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Abstract

In this paper we present an error analysis for a high-order accurate combined Dirichlet-to-Neumann (DtN) map/finite element
(FE) algorithm for solving two-dimensional exterior scattering problems. We advocate the use of an exact DtN (or Steklov–Poincaré)
map at an artificial boundary exterior to the scatterer to truncate the unbounded computational region. The advantage of using an
exact DtN map is that it provides a transparent condition which does not reflect scattered waves unphysically. Our algorithm allows
for the specification of quite general artificial boundaries which are perturbations of a circle. To compute the DtN map on such
a geometry we utilize a boundary perturbation method based upon recent theoretical work concerning the analyticity of the DtN
map. We also present some preliminary work concerning the preconditioning of the resulting system of linear equations, including
numerical experiments.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

We consider the scattering of time-harmonic acoustic (electromagnetic) radiation by a bounded, sound-hard (perfectly
conducting) obstacle D in R2. Our treatment remains the same for other boundary conditions with obvious modifications.
The boundary of D, denoted by �D, is only required to be Lipschitz continuous. It is well known [6] that the scattered
field v(x) satisfies

�v + k2v = 0, x ∈ R2\(D̄), (1a)

�nv = g, x ∈ �D, (1b)

lim
r→∞

√
r(�rv − ikv) = 0. (1c)

Here k is specified by the wavenumber of the incident radiation and n is the unit normal pointing exterior to D. The
Neumann data g are given in terms of the incident wave. The Sommerfeld radiation condition (1c) is prescribed to
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Fig. 1. D is the obstacle and � is the enclosing artificial boundary.

ensure uniqueness of solutions [6]. A considerable challenge to numerical simulation of solutions of (1) is the infinite
nature of the domain, coupled with the desire to faithfully enforce the Sommerfeld radiation condition.

A common approach to the numerical solution of (1) is to introduce an artificial boundary � properly enclosing D̄,
and then to discretize the annular domain between them, � (see Fig. 1). This introduces a natural domain decomposition
which leads to a system of equations coupled across � and equivalent to (1):

�u + k2u = 0, x ∈ �, (2a)

�nu = g, x ∈ �D, (2b)

�Nu = �Nw, x ∈ �, (2c)

u = w, x ∈ �, (2d)

�w + k2w = 0, x ∈ Ext(�), (2e)

lim
r→∞

√
r(�rw − ikw) = 0, (2f)

where N is an inward-pointing normal to Int(�). Gathering (2d)–(2f), we note that the resulting problem

�w + k2w = 0, x ∈ Ext(�), (3a)

w = u, x ∈ �, (3b)

lim
r→∞

√
r(�rw − ikw) = 0 (3c)

has a unique solution w for a given Dirichlet trace u|�. We can thus use (3) to define a Dirichlet-to-Neumann (DtN)
map G, where G : Hs(�) → Hs−1(�) is specified as G[u|�] := �Nw|�. This map is often called the Steklov–Poincaré
map, and includes information regarding the outgoing nature of the wave. We can use G to rewrite the original exterior
problem (1) equivalently as

�u + k2u = 0, x ∈ �, (4a)

�nu = g, x ∈ �, (4b)

�Nu − G[u] = 0, x ∈ �, (4c)

where we will now write G[u|�] simply as G[u].
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If we can accurately compute G[u], solving problem (4) provides the solution of the original problem (1) in the near
field in the sense that v|� = u. We can therefore solve the reduced problem (4) for u. To compute the solution of (1),
v, in the infinite region R2\Int(�), we use the traces u|� and �nu|� and the representation formula,

v(x) =
∫
�

u(y)�ny
g(x, y) − g(x, y)�ny

u(y) dy, x ∈ R2\(D̄).

Here g(x, y) := (i/4)H
(1)
0 (k|x − y|) and H

(1)
0 is the zeroth Hankel function of the first kind.

Accurate and efficient computation of the DtN map is a non-trivial task, but several algorithms exist, see e.g.,
[15,10,8]. Other work includes reducing the exterior problem to the form (4) to ensure u is outgoing, but without
actually computing G[u], e.g., [4,3,9]. Clearly, if the artificial boundary � is such that R2\Int(�) is separable, we can
compute G[u] using separation of variables. This idea was exploited, for example, in [13,16,12], where � is chosen to
be a circle. In recent work, we extended this to quite general � which are perturbations of a circle [17]. This, of course,
allows irregularly shaped obstacles to be enclosed more tightly by the artificial boundary. In fact, we showed that if G0
denotes the DtN map on a circle, and if � := {(r, �)|r = a + �f (�), � ∈ [0, 2�]}, then G is an analytic perturbation of
G0. By this we mean that, for integer s�0 and data � ∈ Hs+1/2,

G[�] =
∞∑

n=0

Gn[�]�n, (5)

where the series converges strongly in the operator norm from Hs+3/2([0, 2�]) to Hs+1/2([0, 2�]), provided f ∈
Cs+2([0, 2�]). This result was recently extended in [18] to admit the strong convergence of (5) from H 1/2([0, 2�]) to
H−1/2([0, 2�]) which is of crucial importance in establishing the theorems of this paper. Of course, for the application
at hand � will be the Dirichlet trace of the field, 	. In the Appendix we provide some details for one approach to the
numerical simulation of these Gn.

In what follows, we denote by GN the operator

GN [�] :=
N∑

n=0

Gn[�]�n,

obtained by truncating the series (5) after N terms. We shall show, in Section 3, that the weak form of problem (4)
is well-posed when G is replaced by GN , and examine the error introduced due to this substitution. This is the key
theoretical contribution of this paper.

Once one has an efficient and accurate boundary condition at the artificial boundary �, the annular region between
the scatterer D and � can be discretized using, for example, a finite element method. Typically, the resulting system of
linear equations will be solved iteratively, and needs to be preconditioned. In fact, since the exact DtN map is a non-local
operator, we may expect the matrices involved in the linear system to have dense sub-matrices. At the discrete level this
illustrates one of the major difficulties in prescribing these artificial boundary conditions: accurate boundary conditions
are non-local and lead to dense systems which lose accuracy when sparsity is artificially enforced. Fortunately, a natural
preconditioner exists for the linear system resulting from our method. Its performance is compared with that of some
other possible choices in Section 4.

We note that the error analysis in the first part of the paper does not influence the preconditioning strategies presented
in the second part. Indeed, we regard these two aspects of our algorithm as deeply important, complementing features:
it is our goal to present an algorithm which is provably robust, as well as amenable to optimization in terms of
implementation. We also note that our preconditioner of choice will be dependent on our specific choice of artificial
boundary condition, and is not hence a generic “blackbox” preconditioner.

2. Variational formulation

Let V := H 1(�) with the associated norm denoted by ‖ · ‖V , and denote by (·, ·) the inner product on L2(�). The
variational formulation of (4) is:
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Find u ∈ V such that for all v ∈ V ,

A(u, v) := (∇u, ∇v) − k2(u, v)︸ ︷︷ ︸
b(u,v)

+〈G[u], v〉 =
∫
�D

gv̄ ds. (6)

In practice, we truncate the DtN map after N terms, and use GN . This leads to the variational problem:
Find uN ∈ V such that for all v ∈ V ,

AN(uN, v) := b(uN, v) + 〈GN [uN ], v〉 =
∫
�D

gv̄ ds. (7)

We focus on the consistency error introduced by using GN instead of G, since the approximation errors incurred due
to using finite element approximations and truncations of Fourier series can be estimated by standard techniques (see
[18]). We now observe, using the variational problems defined by Eqs. (6) and (7), that

|AN(uN − u, v)|� |AN(uN, v) − A(u, v)| + |A(u, v) − AN(u, v)|
= |A(u, v) − AN(u, v)| = |〈(G − GN)[u], v〉|. (8)

In analogy to [7], our analysis will hinge on being able to demonstrate that the bilinear formAN(u, v) satisfies an inf-sup
condition (also called the Ladhyzhenskaya–Babǔska–Brezzi condition [2]), i.e., there exists a constant 
N > 0 such that

N‖u‖V �supv∈V,v �=0(a(u, v)/‖v‖V ). Note that this condition is equivalent to requiring infu∈V,v 0 supv∈V,v �=0(a(u, v)/

‖u‖V ‖v‖V )�
N > 0, and hence the constant 
N is called the inf-sup constant. If we can show that (7) satisfies such
an inf-sup condition, then estimate (8) will allow us to obtain a bound on ‖u − uN‖V :

Theorem 2.1. Let u, uN ∈ V be solutions of (6) and (7), respectively. If limN→∞ 
N > 0, then the following estimate
holds:

‖u − uN‖V �C
1


N

‖G − GN‖L(H �,H−1/2)‖u‖H �(�),

where u has trace u|� ∈ H �, �� 1
2 .

Note that in [7] the authors prove an error estimate for their finite-infinite element formulation which relies on the
discrete inf-sup constant being bounded away from zero. Numerical evidence is provided for this bound. Here we are
able to analytically establish that the 
N are bounded away from zero for N large enough.

3. Well-posedness of variational formulations and the inf-sup condition

It was shown in [14,7] that the variational problem

〈〈B0u, v〉〉0 :=
∫
�0

∇u · ∇v − k2uv dV0 +
∫

r=a

G0[u]v ds = F(v), ∀v ∈ H 1(�0)

is well-posed for F ∈ (H 1(�0))
′. Here, �0 is the annular region between �D and the circle r=a, andG0 is the DtN map

associated with a circular artificial boundary. The result followed by showing that the linear operator B0 : H 1(�0) →
(H 1(�0))

′ is Fredholm, and that the variational problem has a unique solution in H 1(�0). (We have denoted by 〈〈·, ·〉〉0
the duality pairing between H 1(�0) and its dual.) The proof relies on the spectral characterization of G0. In particular,
if

〈G0[�], v〉 =
∞∑

p=−∞
a�p�̂p

¯̂vp, �p = −k
dzH

(1)
p (ka)

H
(1)
p (ka)

, (9)

where dzH
(1)
p is the first derivative of H

(1)
p with respect to its argument, then well-posedness follows by showing that

the Im(�p) < 0 are bounded, and that Re(�p)�1/a > 0.
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We now sketch the proof of well-posedness of problems (6) and (7). We first show that the operator S0 : V → (V )′
defined via 〈〈S0u, v〉〉 := A0(u, v) is Fredholm with index zero (Theorem 3.1). We then show that the operator
S : V → V ′ defined by 〈〈Su, v〉〉 := A(u, v) satisfies ‖S − S0‖�1/‖S−1

0 ‖ for � > 0 small enough. Thus, by a
standard perturbation argument, S is also a Fredholm operator (see, e.g., [1, Theorem 2.3.5]). In [18] it is shown that
solutions of (6) are unique, implying the invertibility of S and the well-posedness of this formulation.

We use this argument again to show that SN defined via 〈〈SNu, v〉〉 := AN(u, v) has a bounded inverse, since SN

is close in operator norm to S. Hence, the variational problem (7) is also well-posed for sufficiently small perturbation
parameter �. In particular, we can see that AN satisfies the discrete inf-sup condition (see e.g., [5, Theorem 3.6]): there
exists 
N > 0 such that for all v ∈ V ,


N‖v‖V � sup
w∈V \{0}

AN(v, w)

‖w‖V

. (10)

Proof of Theorem 2.1. In order to conclude the estimate of Theorem 2.1, we need to show that 
N are strongly bounded
away from zero. This follows by observing that, from the theoretical results of [17,18], GN → G in the operator norm.
Clearly, 
N > 0 for all N �N0. Now, for v, w ∈ V , we have

A(v, w) = A(v, w) − AN(v, w) + AN(v, w),

which implies

|A(v, w)|
‖w‖V

�c‖(G − GN)‖L(H 1/2,H−1/2)‖v‖V + |AN(v, w)|
‖w‖V

,

where c > 0 is the trace constant. Thus,

sup
w∈V,w �=0

|A(v, w)|
‖w‖ − c‖(G − GN)‖L(H 1/2,H−1/2)‖v‖V � sup

w∈V,w �=0

|AN(v, w)|
‖w‖V

.

If 
 is the inf-sup constant for A(·, ·), we can choose N1 �N0 such that for all N > N1,


 − c‖(G − GN)‖L(H 1/2,H−1/2) �



2
.

Then, for all N �N1,




2
� inf

v∈V,v �=0
sup

w∈V,w �=0

|AN(v, w)|
‖w‖V ‖v‖V

.

This shows that for N > N1, 
N �
/2 > 0.
From (8),

|AN(uN − u, v)|� |〈(G − GN)[u], v〉|,
and we can use the inf-sup constant 
N for AN and the trace constant c to obtain

‖u − uN‖V � c


N

‖G − GN‖L(H 1/2,H−1/2)‖u‖V � 2c



‖G − GN‖L(H 1/2,H−1/2)‖u‖V .

Notice that the Taylor remainder of the DtN map must be measured in the weak space H 1/2 (established in [18]) rather
than the smoother space Hs+3/2 (s�0) studied in [17]. We also point out that there is a cost associated with this more
delicate estimate, namely that the perturbation f must be somewhat smoother, f ∈ H 5([0, 2�]). �

The key to the preceding argument is that S0 is a Fredholm operator of index zero, which is established in the
following theorem.

Theorem 3.1. If f ∈ H 5([0, 2�]), then there exists a �0 > 0 such that if 0 < � < �0, then S0 = A + C where the linear
operators A and C are, respectively, invertible and compact as maps from V to V ′. Hence, S0 is a Fredholm operator
of index zero.
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Proof of Theorem 3.1. It is clear that A0(u, v) is a continuous sesquilinear form on V × V . We now define the
sesquilinear forms a, d on V × V :

a(u, v) :=
∫
�

∇u · ∇v̄ + uv̄ dV + Re

{∫
�
G0[u]v̄ ds

}
, (11a)

d(u, v) := −
∫
�
(k2 + 1)uv̄ dV + Im

{∫
�
G0[u]v̄ ds

}
. (11b)

Clearly A0(u, v) = a(u, v) + d(u, v).
By inspection a is continuous; for coercivity we note that

a(u, u) = ‖u‖2
V + Re

{∫
�
G0[u]ū ds

}
.

If we can show Re{∫� G0[	]	̄ ds}�0 for all 	 ∈ H 1/2(�), the coercivity of a(u, v) is established, since the trace of
u ∈ V lies in H 1/2(�). We can describe the arc-length parameter ds on � as

(ds)2 = [(a + �f )2 + (�f ′)2] (d�)2,

and can thus estimate

Re

{∫
�
G0[	]	̄ ds

}
= Re

{∫ 2�

0
G0[	]	̄a d�

}

+ Re

{∫ 2�

0
G0[	]	̄([(a + �f )2 + (�f ′)2]1/2 − a) d�

}

�(1 − c̄(�))Re

{∫ 2�

0
G0[	]	̄a d�

}

= (1 − c̄(�))

∞∑
p=−∞

Re{�p}|	̂p|2 �0, (12)

for � sufficiently small, where we used Re{�p}�0, from (9). Here

1 − c̄(�) = 1 − max[0,2�]

∣∣∣∣∣∣
[(

1 + �
f (�)

a

)2

+ �2 f ′(�)2

a2

]1/2

− 1

∣∣∣∣∣∣ �0,

provided � is chosen small enough. Denote by �0 the largest such perturbation. We can hence use the coercivity of
a(·, ·) to define an invertible operator A : V → V ′:

〈〈Au, v〉〉 := a(u, v), ∀u, v ∈ V ,

provided 0����0.
We now turn our attention to d(u, v). The continuity of the first term in (11b) is clear, while the continuity of the

second follows by the calculation

Im

{∫ 2�

0
G0[	]̄a d�

}
=

∞∑
p=−∞

Im
{
�p

}
	̂p

¯̂p.

This defines a continuous sesquilinear map on L2([0, 2�]) × L2([0, 2�]), since the Im
{
�p

}
are bounded for all p, see

(9). Therefore, we can also bound Im
{∫

� G0[	]̄ ds
}

for � smaller than �0. The embeddings of H 1(�) in L2(�) and
H 1/2(�) in L2(�) are compact, and therefore the sesquilinear form d(u, v) can be used to define a compact operator
C : V → V ′. Consequently, the variational problem
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Fig. 2. Sparsity patterns for the matrices K, M and Q: (a) Sparsity pattern of K and M; (b) Starsity pattern of Q.

Find u0 ∈ V such that for all v ∈ V ,

A0(u
0, v) =

∫
�

gv̄ ds

can then be written in operator notation as (A+C)u0 =F, for some F ∈ V ′, or (I +A−1C)u0 =A−1F , where A−1C

is a compact map from V → V . This proves the assertion that S0 is a Fredholm operator of index zero. �

The uniqueness of solutions to the operator equation S0u0 = F can be proven using Rellich’s lemma and an analytic
continuation argument as in [14]. This, along with the preceding theorem, gives us the desired invertibility result
for S0.

4. Preconditioning

In this section we present some preliminary results concerning the preconditioning of the discrete system obtained
from the variational formulation for uN . We note that until now, the algorithm has been quite general: any Galerkin
method (finite element or spectral element) would be suitable for use in the truncated annular region. For definiteness we
consider a finite element approximation of the variational problem (7). To this end, we introduce a mesh Th, and a finite-
dimensional subspace Vh of V . Let {�i}Nh

i=1 be a basis for this subspace. If we approximate uN by uN,Nh
=∑Nh

j=1ũj�j ,
(7) leads to the system of equations:

Nh∑
j=1

ũj

[∫
�

∇�j · ∇�l − k2�j�l dV +
∫
�
GN [�j ]�l ds

]
=

∫
�D

g�l ds,

for l = 1, . . . , Nh. We can write this in matrix notation as

L�u := (K − k2M + Q)�u = �f , �u = (ũ1, ũ2, . . . , ũNh
)T. (13)

In order to solve (13) for large Nh, it is crucial to understand the sparsity patterns of the matrices K, M and Q, which
depend on the discretization of the computational domain. Fig. 2 gives a sample of these patterns for the matrices K,
M and Q.

The number of non-zero entries in K and M will be at most (dmax + 1)Nh, where dmax is the largest degree of a
vertex in the discretization, and typically remains bounded during successive refinements. Thus, K and M are sparse.
On the other hand, if �j is supported on the boundary �, GN [�j ] will be non-zero along the entire boundary, so Q
will have dense sub-matrices (see Fig. 2). However, the number of non-zero entries will be at most N2

�, where N� is
the number of vertices lying on the boundary. Since N� = o(Nh), the fraction of the entries of Q that are non-zero
eventually becomes small, making Q sparse as well. Direct methods, e.g., ones utilizing the LU or QR factorizations,
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Table 1
Condition numbers for different preconditioners and discretizations

hmax L P −1
A L P −1

B0
L P −1

B1
L P −1

B2
L P −1

C L P −1
D L P −1

E L

0.3791 121.0 32.3 31.4 8.63 7.15 554.8 3.09 223.5
0.1911 544.5 114.3 84.6 22.6 3.6 946.5 6.44 613.6
0.0991 2887 390.4 264.9 60.4 7.5 2784 15.3 1936

can destroy this sparsity [19], and are therefore not ideal for systems of the form (13). For this reason, iterative methods
are favored as they retain and take advantage of the sparsity of the system [11]. In addition, for large-scale problems,
their execution time and floating-point operation (FLOP) counts can grow much more slowly as a function of the size
of the system when compared to direct methods.

Of course, in practice an iterative method requires an easily computed preconditioner P which transforms the original
problem Lx=b into (P −1L)x =P −1b, where P −1L approximates the identity in some sense. We now consider a class
of preconditioners P defined by

P = K − k2M + Q̂,

where Q̂ is an “easily computed” approximation to Q.
One may expect that one simple preconditioner may be P = (K − k2M); however, as the mesh is refined, we found

that the conditioning of P deteriorates quite dramatically. The next natural preconditioner one may conceive of is
P =K −k2M +Q0, where we approximate Qjl = (

∫
� GN [�j ]�l ds) by (Q0)jl := (

∫
� G0[�j ]�l ds). We will see that

this choice indeed, at least experimentally, is the most successful in terms of computational efficiency and performance.

The following five options were explored:

(A) A far-field approximation: Q̂FF
j,l = (ik)

∫
� �j�l ds.

(B) A low-order approximation to Q: Q̂m
j,l = ∫

� Gm[�j ]�l ds.

(C) Hermitian approximation: Q̂H = ( 1
2 )(Q + QH).

(D) Symmetric approximation: Q̂S = ( 1
2 )(Q + QT).

(E) A low-wavenumber approximation: Q̂LW
j,l = ∫

� GN [�j ]|k=1�l ds.

We now present the results of a series of numerical experiments investigating the condition numbers, �(L) :=
|L||L−1|, of these five classes of preconditioners, and their behavior when combined with the GMRES and BiCGStab
iterative methods. In all experiments, the wavenumber was set to k = 3, and the geometry of the scatterer and artificial
boundary are r = 1 + 0.4f (�) and r = 1.5 + 0.3f (�), respectively, where f (�) = cos(4�). Approximations to f and
the Dirichlet data on �, 	 := u|�, at equally spaced gridpoints are stored in vectors of length N� = 256, while the
number of Fourier modes retained in approximating f and 	 are Nf = 4 and N	 = 8, respectively. See the Appendix for
formulas for the Gn and [17] for complete details on their numerical implementation. In our simulation of the matrix
L, the Taylor series approximation to G is truncated after N = 10 terms, while the tolerance for the iterative methods
was set to � = 10−12. For a complete discussion of these numerical parameters see [17].

In Table 1 we report numerical simulations of the condition numbers of the matrix L (where G is approximated
by G10) and the preconditioned matrices P −1L for the five approximations of Q̂ appearing in P. It is clear that the
condition number of L is inversely quadratic as a function of hmax, as predicted by the standard finite element theory
[11]. We do point out that this behavior is unaffected by the value N in GN for N sufficiently large (say N �10). The
condition number of the preconditioned system is reduced most significantly when alternative (B) is used. Furthermore,
the condition number of P −1

Bj
L decreases as j increases. This is to be expected as the eigenvalue distribution of Q̂j

should converge to that of Q as j → ∞ when all other parameters are fixed.
In Table 2 we list numerical approximations to the condition numbers and “deviation from normality” for precon-

ditioners of type (B). This non-normal behavior is inherent at the continuous level as well, and is unavoidable. The
deviation from normality at the discrete level is measured using the condition number of V (M), the matrix whose rows
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Table 2
Condition numbers and deviation from normality for preconditioners of type B. Here, V (M) is a matrix holding the eigenvectors in the diagonalization
M = VDV−1

j �(Lj ) �(V (Lj )) �(P −1
Bj

L) �(V (P −1
Bj

L)) Build Time (s)

0 720 245 84.6 7.8 × 1017 9.23
1 567 246 22.6 1.5 × 1016 13.35
2 543 255 3.6 1.7 × 1016 18.69
3 540 254 2.06 4.6 × 1014 24.95
4 545 251 1.57 3.7 × 1015 31.89
5 408 237 1.38 1.8 × 1016 40.03
6 544 231 1.20 4.6 × 1014 50.83
7 544 256 1.19 9.5 × 1016 60.97
8 544 245 1.16 1.2 × 1016 72.29
9 544 252 1.11 2.0 × 1014 84.74

Table 3
Number of iterations of GMRES (10) required by different preconditioners, and the time required to build the preconditioner

Preconditioner hmax = 0.191 hmax = 0.0991 hmax = 0.0505

Time (s) Iter. Time (s) Iter. Time (s) Iter.

None 99.2 Fail 243.8 Fail 643.8 Fail
PA 0.01 19 0.01 19 0.01 19
PB0 8.1 9 26.6 9 88.7 9
PB1 12.9 9 38.9 8 126.1 8
PB2 18.7 7 54.9 6 174.2 6
PE 95.0 45 228.2 47 632.5 47

Table 4
Number of iterations of BiCStab required by different preconditioners, and the time required to build the preconditioner

Preconditioner hmax = 0.191 hmax = 0.0991 hmax = 0.0505

Time (s) Iter. Time (s) Iter. Time (s) Iter.

None 98.5 Fail 246.5 Fail 649.5 Fail
PA 0.01 Fail 0.01 Fail 0.01 Fail
PB0 8.2 11 26.6 9 90.0 10
PB1 12.8 7 39.8 5.5 126.9 7
PB2 18.6 4.5 55.6 4.5 176.1 4
PE 95.5 Fail 237.3 Fail 633.8 Fail

contain the eigenvectors of the matrix M. The matrices Lj are approximations to L where G is approximated by Gj .
From these data we deduce that the matrices P −1

B L are highly non-normal, as indicated by the high condition number of
their V -matrices in the VDV−1-factorization. On the one hand, this is unfortunate, as error bounds on iterative methods
applied to non-normal matrices (such as GMRES) often involve the factor �(V ) [11]. On the other hand, such error
bounds are seldom tight, and, in fact, our experiments indicate that this is probably the case here.

Regarding alternatives (C) and (D), the cost of forming these preconditioners is as great as that of forming Q itself,
rendering them disadvantaged when compared with the other options. However, it should be pointed out that (D) does
provide a great reduction in the condition number. As the data in Tables 3 and 4 and Fig. 3 clearly indicate, methods (A)
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Fig. 3. Semilog plot of error versus the number of iterations for different methods. The black, red, blue and green curves represent methods (A), B0,
B1 and B2, respectively: (a) GMRFS (10); (b) BICGStub.

and (E) are inferior to approach (B). Regarding choice (B), as j is increased, the number of iterations required to meet
the tolerance � consistently decreases. However, when the time required to build Q̂j is factored in, the total execution
time is actually smallest for Q̂0.

5. Conclusion

We have presented an error analysis for a high-order accurate DtN-FE algorithm for solving two-dimensional exterior
scattering problems. This method involves a perturbative algorithm for the enforcement of an exact transparent boundary
condition at a quite general artificial boundary. Having completed this analysis we described five preconditioning
methodologies for a finite element implementation of our algorithm. One method, based upon low-order approximation
of the DtN map, stood out as clearly superior for both GMRES and BiCGStab iterative schemes. Future work will include
a theoretical justification of our preconditioning strategy, as well as a more efficient way to invert the preconditioner.
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Appendix. Perturbative calculation of the DtN map

We gather in this section the specific expressions used for the terms Gn in the perturbation expansion of the DtN
map, G, using the method of field expansions [17]. Recall that if the Dirichlet data 	 are given on �, the DtN operator
G is defined via G[	] := ∇w|� · N , where w solves

�w + k2w = 0, x ∈ Ext(�) (14a)

w = 	, x ∈ � (14b)

lim
r→∞

√
r(�rw − ikw) = 0. (14c)

The method of field expansions is based upon the fact that both the DtN map G and the solution w are analytic with
respect to boundary variations, parameterized by �. We can therefore expand the field in a perturbation series in �:

w(r, �, �) =
∞∑

n=0

wn(r, �)�n. (15)
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We then insert this into the defining Helmholtz problem (14), and obtain the PDE satisfied by wn:

�wn(r, �) + k2wn(r, �) = 0, r > a, (16a)

wn(a, �) = �n,0	(�) −
n−1∑
l=0

�n−l
r wl(a, �)

f n−l

(n − l)! , (16b)

lim
r→∞ r1/2(�rwn − ikwn) = 0, (16c)

where �n,p is the Kronecker delta. Noting that

wn(r, �) =
∞∑

p=−∞
an,pH(1)

p (kr)eip� (17)

satisfies (14a) and (14c), we can now compute the nth term in the expansion of the DNO. After some algebra, we get

G(�f )	 =
∞∑

n=0

Gn(f )[	]�n = ∇w(a + �f (�), �) · N�f

=
∞∑

n=0

∞∑
p=−∞

[
−k(a + �f )dzH

(1)
p (k(a + �f )) + ���f

(a + �f )
(ip)H(1)

p (k(a + �f ))

]
an,peip��n,

where N�f = (−(a + �f ), ���f ). This readily yields the following recursion for the field expansion Gn(f ):

Gn(f )	 = − ka
n∑

l=0

∞∑
p=−∞

al,p

(kf )n−l

(n − l)!d
n+1−l
z H (1)

p (ka)eip�

− f

a
Gn−1(f )	

− 2kf
n−1∑
l=0

∞∑
p=−∞

al,p

(kf )n−1−l

(n − 1 − l)!d
n−l
z H (1)

p (ka)eip�

− k

a
f 2

n−2∑
l=0

∞∑
p=−∞

al,p

(kf )n−2−l

(n − 2 − l)!d
n−1−l
z H (1)

p (ka)eip�

+ 1

a
(��f )

n−1∑
l=0

∞∑
p=−∞

al,p

(kf )n−1−l

(n − 1 − l)!d
n−1−l
z H (1)

p (ka)(ip)eip�. (18)
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