which we use in section 4 to compare the results of
our numerical computations to arbitrary order. To our knowledge, we are the first to
calculate the Stokes expansion for these families of eigenvalues.

At p = 0, there is a countably infinite set of eigenvalues, λ0, with two distinct
frequencies in the null space, ξ1 = k1 + p and ξ2 = k2 + p, given by

(3.11) λ0 = −in(n+ 1), ξ1 = n2, and ξ2 = (n+ 1)2

for n ∈ N+, and, of course, another family given by the complex conjugate. From each
of these flat-state eigenvalues, λ0, we have computed the Stokes expansion, calculating
explicitly two branches of eigenvalues, whose eigenfunctions are supported at leading
order ξ1 and ξ2. The eigenvalue corrections are

(3.12) λ1 = 0, λ
(1)
2 = 2in2, λ

(2)
2 = 2i(n+ 1)2,

where the superscript on λ
(j)
2 refers to the single frequency ξj at which the eigenvector

is supported at O(ε0). For all members of this family of eigenvalues, the frequencies
ξj are at leading order decoupled, β0 = 0.

At p = 1/4 there is another countably infinite set of eigenvalues, λ0, with two-
dimensional null space,

(3.13) λ0 = i

(
1

4
− n2

)
, ξ1 =

(2n− 1)2

4
, ξ2 =

(2n+ 1)2

4

for all n ∈ N. A Stokes expansion has also been carried out about this second family
of λ0. The eigenvalue corrections are λ1 = 0 and

(3.14a) λ
(1)
2 = −i

(
1

4

)
, λ

(2)
2 = i

(
9

2

)
, n = 0,

and

(3.14b) λ
(1)
2 = i

(
(2n− 1)2

2

)
, λ

(2)
2 = i

(
(2n+ 1)2

2

)
, n > 0.

As with the previous family of eigenvalues, the set at p = 1/4 also has β0 = 0.

Notice here that both at p = 0 and at p = 1/4 the λ
(j)
2 are all pure imaginary; thus

to O(ε2) there are no instabilities from these sets of eigenvalues. In fact, based upon
our numerical experiments detailed in section 4, we conjecture that the full Taylor
sums are purely imaginary for all real values of ε (within the disk of analyticity).

In both families we have labeled the frequencies using the convention that

λ−0 (ξ1) = −
√
|p+ ξ1| − (p+ ξ1) =

√
|p+ ξ2| − (p+ ξ2) = λ+0 (ξ2).

The frequency ξ1 has λ0 with negative Krein signature, while ξ2 corresponds to λ0
with positive Krein signature. Both of these families satisfy the necessary, but not
sufficient, condition of [18] that only collisions of eigenvalues with opposite Krein
signature may lead to instability.

Regarding Krein signature, we recall that the traveling water wave problem may
be recast as that of finding critical points of a functional involving the Hamiltonian
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(see [18]), sayHc. If λ is a nonzero, purely imaginary, simple eigenvalue of the problem
linearized about the equilibrium, then the second variation of Hc at the equilibrium
is either positive or negative definite; this sign is the Krein signature of λ, and it is
conserved up to collision with another eigenvalue. The fundamental result of MacKay
and Saffman [18] is that if two simple, pure imaginary eigenvalues of the same Krein
signature collide at a point other than zero, then they cannot leave the imaginary axis.
Thus, for infinitesimal waves, the principal instabilities should arise from eigenvalues
of multiplicity larger than one.

The formulae of the previous two paragraphs were computed using a cubic approx-
imation of the water wave equations expanded about the free surface, as in [29, 30].
Although a nonlocal formulation, this cubic approximation of the potential flow equa-
tions should not be confused with that of [31], used for the spectral stability problem
by [15]. The cubic truncation is also entirely different from that used in the numerical
method, and as such these eigenvalues (3.12), (3.14a), and (3.14b) may be used as a
test both of the numerics as well as of the TFE formulation. In particular, the exact
values of λ2 can be used to measure robustness of the TFE formulation for small arti-
ficial depth a—see [32] for a numerical investigation of this robustness in the traveling
wave problem.

4. Numerical results. We have extended the TFE method for perturbatively
computing the spectrum of traveling waves to eigenvalues of multiplicity two (the
multiplicity one case is handled in [9]). For two-dimensional deep water waves, no
eigenvalues both are analytic in ε and have multiplicity higher than two, so the re-
sulting numerical method computes the entire analytic spectrum. The method is
implemented in C++, using a Fourier–Chebyshev scheme to discretize (2.8) as well as
to evaluate the inner products in section 3. The resulting eigenvalue problem decou-
ples different values of the Bloch parameter p which can then be treated in parallel.
For each value of p, the eigenvalues λ(k, p) can also be treated in parallel (or sequen-
tially in a loop). For each value of p and λ(k, p), the perturbation series is solved
for using the procedure of section 3. Because instabilities arise only from repeated
eigenvalues, this method allows for significant savings in computing instabilities, as
one can restrict the computation to only the repeated eigenvalues.

Here we present the results of the method applied to the deep water case, where we
have both explicitly computed the second correction to the eigenvalues λ2 (cf. (3.12),
(3.14a), and (3.14b)) and numerically computed the corrections λn for arbitrary n.
We compare the performance of a high-order perturbative computation (n = 16) to
both a low-order perturbative calculation (n = 2) and the DNS approach outlined in
section 2.2.

In Figure 4.1 we present three independent computations of the spectrum for
traveling waves near the flat surface eigenvalue λ0 = 6i at p = 0. The first is an
explicit second-order perturbative computation in the potential flow equations, Taylor
expanded about z = 0, as in [30, 29], whose formula may be recovered by taking
the complex conjugate of (3.13). The second computation is our new numerical
procedure outlined in section 3, taken to perturbation order n = 16. The third set
of data is generated by a spectral collocation implementation of the DNS method
outlined in section 2.2. In Figure 4.1(left) we observe that the O(ε2) computation
well approximates the entire series for small ε. From the right panel, we observe
that only a few more terms n ≈ 16 are necessary to resolve larger amplitudes to the
precision of our DNS.

In Figure 4.2, the convergence rate of the TFE method is observed. The eigen-
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Fig. 4.1. The spectrum at p = 0 of near the λ0 = −6i. A DNS (see section 2.2) of the spectrum
is marked with circles. The perturbative spectrum to O(ε2) is marked with solid red curves. The
spectrum as computed by our new method (see section 3) to order n = 16 is marked with dotted
black curves. On the left, all three are essentially indistinguishable; on the right, a closer look at
the upper curve for 0.0985 ≤ ε ≤ 0.0999 reveals the improvement of the higher-order approximation:
The dotted curve closely approximates the circles.

Fig. 4.2. The convergence of the TFE algorithm at an eigenvalue of multiplicity two is studied.
Both panels take p = 0.25, ε = 0.075, and consider an eigenvalue branch which bifurcates from
λ0 = −0.75i. Of the two branches which bifurcate from this λ0, both panels are computed on the
branch of (slightly) smaller magnitude. On the left, the magnitude of the corrections λn is plotted
as a function of n. The corrections are zero for odd n, as this is not a triad resonance, and are
not plotted. On the right, a measure of the error, the difference between a DNS calculation of this
eigenvalue and the TFE calculation, Error =

∣
∣∑n

m=0 λmεm − λDNS

∣
∣, is plotted as a function of the

number of perturbation orders in the sum, n.

values are computed at ε = 0.075 on a branch which bifurcates from λ0 = −0.75i
when ε = 0, with Bloch parameter p = 0.25. The flat-state eigenvalue λ0 = −0.75i
is an eigenvalue of multiplicity two; thus the convergence plots are a genuine test of
the convergence of the extension of the previous algorithm for simple eigenvalues [9].
In Figure 4.2(left), the growth of the corrections λn is observed as a function of n.
In the right panel, the difference between a DNS calculation (see section 2.2) of this
eigenvalue and the TFE calculation is plotted as a function of the number of pertur-
bation orders included in the Taylor sum. Notice that this difference is approximately
constant after n = 12, suggesting that the n = 16 in Figure 4.1 is more than sufficient
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Fig. 4.3. The radius of convergence of the expansion is compared to the first value of ε where
there is a crossing of eigenvalues. To compute the radius of convergence, the first nondegenerate pole
of the Padé approximation of the series is computed, here marked with circles. The smallest value
of ε where two eigenvalues collide is marked with x’s. Left: For p near 0 the series is immediately
singular due to the Benjamin–Feir instability, marked with a solid curve. This curve agrees with the
numerically computed first eigenvalue crossings and radii of convergence. Right: At p = 1/4 there
is a crossing at ε = 0, but the expansion converges until ε ≈ 0.075.

to resolve the spectrum.
Conjecture 1. All eigenvalues of multiplicity one or two for the spectral stability

problem of periodic two-dimensional deep water waves are purely imaginary within the
disk of analyticity of the spectral data, (3.2). More specifically, for λ0 of multiplicity
one or two we have

Re{λn} = 0 ∀n ≥ 0.

We point out that this implies weak stability of periodic two-dimensional deep
water traveling wavetrains to perturbations associated with eigenvalues of multiplicity
one or two. This method does not take into account eigenvalues of multiplicity higher
than two; however, for deep water waves on a two-dimensional fluid there is only
one eigenvalue of multiplicity higher than two, λ0 = 0 when p = 0, from which the
Benjamin–Feir instability arises. We now present a simple argument which precludes
the analytic connection of the eigenvalues of the Benjamin–Feir instability to those of
the flat state.

The Benjamin–Feir instability is a modulational instability of a plane wave to long
wave disturbances corresponding to p approaching zero. In the notation of this paper,
the Benjamin–Feir instability for a Stokes wave (with wavenumber k = 1) occurs for
p satisfying 0 < p2 < 8ε2 [28, 30], which our numerics verify. There are two crucial
observations with regard to the analyticity of the spectrum as a function of ε with p
varying. First, the instability does not include p = 0: Small amplitude deep water
waves are stable to superharmonic perturbations [12, 18]. Second, for fixed small, but
nonzero, p, when ε is increased across the Benjamin–Feir threshold the spectrum loses
its analyticity. This loss of analyticity along the Benjamin–Feir threshold is plotted
in Figure 4.3.

A limitation of our new approach, as with any perturbative method, is that
it is valid only within the disk of convergence of the Taylor series. Furthermore,
we have found (see [9]) that numerical analytic continuation schemes (e.g., Padé
summation) are ineffective for this problem, indicating that the smallest singularity
of the expansion lies on the real axis. We have found that this loss of analyticity
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Fig. 4.4. Left: A DNS (see section 2.2) of the imaginary part of the spectrum as a function
of wave slope, ε. At intermediate wave slope, the spectrum loses analyticity in ε, and branches of
eigenvalues merge and bifurcate. This finite ε ≈ 0.075 crossing of eigenvalues results in a bubble
of instability and a loss of analyticity of the spectrum. Right: Computed spectra near λ0 = −3.75i
for p = 0.25 (circles), p = 0.2499 (solid lines), and 0.2501 (dotted lines). At p = 0.25 there is a
collision of eigenvalues at ε = 0, while for p > 0.25 there is no collision for small ε; however, for
p < 0.25 there is a small ε collision.

is a generic phenomenon for intermediate wave slopes and can occur at eigenvalue
collisions, certainly when this collision leads to an eigenvalue leaving the imaginary
axis. With this in mind, in Figure 4.3 we study the convergence properties of the
perturbation series and note that eigenvalues may cross without loss of analyticity of
the spectrum. In this figure we compare the smallest ε at which two eigenvalues cross
to the disk of analyticity of the spectrum. We approximate the disk of analyticity
by computing the first nondegenerate (i.e., noncancelled) pole of the Padé series, as
in [9]. In the left panel we observe that, near p = 0, there is both a collision of
eigenvalues and loss of analyticity at ε = p/

√
8, the Benjamin–Feir instability. In

the right panel, there is loss of analyticity at approximately ε = 0.075, while there
is a collision of eigenvalues of opposite Krein signature much sooner (at ε = 0 when
p = 1/4). In Figure 4.4 we present a simulation which exhibits many collisions of
multiple eigenvalues. On the left we display a DNS of the spectrum at p = 1/4, and
we notice that there are multiple collisions where the spectrum remains analytic and
there is no instability. The collision which does lead to instability, at approximately
(ε ≈ 0.075, Im{λ} ≈ −22.2), is of two eigenvalues which are not close at ε = 0. This is
a finite amplitude instability which, interestingly, is unrelated to the two-dimensional
null spaces at p = 1/4 and ε = 0. That this instability persists at approximately
the same value of ε as p is varied accounts for the difference between the radius of
convergence and the first crossing of eigenvalues in Figure 4.3. In the right panel of
Figure 4.4 we observe that eigenvalues of opposite Krein signature collide for small ε
when p approaches 1/4 from the left and do not collide at small ε for p slightly larger
than 1/4, displaying a curious asymmetry with respect to the Bloch parameter which
deserves further scrutiny.

5. Conclusion. In this paper we have presented a generalization of the trans-
formed field expansions approach to perturbatively computing the spectrum of the
linearized water wave operator [8, 9] to the crucially important case of eigenvalues
of multiplicity two. We observe no instabilities which are analytically connected to
the flat surface for deep water waves in the absence of surface tension. We present
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both a numerical method for computing the spectrum and an explicit computation
of the first corrections to the flat-state eigenvalues of multiplicity two—a complete
treatment of the analytic spectrum of deep water gravity waves on a two-dimensional
fluid. Although the spectra computed here are all pure imaginary (thus the waves are
weakly stable), such spectra still provide useful information about the traveling wave,
for example as a basis from which to compute time periodic waves [21].

Ongoing research avenues include the extension of this algorithm to include sur-
face tension and shallow water waves, where we expect the spectrum to include in-
stabilities. The algorithm also simply extends to a three-dimensional fluid in the
presence of three-dimensional perturbations, where other instabilities are known to
occur. Although in principle the algorithm could be extended to higher-dimensional
null spaces, these do not play a role in the two-dimensional deep water problem. Fi-
nally, a concurrent project is the analogous method for computing “Wilton ripples”
and other traveling waves where the linear operator has null space of dimension larger
than one.

Appendix A. Eigenvalues of multiplicity two. In this section we present the
details of our generalization of the TFE approach to computing the spectrum of the
linearized water wave operator to the case of an eigenvalue of algebraic and geometric
multiplicity two. For notational convenience we present the method in the context of
the generalized eigenvalue problem,

(A.1) (A+ λB)q = 0

(cf. (3.1)), where A and B depend analytically on ε and we suppose a priori that v
and λ do as well. Expanding in Taylor series in ε,

(A.2) A =

∞∑
n=0

Anε
n, B =

∞∑
n=0

Bnε
n, λ =

∞∑
n=0

λnε
n, q =

∞∑
n=0

qnε
n

(cf. (3.2)), and inserting these into the generalized eigenproblem (A.1) yields at leading
order

(A.3) (A0 + λ0B0)q0 = 0.

We presume throughout that dim(Ker(A0 + λ0B0)) = 2, and that (A.3) has two
independent solutions, w1 and w2, so that q0 can be generically expressed as

q0 = α0w1 + β0w2.

Furthermore, we assume that the null space of the adjoint of (A0 + λ0B0) has two
linearly independent solutions ψ1 and ψ2, so that, by the Fredholm alternative, the
system

(A0 + λ0B0)z = θ

has solutions if and only if

(A.4) 〈ψ1, θ〉 = 〈ψ2, θ〉 = 0.

Expansion (A.2) transforms the nonlinear eigenvalue problem (A.1) into a series of
linear equations at each order of ε. Due to the two-dimensional null space associated
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with λ0 there are two conditions (A.4) to be satisfied; however, as we shall see,
there are two constants to be chosen at every order so that our new method proceeds
smoothly from one order to the next. We observe that some of the constraints in (A.4)
may be trivially satisfied, and to distinguish them one must carefully consider the inner
products 〈ψj , B0wi〉 and 〈ψj , Anwi〉. The first simply tests the B0-orthogonality of
ψj and wi. The second vanishes unless the frequencies of ψj , An, and wi sum to
zero, a resonance condition on the underlying wave and its perturbations. We will
explore the cases 〈ψj , Anwi〉 
= 0 separately, classified by the first n where such an
inner product is nonzero.

A.1. Perturbation about triads. We begin with the simplest case:

〈ψ1, B0w2〉 = 〈ψ2, B0w1〉 = 0, 〈ψ2, A1w1〉 
= 0.

The latter condition enforces a “triad interaction” as ψj ∼ eiξjx, wi ∼ eiξix, A1 ∼
eix + c.c., where c.c. stands for complex conjugage, and 〈ψ2, A1w1〉 
= 0 imply that
the wavenumbers form a triad,

ξi − ξj ± 1 = 0.

(The temporal frequencies are also resonant, ω1 − ω2 ± 1 = 0, for triad wavenumbers
in a two-dimensional null space.) In this case, the O(ε) equations are

(A.5) (A0 + λ0B0)q1 = −(A1 + λ1B0 + λ0B1)q0,

with solvability conditions

(A.6)

(〈ψ1, (A1 + λ1B0 + λ0B1)w1〉 〈ψ1, (A1 + λ1B0 + λ0B1)w2〉
〈ψ2, (A1 + λ1B0 + λ0B1)w1〉 〈ψ2, (A1 + λ1B0 + λ0B1)w2〉

)(
α0

β0

)
= 0

or

(A.7)

(〈ψ1, (A1 + λ0B1)w1〉 〈ψ1, (A1 + λ0B1)w2〉
〈ψ2, (A1 + λ0B1)w1〉 〈ψ2, (A1 + λ0B1)w2〉

)(
α0

β0

)

= −λ1
(〈ψ1, B0w1〉 〈ψ1, B0w2〉
〈ψ2, B0w1〉 〈ψ2, B0w2〉

)(
α0

β0

)
.

From these conditions we determine the λ1 from a quadratic equation (the determi-
nant of the 2× 2 matrix in (A.6) set to zero) and the relationship between α and β0
as they are a generalized eigenvector of each eigenvalue λ1, (A.7). Without loss of
generality we will choose α = 1 at order zero, and α = 0 at subsequent orders so that
w1 will not appear in the homogeneous solutions at later orders of the perturbation
solution. The value β0 is the leading-order term in the ratio of w1 to w2; the full ratio
β is corrected at higher orders. Whether β0 is determined here or later depends on
the null space of the matrix in (A.6).

The first correction of the eigenfunction can be expressed as

q1 = q1,p + q1,h,

where q1,p is a particular solution to (A.5),

q1,p = −(A0 + λ0B0)
−1(A1 + λ1B0 + λ0B1)q0,
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and the inverse is taken over the complement of the null space of (A0+λ0B0). An arbi-
trary amplitude homogeneous solution is also included, q1,h = β1w2 (no contribution
of w1 is necessary because of the definition of α). Continuing to O(ε2),

(A0 + λ0B0)q2 = −(A1 + λ1B0 + λ0B1)q1 − (A2 + λ2B0 + λ1B1)q0,

which implies the solvability condition

(A.8)

(〈ψ1, (A1 + λ1B0 + λ0B1)w2〉 〈ψ1, B0v0〉
〈ψ2, (A1 + λ1B0 + λ0B1)w2〉 〈ψ2, B0v0〉

)(
β1
λ2

)

= −
(〈ψ1, (A1 + λ1B0 + λ0B1)q1,p + (A2 + λ1B1)q0〉
〈ψ2, (A1 + λ1B0 + λ0B1)q1,p + (A2 + λ1B1)q0〉

)
,

which determines β1 and λ2. The general nth-order term is similar to the O(ε2)
equation

(A0 + λ0B0)qn = −
n∑

j=1

(
Aj +

j∑
k=0

λkBj−k

)
qn−j ,

which implies the solvability conditions

(A.9)

(〈ψ1, (A1 + λ1B0 + λ0B1)w2〉 〈ψ1, B0q0〉
〈ψ2, (A1 + λ1B0 + λ0B1)w2〉 〈ψ2, B0q0〉

)(
βn−1

λn

)

= −
(〈ψ1, (A1 + λ1B0 + λ0B1)qn−1,p〉
〈ψ2, (A1 + λ1B0 + λ0B1)qn−1,p〉

)
+

⎛
⎝
〈
ψ1,
(
An +

∑n−1
j=0 λjBn−j

)
q0

〉
〈
ψ2,
(
An +

∑n−1
j=0 λjBn−j

)
q0

〉
⎞
⎠

+

⎛
⎝
〈
ψ1,
∑n−1

j=2

(
Aj +

∑j
k=0 λkBj−k

)
qn−j

〉
〈
ψ2,
∑n−1

j=2

(
Aj +

∑j
k=0 λkBj−k

)
qn−j

〉
⎞
⎠ .

How one explicitly computes the qn−1,p depends on the basis chosen for the orig-
inal linear problem. A key point here is that the matrix that we must invert does not
change at each order. Although it is not the leading-order matrix, it is only the next
order, and the formal existence of solutions is conditional only on the invertibility of
this matrix.

The above procedure relies on β0 being determined at second order. This requires,
at least, that elements in the null space of (A0+λ0B0) have wavenumbers which satisfy
ξ1 − ξ2 ± 1 = 0 and ω1 − ω2 ± 1 = 0, a triad interaction. Even if the frequencies sum
to zero, there may be additional cancellation in the inner products, which must be
handled on a case-by-case basis. If the ξj do not satisfy such a triad interaction, or if
the matrix in (A.8) is singular due to other cancellations, the procedure of this section
requires modification. It is well known that deep water gravity waves do not exhibit
triad interactions [28]; thus another expansion will be necessary for deep water gravity
waves.

A.2. Perturbation about quartets. For the generic choice of ξ1 and ξ2, many
of the previously presented inner products are zero. For instance, if |ξ2−ξ1| > 1, then
the leading-order equation (cf. (A.6)) is(

λ1 〈ψ1, B0w1〉 0
0 λ1 〈ψ2, B0w2〉

)(
1
β0

)
= 0
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because 〈ψi, A1wj〉 = 〈ψi, B1wj〉 = 0 (both A1 and B1 are supported only at frequency
ξ = ±1). This implies λ1 = 0 and leaves β0 arbitrary. In this case the O(ε2) solvability
conditions are

〈ψ1, (A1 + λ0B1)q1,p + (A2 + λ2B0 + λ0B2)q0〉 = 0,(A.10a)

〈ψ2, (A1 + λ0B1)q1,p + (A2 + λ2B0 + λ0B2)q0〉 = 0,(A.10b)

which leaves β1 arbitrary (the inner products 〈ψj , (A1 + λ0B1)w2〉 = 0 without triads)
and results in a (possibly nonlinear) system for β0 and λ2.

Moving beyond the triad resonances, we begin with the quartet resonance (i.e.,
ξ2 − ξ1 ± 2 = 0) in this section and consider the higher-order case (|ξ1 − ξ2| > 2) in
subsection A.3. If we recall that

q1,p = −(A0 + λ0B0)
−1(A1 + λ1B0 + λ0B1)q0(A.11)

= −(A0 + λ0B0)
−1(A1 + λ1B0 + λ0B1)w1

− β0(A0 + λ0B0)
−1(A1 + λ1B0 + λ0B1)w2,

then (A.10) is of the form

(A.12) λ2 + P11 + β0P12 = 0, β0λ2 + β0P22 + P21 = 0,

with

P11 =

〈
ψ1, (A2 + λ0B2)w1 − (A1 + λ0B1)(A0 + λ0B0)

−1(A1 + λ1B0)w1

〉
〈ψ1, B0w1〉 ,

P12 =

〈
ψ1, (A2 + λ0B2)w2 − (A1 + λ0B1)(A0 + λ0B0)

−1(A1 + λ1B0)w2

〉
〈ψ1, B0w1〉 ,

P21 =

〈
ψ2, (A2 + λ0B2)w1 − (A1 + λ0B1)(A0 + λ0B0)

−1(A1 + λ1B0)w1

〉
〈ψ2, B0w2〉 ,

P22 =

〈
ψ2, (A2 + λ0B2)w2 − (A1 + λ0B1)(A0 + λ0B0)

−1(A1 + λ1B0)w2

〉
〈ψ2, B0w2〉 .

Writing (A.12) in terms of λ2 alone delivers

λ22 + (P11 + P22)λ2 + (P11P22 − P12P21) = 0,

so that λ2 and, from (A.12), β0 can be determined. Recall that λ0 has already been
chosen, and λ1 = 0; β1 is still arbitrary. At later orders the equations become

(A.13) M

(
βn−2

λn

)
= R,
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where

M =

(〈ψ1, (A2 + λ2B0 + λ0B2)w2〉 〈ψ1, B0w1〉
〈ψ2, (A2 + λ2B0 + λ0B2)w2〉 β0 〈ψ2, B0w2〉

)

+

(〈
ψ1,−(A1 + λ0B1)(A0 + λ0B0)

−1(A1 + λ1B0)w2

〉
0〈

ψ2,−(A1 + λ0B1)(A0 + λ0B0)
−1(A1 + λ1B0)w2

〉
0

)
,

R = −
⎛
⎝
〈
ψ1,
∑2

j=1

(
Aj +

∑j
k=0 λj−kBk

)
qn−j,p

〉
〈
ψ2,
∑2

j=1

(
Aj +

∑j
k=0 λj−kBk

)
qn−j,p

〉
⎞
⎠

−
⎛
⎝
〈
ψ1,
(
An +

∑n
k=1 λn−kBk

)
q0

〉
〈
ψ2,
(
An +

∑n
k=1 λn−kBk

)
q0

〉
⎞
⎠

−
⎛
⎝
〈
ψ1,
∑n−1

j=3

(
Aj +

∑j
k=0 λj−kBk

)
qn−j

〉
〈
ψ2,
∑n−1

j=3

(
Aj +

∑j
k=0 λj−kBk

)
qn−j

〉
⎞
⎠ .

As before, the equation for the leading correction β0 is at most quadratic; all higher-
order corrections βj are determined by linear equations. For deep water gravity waves
the quartet resonance has P12 = P21 = 0, so that (A.12) becomes

λ2 + P11 = 0, β0λ2 + β0P22 = 0,

which has solutions λ2 = −P11 and β0 = 0. Furthermore, in this case we can simplify
(A.13) to

(A.14)

(
0 〈ψ1, B0w1〉

(λ2(ξ2)− λ2(ξ1)) 〈ψ2, B0w2〉 0

)(
βn−2

λn

)

= −
⎛
⎝
〈
ψ1,
∑2

j=1

(
Aj +

∑j
k=0 λj−kBk

)
qn−j,p

〉
〈
ψ2,
∑2

j=1

(
Aj +

∑j
k=0 λj−kBk

)
qn−j,p

〉
⎞
⎠−

⎛
⎝
〈
ψ1,
(
An +

∑n
k=1 λn−kBk

)
q0

〉
〈
ψ2,
(
An +

∑n
k=1 λn−kBk

)
q0

〉
⎞
⎠

−
⎛
⎝
〈
ψ1,
∑n−1

j=3

(
Aj +

∑j
k=0 λj−kBk

)
qn−j

〉
〈
ψ2,
∑n−1

j=3

(
Aj +

∑j
k=0 λj−kBk

)
qn−j

〉
⎞
⎠ .

Here λ2(ξj) = −Pjj , the correction λ2 given by (A.12) if w1 is supported at wave-
number ξj . Notice that the solvability of (A.14) depends only on the difference
λ2(ξ2)− λ2(ξ1). In the previous section we explicitly computed λ2(ξj) in deep water.
They are distinct; thus we may formally compute λn and βn to all orders.

A.3. Perturbation about higher degree resonances. If the resonance is
higher order than a triad or quartet, the O(ε2) solvability conditions yield a linear
equation for λ2,

λ2 = −〈ψ1, (A1 + λ0B1)q1,p + (A2 + λ0B2)w1〉
〈ψ1, B0w1〉 ,

which in fact gives two eigenvalues. If we label so that w1 is supported at frequency
ξ1, this gives λ2(ξ1), and, relabelling, gives λ2(ξ2). The corresponding equation for
β0 is

β0 (λ2(ξ1)− λ2(ξ2)) = 0,
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which implies β0 = 0. (The λ2 are computed explicitly in the previous subsection and
are distinct.)

The solvability conditions at O(ε3) are

〈ψ1, (A3 + λ3B0 + λ2B1 + λ0B3)q0 + (A2 + λ0B2 + λ2B0)q1 + (A1 + λ0B1)q2〉 = 0,

〈ψ2, (A3 + λ3B0 + λ2B1 + λ0B3)q0 + (A2 + λ0B2 + λ2B0)q1 + (A1 + λ0B1)q2〉 = 0.

Here β1, β2, and λ3 are unknowns. The inner products which involve β2 are zero;
thus this system is linear for β1 and λ3:

(
0 〈ψ1, B0w1〉

(λ2(ξ2)− λ2(ξ1)) 〈ψ2, B0w2〉 0

)(
β1
λ3

)

= −
(〈ψ1, (A3 + λ2B1 + λ0B3)q0〉
〈ψ2, (A3 + λ2B1 + λ0B3)q0〉

)

−
(〈ψ1, (A2 + λ0B2 + λ2B0)q1,p〉
〈ψ2, (A2 + λ0B2 + λ2B0)q1,p〉

)
−
(〈ψ1, (A1 + λ0B1)q2,p〉
〈ψ2, (A1 + λ0B1)q2,p〉

)
.

Higher orders follow this pattern, with βn−2 and λn determined at order n, e.g.,

− (〈ψ1, B0w1〉)λn =

〈
ψ1,

2∑
j=1

(
Aj +

j∑
k=0

λkBj−k

)
qn−j,p

〉

+

〈
ψ1,

n−1∑
j=3

(
Aj +

j∑
k=0

λkBj−k

)
qn−j

〉
+

〈
ψ1,

(
An +

n−1∑
k=0

λkBn−k

)
q0

〉

and

− (λ2(ξ1)− λ2(ξ2)) 〈ψ2, B0w2〉 βn−2 =

〈
ψ1,

2∑
j=1

Aj +

j∑
k=0

λkBj−kqn−j,p

〉

+

〈
ψ1,

n−1∑
j=3

(
Aj +

j∑
k=0

λkBj−k

)
qn−j

〉
+

〈
ψ1,

(
An +

n−1∑
k=0

λkBn−k

)
q0

〉
.

In the numerical method of this paper, all inner products are computed spectrally
using Fourier collocation for the horizontal direction and a Chebyshev–Tau method
for the vertical; see [7] for details.
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